钢结构焊接变形控制校正
钢结构焊接变形控制措施
钢结构焊接变形控制措施摘要:本文将从钢结构焊接变形的原因入手,介绍钢结构焊接变形的特点和影响,然后探讨钢结构焊接变形的控制措施,包括预制件的设计、焊接工艺的优化、焊接变形的补偿和控制等方面。
通过对这些控制措施的分析和总结,可以为钢结构焊接变形的控制提供一些有益的参考和借鉴,为钢结构的质量和安全性提供保障。
关键词:钢结构;焊接;变形控制;措施焊接过程中由于存在着很多不确定因素,如焊接位置、焊接工艺、焊接顺序以及各种外力的作用等,这些因素会使工件的变形受到抑制和限制,但也会使工件产生变形。
在整个过程中,任何一个环节出了问题,都会使最终的结果偏离设计的要求。
因此,在焊接过程中要采取各种措施来控制焊接变形。
1.反变形法反变形法是利用焊接热过程中工件的局部收缩来抵消或减小焊接件的变形。
这种方法能有效地控制焊接件的变形,是目前最常用的一种控制焊接变形的方法。
(1)反变形法在生产中应用广泛,一般是在钢结构构件上预先留有加工余量,焊接时尽量采用与留有加工余量相同的焊接顺序和焊后反变形的方法来补偿焊后构件的变形。
(2)在结构设计时,充分考虑到结构尺寸与受力情况,尽可能减少结构中过大的不合理尺寸。
例如:为控制梁侧弯,应尽量少设梁高;为控制焊缝收缩变形,应尽量减少焊缝长度和数量;为控制板厚方向产生挠曲,应尽量减少板厚尺寸;为减少角焊缝对整体应力的影响,应尽量缩短角焊缝长度等。
(3)在构件拼装前,用机械方法进行反变形或人工反变形。
例如:在装配前将构件通过调整使其发生一定程度的弯曲或扭转变形,待安装完毕后再恢复到原来的形状。
这种方法适用于尺寸精度要求不高且焊缝数量不多的构件。
(4)采用多道焊接方法。
此法适用于在大厚度上对称焊接要求较高的结构。
2.刚性固定法刚性固定法是指通过合理地安排钢结构构件的焊接顺序和焊接方向,使构件在焊缝上产生的拉应力、压应力和焊后残余变形的方向相反,并通过各种约束措施限制变形的一种方法。
在焊接过程中,我们应该把钢结构构件分为两部分:第一部分是纵向焊缝,第二部分是横向焊缝。
浅述钢结构焊接现场工艺与变形控制
浅述钢结构焊接现场工艺与变形控制建筑钢结构具有自重轻、建设周期短、适应性强、外形丰富、维护方便等优点,其应用范围广泛。
焊接技术是钢结构工程建设中非常重要的技术,焊接技术的好坏不仅仅决定着钢结构工程的质量,从跟高的角度来看,是焊接技术赋予了钢结构以生命。
目前我国的建筑钢材存在很大不足,在品种、规格和质量水平上和发达国家还有较大差距。
在高层钢框架结构施工领域,技术水平高、管理能力强的建筑企业很少,钢结构施工成套技术尚处于完善阶段。
一、钢结构现场焊接工艺1、焊接准备准备好手工电弧焊及CO2气保焊、特制的钢梁焊接的吊篮子、钢管搭建的操作平台等所需材料。
采用的焊接材料和焊接设备技术条件必须符合国家标准,性能优良。
清渣、气刨、焊条烘干保温等装置应齐全有效。
焊接前先进行检查和预热。
检查坡口角度、钝边、间隙及错口量,坡口内和两侧的锈斑、油污、氧化铁皮等应清除干净。
焊前用气焊或特制烤枪对坡口及其两侧各100mm 范围内的母材均匀加热。
用表面测温计测量预热温度,防止温度不符合要求或表面局部氧化。
再次检查预热温度,如果温度不够应重新加热,使之符合要求。
2、进行焊接进行焊接时应装焊垫板及引弧板,引弧板与母材焊接应牢固,其表面清洁程度要求与坡口表面相同,垫板与母材应贴紧。
根据平面和立面形状,结构形式等,就实际地理位置进行分区组织施工。
焊接时,第一层的焊道应封住坡口内母材与垫板的连接处。
然后逐道逐层累焊至填满坡口。
