第11~14届全国华罗庚金杯少年数学邀请赛决赛试题
第十一届华罗庚金杯少年数学邀请赛总决赛,初二组一试试题及解答
第十一届华罗庚金杯少年数学邀请赛总决赛初二组一试试题及解答1.某次数学竞赛前60名获奖。
原定一等奖5人,二等奖15人,三等奖40人;现调为一等奖10人,二等奖20人,三等奖30人。
调整后一等奖平均分数降低3分,二等奖平均分数降低2分,三等奖平均分数降低1分。
如果原来二等奖比三等奖平均分数多7分 ,求调整后一等奖比二等奖平均分数多几分?解。
设调整后一等奖平均分为x ,二等奖平均分为y ,三等奖平均分为z.则 .172),1(40)2(15)3(5302010=-++++++=++z y x z y x z y x 即.5 6 7)1()2( =-∴=-=+-+y x z y z y 又答。
调整后一等奖比二等奖平均分数多5分2.}{][ ][}{ ][ ,20042003x x x x x x x x ⨯-=<<。
如果的最大整数,表示不大于已知是正整数。
求满足条件所有实数x 的和。
解。
显然,,2003][=x 2003是质数,1}{0<<x ,设 ,}{2003p x =由题设,p 是整数。
.20031<≤p .40110072003200232120022003S .2002,,3,2,1,20032003=+++++⨯==+= 和p p x 3.计算.)6435)(6427)(6419)(6411)(643()6439)(6431)(6423)(6415)(647(4444444444++++++++++ ]4)2][(4)2[()84)(84(16)8(1664166422222222244+-++=+-++=-+=-++=+a a a a a a a a aa a a 解。
.33741441)437)(433)(429)(425)(421)(417)(413)(49)(45)(41()441)(437)(433)(429)(425)(421)(417)(413)(49)(45(2222222222222222222222=++=++++++++++++++++++++=原式4.凸四边形ABCD 中,AB+AC+CD=16,问:对角线AC,BD 为何值时,四边形ABCD 面积最大?面积最大值是多少?解。
华罗庚总决赛资料
一、计算模块命题特点分析结论1、常考提取公因数与平方差公式在第十三届、十四届华杯赛决赛中都考察到了提取公因数进行速算的方法,这里需要注意的是:计算会往分数计算方面侧重,整数计算涉及的可能性很小;平方差公式的灵活运用需要熟练掌握。
2、注意估算与取整为难点以第十四届华杯赛决赛第9题和第15届华杯赛决赛第8题为例,估算是华杯赛计算中常考的题,对于加减符号交替变化的估算题,一般算式的前几项就决定了整个算式的大概范围。
另外需要说明的是,对于初中下方的知识点取整,也属于估算的内容,这点是杯赛的热门,可能是考察的新方向,同学们需注意。
二、计算模块考察难度及考生获奖需要达到的程度1、考察难度计算题型常常作为第一题,因此难度不会很大,一般为2★难度左右。
对于估算,难度达到了3★,对于估算常用的方法不太熟悉就常常会因此而失分。
2、考生需要达到的程度考生复习的时候,若提取公因数方法与平方差公式运用没太大问题,侧重点可以放在估算与取整上。
要获奖,简单计算题是绝对不能丢分的。
建议以寒假和春季所涉及的关于计算的知识点讲解再重新整理一遍,把华杯赛历年考试所涉及到的估算题挑出来系统的整理一遍,提炼出估算方法及解题心得。
华杯赛考试试题难度在几大权威杯赛中是比较高的,不过我们仔细研究每年的试题,都会发现常见的知识点模块,我们针对性的做复习巩固,相信会取得不错的成绩。
本套试题针对杯赛考试的知识点模块考点,进行分析解答。
以供参考。
本篇为计数问题模块考点分析。
计数模块:一、计数模块命题特点分析结论1、计数在近两年的出题频率降低2008年及以前的华杯赛试题中,计数在每张试卷中大概出现两题左右,所占分值比例较高,但从09、10两年试题来看,计数的题目明显减少,数论中的整数拆分题目数量开始增多。
但为了避免杯赛出现知识点"大年"和"小年"的状况,也避免今年回归到增加计数类型的题目,我们还是把计数中的华杯常考点需要进行梳理。
华杯赛历届真题
10.有一个电子钟,每走 9 分钟亮一次灯,每到整点响一次铃.中午 12 点整, 电子钟响铃 又亮灯.问:下一次既响铃又亮灯是几点钟? 11.一副扑克牌有四种花色,每种花色有 13 张,从中任意抽牌.问:最少要抽多少张牌,才 能保证有 4 张牌是同一花色? 12.有一个班的同学去划船.他们算了一下,如果增加一条船,正好每条船坐 6 人;如果减 少一条船,正好每条船坐 9 人.问:这个班共有多少同学? 13.四个小动物换座位.一开始,小鼠坐在第 1 号位子,小猴坐在第 2 号,小兔坐在第 3 号, 小猫坐在第 4 号.以后它们不停地交换位子.第一次上下两排交换.第二次是在第一次交 换后再左右两排交换.第三次再上下两排交换.第四次再左右两排交换……这样一直换下 去.问:第十次交换位子后,小兔坐在第几号位子上?(参看下图)
参考答案 1.【解】 1986 是这五个数的平均数,所以和=1986× 5=9930。 2.【解】方框的面积是 叠部分共有 8 个 。每个重叠部分占的面积是一个边长为 1 厘米的正方形。重
10
2
Байду номын сангаас
5 一 l× 8=(100—64)× 5—8=36× 5—8=172(平方厘米)。 82 ×
故被盖住的面积是 172 平方厘米。 3.【解】 105=3× 5× 7,共有(1+1)× (1+1)× (1+1)=8 个约数,即 1,3,5,7,15,21,35, 105。 4. 【解】在这道题里,最合理的安排应该最省时间。先洗开水壶,接着烧开水,烧上水以后, 小明需要等 15 分钟,在这段时间里,他可以洗茶壶,洗茶杯,拿茶叶,水开了就沏茶,这样 只用 16 分钟。 5.【解】149 的个位数是 9,说明两个个位数相加没有进位,因此,9 是两个个位数的和, 14 是两个十位数的和。于是,四个数字的总和是 14+9=23。 6.【解】松鼠采了:112÷ 14=8(天) 假设这 8 天都是晴天,可以采到的松籽是:20× 8=160(个) 实际只采到 112 个,共少采松籽:160-112=48(个) 每个下雨天就要少采:20-12=8(个) 所以有 48÷ 8=(6)个雨天。 7. 【解】因为正方体的边长是 1 米,2100 个正方体堆成实心长方体的体积就是 2100 立方米。 已经知道,高为 10 米,于是长× 宽=210 平方米 把 210 分解为质因数:210=2× 3× 5× 7 由于长和宽必须大于高(10 米),长和宽只能是:3× 5 和 2× 7。也就是 15 米和 14 米。14 米 +15 米=29 米。 答:长与宽的和是 29 米。
历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】
二、简答题(每小题 15 分, 共 60 分, 要求写出简要过程)
9. 用 4 个数码 4 和一些加、减、乘、除号和小括号, 写出值分别等于 2、3、4、 5、6 的五个算式. 10. 右图是 U, V, W, X 四辆不同类型的汽车每百千米的耗油 量. 如果每辆车都有 50 升油, 那么这四辆车最多可行驶 的路程总计是多少千米? 11. 某商店卖出一支钢笔的利润是 9 元, 一个小熊玩具的进 价为 2 元. 一次, 商家采取 “买 4 支钢笔赠送一个小熊玩具”的打包促销, 共 获利润 1922 元. 问这次促销最多卖出了多少支钢笔? 12. 编号从 1 到 10 的 10 个白球排成一行, 现按照如下方法涂红色: 1)涂 2 个球; 2)被涂色的 2 个球的编号之差大于 2. 那么不同的涂色方法有多少种?
四百米比赛进入冲刺阶段,甲在乙前面 30 米,丙在丁后面 60 米,乙在丙前面 20 米. 这时,跑在最前面的两位同学相差( (A)10 (B)20 )米. (D)60
(C)50
5.
在右图所示的两位数的加法算式中, 已知 A B C D 22 , ). (B)4 (C)7 (D)13
一、选择题 (每小题 10 分, 满分 60 分. 以下每题的四个选项中, 仅 有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号 内.)
