应用例题1 迈达斯 MIDAS
节点细部分析-迈达斯-midas
例题3 开口部详细分析开口部详细分析3 例题3. 开口部详细分析概要此例题将介绍利用MIDAS/Gen对开口详细部分的建模分析方法。
此例题的步骤如下:1.简要2.设置基本操作环境3.输入构件材料以及截面数据4.建立结构模型5.输入边界条件6.定义及输入荷载7.运行结构分析8.查看分析结果开口部详细分析4例题3. 开口部详细分析概要本例题介绍的是梁的腹部存在圆形开口部时,为对开口部进行补强设计而进行的建模、分析及查看结果的过程,材料采用Q235基本数据如图(1)所示:(a) 模型概要图1. 具有圆形开口部的梁构件和开口部的详细分析模型梁单元区间梁单元区间板单元详细模型区间50kN/m开口部详细分析5 设置基本操作环境1.设置单位体系1.单位体系为(KN,m)2.设置局部坐标系为了容易输入以及查看结果,使梁的单元坐标系与整体坐标系一致来建立模型。
即,利用 X-Z将梁腹部面设置为 UCS x-y 平面后点击 正面 使得操作画面与 UCS x-y 平面一致。
1.在图标菜单点击 X-Z2.在 坐标 输入栏输入 ‘0, 0, 0’3.在 角度输入栏输入 ‘0’4.点击 键5.在图标菜单点击正面在修改视角标记‘9’后点击键,则可以省略第5 阶段。
开口部详细分析6定义材料和截面1:主菜单选择 模型>材料和截面特性>材料: 添加材料号:1 名称:Q235 规范:GB03(S)图2 定义材料2:主菜单选择 模型>材料和截面特性>厚度:添加:定义厚度(0.010,0.015,0.020,0.040)图3 定义厚度开口部详细分析7 建立结构模型1:主菜单选择 模型>节点>建立为了圆形开口部以及垂直 、水平加劲板的输入,在 UCS x-y 平面输入成为指定开口部的大小和补强位置的基准的9个节点。
由于圆形开口部的补强位置以开口部的中心为基准关于横轴和竖轴对称,故只建立开口部右侧上端的1/4部分的模型后利用对称复制功能可完成剩下的部分。
迈达斯(midas)计算
迈达斯(midas)计算潇湘路连续梁门洞调整后⽀架计算书1概述原《潇湘路(32+48+32)m连续梁施⼯⽅案》中,门洞条形基础中⼼间距为7.5⽶,现根据征迁⼈员反映,为满⾜门洞内机动车辆通⾏需求,需将条形基础中⼼间距调整⾄8.5⽶。
现对门洞结构体系进⾏计算,调整后门洞横断⾯如图1-1所⽰。
图1-1调整后门洞横断⾯图门洞纵断⾯不作改变如图1-2所⽰。
图1-2门洞总断⾯图门洞从上⾄下依次是:I40⼯字钢、双拼I40⼯字钢、Ф426*6钢管(内部灌C20素混凝⼟),各结构构件纵向布置均与原⽅案相同。
2主要材料⼒学性能(1)钢材为Q235钢,其主要⼒学性能取值如下:抗拉、抗压、抗弯强度:[ =125MpaQ235:[σ]=215Mpa, ](2)混凝⼟采⽤C35混凝⼟,其主要⼒学性能取值如下:弹性模量:E=3.15×104N/mm2。
抗压强度设计值:f c=14.3N/mm2抗拉强度设计值:f t=1.43N/mm2(3)承台主筋采⽤HRB400级螺纹钢筋,其主要⼒学性能如下:抗拉强度设计值:f y=360N/mm2。
(4)箍筋采⽤HPB300级钢筋,其主要⼒学性能如下:抗拉强度设计值:f y=270N/mm23门洞结构计算3.1midas整体建模及荷载施加Midas整体模型如图3.1-1所⽰。
图3.1-1MIDAS整体模型图midas荷载加载横断⾯图如图3.1-2所⽰。
3.1-2荷载加载横断⾯图荷载加载纵断⾯如图3.1-3所⽰。
图3.1-3荷载加载纵断⾯图3.2整体受⼒分析整体模型受⼒分析如图5.2-1~5.2-3所⽰。
图5.2-1门洞整体位移等值线图5.2-2门洞整体组合应⼒云图图5.2-3门洞整体剪应⼒云图由模型分析可得,模型最⼤位移D=3.2mm<[l/600]=14.1mm,组⼤组合应⼒σ=144.2Mpa<[σ]=215Mpa,最⼤剪应⼒σ=21.6Mpa<[σ]=125Mpa 门洞整体强度、刚度均满⾜要求。
迈达斯Midas_civil_梁格法建模实例
混凝土收缩变形率: 程序计算
荷载
静力荷载
>自重
由程序内部自动计算
>二期恒载
桥面铺装、护墙荷载、栏杆荷载、灯杆荷载等
具体考虑:
桥面铺装层:厚度80mm的钢筋混凝土和60mm的沥青混凝土,钢筋混凝土的重力密度为25kN/m3, 沥青混凝土的重力密度为23kN/m3。每片T梁宽2.5m,所以铺装层的单位长度质量为:
> 混凝土
采用JTG04(RC)规范的C50混凝土
>普通钢筋
普通钢筋采用HRB335(预应力混凝土结构用普通钢筋中箍筋、主筋和辅筋均采用带肋钢筋既HRB系列)
>预应力钢束
采用JTG04(S)规范,在数据库中选Strand1860
钢束(φ15.2 mm)(规格分别有6束、8束、9束和10束四类)
钢束类型为:后张拉
图7. 跨中等截面
模型/材料和截面特性/ 截面
数据库/用户> 截面号(3); 名称(端部变截面右)
截面类型>变截面>PSC-工形
尺寸
对称:(开)
拐点: JL1(开)
尺寸I
S1-自动(开),S2-自动(开),S3-自动(开),T-自动(开)
HL1:0.20;HL2:0.06 ;HL2-1: 0;HL3:1.28;HL4:0.17;HL5:0.29
(0.08×25+0.06×23)×2.5=8.45kN/m2.