每道焊缝焊完后,都必须清除焊渣及飞溅物,出现焊接缺陷应及时磨去并修补。
如不得已而中途停焊时,应进行保温缓冷处理。
再焊前,应重新按规定加热。
一个接口必须连续焊完。
当对某一景观工程进行施工时,要注重焊接顺序,当钢结构安装完成三个及以上单元的校正和高强螺栓的终拧后,从平面中心选择四面都有焊接梁的柱子作为基准柱,并以此作为垂偏测量基准,并首先安排其四侧都有抗弯焊接的梁、然后向四周扩展施焊。
隨安装滞后跟进。
采取结构对称、节点对称和全方位对称焊接的原则。
超厚钢结构焊接变形控制
8 2 I 石 油 化 工 建 设 2 0 1 3 . 0 5
构 件下挠 8 3 am。 焊 缝 A r 3 相对 于 I X距离 为 D u 3 =1 3 9 mm ,
( 1 ) 先装 配腹板与下翼板 ( 叠合板) 成 T 字形结构 , 焊接完
成腹 板 与 下 翼 板纵 缝 。 ( 2 )焊接 完成 的倒 T 字形件 , 存 在两种变 形 : 翼 板 角变 形
1 . 4 3 7 6 × 1 0 9 m m 。 , 焊缝 A 面积为 9 1 5 . 8 a r m , 焊缝 A 的截
面积为 1 0 4 6 . 7 am r ,焊缝 A- 、 A 对 I X距 离 为 D u 。 、 D u = 1 0 9 am, r 按 公式 ( 1 ) 计算 , A l 、 A 焊 接 完成 后将 引 起三 角 形
—
—
\
.
1 / /
形的实例 , 结合三种焊接变 形计 算经验公 式, 浅析焊接变 形控制
技术在大型钢结构焊接 中的应用 。
图 1 三角形钢柱截面 示意
该 三 角柱 构 件 长度 为 1 0 5 0 0 mI n, 截 面 惯 性 矩 I X=
1不对称构件挠 曲变形控制
对于大型不对称构件 ,焊 接后构件 的挠度 变形控制极为 关
E& C T e c h n o l o g y I 工 程技 术
赵
字
王
悦
中国十五冶金建设集团有限公司 湖北 武汉
4 3 0 0 7 5
摘
要 大型钢结构由于结构跨度 长、 截面大及钢板厚等特点 , 构件焊接后的焊接变形复杂且矫正 困难 定量地对焊接变形进 行计算分析并采用合理的焊接工艺和技术 , 有效地控制大型构件的焊接变形 , 是大型构件焊接加工成败的关键
钢结构工程焊接技术重点难点及控制措施
钢结构工程焊接技术重点难点及控制措施钢结构工程是现代建筑中常见的一种结构形式,其焊接技术是非常重要的一环。
在钢结构工程中,焊接是连接各个构件的主要方法,其质量直接关系到整个工程的安全性和稳定性。
钢结构工程焊接技术中存在着一些重点难点,需要采取相应的控制措施来保障焊接质量。
本文将就钢结构工程焊接技术的重点难点及控制措施进行探讨。
一、焊接技术的重点难点1. 焊接变形控制在钢结构工程中,焊接完成后会产生热变形,尤其是在大型工程项目中,焊接变形会影响到整体结构的精度和稳定性。
焊接变形控制是焊接技术中的重点难点之一。
对于焊接变形的控制,首先需要合理设计焊接件的结构,以降低热影响区的温度梯度,减小热变形的程度;可以采取预应力焊接或者多次小段焊接的方法,来减少焊接产生的变形;还可以使用专门的变形补偿技术,对焊接变形进行补偿,保证结构的整体精度。
2. 焊缝质量控制焊缝质量是决定焊接接头强度和耐久性的关键因素,而焊缝的质量受到多种因素的影响,例如焊接电流、焊接速度、焊接材料等。
对焊缝的质量控制是焊接技术中的又一个重点难点。
在焊缝质量控制方面,首先需要严格按照标准进行工艺操作,确保焊接电流和速度的准确控制;要对焊接材料进行严格的选择和质量检验,确保焊缝的材料质量达标;要加强对焊工的技术培训和质量监控,提高焊接操作的稳定性和一致性。