第十四届华罗庚金杯少年数学邀请赛决赛试题C(初一组)参考答案
第十四届华罗庚金杯少年数学邀请赛决赛试题C参考答案(初一组一、填空(每题l0分,共80分题号 1 2 3 4 5 6 7 8③答案二、解答下列各题(每题l0分,共40分,要求写出简要过程9.答案:26.解答:因为和是直角三角形且AC=2MC、BC=2NC,我们有:,,等式两边对应相加,结合也是直角三角形,得到:,所以:,.评分参考:1列出前两个等式得4分;2列出第三个等式得4分;3给出正确结果得2分.10.答案:每小时120千米.解答:设甲和乙车速度分别是每小时和千米,甲和乙到达C地的时间分别是小时和小时.则:,化简得:,,.所以甲车速度是每小时l20千米.评分参考:1列出一个方程给2分,共6分;2给出正确结果得4分.11.答案:.解答:设有负数根,则,进而.要保证为负数,必须满足.设有正数根,则,进而.要保证为正数,必须满足.综合上面的讨论,要保证只有负数根,必须满足.评分参考:1讨论清楚有正数根的条件得4分;2讨论清楚有负数根的条件得4分;3给出正确结果得2分.12.答案:6解答:用A、B、C、D表示四种交通工具,分情况进行讨论.1如果去(或返回时,大家选择的工具没有相同的,则最多4位同学.2如果去(或返回时,恰有两位选择的工具相同,其他几位都与别人不同,则最多有5位同学.3如果去(或返回时,恰有三位选择的工具相同,其他几位都与别人不同,则最多有6位同学.4如果去(或返回时,有四位或更多选择的工具相同,则最多有4位同学.否则,假设有5位或更多同学.不妨设前四位选择了A,则他们返回(或去时选的工具一定互不相同,分别是A、B、C、D.返回(或去时,前四位之外的任何一位选择的工具一定与前四位中的某位相同.在这两位和前四位中的另外一位三人中,去(或返回时以及返回(或去时都至少有两位选择了相同交通工具.矛盾.上面的讨论说明,至多有6位同学.下表说明6位同学可以满足题设条件.1 2 3 4 5 6去 A A A B C D回 B C D A A A评分参考:1给出正确答案得2分;2说明6位同学可以得4分.3说明多于6人不可得4分.三、解答下列各题(每题l5分,共30分,要求写出详细过程13.解答:若被乘数“奇偶偶”<200,那么,偶奇偶偶=奇偶偶×偶<188×8=1504<偶奇偶偶.矛盾.所以,被乘数不小于300.被乘数的百位与乘数的十位的乘积应该小于8,否则加一个非0偶数就应该进位了,最后的结果应该是5位数,与竖式不符.所以,被乘数的百位是3,乘数的十位是2.因此:3偶偶×2=偶奇偶,被乘数的个位数只能6或8,否则不能进位;而被乘数的十位数只能是0,2或4,否则就要进位.因此,被乘数只可能是306,308,326,328,346,348.这些数乘以4或6都得不到“偶奇偶偶”,而348乘以8时,得“偶奇偶偶”,所以,最后得到右式.评分参考:1给出正确答案得8分;2给出理由得7分.14.答案:.解答1.如图1,连接AC.则三角形ACD的面积为,易知,,同法,连接BD,求得:……①如图2,连接EF,则ADFE是个梯形,设,则因为:,所以:……②即:.也就是:,所以:.即:.评分参考:1画出辅助线得2分;2讨论到①式得4分;3讨论到②式得6分;4得到正确答案得3分.解答2.如图3,记,,,.∵且,∴,∵,∴,求得:,∴.∴.。
第十至十四届小学华赛初赛试卷
第十四届华罗庚金杯少年数学邀请赛初赛试卷(小学组)试题及答案一、选择题。
每小题10分,满分60分。
以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英语字母写在每题的圆括号内)1.下面的表情图片中,没有对称轴的个数为()(A) 3 (B)4 (C)5 (D)62.开学前6天,小明还没做寒假数学作业,而小强已完成了60道题。
开学时,两人都完成了数学作业,在这6天中,小明做的题的数目是小张的3倍,他平均每天做了()道题。
(A)6 (B)9 (C)12 (D)153.按照中国篮球职业联赛组委会的规定,各队队员的号码可以选择的范围是0~55号,但选择两位数的号码时,每位数字均不能超过5,那么,可供每支球队选择的号码共有()个。
(A)34 (B)35 (C)40 (D)564.在19,197,2009这三个数中,质数的个数是()。
(A)0 (B)1 (C)2 (D)35.下面有四个算式:其中正确的算式是()(A)①和②(B)②和④(C)②和③(D)①和④6.A、B、C、D、E五个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小朋友:A→C,B→E,C→A,D→B,E→D,开始时A、B拿着福娃,C、D、E拿着福牛,传递完5轮时,拿着福娃的小朋友是()。
(A)C与D(B)A与D (C)C与E (D)A与B二、填空题(每小题10分,满分40分)7.下面的算式中,同一个汉字代表同一个数字,不同的汉字代表不同的数字,团团×圆圆=大熊猫,则“大熊猫”代表的三位数是___________。
8.从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,这样可以得到4个数:4、6、5和4,则原来给定的4个整数的和为___________。
9.如下图所示,AB是半圆的直径,O是圆心,弧AC=弧CD=弧DB,M是弧CD的中点,H是弦CD的中点,若N是OB上一点,半圆的面积等于12平方厘米,则图中阴影部分的面积是___________平方厘米。
第十一届全国“华罗庚金杯”少年数学邀请赛决赛试题解答(初一组)
第十一届全国“华罗庚金杯〞少年数学邀请赛决赛试题解答〔初一组〕一. 填空1 计算:()()⎥⎦⎤⎢⎣⎡-÷+⎪⎭⎫ ⎝⎛-⨯÷⎭⎬⎫⎩⎨⎧-⨯⎥⎦⎤⎢⎣⎡---342)2(5833225.01631=( ).答:47解:原式(){}235130254388.⎡⎤⎛⎫⎡⎤=---⨯÷⨯-- ⎪⎢⎥⎣⎦⎝⎭⎣⎦()144187⎛⎫=-÷-= ⎪⎝⎭.2 当2m π=时,多项式31am bm ++的值是0,那么多项式31452a b ππ++=〔 〕.答:5.解:根据 38210a b ππ++=,即()3311458215522a b a b ππππ++=+++=,故原式的值为5.3 将假设干本书籍分给几名小朋友,如果每人分4本书,就还余下20本书,如果每人分8本书,就有1名小朋友虽然分到了一些书,但是缺乏8本, 那么共有〔 〕名小朋友. 答:6.解:设共有x 名小朋友,由题意,04208(1)8x x <+--<,02848x <-<推出75<<x ,得6=x .4 图16中的长方形ABCD 是由四个等腰直角三角形和一个正方形EFGH 拼成. 长方形ABCD 的面积是120平方厘米,那么正方形EFGH 的面积等于〔 〕平方厘米. 答:10.图16解法1:如图16a ,延长BF 交DC 于N 点,延长EH 交BC 于M 点,由条件可知1122CE CM CN CB ===,DA DE CB CN ===,所以 CM=MB =CE=EN =ND . 将长方形ABCD 的长边3等分,短边2等分,如图1a 所示,连接对应的等分点,分成网格图形, 数一数,长方形ABCD 恰好等于12个正方形EFGH 的面积,由于长方形ABCD 的面积为120平方厘米,所以正方EFGH 的面积等于10平方厘米.解法 2:设正方形EFGH 的边长为x ,根据题意,图1中的四个三角形为等腰直角三角形,那么三角形EHC 的直角边长为x ,三角形CGB 的直角边长为x 2, 三角形ABF 的直角边长为x 3,三角形ADE 的斜边长为x 4.并且,正方形EFGH 的面积=2x ,三角形EHC 的面积=22x ,三角形CGB 的面积=2222)2(x x =,三角形ABF 的面积=292)3(22x x =, 三角形ADE 的面积=2⨯三角形CGB 的面积=24x .因此120=2222221242922x x x x x x =+++, 故102=x ,即正方形EFGH 的面积等于10平方厘米.5 满足方程2006182006|x |--+=的所有x 的和为〔 〕. 答: 4012.解:根据绝对值的性质,逐步去除等式2006182006|x |--+=绝对值符号,得到2006120068x --=-,2006120068x -=+-,()2006120068x =++-,或()2006120068x =-+-由表达式可以看到,x 有2个不同的解,它们的和是:图2图16a()2006120068++-+()20061200684012-+-=.6 一个存有一些水的水池,有一个进水口和假设干个口径相同的出水口, 进水口每分钟进水3立方米.假设同时翻开进水口和三个出水口, 池中水16分钟放完; 假设同时翻开进水口与五个出水口, 池中水9分钟放完. 池中原有水〔 〕立方米. 答: 288.解: 设每个出水口每分钟放出水x 立方米, 池中原有水y 立方米, 那么3163165939x yx y⨯⨯=⨯+⎧⎨⨯⨯=⨯+⎩, 解上面二元一次方程组,()4845482721x -=-=,7x =〔立方米〕,316748288y =⨯⨯-=〔立方米〕. 