护墙、栏杆和灯杆荷载:以3.55kN/m2计。
二期恒载=桥面铺装+护墙、栏杆和灯杆荷载=8.45+3.55=12kN/m2。
>预应力荷载
分成正弯矩钢束和负弯矩钢束
典型几束钢束的具体数据:
迈达斯midascivil 梁格法建模实例
北京迈达斯技术有限公司目录概要 (2)设置操作环境........................................................................................................... 错误!未定义书签。
定义材料和截面....................................................................................................... 错误!未定义书签。
建立结构模型........................................................................................................... 错误!未定义书签。
PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。
输入荷载 .................................................................................................................. 错误!未定义书签。
定义施工阶段. (59)输入移动荷载数据................................................................................................... 错误!未定义书签。
输入支座沉降........................................................................................................... 错误!未定义书签。
迈达斯MIDASCIVIL培训教材-截面特性值计算器的使用说明
<图 1-(1)> 生成Plane 截面的过程建立截面的轮廓生成Plane 截面利用网格进行计算※注意事项MIDAS/Civil和Gen数据库中提供的规则截面的抗扭刚度计算方法参见附录一。
对于MIDAS/Civil和Gen数据库中提供的规则截面,利用 MIDAS/Civil、Gen的截面特性计算功能计算截面特性值比SPC更好一些。
MIDAS/Civil和Gen数据库中提供的PSC截面,当用户输入的截面属于薄壁型截面时,应使用本截面特性值中的Line方式重新计算抗扭刚度,然后在截面特性值增减系数中对抗扭刚度进行调整。
对于Plane形式的截面,程序是通过有限元法来近似计算抗扭刚度的。
在抗扭问题里使用的近似求解法有Ritz法(或者Galerkin法)、Trefftz法,所有的近似求解都与实际结果多少有点误差,其特征如下:J Ritz≤J Exact≤J Trefftz像SPC一样利用有限元法近似地计算抗扭刚度时,通常使用Ritz法, 故其计算结果有可能比实际的抗扭刚度小。
用户可通过加大网格划分密度方法来提高结果的精确度。
对于Line形式的截面, 如薄壁截面,线的厚度很薄时几乎可以准确地计算其抗扭刚度。
但是如果是闭合截面(无开口截面),这种计算方式会导致其抗扭刚度的计算结果随着线厚度的增加而变小,所以对于不是薄壁截面的闭合截面应尽量避免使用Line的方式计算截面特性。
在SPC中对薄壁闭合截面,对闭合部分一定要使用model>closed loop>Register指定闭合。
SPC可以在一个窗口里任意的建立很多个截面,并分别进行分析,且可根据名称、位置、截面特性值等可以很方便地对截面进行搜索及排列。
<图2> 将DXF文件中的截面形状导入后,生成截面并进行排列<图3> 输出截面特性对话框里建立的截面可以通过以下文件形式输出。
MIDAS/Civil [Gen]的 MCT [MGT]文件此时无法导出具体的截面形状,而是按MIDAS/Civil [Gen]立一个正方形,其边长为截面有效面积的平方根。
实例1 迈达斯 MIDAS
3
高级应用例题
选择单元或节点时,表明节点或单元以后用粗体字表示节点或单元号。
单选 (节点 : 7, 11) 使用单选功能选择7、11号节点。
有(拖放)字样时,表示在工作目录树中用鼠标拖动对象并放置到模型窗口上。 树形菜单 > 工作表单 单选 (单元 : 2 ) 工作 > 特性值 > 1: Steel (拖放)
拖放
6
前言
前面没有说明的对话框中其他的命令用按钮表示。 压屈荷载组合 > 荷载工况 > 工况 1 ; 分项系数 (1)
↵
在屈曲分析控制对话框的屈曲荷载组合中选择工况 1,在分项系
数中输入1之后点击
按钮。
7
窗口选择 (单元 : 图14的 ○1 部分) 使用窗口选择功能选择图14的○1 部分。
用‘ ’符号表示输入完以后点击命令按钮
、
。
工具 / 单为系统
长度 > m ; 内力 > tonf
选择长度单位为‘m’,内力单位为‘tonf’以后,点击命令按钮