3. 焊接接头的检测钢结构工程中的焊接接头通常都需要进行非破坏性或破坏性检测,以保证焊接质量。
但由于焊接接头的复杂性和多样性,检测工作存在一定的难度,因此焊接接头的检测也是焊接技术的重点难点之一。
在焊接接头的检测方面,需要结合具体的工程情况选择合适的检测方法,例如超声波检测、X射线检测、磁粉检测等,对不同类型的焊接接头进行全面而有效的检测;还需要引进先进的检测设备和技术,提高检测的准确性和精度;还需要对检测人员进行专业培训,提高其检测能力和水平,确保检测工作的质量和可靠性。
二、焊接技术的控制措施1. 工艺控制在焊接工艺的控制方面,首先需要严格按照焊接工艺规范进行操作,包括选择合适的焊接方法、焊接参数和焊接工艺;要对焊接过程进行严密的监控和记录,及时发现和解决工艺中存在的问题和隐患;要加强对焊接材料和设备的管理,确保其质量和稳定性,为焊接工艺的控制提供保障。
钢结构焊接变形的控制及矫正
钢结构焊接变形的控制及矫正标签:钢结构;矫正技术;焊接变形随着我国市场式经济制度逐渐成熟和完善,钢结构的焊接技术有了很大的进步和发展。
在实际的推广应用上,钢结构的焊接工作得到了更加广泛的应用。
同时,在焊接钢结构的过程中受外在因素和环境的影响过于的敏感,使得整个钢结构控制和矫正工作的推进有着一定的困难。
为了更好地解决这一类的问题,将钢结构焊接、矫正和变形深入的结合先进技术是当今社会提出的新要求。
一、钢结构焊接概述钢结构的施工主要的类型包括钢柱、钢梁、钢材等,施工过程中需要各个工作人员和部门进行密切的配合。
一旦发现问题或者是异常情况及时的沟通、解决。
在钢结构的施工中主要的特点分为三个方面:第一种,施工测量的精度。
在施工建设的过程中,前期的规划设计是整个工程建设的核心思想。
一旦钢结构在前期造成偏差就会影响钢结构整体的施工效果,进而造成施工偏差的出现。
第二种,和施工条件相符。
在实际的钢结构安装和矫正控制的过程中极易受到各种外在环境影响,如:空气、温度、湿度等等。
种种的外在因素都会对整个钢结构的矫正、控制造成影响,进而延误工程和项目的工期。
第三种,器械性能标准高。
钢结构的焊接和安装对器械、设备的要求有着很高的标准。
正是由于其本身的形状和重量都是非常庞大的,使得钢结构的安装、运输很难满足钢材承载力的要求和标准。
二、钢结构焊接变形的控制方法(一)设计合理的焊接技术钢结构中,各个结构组成之间进行合理、科学的焊接是非常重要的。
焊接技术在结构之间的缝接处理就是考验连载力和承重力的关键,焊接缝隙的强度直接影响整个钢结构的重力承受力。
在对钢结构进行焊缝处理时,规划设计的焊缝尺寸和长度应该控制在一定的范围内,不应过长。
过长的焊接缝操作可能对后期的强度承受力有着极大的考验,无形中增加了焊缝技术的实际工作量和难度。
在焊接的过程中,焊接人员应该根据实际的钢结构的情况进行着重分析,就以T型接头为例。
针对这种钢结构的焊接技术时,首先要采取的就是设计开坡口双面焊的模式,从基本结构中保障其内在的构造强度。
如何控制钢结构焊接的变形
钢 结构焊接 因其技术成熟 、施工周期短 、易于回收 等独特优 势 ,在现 代建筑 施 工中 已得 到广泛 应用 ,然
而 ,焊接作 为一项 重要 的钢 结构制 作和 连接 技术 ,在 焊接过程中产 生的变形 问题不仅影 响了钢结构的外观和
焊缝形式 ,采取适 当的焊接工艺措施 ,对于控制钢结构
焊接变 形也具有 非常重要 的作用 。
程质量的 目的。但 由于影 响焊接变形的因素较 多,还应 该在实践 中不断总结和积累焊接经验, 提高控制焊接应力
和焊接变形技术水平。
4 1采用 合理 的装 配焊接 顺序 。 .