7 20062005122006220052)1(164834221-++-++-+-=+ k k k S ,小于S 的最大的整数是〔 〕. 解答:因为,2005200620052006123420052006248162212342005200602481622S =-+-++-⎛⎫⎛⎫⎛⎫=-+-++-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2005200620042005200620052006123420052006248162212345200420052006248163222211320032006 1.283222S =-+-++-⎛⎫⎛⎫⎛⎫=-------- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<-----< 因此小于S 的最大的整数是0.8 如图17,数轴上标有21n +个点,它们对应的整数是:(),1,,2,1,0,1,2,,1,n n n n ------.为了确保从这些点中可以取出2006个,其中任何两个点之间的距离都不等于4,那么n 的最小值是〔 〕.答: 2005.解:① 将数轴上的21n +个点,自左端开始,连续8个点为一组,每组仅取右边4个点,这样就可以确保所取出的点,其中任意两点之间的距离不等于 4. 从多少组中才能取出2006个点?既然,200645012=⨯+,即从501组可以取出2004个点,另外,再从第502组中取出2个点,就得到2006个点. 所以,850124010⨯+=.即数轴上至少有4010个点,就能够确保从这4010个点中取出2006个,其中任意两点之间的距离不等于4.214010n +≥,2005n ≥.当n =2005时,可以取 -2005,-2004,-2003,-2002,-1997,-1996,-1995,-1994,,-2005+8k ,-2004+8k ,-2003+8k ,-2002+8k ,,1995,1996,1997,1998,2003,2004,共2006个,其中任何两个数所代表的两个点之间的距离都不等于4.② 当2004=n 时,数轴上连续点的个数是214009n +=. 此时,将距离是4的2个点配对,共有2004对,另外还有单独的一个点,从每个配对中只取一个点,否那么一定有2个点的距离是4, 连同单独的一个点,一共可以取出2005个点,但是要求取出2006个点,不得不将某个配对的两个点都取出,它们的距离是4. 所以,当2004=n 时,任取2006个点,一定有2个点,距离是4. 当2004<n 时,补足至4009个点,就可以说明n 的最小值是2005.二. 解答以下各题〔要求写出简要过程〕9 图18中,ABCD 是矩形,6BC cm =,10AB cm =,AC 和BDCD 为轴旋转一周,那么阴影局部扫过的立体的体积是多少立方厘米?〔π 取3.14〕图18图17解: 〔见小学组决赛第11题解答〕 10 将21个整数:109832101238910,,,,,,,,,,,,,------分为个数不相等的六组数,分别计算各组的平均值,那么这六个平均值的和最大是多少? 解: 将21个整数分为个数不相等的6组,各组的个数分别为1、2、3、4、5、6个. 既然是求六组个平均值的和的最大值,应当将数值大的分在整数个数少的组中. 所以,可以如下分组:10第一组第二组98第三组765第四组4321第五组-1-2-3-4第六组-5-6-7-8-9-10计算上述六组整数的平均值的和:1098765432101567891012345611110862272221172.+--=++++++--2-3-4------+++++=++ 答:最大的和是1172.评注和说明:下面说明理由.六组数分别为{}{}{}{}{}{}112123123412345123456,,,,,,,,,,,,,,,,,,,,a b b c c c d d d d e e e e e f f f f f f ,那么各组数平均数的和为()()()()()12123126111212312341234512345623660302015121060b bc c c f f f a a b b c c cd d d de e e e ef f f f f f ++++++++++++++++++++++++++++++=我们要使得这个分数最大,只要使得分子最大. 先考虑让那一个字母取10,显然是1a ,这样能使总和最大;同理,让12,b b 取8,9对总和的奉献是最大的……以此类推,{}{}{}{}{}{}10,8,9,5,6,7,1,2,3,4,4,3,2,1,0,10,9,8,7,6,5----------是我们得到的分组结果.这一过程无非就是把我们的解题过程用代数式翻译了一遍.为了同学们能多体会字母代表数的抽象性,这里再介绍一种更为一般一些的方法.()()()()()()()()61121231234123451234561091019100;S a b b c c c d d d d e e e e e f f f f f f =++++++++++++++++++++=+++++-++-+-=()()()()()()51121231234123451093445S a b b c c c d d d d e e e e e =++++++++++++++≤+++-+-=;()()()411212312341092155S a b b c c c d d d d =+++++++++≤++++=;()()3112123109640S a b b c c c =+++++≤+++=;()2112109827S a b b =++≤++=; 1110S a =≤因而有()()()()()1212312611121231234123451234561234562366030201512106030105321060b bc c c f f f a a b b c c cd d d de e e e ef f f f f f S S S S S S ++++++++++++++++++++++++++++++=+++++=()11240102251659060300270225165906035,2a b b +++++≤++++≤= 该不等式在{}{}{}{}{}{}112123123412345123456,,,,,,,,,,,,,,,,,,,,a b b c c c d d d d e e e e e f f f f f f 分别取{}{}{}{}{}{}10,8,9,5,6,7,1,2,3,4,4,3,2,1,0,10,9,8,7,6,5----------时恰好能取到等号,因此最大值为352. 11 当5431013231241000m ,,,,,,,,,=----时,从等式()()2123150m x m y m ++-+-=可以得到10个关于x 和y 的二元一次方程,问这10个方程有没有公共解?如果有,求出这些公共解?解:分别取0m =和1m =,我们得到两个方程:210340x y x y ++=⎧⎨--=⎩ 先求两个方程的公共解,把它们看作二元一次方程组,解得:1,1-==y x .把1,1-==y x 代入()()212315m x m y m ++-+-,值恒为0. 此即意味着:当5431013231241000m ,,,,,,,,,=----时,()()212315m x m y m ++-+-=0成立.所以,1,1-==y x 是对应的10个方程的的公共解.答:这些方程的公共解是 1,1-==y x .12 平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36度. 说明理由.解:在平面上任取一点O ,过O 点作的5条直线的平行线12345,,,,l l l l l . 将以O 为中心的周角分为10个彼此依次相邻的小的角,记为12910,,,,θθθθ.每个小角iθ〔1,2,,9,10i =〕都等于这5条直线相交的一个交角.这10个小角的和恰等于360,即.12910360θθθθ++++=,根据抽屉原理,至少有一个小角不超过36.三. 解答以下各题〔要求写出详细过程〕13 如图19,A 、B 和C 是圆周的三等分点,甲、乙、丙三只蚂蚁分别从A 、B 、C 三个点同时出发,甲和乙沿圆周逆时针爬行,丙顺时针爬行. 甲、乙、丙三只蚂蚁爬行的速度之比是8:6:5,求出三只蚂蚁所有的会合地点. 