。
在同一行显示相同级别的选项时,用符号 ‘ ; ’ 隔开各选项。 工具 / 单为系统 长度 > m ; 内力 > tonf ↵ 选择长度单位为‘m’,内力单位为‘tonf’。
有‘ C ’标志时,表示按鼠标右键使用鼠标关联菜单。
C 排序窗口 在关联菜单中选择排序窗口。
按钮
表示将选择的项目移动到指定的位置。
荷载工况和荷载组合列表
LCB1, LCB2
迈达斯(Midas_civil)建模助手做移动支架法施工阶段分析教程
概要
使用建模助手做移动支架法施工阶段分析
逐跨施工预应力箱型梁桥的的方法有移动支架法(Movable Scaffolding System ; 简称MSS)和满堂支架法(Full Staging Method ; 简称FSM)。移动支架法法的模板设置 在导梁上,因此无需进行水上作业和架设大量的脚手架。另外,移动支架法与满堂支架 法相比,因为不与地面、河流等直接接触,所以施工时可以灵活使用桥梁下空间。
施加预应力初期
f' ca
=
0.55 fci
= 148.5
kgf / cm2
f' ta
= 0.8
fci = 13.1 kgf / cm2
预应力损失之后
fca = 0.4 fck = 160.0 kgf / cm2 fta = 1.6 fck = 32.0 kgf / cm2
¾ 下部结构混凝土 材料强度标准值 : fck = 270 kgf / cm2 弹性模量 : Ec = 2.35 ×105 kgf / cm2
选择桥梁类型为移动支架法,输入桥梁材料、区段组成、曲率半径、固定支撑位 置、施工缝位置、施工缝到钢束锚固端位置距离、施工一跨所需时间(20天)以及预 应力箱型梁的初期材龄。选择桥梁类型为移动支架法时,程序自动计算出施工持续时 间与构件初期材龄的差作为添加步骤,并计算出移动支架自重和混凝土湿重引起的反 力将其加载到悬臂端。
5
高级应用例题
¾ 后横梁的反力 假设因移动支架梁自重引起的后横梁反力的大小和位置如下: - P = 400 tonf - 作用位置 : 从施工缝位置沿已现浇桥梁段方向3m处 正在施工的桥梁跨的混凝土湿重引起的反力由程序自动计算。
6
使用建模助手做移动支架法施工阶段分析
迈达斯midas梁桥专题—梁格
Integrated Solution System for Bridge and Civil Strucutres目录一、剪力-柔性梁格理论1. 纵梁抗弯刚度.......................................................................32.横梁抗弯刚度....................................................................... 43.纵梁、横梁抗弯刚度........................................................... 44.虚拟边构件及横向构件刚度.. (5)三、采用梁格建模助手生成梁格模型二、单梁、梁格模型多支座反力与实体模型结果比较1. 前言.......................................................................................72. 结构概况...............................................................................73. 梁格法建模助手建模过程及功能亮点...............................114. 修改梁格..............................................................................225. 在自重、偏载作用下与FEA 实体模型结果比较. (24)四、结合规范进行PSC 设计1.纵梁抗弯刚度【强制移轴(上部结构中性轴)法】一、剪力-柔性梁格理论a.各纵梁中性轴与上部结构中性轴基本重合b.强制移轴,使各纵梁中性轴与上部结构中性轴基本重合,等效纵梁抗弯刚度2.横向梁格抗弯刚度3.纵梁、横梁抗扭刚度4.虚拟边构件及横向构件刚度此处d’为顶板厚度。
迈达斯Midas-civil-梁格法建模实例
北京迈达斯技术有限公司目录概要 (2)设置操作环境........................................................................................................... 错误!未定义书签。
定义材料和截面....................................................................................................... 错误!未定义书签。
建立结构模型........................................................................................................... 错误!未定义书签。
PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。
输入荷载 .................................................................................................................. 错误!未定义书签。
定义施工阶段. (59)输入移动荷载数据................................................................................................... 错误!未定义书签。
输入支座沉降........................................................................................................... 错误!未定义书签。
迈达斯Midas-civil 梁格法建模实例
北京迈达斯技术有限公司目录概要 (3)设置操作环境.................................................. 错误!未定义书签。
定义材料和截面................................................ 错误!未定义书签。
建立结构模型.................................................. 错误!未定义书签。
PSC截面钢筋输入............................................... 错误!未定义书签。
输入荷载...................................................... 错误!未定义书签。
定义施工阶段 (61)输入移动荷载数据.............................................. 错误!未定义书签。
输入支座沉降.................................................. 错误!未定义书签。
运行结构分析.................................................. 错误!未定义书签。
查看分析结果.................................................. 错误!未定义书签。
PSC设计....................................................... 错误!未定义书签。
概要梁格法是目前桥梁结构分析中应用的比较多的在本例题中将介绍采用梁格法建立一般梁桥结构的分析模型的方法、施工阶段分析的步骤、横向刚度的设定以及查看结果的方法和PSC设计的方法。
本例题中的桥梁模型如图1所示为一三跨的连续梁桥,每跨均为32m。
迈达斯MIDASCIVIL培训教材-悬臂法助手建连续刚构
※ 本悬臂法桥梁例题为三跨连续梁使用了4台挂篮(F/T),因此不必移动挂篮。
使用建模助手做悬臂法(FCM)施工阶段分析
悬臂法施工阶段分析应该正确反应上面的施工顺序。施工阶段分析中各施工阶段 的定义,在MIDAS/CIVIL里是通过激活和钝化结构群、边界群以及荷载群来实现的。下 面将MIDAS/CIVIL中悬臂法桥梁施工阶段分析的步骤整理如下。
4
3
2
1
주零두号부块
FCFCMM 区구段간
合龙段 Key Seg
1
2
3
4
5
6
7
8
9 10 11 12
φ6˝- 19
一端张拉 일단긴장
P1
하下부部강钢연束 선
一일端단张긴장拉 两양端단张긴장拉
φ6˝- 19
图4 钢束布置简图
3
高级应用例题
4
悬臂法(FCM)的施工顺序以及施工阶段分析
悬臂法(FCM)的施工顺序一般如下:
概要
使用建模助手做悬臂法(FCM)施工阶段分析
预应力箱型梁桥(PSC BOX Bridge)的施工工法一般有顶推法(ILM)、悬臂法(FCM)、 移动支架法(MSS)等。悬臂法是由桥墩向跨中方向架设悬臂构件的方法,该工法不用水 上作业,也不需要架设大量的临设和脚手架,因此可以灵活使用桥下空间。另外,因为 不直接与桥下河流或道路接触,因此被广泛使用于高桥墩、大跨度桥梁中。
1. 定义材料和截面 2. 建立结构模型 3. 定义并构建结构群 4. 定义并构建边界群 5. 定义荷载群 6. 输入荷载 7. 布置预应力钢束 8. 张拉预应力钢束 9. 定义时间依存性材料特性值并连接 10. 运行结构分析 11. 确认分析结果
中国桥梁网_实例5__迈达斯___MIDAS
单位体系也可以 在程序窗口下端的状 态条中的单位选择按 钮( )中选择修改。
文件 / 文件 /
新项目 保存 ( MSS )
工具 / 单位体系 长度 > m ; 力 > tonf ↵
图6 设定单位体系
7
高级应用例题
使用移动支架法和满堂支架法施工的预应力箱型梁桥,因为各施工阶段的结构体系 不同,所以只有对各施工阶段做结构分析才能最终确定截面大小。另外,为了正确分析 混凝土材料的时间依存特性和预应力钢束的预应力损失,需要前阶段累积的分析结果。
用户在本章节中将学习使用移动支架法/满堂支架法桥梁建模助手建立移动支架法 (MSS)各施工阶段和施工阶段分析的步骤,以及确认各施工阶段应力、预应力损失、挠 度和内力的方法。
模型 / 结构建模助手 / 移动支架法/满堂支架法桥梁 模型表单 桥梁类型 > 移动支架法 ; 桥梁材料 > 1: C400 桥梁总长 ( 10@50 ) ; 桥梁曲率半径 (开) ( 2380 ) > 凸 固定支撑位置 > 250(50) 每跨桥梁段分割数量 ( 10 ) 施工缝位置(S3) ( 0.2 ) 施工缝到钢束锚固端位置距离(S4) ( 3 ) 施工持续时间 ( 20 ) 构件初期材龄 ( 5 ) ; 移动支架反力 ( 400 ) ↵
概要
使用建模助手做移动支架法施工阶段分析
逐跨施工预应力箱型梁桥的的方法有移动支架法(Movable Scaffolding System ; 简称MSS)和满堂支架法(Full Staging Method ; 简称FSM)。移动支架法法的模板设置 在导梁上,因此无需进行水上作业和架设大量的脚手架。另外,移动支架法与满堂支架 法相比,因为不与地面、河流等直接接触,所以施工时可以灵活使用桥梁下空间。
【Midas】迈达斯CIVIL梁格法实例
旗开得胜概要 (2)设置操作环境 (6)定义材料和截面 (7)建立结构模型 (11)PSC截面钢筋输入 (13)输入荷载 (19)定义施工阶段 (33)输入移动荷载数据 (39)输入支座沉降 (43)运行结构分析 (45)查看分析结果 (46)PSC设计 (64)11概要梁格法是目前桥梁结构分析中应用的比较多的在本例题中将介绍采用梁格法建立一般梁桥结构的分析模型的方法、施工阶段分析的步骤、横向刚度的设定以及查看结果的方法和PSC 设计的方法。
本例题中的桥梁模型如图1所示为一三跨的连续梁桥,每跨均为32m 。
图1. 简支变连续分析模型1桥梁的基本数据为了说明采用梁格法分析一般梁桥结构的分析的步骤,本例题采用了比较简单的分析模型——预应力T梁,可能与实际桥梁设计的内容有所不同。
本例题的基本参数如下:桥梁形式:三跨连续梁桥桥梁等级:I级桥梁全长:332=96m桥梁宽度:15m设计车道:3车道图2. T型梁跨中截面图图3. T梁端部截面图1旗开得胜分析与设计步骤预应力混凝土梁桥的分析与设计步骤如下。
1.定义材料和截面特性材料截面定义时间依存性材料(收缩和徐变)时间依存性材料连接2.建立结构模型建立结构模型修改单元依存材料特性3.输入PSC截面钢筋4.输入荷载恒荷载(自重和二期恒载)预应力荷载钢束特性值钢束布置形状钢束预应力荷载温度荷载系统温度节点温度单元温度温度梯度梁截面温度5.定义施工阶段6.输入移动荷载数据1。
【Midas】迈达斯CIVIL梁格法实例
旗开得胜概要 (2)设置操作环境 (6)定义材料和截面 (7)建立结构模型 (11)PSC截面钢筋输入 (13)输入荷载 (19)定义施工阶段 (33)输入移动荷载数据 (39)输入支座沉降 (43)运行结构分析 (45)查看分析结果 (46)PSC设计 (64)11概要梁格法是目前桥梁结构分析中应用的比较多的在本例题中将介绍采用梁格法建立一般梁桥结构的分析模型的方法、施工阶段分析的步骤、横向刚度的设定以及查看结果的方法和PSC 设计的方法。
本例题中的桥梁模型如图1所示为一三跨的连续梁桥,每跨均为32m 。
图1. 简支变连续分析模型1桥梁的基本数据为了说明采用梁格法分析一般梁桥结构的分析的步骤,本例题采用了比较简单的分析模型——预应力T梁,可能与实际桥梁设计的内容有所不同。
本例题的基本参数如下:桥梁形式:三跨连续梁桥桥梁等级:I级桥梁全长:332=96m桥梁宽度:15m设计车道:3车道图2. T型梁跨中截面图图3. T梁端部截面图1旗开得胜分析与设计步骤预应力混凝土梁桥的分析与设计步骤如下。
1.定义材料和截面特性材料截面定义时间依存性材料(收缩和徐变)时间依存性材料连接2.建立结构模型建立结构模型修改单元依存材料特性3.输入PSC截面钢筋4.输入荷载恒荷载(自重和二期恒载)预应力荷载钢束特性值钢束布置形状钢束预应力荷载温度荷载系统温度节点温度单元温度温度梯度梁截面温度5.定义施工阶段6.输入移动荷载数据1选择规范定义车道定义车辆移动荷载工况7.支座沉降定义支座沉降组定义支座沉降荷载工况8.运行结构分析9.查看分析结果10.PSC设计PSC设计参数确定PSC设计参数PSC设计材料PSC设计截面位置运行设计查看设计结果1使用材料以及容许应力> 混凝土采用JTG04(RC)规范的C50混凝土>普通钢筋普通钢筋采用HRB335(预应力混凝土结构用普通钢筋中箍筋、主筋和辅筋均采用带肋钢筋既HRB系列)>预应力钢束采用JTG04(S)规范,在数据库中选Strand1860钢束(φ15.2 mm)(规格分别有6束、8束、9束和10束四类)钢束类型为:后张拉钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2预应力钢筋与管道壁的摩擦系数:0.3管道每米局部偏差对摩擦的影响系数:0.0066(1/m)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉力:抗拉强度标准值的75%>徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2长期荷载作用时混凝土的材龄:=t5天o混凝土与大气接触时的材龄:=t3天s相对湿度: %RH=701旗开得胜1大气或养护温度: C °20=T 构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004) 徐变系数: 程序计算 混凝土收缩变形率: 程序计算荷载静力荷载>自重由程序内部自动计算>二期恒载桥面铺装、护墙荷载、栏杆荷载、灯杆荷载等具体考虑:桥面铺装层:厚度80mm的钢筋混凝土和60mm的沥青混凝土,钢筋混凝土的重力密度为25kN/m3, 沥青混凝土的重力密度为23kN/m3。