解:① 设圆周的周长为3L ,甲的速度为v 8,乙的速度为v 6,丙的速度为v 5;甲第一次追上乙时,爬行的时间和爬行的路程分别是:甲爬行的时间=862L L v v v =-, 甲爬行的路程=842Lv L v=, ABAC A图19因为圆周的周长为3L ,即甲在Bk+1(k 是整数)次追上乙时,甲爬行的时间=322L kLv v+, 甲爬行的路程=3822L kL v v v ⎛⎫+⨯= ⎪⎝⎭()412314L kL L k L +=+⨯+因为()314k L ⨯+是圆周周长的整数倍,所以,甲在B 点追上乙. ② 在时刻322L kLv v+,( 丙爬行的路程=3315362222L kL k v L kL L v v ⎛⎫⎛⎫+⨯=++- ⎪ ⎪⎝⎭⎝⎭,当k =1时,上式是35922L kL v L L v v ⎛⎫+⨯=+ ⎪⎝⎭因为丙是从C 出发顺时针爬行,所以,丙爬行至B 处,意味着甲、乙、丙能够在B 点会合.答;甲、乙、丙仅仅在B 处集合. 14 m, n 都是正整数,并且),11)(11()311)(311)(211)(211(m m A +-+-+-=),11)(11()311)(311)(211)(211(nn B +-+-+-=① 证明:A =m m 21+, n n B 21+=; ② 假设,261=-B A 求 m 和n 的值. 解:①111111(1-)(1+)(1-)(1+)(1-)(1+)2233111111(1-)(1-)(1-)(1+)(1+)(1+)23231213411 ;23232A m m m m m m m m m m==-++=⨯⨯⨯⨯⨯⨯⨯=同样,nn B 21+=②由题设,11111222226m n A B m n m n ++-=-=-=,11113m n -=111131313nm n n+=+=, 所以,1313nm ,n=+ ()13131313131313131313n n m ,n n n+-⨯===-+++ 即13+n 是1313⨯的因数,1313⨯只有3个因数:1,13,132. 所以,13+n=132,n =132 –13=156, m =12.〕评注和说明:另一方法可以求出正整数m,n ,使11113m n -=. 设()1m Ka,n Kb,a,b ===,代入上式,11113b a Ka Kb Kab --==. ()b a -和a,b 都互质,一定整除K .记Kd b a=-是正整数,b a >那么有 1113dab =. 由上式和b a >,1311b ,a ,d ===. 所以,K =12,m 和n 有唯一解,12156m ,n ==.。
“华罗庚金杯”少年数学邀请赛(口试)试题1-10届
华罗庚金杯少年数学邀请赛口试试题第01届华罗庚金杯少年数学邀请赛口试试题1. 这是七巧板拼成的正方形,正方形边长20厘米,问七巧板中平行四边形的一块(如右图中阴影部分)的面积是多少?2.从所有分母小于10的真分数中,找出一个最接近0.618的分数。
3.有49个小孩子,每人胸前有一个号码,号码从1到49各不相同,请你挑选出若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,你最多能挑选出多少个小孩子?4.有一路公共汽车,包括起点和终点站共有15个车站,如果有一辆车,除终点到站外,每一站上车的乘客中,恰好各有一位乘客从这一站到以后的每一站,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?5.正方形的树林每边长1000米,里面有白杨树和榆树,小明从树林的西南角走入树林,碰见一株白杨树就往正北走,碰见一株榆树就往正东走,最后他走了东北角上,问:小明一共走了多少米的距离?6.自然数按从小到大的顺序排成螺旋形,在2处拐第一个弯,在3处拐第二个弯,在5处拐第三个弯……问拐第二十个弯的地方是哪一个数?第02届华罗庚金杯少年数学邀请赛口试试题1、如下图是一个对称的图形,黑色部分面积大还是阴影部分面积大?2、你能不能将自然数1到9分别填入右面的方格中,使得每个横格中的三个数之和都是偶数?3、司机开车按顺序到五个车站接学生到学校(如下图),每个站都有学生上车,第一站上了一批学生,以后每站上车的人数都是前一站上车人数的一半,车到学校时,车上最少有多少学生?4、如图中五个正方形的边长分别是1米、2米、3米、4米、5米。
问:白色部分面积与阴影部分面积之比是多少?5、用1、2、3、4、5这五个数两两相乘,可以得到10个不同的乘积,问乘积中是偶数多还是奇数多?6、7、将右边的硬纸片沿虚线折起来,便可作成一个正方体,问:这个正方体的2号面对面是几号面?(如下图)8、下面是一个11位数,它的每三个相邻数之和都是20,你知道打“?”的数字是几?9、有八张卡片,右图分别写着自然数1到8,从中取出三张,要使这三张卡片上的数字之和为9,问有多少种不同的取法?第03届华罗庚金杯少年数学邀请赛团体决赛口试1.一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道红条,如右图阴影所示部分,红条宽都是2厘米.问:这条手帕白色部分的面积是多少?2.伸出你的左手,从大拇指开始如图所示的那样数数字,1,2,3,……,问:数到1991时,你数在那个手指上?3.有3个工厂共订300份吉林日报,每个工厂订了至少99份,至多101份.问:一共有多少种不同的订法?4.图上有两条垂直相交的直线段AB、CD,交点为E(如下图).已知:DE=2CE,BE=3AE.在AB和CD上取3个点画一个三角形.问:怎样取这3个点,画出的三角形面积最大?5.如下图中有两个红色的圆,两个蓝色的圆,红色圆的直径分别是1992厘米和1949厘米,蓝色圆的直径分别是1990厘米和1951厘米.问:红色二圆面积大还是蓝色二圆面积大?6.在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来(如下图),填在这个方格中,例如a=5+3=8.问:填入的81个数字中,奇数多还是偶数多?7.能不能在下式:1□2□3□4□5□6□7□8□9=10的每个方框中,分别填入加号或减号,使等式成立?8.把一个时钟改装成一个玩具钟(如右图),使得时针每转一圈,分针转16圈,秒针转36圈.开始时3针重合.问:在时针旋转一周的过程中,3针重合了几次?(不计起始和终止的位置).9.将1,2,3,4,5,6,7,8这8个数分成3组,分别计算各组数的和.已知这3个和互不相等,且最大的和是最小的和的2倍.问:最小的和是多少?10.这是一个棋盘,将一个白子和一个黑子放在棋盘线交叉点上,但不能在同一条棋盘线上.问:共有多少种不同的放法(如下图)?11.这是两个圆,它们的面积之和为1991平方厘米,小圆的周长是大圆周长的90%(如右图).问:大圆的面积是多少?12.有一根1米长的木条,第一次去掉它的,第二次去掉余下木条的;第三次又去掉第二次余下木条的,等等;这样一直下去,最后一次去掉上次余下木条的.问:这根木条最后还剩下多长?13.这是一个楼梯的截面图(如下图),高2.8米,每级台阶的宽和高都是20厘米.问:此楼梯截面的面积是多少?14.请找出6个不同的自然数,分别填入6个括号中,使这个等式成立.第04届华罗庚金杯少年数学邀请赛团体决赛口试1.2×3×5×7×11×13×17这个算式中有七个数连乘,请回答:最后得到的乘积中,所有数位上的数字和是多少?请讲一讲你是怎样算的?2.这是一个中国象棋盘(图中小方格都是相等的正方形,“界河”的宽等于小正方形边长),黑方有一个“象”,它只能在1,2,3,4,5,6,7位置中的一个,红方有两个“相”,它们只能在8,9,10,11,12, 13,14中的两个位置.问:这三个棋子(一个“象”和两个“相”)各在什么位置时,以这三个棋子为顶点构成的三角形的面积最大?3.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种形状的短管(加工损耗忽略不计)问:剩余部分的管子最少是多少厘米?4.乙两人同时从A出发向B行进,甲速度始终不变,乙在走前面路程时,速度为甲的2倍,而走后面路程时,速度是甲的,问甲、乙二人谁选到B?请你说明理由。
(整理)第十一届全国“华罗庚金杯”少年数学邀请赛华杯赛初一组试卷附答案1