迈达斯midas简支梁模型计算
第一讲 简支梁模型的计算1.1 工程概况20米跨径的简支梁,横截面如图1-1所示。
图1-1 横截面1.2 迈达斯建模计算的一般步骤 后处理理处前第五步:定义荷载工况第八步:查看结果第七步:分析计算第六步:输入荷载第四步:定义边界条件第三步:定义材料和截面第二步:建立单元第一步:建立结点1.3 具体建模步骤第01步:新建一个文件夹,命名为Model01,用于存储工程文件。
这里,在桌面的“迈达斯”文件夹下新建了它,目录为C:\Documents and Settings\Administrator\桌面\迈达斯\模型01。
第02步:启动Midas Civil.exe ,程序界面如图1-2所示。
第03步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图1-3所示。
图1-3 新建工程第04步:选择菜单“文件(F)->保存(S)”,选择目录C:\Documents andSettings\Administrator\桌面\迈达斯\模型01,输入工程名“简支梁.mcb”。
如图1-4所示。
图1-4 保存工程第05步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,新建一个excel文件,命名为“结点坐标”。
在excel里面输入结点的x,y,z 坐标值。
如图1-5所示。
图1-5 结点数据第06步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel里面的数据拷贝到节点表格,并“ctrl+s”保存。
如图1-6所示。
图1-6 建立节点第07步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,再新建一个excel文件,命名为“单元”。
在excel里面输入单元结点号。
如图1-6所示。
图1-6 单元节点第08步:选择树形菜单表格按钮“表格->结构表格->单元”,将excel里面的数据拷贝到单元表格的“节点1、节点2”列,并“ctrl+s”保存。
节点细部分析-迈达斯-midas
例题3 开口部详细分析开口部详细分析3 例题3. 开口部详细分析概要此例题将介绍利用MIDAS/Gen对开口详细部分的建模分析方法。
此例题的步骤如下:1.简要2.设置基本操作环境3.输入构件材料以及截面数据4.建立结构模型5.输入边界条件6.定义及输入荷载7.运行结构分析8.查看分析结果开口部详细分析4例题3. 开口部详细分析概要本例题介绍的是梁的腹部存在圆形开口部时,为对开口部进行补强设计而进行的建模、分析及查看结果的过程,材料采用Q235基本数据如图(1)所示:(a) 模型概要图1. 具有圆形开口部的梁构件和开口部的详细分析模型梁单元区间梁单元区间板单元详细模型区间50kN/m开口部详细分析5 设置基本操作环境1.设置单位体系1.单位体系为(KN,m)2.设置局部坐标系为了容易输入以及查看结果,使梁的单元坐标系与整体坐标系一致来建立模型。
即,利用 X-Z将梁腹部面设置为 UCS x-y 平面后点击 正面 使得操作画面与 UCS x-y 平面一致。
1.在图标菜单点击 X-Z2.在 坐标 输入栏输入 ‘0, 0, 0’3.在 角度输入栏输入 ‘0’4.点击 键5.在图标菜单点击正面在修改视角标记‘9’后点击键,则可以省略第5 阶段。
开口部详细分析6定义材料和截面1:主菜单选择 模型>材料和截面特性>材料: 添加材料号:1 名称:Q235 规范:GB03(S)图2 定义材料2:主菜单选择 模型>材料和截面特性>厚度:添加:定义厚度(0.010,0.015,0.020,0.040)图3 定义厚度开口部详细分析7 建立结构模型1:主菜单选择 模型>节点>建立为了圆形开口部以及垂直 、水平加劲板的输入,在 UCS x-y 平面输入成为指定开口部的大小和补强位置的基准的9个节点。
由于圆形开口部的补强位置以开口部的中心为基准关于横轴和竖轴对称,故只建立开口部右侧上端的1/4部分的模型后利用对称复制功能可完成剩下的部分。
(仅供参考)弹性地基梁分析--midas-迈达斯
例题 弹性地基梁分析1例题弹性地基梁分析2 例题. 弹性地基梁分析概要此例题将介绍利用MIDAS/Gen做弹性地基梁性分析的整个过程,以及查看分析结果的方法。
此例题的步骤如下:1.简要2.设定操作环境及定义材料和截面3.利用建模助手建立梁柱框架4.弹性地基模拟5.定义边界条件6.输入梁单元荷载7.定义结构类型8.运行分析9.查看结果例题 弹性地基梁分析31.简要本例题介绍使用MIDAS/Gen 进行弹性地基梁的建模分析。