第十一届全国"华罗庚金杯"少年数学邀请赛决赛试卷(初一组) (红色字为参考答案)(时间2006年4月22日10:00~l l :30〉一、.填空 1、计算:243331(0.25)(2)3()5(2)168⎧⎫⎡⎤⎡⎤---⨯-÷⨯-+÷-=⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭( 47 )2、当2m π=时,多项式31am bm ++的值是0,则多项式31452a b ππ++=( 5 )3、将若干本书分给几名小朋友,如果每人分4本书,就还余下20本书,如果每人分8本书,就剩有1名小朋友虽然分到了一些书,但是不足8本,则共有( 6 )名小朋友4、图l 中的长方形ABCD 是由四个等腰直角三角形和一 个正方形EFGH 拼成.己知长方形ABCD 的面积为120平方厘米,则正方形EFGH 的面积等于( 10 )平方厘米5、满足方程|||x-2006|-1|+8|=2006的所有x 的和为( 4012 )6、一个存有一些水的水池,有一个进水口和若干个口径相同的山水口,进水口每分钟进水3立方米.若同时打开进水口和三个出水口,池中水16分钟放完;若同时 打开进水口与五个出水口,池中水9分钟放完.池中原有水( 288 )立方米7、已知120052006123420052006(1)24816222k k k S +=-+-++-++-,则小于S 的最大的整数是( 0 )8.如图2,数轴上标有2n+1个点,它们对应的整数是:,(1),,2,1,0,1,2,,1,n n n n ------为了确保从这些点中可以取出2006个,其中任何两个点之间的距离都不等于4,则n 的最小值是( 2005 )图1图2n n-10-1-2-(n-1)-n二.解答下列各题,要求写出简要过程9、如图3,ABCD 是矩形,BC=6cm,AB =10cm,AC 和BD 是对角线.图中的阴影部分以CD 为轴旋转一周,则阴影 部分扫过的立体的体积是多少立方厘米?(z 取3.14) 解: ①设三角形BCO 以CD 为轴旋转一周所得到的立体的体积是S,S 等于高为10厘米,底面半径是6厘米的 圆锥的体积减去2个高为5厘米,底面半径是3厘米的圆 锥的体积. ②即:S=13×26×10×π-2×13×23×5×π=90π, 2S=180π=565.2(立方厘米).答:体积是565.2立方厘米. 10、将21个整数10,9,8,,3,2,1,0,1,2,3,,8,9,10------分为个数不相等的六组数,分别计算各组的平均值,那么这六个平均值的和最大是多少? 解:①分为个数不相等的6组,整数的个数分别为1、2、3、4、5、6. ②应当将数值大的分在整数个数少的组中.所以,可以如下分组:第一组10 第二组9 8 第三组7 6 5 第四组4 3 2 1 第五组0 -1 -2 -3 -4 第六组-5 -6 -7 -8 -9 -10③计算它们的平均值的和:109876543210123456789101171234562++++++----------+++++= 答:最大的和是1172。
第十四届全国华罗庚金杯少年数学邀请赛 决赛试卷A(初一组) 答案及详细解析
第十四届华罗庚金杯少年数学邀请赛决赛试题A (初一组)(时间:2009年4月11日10:00~11:30)一、填空题(每题10分,共80分)1.计算:()2414-3-6.5(2)(6)313⎛⎫-⨯+-÷-= ⎪⎝⎭949,解析:21041319416313269⎛⎫⎛⎫⎛⎫--⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2.设有理数a,b,c 在数轴上的对应点如下图所示, 则代数式b a a c c b -+-+-=2(a-b ) 解析:()()()a>1 ;b<c<0;a-b ;=a-b =2a-b b a a c a c c b c bb a ac c b a c c b -=-=--=-∴-+-+-+-+-根据图像,得 则:;()3.设m,n 是非负整数且3m<2n ,则三个n 次多项式之积与一个2m 次多项式之和是(3n )次多项式 解析:24932 23,333m n m n m n n n n <→<<<=因为 且m>0,n>0,所以所以三个次多项式之积与一个2m 次多项式之和是 3n 次多项式4.一名运动员进行爬山训练,从山脚出发,上山路长10千米,每小时行3千米;爬到山顶后沿原路下山,下山每小时5千米,那么这位运动员上下山的平均速度是每小时(3.75)千米。
解析:依题意,列出算式 得101020=3.7535⎛⎫÷+ ⎪⎝⎭5.已知a,b 是有理数。
有以下三个不等式:①|a+b|<|a-b|,② a 2+b 2+|a|+|b|+1<0, ③a 2+b 2-2|a|-2|b|+1<0,其中一定不成立的是(②)(填写序号) 解析:22a 1 1.b a b ++++必定大于等于所以②必定不成立6.若二元一次方程组4234331x y n x y m -=-⎧⎨+=-⎩的解x,y 满足-1≤x ≤2,-2≤y ≤4,则m+n 的取值范围为:2.5m+n 10.5-≤≤解析:由4+3243+13x y n x y m -=⎧⎨+=⎩得123+9686+26x y n x y m -=⎧⎨+=⎩,两式相加:20x+3y+11=6(m+n),则因为-1≤x ≤2,-2≤y ≤4,有-15≤6(m+n)≤63,故-2.5≤m+n ≤10.57.把2006,2007,2008,2009四个数分别填入算式: 的四个方框中,则算式的最大可能值是:100331004解析:让被减数尽可能的最大,减数尽可能的小。
全国“华罗庚金杯”决赛试卷(五年级组)
全国“华罗庚金杯”少年数学邀请赛决赛试卷(五年级组)(时间:(时间: 10:00~11:30 )一、填空题(每题10分,共80分)1、计算:)195167248(66.698.19)75.4285412375.2247816(-´´´´+´= 2、一次数学竞赛满分是100分,某班前六名同学的平均得分是95.5分,排名第六的同学的得分是89分,每人得分是互不相同的整数,那么排名第三的同学至少得至少得 分。
分。
3、在下面的等式中,相同的字母表示同一数字,若abcd -dcba =□997,那么,那么 □ 中 应填应填 。
4、在梯形ABCD 中,上底长5厘米,下底长10厘米,20=D BOC S 平方厘米,则梯形ABCD 的面积是的面积是平方厘米。
平方厘米。
5、已知:10△3=14, 8△7=2, 43△141=,根据这几个算式找规律,如果,根据这几个算式找规律,如果85△x =1,那么x = . 6、右图中共有、右图中共有 个三角形。
个三角形。
7、有一个自然数,除以2余1,除以3余2,除以4余3,除以5余4,除以6余5,则这个数最小是,则这个数最小是 。
8、A 是乘积为2007的5个自然数之和,B 是乘积为2007的4个自然数之和。
那么A 、B 两数之差的最大值是两数之差的最大值是 。
装订线全国“华罗庚金杯”少年数学邀请赛决赛试题参考答案(五年级组)一、填空题(每题10分,共80分)分)题号题号 1 2 3 4 5 6 7 8 答案答案 3 96 2 45 8124 59 1781 1~8题答案提示:题答案提示:1、3 解:原式=÷øöçèæ-´´úûùêëé´÷øöçèæ++´÷øöçèæ+1951679666.698.19419285412819247816 =19528953419285441912819247881916´÷øöçèæ´+´+´+´=195289531515713138´÷øöçèæ+++=195289531952895´÷øöçèæ+=3 2、96 解:要想排名第三的同学得分尽量低,则其它几人的得分就要尽量的高,故第一名应为100分,第二名应为99分,因此第三、四、五名的总分为:分,因此第三、四、五名的总分为: 95.5×95.5×66-100-99-89=285(分) 故第三、四、五名的平均分为故第三、四、五名的平均分为 285÷3=95(分),因此第三名至少要得96分。
第十四届全国“华罗庚金杯”少年数学邀请赛总决赛试卷(一组)Word版,含答案
第十四届全国“华罗庚金杯”少年数学邀请赛总决赛试卷(一组)Word版,含答案第十四届华罗庚金杯少年数学邀请赛总决赛少年一组试卷( 1月23日13:00 15:00)一、填空题 (共4题,每题10分)1. 分数115,136,231116,6430,305153中最小的一个是。
2. 如右图所示,ABCD 是一个正方形,其中几块阴影部分的面积如图所示,则四边形BMQN 的面积为。
3. 将105表示成不少于两个连续的(非零)自然数之和,最多有种表达方式。
4. 将奇数1、3、5、…、2007、2009从小到大排成一个多位数A =135********…20072009,从A 中截出能被5整除的五位数,则所有的这种五位数中,最小数是,最大数是。
二、解答题 (共4题,每题15分,写出解答过程)5. 如果一个自然数n 能被不超过10n 的所有的非0自然数整除,我们称自然数n 为“牛数”。
请写出所有的牛数。
6. 循环小数0.x .yz .可以表达成0.x .yz .=999xyz 。
已知算式ab ?0.c .5d .=ef 中a ,b ,c ,d ,e ,f 都是数字,且c <4。
求出所有满足条件的两位数ab 。
7. 下列m 个整数中恰有69个不同的整数,问自然数m 的最大值和最小值分别是多少? [112009+],[222009+],[332009+],…,[m m +2009]。
8. 已知四边形ABCD 中AD //BC ,AD :BC =1:2, S ?AOF :S ?DOE =1:3,S ?BEF =24 cm 2,求 AOF 的面积。
A B CD E F O参考答案 1. 115; 2. 24; 3. 7; 4. 10110,99920; 5. 1、2、3、…、20、22、24、26、28、30、36、48、60; 6. 37、74、54、81;7. 最小96,最大100; 8. 6;。