(该例题数据仅供参考)基本数据如下:¾ 轴网尺寸:见平面图 ¾ 柱: 900x1000,800x1000¾ 梁: 500x1000,400x1000,1000x1000 ¾ 混凝土:C30图1 弹性地基梁分析模型例题弹性地基梁分析42.设定操作环境及定义材料和截面在建立模型之前先设定环境及定义材料和截面1.主菜单选择 文件>新项目2.主菜单选择 文件>保存: 输入文件名并保存3.主菜单选择 工具>单位体系: 长度 m, 力 kN图2. 定义单位体系4.主菜单选择 模型>材料和截面特性>材料:添加:定义C30混凝土材料号:1 名称:C30 规范:GB(RC)混凝土:C30 材料类型:各向同性5.主菜单选择 模型>材料和截面特性>截面:添加:定义梁、柱截面尺寸注:也可以通过程序右下角随时更改单位。
例题 弹性地基梁分析5图3 定义材料图4 定义梁、柱截面例题弹性地基梁分析6 3.用建模助手建立模型1、主菜单选择模型>结构建模助手>框架:输入:添加x坐标,距离8,重复1;距离10,重复2;距离8,重复1;添加z坐标,距离8,重复1;距离6,重复1;编辑: Beta角,0;材料,C30;截面,500x1000;点击;插入:插入点,0,0,0;图5 建立框架例题 弹性地基梁分析72、主菜单选择 模型>单元>修改单元参数分别将梁及柱修改为相应的截面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Z 3
2
楼바닥板하중荷载
1
1 tonf/m 1 tonf/m 1 tonf/m 3m
100k1N0 tonf
B
Y A
10 tonf 100kN
10kN/m
X
6m 全局전坐체标좌系표的계原원点점
10kN/m 2.5m
10kN/m
2.5m
2.5m
2.5m
柱截기面둥단:면H:WH22000xx220000xx88//1122
输入楼面荷载 / 20
输入节点荷载 / 21
输入均布荷载 / 22进行结构分析26 Nhomakorabea查看分析结果
27
模式 / 27
荷载组合 / 28
查看反力 / 30
查看变形与位移 / 33
查看构件内力 / 37
剪力图及弯矩图 / 38
查看构件应力及动画的处理 / 42
梁单元细部分析 / 46
例题1. 单层两跨三维框架
主菜单
在工作树中支持 拖 放 ( Drag&Drop ) 方 式 的 菜单系统。
工具条
树形菜单
模型窗口
状态条
Y
X
图 2. MIDAS/Civil的初始画面
信息窗口
3
例题
由于所使用的单位系可以自动变换而显示于画面下端(Status bar的单位变换窗
口-图2的X)和数据的输入拦中,故可以简单地操作而不致混淆。这里我们将‘m’和
2 : HN 400 × 200 × 8/13 – 梁
截面数据还可以通过 主菜单的模型>材料和 截面特性>截面来输入。
1. 在树形菜单的菜单表单选择几何形状>特性>材料
2. 点击图6的
键
3. 在一般的材料号输入栏中确认‘1’(参考图7)
4. 在类型栏中确认‘钢材 5. 在钢材规范中确认‘GB(S)’ 6. 在数据库选择栏中选择‘Grade3’
在 MIDAS/C i v i l 中 若 未 对 UCS 作 另 行 设 置 , 则 UCS和GCS是一致的。栅 格会自动排列于UCS的x-y 平面上。
UCS是指用户考虑建筑物的特殊形状和排列,为了更方便地建模而在GCS上另外 设定的坐标系。
输入的节点、栅格及鼠标位置的坐标分别以UCS和GCS在状态条 (图2的Y)中显示
为了输入位于建筑物○A 列(参考图1)的3个柱和2个梁,先利用 X-Z (或树形菜单 的菜单表单>几何形状>用户坐标系>X-Z平面)功能将○A 平面(GCS X-Z平面)设定
为UCS的x-y平面。
1. 在图标菜单点击 X-Z
2. 在原点输入栏输入‘0, 0, 0’
3. 在角度输入栏输入‘0’
4. 点击
Toggle on
菜单系统
MIDAS/Civil为构成最佳的操作环境,提供以下4种菜单系统以便可以简捷迅速地 导入各种功能。
主菜单 树形菜单 图标菜单 关联菜单
主菜单是windows体系中普遍采用的菜单,可以通过画面上端的主菜单选择各从属 菜单。
树形菜单处于模型窗口的左侧,是将实际进行结构分析和设计过程中的一套功能按 顺序整理而成的树形结构。因此,即使是初学者也可以按照树形菜单的顺序较为容 易地完成分析工作。
梁截보面 단:면H:NH40400x02x20000xx88/1/133
图1. 单层两跨三维框架
单层两跨三维框架
打开文件和设定基本操作环境
首先将显示桌面上或相应目录中的MIDAS/Civil的 图标连击两次以打开程序。 通过选择画面上端的文件>新项目(或者 )打开新文件,之后选择文件>保存菜单 (或者 )输入文件名并保存。
‘kN’作为使用单位。
Icon的Toggle on状况 随初始值的设定而不同。 在跟随例题进行操作时, 最好按所提示的Toggle on 状态相同设置以免出现 错误。
1. 在主菜单选择工具条>单位体系。
2. 在长度(Length)选择栏选择‘m’。
3. 在力(质量) 选择栏选择‘kN’。
4. 点击
键。
7. 点击
键
8. 选择特性对话窗口上方(图6的X)的截面单元