华杯赛历届试题
第一届华杯赛决赛一试试题1. 计算:2.975×935×972×〔〕,要使这个连乘积的最后四个数字都是“0〞,在括号内最小应填什么数?3.把+、-、×、÷分别填在适当的圆圈中,并在长方形中填上适当的整数,可以使下面的两个等式都成立,这时,长方形中的数是几?9○13○7=100 14○2○5=□4.一条1米长的纸条,在间隔一端0.618米的地方有一个红点,把纸条对折起来,在对准红点的地方涂上一个黄点然后翻开纸条从红点的地方把纸条剪断,再把有黄点的一段对折起来,在对准黄点的地方剪一刀,使纸条断成三段,问四段纸条中最短的一段长度是多少米?5.从一个正方形木板锯下宽为米的一个木条以后,剩下的面积是平方米,问锯下的木条面积是多少平方米?6.一个数是5个2,3个3,2个5,1个7的连乘积。
这个数当然有许多约数是两位数,这些两位的约数中,最大的是几?7.修改31743的某一个数字,可以得到823的倍数,问修改后的这个数是几?8.蓄水池有甲、丙两条进水管,和乙、丁两条排水管,要灌满一池水,单开甲管需3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时,如今池内有池水,假如按甲、乙、丙、丁的顺序,循环各开水管,每天每管开一小时,问多少时间后水清苦始溢出水池?9.一小和二小有同样多的同学参加金杯赛,学校用汽车把学生送往考场,一小用的汽车,每车坐15人,二小用的汽车,每车坐13人,结果二小比一小要多派一辆汽车,后来每校各增加一个人参加竞赛,这样两校需要的汽车就一样多了,最后又决定每校再各增加一个人参加竞赛,二小又要比一小多派一辆汽车,问最后两校共有多少人参加竞赛?10.如以下图,四个小三角形的顶点处有六个圆圈。
假如在这些圆圈中分别填上六个质数,它们的和是20,而且每个小三角形三个顶点上的数之和相等。
问这六个质数的积是多少?11.假设干个同样的盒子排成一排,小明把五十多个同样的棋子分装在盒中,其中只有一个盒子没有装棋子,然后他外出了,小光从每个有棋子的盒子里各拿一个棋子放在空盒内,再把盒子重新排了一下,小明回来仔细查看了一番,没有发现有人动过这些盒子和棋子,问共有多少个盒子?12.如右图,把1.2,3.7, 6.5, 2.9, 4.6,分别填在五个○内,再在每个□中填上和它相连的三个○中的数的平均值,再把三个□中的数的平均值填在△中,找出一个填法,使△中的数尽可能小,那么△中填的数是多少?13.如以下图,甲、乙、丙是三个站,乙站到甲、丙两站的间隔相等。
华罗庚金杯赛数学试题与答案[第1至15届]
华罗庚金杯赛数学试题与答案[第1至15届]目录第1届华罗庚金杯赛数学试题与答案 (1)第2届华罗庚金杯赛数学试题与答案 (6)第3届华罗庚金杯赛数学试题与答案 (14)第4届华罗庚金杯赛数学试题与答案 (21)第5届华罗庚金杯赛数学试题与答案 (26)第6届华罗庚金杯赛数学试题与答案 (31)第7届华杯赛初赛试题及解答 (38)第8届华杯赛初赛试题及解答 (41)第9届华杯赛初赛试题及解答 (45)第10届华杯赛初赛试题及解答 (49)第11届华杯赛初赛试题及解答 (53)第12届华杯赛初赛试题及解答 (60)第13届华杯赛少年邀请赛初赛摸拟试卷 (64)第14届华罗庚金杯少年数学邀请赛 (66)第15届华杯赛决赛真题及答案解析 (68)第1届华罗庚金杯赛数学试题与答案1、甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人。
问甲班和丁班共多少人?2、一笔奖金分一等奖、二等奖、三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。
如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元;如果一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元?3、一个长方形,被两条直线分成四个长方形,其中三个的面积是20亩、25亩和30亩。
问另一个长方形的面积是多少亩?4、在一条公路上,每隔一百公里有一个仓库,共有五个仓库。
一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。
现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输一公里需要0.5元的运费,那么最少要花多少运费才行?5、有一个数,除以3余数是2,除以4余数是1。
问这个数除以12余数是几?6、四个一样的长方形和一个小的正方形(如图)拼成了一个大正方形。
大正方形的面积是49平方米,小正方形的面积是4平方米。
问长方形的短边长度是几米?7、有两条纸带,一条长21厘米,一条长13厘米,把两条纸带剪下同样长的一段以后,发现短纸带剩下的长度是长纸带的长度的八分之十三。
华杯赛1-15届的真题和答案
=11111111110000000000-1111111111=111111111088888888889 于是有 10 个数字是奇数。 12.【解】10 根筷子,可能 8 根黑,1 根白,1 根黄,其中没有颜色不同的两双筷子。 如果取 11 根,那么由于 11>3,其中必有两根同色组成一双,不妨设这一双是黑色的,去掉 这两根,余下 9 根,其中黑色的至多 6(=8-2)根,因而白、黄两色的筷子至少有 3(=9-6) 根,3 根中必有 2 根同色组成一双。这样就得到颜色不同的两双筷子。所以至少要取 11 根。 13.【解】菜地的 3 倍和麦地的 2 倍是 13× 6 公顷。菜地的 2 倍和麦地的 3 倍是 12× 6 公顷, 因此菜地与麦地共:(13× 6+12× 6)÷ (3+2)=30(公顷), 菜地是 13× 6-30× 2=18(公顷)。 14. 【解】71427 被 7 除,余数是 6,19 被 7 除,余数是 5,所以 71427× 19 被 7 除,余数就 是 6× 5 被 7 除所得的余数 2。 15.【解】从第一次记录到第十二次记录,相隔十一次,共 5× 11=55(小时)。时针转一圈是 12 小时,55 除以 12 余数是 7,9-7=2 答:时针指向 2。 16.【解】因为电车每隔 5 分钟发出一辆,15 分钟走完全程。骑车人在乙站看到的电车是 15 分钟以前发出的,可以推算出,他从乙站出发的时候,第四辆电车正从甲站出发骑车人从乙 站到甲站的这段时间里,甲站发出的电车是从第 4 辆到第 12 辆。电车共发出 9 辆,共有 8 个 间隔。于是:5× 8=40(分) 。 17.【解】小数点后第 7 位应尽可能大,因此应将圈点点在 8 上,新的循环小数是 。
18.【解】三个背包分别装 8.5 千克、6 千克与 4 千克,4 千克、3 千克与 2 千克,这时最重 的背包装了 lO 千克。 另一方面最重的包放重量不少于 10 千克:8.5 千克必须单放(否则这一包的重量超过 10)6 千 克如果与 2 千克放在一起, 剩下的重量超过 10, 如果与 3 千克放在一起, 剩下的重量等于 10。 所以最重的背包装 10 千克。 19.【解】从第一排与第二排看,五个小纸片的长等于三个小纸片的长加三个小纸片的宽, 也就是说,二个小纸片的长等于三个小纸片的宽。 已知小纸片的宽是 12 厘米,于是小纸片的长是:12× 3÷ 2=18(厘米), 阴影部分是三个正方形,边长正好是小纸片的长与宽的差:18-12=6 于是,阴影部分的面积是:6× 6× 3=108(平方厘米)。
第十四届华罗庚金杯少年数学邀请赛决赛试题
第十四届华罗庚少年数学邀请决赛试题 C 参考答案(小学)第十四届华罗庚金杯少年数学邀请赛决赛试题C参考答案(小学组)一、填空题(每小题10 分,共80 分)题号 1 2 3 4 5 6 7 8答案18 2 10201 37 222 33 37 6二、解答下列各题(每题10 分,共 40 分,要求写出简要过程)9、答案:在1和2之间;解答:11 1 1 1 12 3 5 7 11 13(11 1)( 1 1 1) 31 1 3 31 3 31 15 46 22 3 5 7 11 13 30 7 30 7 30 30 3010、答案: 10 月份的第一天是星期四,3、 5、 8、 11 月有五个星期日。
解答:下表列出各个月的 1 号的相关信息:月份 2 3 4 5 6 7 8 9 10 11 12 1号距 1月号的31 59 90 120 151 181 212 243 273 304 334天数除以 7 的余数 3 3 6 1 4 6 2 5 0 3 51 号的星期数日日三五一三六二四日二10 月 1 号与 1 月 1 号相距 273 天, 273 是 7 的倍数,所以,10 月份的第一天也是星期四,3 月 1 号是星期四, 3 月份有 31 天,所以 3 月有 5 个星期日;5 月 3 号是星期日, 5 月份有 31 天,所以 5 月有 5 个星期日;8 月 2 号是星期日, 8 月份有 31 天,所以 8 月有 5 个星期日;11 月 1 号是星期日, 11 月份有 30 天,所以11 月有 5 个星期日;11、答案: 540,或 108。
222,解答:如果 b 不是 2的倍数,因为a, b =2× 3× 5,则a一定是2的倍数,由此可知 a b 一定是 2 2的倍数,但是a,c =2×33×5不是22的倍数,所以 b 是 2 2的倍数,同理可得 c 是 3 3的倍数,所以b, c 应被22.33整除。
第11~14届全国华罗庚金杯少年数学邀请赛决赛试题
第十一届全国"华罗庚金杯"少年数学邀请赛决赛试题一、填空。
1.计算:2.图1a是一个长方形,其中阴影部分由一副面积为1的七巧板拼成(如图1b),那么这个长方形的面积是()。
3.有甲、乙、丙、丁四支球队参加的足球循环赛,每两队都要赛一场,胜者得3分,负者得0分,如果踢平,两队各得1分。
现在甲、乙和丙分别得7分、1分和6分,已知甲和乙踢平,那么丁得()分。
4.图2中,小黑格表示网络的结点,结点之间的连线表示它们有网线相联。
连线标注的数字表示该段网线单位时间内可以通过的最大信息量。
现在从结点A向结点B传递信息,那么单位时间内传递的最大信息量是()。
5.先写出一个两位数62,接着在62右端写这两个数字的和为8,得到628,再写末两位数字2和8的和10,得到62810,用上述方法得到一个有2006位的整数:628101123……,则这个整数的数字之和是()。
6.智慧老人到小明的年级访问,小明说他们年级共一百多同学。
老人请同学们按三人一行排队,结果多出一人,按五人一行排队,结果多出二人,按七人一行排队,结果多出一人,老人说我知道你们年级的人数应该是()人。
7.如图3所示,点B是线段AD的中点,由A,B,C,D四个点所构成的所有线段的长度均为整数,若这些线段的长度之和为10500,则线段AB的长度是()。
8.100个非0自然数的和等于2006,那么它们的最大公约数最大可能值是()。
二、解答下列各题,要求写出简要过程。
(每题10分,共40分)9.如图4,圆O中直径Ab与CD互相垂直,AB=10厘米。
以C为圆心,CA为半径画弧AEB。
求月牙形ADBEA(阴影部分)的面积?10.甲、乙和丙三只蚂蚁爬行的速度之比是8:6:5,它们沿一个圆圈从同一点同时同向爬行,当它们首次同时回到出发点时,就结束爬行。
问蚂蚁甲追上蚂蚁乙一共多少次?(包括结束时刻)。
11.如图5,ABCD是矩形,BC=6cm,AB=10cm,AC和BD是对角线。
初一数学历年“华罗庚杯”竞赛试题
初一数学试题集
初一数学
历年“华罗庚杯”竞赛试题
(由我爱我家整理)
二〇〇九年九月十六日
第一届全国“华罗庚金杯”少年数学邀请赛决赛一试试题(初一组)
[初一组]第一届“华杯赛”数学第2试答案
第二届全国“华罗庚金杯”少年数学邀请赛决赛一试试题(初一组)
第二届全国“华罗庚金杯”少年数学邀请赛决赛一试试题参考答案(初一组)
第二届全国“华罗庚金杯”少年数学邀请赛决赛二试试题(初一组)
第二届全国“华罗庚金杯”少年数学邀请赛决赛二试试题参考答案(初一组)
第三届全国“华罗庚金杯”少年数学邀请赛决赛一试试题参考答案(初一组)
[初一组]第三届“华杯赛”数学第1试答案
第三届全国“华罗庚金杯”少年数学邀请赛决赛二试试题(初一组)
第三届全国“华罗庚金杯”少年数学邀请赛决赛二试试题参考答案(初一组)
[初一组]第四届“华杯赛”数学第1试
第四届全国“华罗庚金杯”少年数学邀请赛决赛一试试题参考答案
第四届全国“华罗庚金杯”少年数学邀请赛决赛二试试题(初一组)
第四届全国“华罗庚金杯”少年数学邀请赛决赛二试试题参考答案(初一组)
第五届全国“华罗庚金杯”少年数学邀请赛决赛一试试题(初一组)
第五届全国“华罗庚金杯”少年数学邀请赛决赛一试试题参考答案(初一组)
[初一组]第五届“华杯赛”数学第2试
第五届全国“华罗庚金杯”少年数学邀请赛决赛二试试题参考答案(初一组)
[初一组]第六届“华杯赛”数学第1试答案
[初一组]第六届“华杯赛”数学第2试。
第十四届华罗庚金杯少年数学邀请赛决赛
第十四届华罗庚金杯少年数学邀请赛决赛一、填空题:1〕计算:2〕如图1所示,在边长为1的小正方形组成的4×4方格图形中,共有25个格点,在以格点为顶点的直角三角形中,两条直角边长分别是1和3的直角三角形共有个。
4〕如图2所示,在由七个小正方形组成的图形中,直线l将原图形分为面积相等的两局部,l与AB的交点为E,与CD的交点为F,假设线段CF与线段AE的长度之和为91厘米,那么小正方形的边长是厘米。
5〕某班学生要栽一批树苗,假设每个人分k棵树苗,那么剩下38棵;假设每个学生分配9棵树苗,那么还差3棵,那么这个班共有名学生。
6〕三个合数A、B、C两两互质,且A×B×C=11011×28,那么A+B+C的最大值是。
7〕方格中的图形符号“◇〞,“○〞,“▽〞“☆〞代表填入方格内的数,相同的符号表示相同的数。
如下图。
假设第一列,第三列,第二行,第四行的四个数的和分别为36,50,41,37。
那么第三行的四个数的和是。
8〕1+2+3+……+n(n>2)的和的个位数为3,十位数为0,那么n的最小值为。
二、解答以下各题〔要求写出简要过程〕:9〕以下六个分数的和在哪两个连续自然数之间?10〕2022年的元旦是星期四。
问:在2022年,哪几个月的第一天也是星期四?哪几个月有5个星期日?11〕a,b,c是三个自然数,且a与b的最小公倍数是60,a与c的最小公倍数是270,求b与c的最小公倍数是多少?12〕在51个连续奇数1,3,5,……,101中选取k个数,使得他们的和为1949,那么k的最大值是多少?三、解答以下各题〔要求写出详细解答过程〕13〕如下图,在梯形ABCD中,AB∥CD,对角线AC,BC相交于O点,AB=5,CD=3,且梯形ABCD的面积为4,求三角形OAB的面积。
14〕如下算式,汉字代表1至9这9个数字,不同的汉字代表不同的数字。
假设“祝〞字和“贺〞字分别代表数字“ 4〞和“8〞,求出“华杯赛〞所代表的整数。
小学奥数华杯赛试题五常见
华杯试题精选一数字迷数字迷类型的题目每年必考这种题型不但能够增加题目的趣味性,还能联系时事,与时俱进。
据统计,在近三年的试卷中出现了六道数字迷的题目,其所占比例高达8.7%。
其中,在四则运算中,数字迷的题型更加倾向与乘法数字迷。
真题分析【第13届"华罗庚金杯"少年数学邀请赛决赛】设六位数abcdef满足fabcde=f×abcdef,请写出所有这样的六位数。
解:分析:其实数字迷的题目看上去虽然千变万化,但其本质却没有改变,这种题的解决方法往往是首先将横式转化竖式,然后寻找到突破口。
解决数字迷常用的分析方法有:1、个位数字分析法(加法个位数规律、剑法个位数规律和乘法个位数规律)2、高位分析法(主要在乘法中运用)3、数字估算分析法(最大值与最小值得考量,经常要结合数位考虑)4、加减乘法中的进位与借位分析5、分解质因数分析法6、奇偶性分析(加减乘法)个位分析、高位分析和进位借位分析都是常用的突破顺序,然后依次进行递推,同事要求学生熟悉数字的运算结果和特征,通过结合数位、奇偶分析和分解质因数等估算技巧,进行结果的取舍判断。
真题训练1、【第14届华罗庚金杯少年数学邀请赛初赛】下面的算式中,同一个汉字代表同一个数字,不同的汉字代表不同的数字。
团团×圆圆=大熊猫则"大熊猫"代表的三位数是()。
2、【第14届"华罗庚金杯"少年数学邀请赛决赛B卷】在如图所示的乘法算式中,汉字代表1至9这9个数字,不同汉字代表不同的数字。
若"祝"字和"贺"字分别代表数字"4"和"8",求出"华杯赛"所代表的整数。
3、【第13届"华罗庚金杯"少年数学邀请赛决赛】右图是一个分数等式:等式中的汉字代表数字1、2、3、4、5、6、7、8和9,不同的汉字代表不同的数字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一届全国"华罗庚金杯"少年数学邀请赛决赛试题一、填空。
1.计算:2.图1a是一个长方形,其中阴影部分由一副面积为1的七巧板拼成(如图1b),那么这个长方形的面积是()。
3.有甲、乙、丙、丁四支球队参加的足球循环赛,每两队都要赛一场,胜者得3分,负者得0分,如果踢平,两队各得1分。
现在甲、乙和丙分别得7分、1分和6分,已知甲和乙踢平,那么丁得()分。
4.图2中,小黑格表示网络的结点,结点之间的连线表示它们有网线相联。
连线标注的数字表示该段网线单位时间内可以通过的最大信息量。
现在从结点A向结点B传递信息,那么单位时间内传递的最大信息量是()。
5.先写出一个两位数62,接着在62右端写这两个数字的和为8,得到628,再写末两位数字2和8的和10,得到62810,用上述方法得到一个有2006位的整数:628101123……,则这个整数的数字之和是()。
6.智慧老人到小明的年级访问,小明说他们年级共一百多同学。
老人请同学们按三人一行排队,结果多出一人,按五人一行排队,结果多出二人,按七人一行排队,结果多出一人,老人说我知道你们年级的人数应该是()人。