9. 点击
键
10. 确认截面对话窗口上方(图8的Y)的数据库/用户表单
11. 在截面□ 选择栏中确认‘1’
12. 在截面形状输入栏中确认‘工字型截面’ 13. 在数据库选择栏中确认‘GB-YB’
点击
键可完
成输入的指令并关闭对话窗
口,而点击
3. 点击
键
图5. 设定点栅格
7
例题
MIDAS/Civil在最初状 态中为用户方便已经将栅 格捕捉功能设为了Toggle on状态,因此可以不必另 行点击。
由于当前画面的视点被设定为标准视图,所以为输入的方便将其转换为 正面视 图(或树形菜单的视图>视点>正面(-Y))以使点格的横竖方向与模型窗口一致。另 外,使用 捕捉点格以使鼠标的击点可以自动移到邻近的轴网上。
X
Y
单层两跨三维框架
选择 键可以对相应截面的刚度数 据进行确认。
图6. 截面特性对话窗口
图8. 输入截面数据
图7. 输入材料数据
9
例题
使用节点和单元进行建模
在输入结构构件之前为了对输入的状况进行确认可以使用显示截面形状的 消隐 (或主菜单的视图>消隐)功能。如果 消隐处于 Toggle off状态,则构件只会被 显示成一条单线(Wire Frame)而非具体的形状。
此例题所介绍的各阶段的分析步骤与一般实际工作中的分析过程基本相同。其具体 内容如下。
1. 打开文件并设定操作的基本环境 2. 输入构件的材料及截面的数据 3. 使用节点和单元进行建模 4. 输入建筑物的支承条件 5. 输入各种荷载 6. 进行结构分析 7. 对结果进行校核和分析
1
例题
分析模型与荷载条件
单层两跨三维框架
关联菜单是为了能够在画面上最少地移动鼠标而设计的。用户只要在模型窗口上简 单地点击鼠标的右键,就可以方便地导入各种经常使用的功能菜单。 本例题主要使用树形菜单和图标菜单。 在MIDAS/Civil中可以按用户的喜好对Icon的排列任意进行变更。除了初始画面上 所排列的工具条(图2)以外,还可以添加节点、单元、结果、特性及查询工具条等画 面。在节点或单元的输入阶段若将节点和单元及特性工具条等添加到所需位置的话 会非常方便。
在所有对话窗口,GCS 用大写(X, Y, Z), UCS和 ECS用小写(x, y, z)表示。
GCS是用户在定义建筑物的总体几何形状时所使用的基本坐标系。
ECS是反映单元的特性并为确认分析结果地方便而对各个单元所赋予的坐标系。
NCS是对与桁架单元、只受拉单元、只受压单元或梁单元相连节的任意节点按特定 方向赋予边界条件(Local Boundary Condition)或强制变形时所使用的坐标系。
1. 在主菜单选择工具>用户制定>工具条 2. 在工具条目录将节点、单元及特性表示为‘3’。 3. 对单元工具条上的蓝色部分用鼠标指定后可以拉放到自己所需的位置 4. 使用相同的方法可以排列节点工具条和特性工具条 5. 点击工具条对话窗口的结束键( )
图3. 工具条的排列
5
例题
坐标系和栅格
MIDAS/Civil除了提供全局坐标系(GCS, Global Coordinate System)和单元坐标系 (ECS, Element Coordinate System)以外,还为了输入的方便提供节点坐标系(NCS, Node local Coordinate System)和用户坐标系(UCS, User Coordinate System)。
例题1 单层两跨三维框架
MIDAS/Civil
例题 1. 单层两跨三维框架
概要
1
分析模型和荷载条件 / 2
打开文件与设定基本操作环境
3
单位系 / 3
菜单系统 / 4
坐标系和栅格 / 6
输入构件材料及截面数据
8
使用节点和单元进行建模
10
输入结构的支承条件
16
输入各种荷载
18
设定荷载条件 / 18
输入荷载 / 19
3. 点击
Toggle on
柱
Reference
x P o i n t s
Beta Angle
在‘节点连接’输入栏 输入坐标或距离时,可使 用‘,’或 ‘ ’ (Blank)区分 节点编号来进行输入。
利用梁单元(Beam Element)输入位于○A 列(参考图1)的柱和梁。
1. 在树形菜单的目录表单选择几何形状>单元>新建 2. 在单元类型选择栏中确认‘一般梁/变截面梁’ 3. 在材料名选择栏中确认‘1 : Grade3’ 4. 在截面名选择栏中确认‘1 : HW 200 × 200 × 8/12’ 5. 在Beta 角选择栏中选择‘90’ ( 参考说明1) 6. 参考画面下端(Status Bar)的UCS坐标顺次点击(0, 0, 0)和(0, 3, 0)两点建立
单位系
MIDAS/Civil可以同时使用多种单位(units) , 因此在操作过程中既可以采用单一单 位系(例如 : m、N、kg、Pa等SI单位系),也可以采用复合单位系(例如 : m、kN、 lb、kgf/mm2等)。
另外,由于可以根据所输入数据的特点任意改变单位,所以在输入位置时可以使用 ‘m’,而在输入截面时可以通过画面下端的单位变换窗口(或主菜单的工具>单位体 系)将其该为‘mm’,还可将进行分析时所使用的‘kN’、‘m’改为应力单位‘N/mm2’。
出来。
由于一般在实际操作中所接触的建筑物大都具有复杂的立体形状,所以在输入基本 形状数据的初期阶段,将操作环境设置为2维平面会较为便利。