7.如图3所示,点B是线段AD的中点,由A,B,C,D四个点所构成的所有线段的长度均为整数,若这些线段的长度之和为10500,则线段AB的长度是()。
8.100个非0自然数的和等于2006,那么它们的最大公约数最大可能值是()。
二、解答下列各题,要求写出简要过程。
(每题10分,共40分)9.如图4,圆O中直径Ab与CD互相垂直,AB=10厘米。
以C为圆心,CA为半径画弧AEB。
求月牙形ADBEA(阴影部分)的面积?10.甲、乙和丙三只蚂蚁爬行的速度之比是8:6:5,它们沿一个圆圈从同一点同时同向爬行,当它们首次同时回到出发点时,就结束爬行。
问蚂蚁甲追上蚂蚁乙一共多少次?(包括结束时刻)。
11.如图5,ABCD是矩形,BC=6cm,AB=10cm,AC和BD是对角线。
图中的阴影部分以CD为轴旋转一周,则阴影部分扫过的立体的体积是多少立方厘米?(π取3.14)12.将一根长线对折后,再对折,共对折10次,得到一束线。
用剪刀将这束线剪成10等份,问:可以得到不同长度的短线段各多少根?三、解答下列各题,要求写出详细过程。
(每题15分,共30分)13.华罗庚爷爷在一首诗文中勉励青少年:“猛攻苦战是第一,熟练生成百巧来,勤能补拙是良训,一分辛苦一分才。
”现在将诗文中不同的汉字对应不同的自然数,相同的汉字对应相同的自然数,并且不同汉字所对应的自然数可以排列成一串连续的自然数。
如果这28个自然数的平均值是23,问“分”字对应的自然数的最大可能值是多少?14.一根长为L 的木棍,用红色刻度线将它分成m 等份,用黑色刻度线将它分成n 等份(m>n )。
(1)设X 是红色与黑色刻度线重合的条数,请说明:X +1是m 和n 的公约数;(2)如果按刻度线将该木棍锯成小段,一共可以得到170根长短不等的小棍,其中最长的小棍恰有100根。
试确定m 和n 的值。
第十二届全国“华罗庚金杯”少年数学邀请赛决赛试卷(小学组)(时间2007年4月21日10︰00~11︰30)(市)、区________ 学校_____________ 姓名________ 考号_______ 一、填空(每题10分,共80分)1、“华”、“杯”、“赛”三个字的四角号码分别是“2440”、“4199”和“3088”,将“华杯赛”的编码取为“244041993088” 。
如果这个编码从左起的奇数位的数码不变,偶数位的数码改变为关于9的补码,例如:0变9,1变8等,那么“华杯赛”新的编码是___________。
2、计算:[20.75+(3.74-221)92523]41.75=___________。
3、如图1所示,两个正方形ABCD 和DEFG 的边长都是整数厘米。
点E 在线段CD 上,且CE <DE 。
线段CF =5厘米,则五边形ABCFG 的面积等于__________平方厘米。
4、将250131、4021、325.0 、352.0 、25.0从小到大排列,第三个数是_______。
5、图2a 是一个密封水瓶的切面图,上半部为圆锥状,下半部为圆柱状,底面直径都是10厘米,水瓶高度是26厘米,瓶中液面的高度为12厘米。
将水瓶倒置后,如图2b ,瓶中液面的高度是16厘米,则水瓶的容积等于_______立方厘米。
(取 =3.14,水瓶壁厚不计)6、一列数是按以下条件确定的:第一个是3,第二个是6,第三个是18,以后每一个数是前面所有数的和的2倍,则第六个数等于________,从这列数的第________个数开始,每个都大于2007。
7、一个自然数,它的最大的约数和次大的约数的和是111,这个自然数是______。
8、用一些棱长是1的小正方体码成一个立体,从上向下看这个立体,如图3,从正面看这个立体,如图4,则这个立体的表面积最多是_________。
二、简答下列各题(每题10分,共40分,要求写出简要过程)9、如图5,在三角形ABC中,点D在BC上,且∠ABC=∠ACB,∠ADC=∠DAC,∠DAB=21°,求∠ABC的度数;并且回答:图中哪些三角形是锐角三角形。
10、李云靠窗坐在一列时速60千米的火车里,看到一辆有30节车厢的货车迎面驶来,当货车车头经过窗口时,他开始记时,直到最后一节车厢驶过窗口时,所记的时间是18秒。
已知货车车厢长15.8米,车厢间距1.2米,货车车头长10米。
问货车行驶的速度是多少?11、图6是一个99的方格图,由粗线隔为9个横竖各有3个格子的“小九宫”格,其中,有一些小方格填有1至9的数字。
小青在第4列的空格中各填入了一个1至9的自然数,使每行、每列和每个“小九宫”格内的数字都不重复,然后小青将第4列的数字从上向下写成一个9位数。
请写出这个9位数,并且简单说明理由。
12、某班一次数学考试,所有成绩得优的同学的平均分数是95分,没有得优的同学的平均分数是80分。
已知全班同学的平均成绩不少于90分,问得优的同学占全班同学的比例至少是多少?三、详答下列各题(每题15分,共30分,要求写出详细过程)13、如图7,连接一个正六边形的各顶点。
问图中共有多少个等腰三角形(包括等边三角形)?14、圆周上放置有7个空杯子,按顺时针方向依次编号为1,2,3,4,5,6,7。
小明首先将第1枚白色棋子放入1号盒子,然后将第2枚白色棋子放入3号盒子,再将第3枚白色棋子放入6号盒子,……,放置了第k-1枚白色棋子后,小明依顺时针方向向前数了k-1个盒子,并将第k枚白色棋子放在下一个盒子中,小明按照这个规则共放置了200枚白色棋子。
随后,小青从1号盒子开始,按照逆时针方向和同样的规则在这些盒子中放入了300枚红色棋子。
请回答:每个盒子各有多少枚白色棋子?每个盒子各有多少枚棋子?一、填空1.解:偶数位自左至右依次为4、0、1、9、0、8,它们关于9的补码自左至右依次为5、9、8、0、9、1,所以“华杯赛”新的编码是:2549489039812.解:原式=[20.75+1.24×]÷41.75=[20.75+0.125]÷41.75=20.875÷41.75=0.53.解:CF=5,又CD和DF都是整数,根据勾股定理可知CE=3,DF=4,CD=7,所以五边形ABCFG的面积为:=16+49+6=71(平方厘米)4.解:=0.524,=0.525,所以:,第三小的数是5.解:如果将瓶中的液体取出一部分,使正立时高度为11厘米,则倒立时高度为15厘米,这时瓶中的液体刚好为瓶的容积的一半,所以瓶的容积相当于一个高22厘米(底面积不变)的圆柱的体积,即瓶的容积是:3.14××22=1727(立方厘米)6. 解:这列数的第一个是3,第二个是6,第三个是18,第四个是(3+6+18)×2=54,第五个是(3+6+18+54)×2=162,第六个是(3+6+18+54+162)×2=486设这列数的第一个为a,则第二个为2a,第三个为6a=2×3×a,第四个为18a=2××a,第五个为54a=第六个为162a=2××a,第n个为2××a,因为a=3,所以第n个数也可写作2×,即从第三个数起,每个数是前一个数的3倍。
2007÷486>3,而2007÷3<9,可知从第8个数起,每个数都大于2007.7.解:因为111是奇数,而奇数=奇数+偶数,所以所求数的最大约数与次大约数必为一奇一偶。
而一个数的最大约数是其自身,而一个数如有偶约数此数必为偶数,而一个偶数的次大约数应为这个偶数的,设这个次大约数为a,则最大约数为2a,a+2a=111,求得a =37,2a=74,即所求数为74.8.解:根据所给视图,可画出这个立体的直观图如下:可知,上下面积为8×2=16(平方厘米),前后面积为8×2=16(平方厘米),左右面积为8×2=16(平方厘米),此立体的表面积共48平方厘米.二、简答下列各题9.解:∵∠DAC+∠ADC+∠C=,而∠DAC=∠ADC=∠B+21,∠B=∠C,∴3×∠B+21°=180°, ∴∠B=46°∠DAC=46°+21°=67°,∠BAC=67°+21°=88°∴△ABC和△ADC都是锐角三角形.10.解:客车速度为60千米/小时,18秒钟通过的路程为:=300(米)货车长为(15.8+1.2)×30+10=520(米)18秒钟货车通过的距离为520-300=220(米)货车速度为=44(千米/小时)11.解:用(a,b)表示第a行第b列的方格,第4列已有数字1、2、3、4、5,第6行已有数字6、7、9,所以方格(6,4)=8;第3行和第5行都有数字9,所以(7,4)=9;正中的“小九宫”中已有数字7,所以只能是(3,4)=7;此时,第4列中只余(5,4),这一列只有数字6未填,所以(5,4)=6。
所以,第4列的数字从上向下写成的9位数是:327468951.12.解:为使全班同学的平均分达到90分,需将2名得优的同学和1名没得优的同学匹配为一组,即得优的同学至少应为没得优同学的2倍,才能确保全班同学的平均分不低于90分,所以得优同学占全班同学的比例至少是.三、详答下列各题13.解:首先按是否是等边三角形分类,图a、图b、图c中有3类等边三角形,红色的有6个,蓝色的有6个,黄色的有2个,共14个等边三角形。