4 1 1钢结构的制作、组装应 该在一个标准的水平 ..
质量 ,降低企业生产成本 。
接 的层数越 多,焊接变形越 明显 ;断续式焊缝与连续焊 缝相 比收缩变形量小 ;对接式焊缝的横 向收缩变形量 比 纵 向收缩变形量大2 倍 : 至4 焊接顺序不 当或在没有焊接妥 当分部构件 时就进行整体组装焊接 ,很容易产生焊接变 形 。因此 ,为 了防治焊接变形 ,在焊接施工过程 中必须
构受热范围,从 而减少焊接变形 。
5 .结 论
4 .防治钢结构焊接变形 的工艺措施
在钢结构焊接施工过程中,根据不 同的节点构造及
在钢 结构焊 接施 工过程 中,焊接 变形 是不可避 免
的,通过采 取适 当的焊 接节 点构造 设计措施 和技 术措
施 ,可 以有效地控制钢结构 的焊接变形,以达到确保工
23装 配和 焊接顺 序 .
结构的整体刚性总是 比它的部件的刚性大 ,抗变形
能 力 也 大 。有 了合 理 的 装 配 顺 序 还 需 要 有 合 理 的焊 接顺 序 配合,以控制变形。
焊接变形的控制措施
焊接变形的控制措施
1.1钢结构焊接时,采用的焊接工艺和焊接顺序应能使最终构件的变形和收缩最小。
1.2根据构件上焊缝的布置,可按下列要求采用合理的焊接顺序控制变形:
1对接接头、T形接头和十字接头,在工件放置条件允许或易于翻转的情况下,宜双面对称焊接;有对称截面的构件,宜对称于构件中性轴焊接;有对称连接杆件的节点,宜对称于节点轴线同时对称焊接;
2非对称双面坡口焊缝,宜先在深坡口面完成部分焊缝焊接,然后完成浅坡口面焊缝焊接,最后完成深坡口面焊缝焊接。
特厚板宜增加轮流对称焊接的循环次数;
3长焊缝宜采用分段退焊法或多人对称焊接法;
4宜采用跳焊法,避免工件局部热量集中。
1.3构件装配焊接时,应先焊收缩量较大的接头,后焊收缩量较小的接头,接头应在小的拘束状态下焊接。
1.4对于有较大收缩或角变形的接头,正式焊接前应采用预留焊接收缩裕量或反变形方法控制收缩和变形。
1.5多组件构成的组合构件应采取分部组装焊接,矫正变形后再进行总装焊接。
1.6对于焊缝分布相对于构件的中性轴明显不对称的异形截面的构件,在满足设计要求的条件下,可采用调整填充焊缝熔敷量或补偿加热的方法。
钢结构焊接变形的火焰矫正施工方法
钢结构焊接变形的火焰矫正施工方法钢结构焊接变形是在焊接过程中由于热量造成的材料收缩和形状变化。
要解决这个问题,可以采用火焰矫正法。
火焰矫正是通过施加热量使焊接部位重新膨胀,然后通过冷却使其重新恢复原来的形状。
火焰矫正施工方法主要分为以下几个步骤:步骤一:确定需要矫正的焊接部位,根据焊接变形情况进行定位和标记。
步骤二:选择适当的焊接材料,一般选择和焊接材料相似的材料进行矫正。
这样可以避免由于材料差异引起的新的变形。
步骤三:进行预热。
预热的目的是提高焊接部位的温度,以减少焊接时的热影响区域和残余应力。
预热的温度和时间需要根据材料和焊接参数来确定。
步骤四:点矫正。
在需要矫正的焊接部位周围加热,使材料膨胀。
加热的方法可以使用火焰喷枪、火焰烧烤器等。
加热的时间和温度需要根据焊接材料和厚度来确定。
步骤五:矫正。
在焊接部位加热到适当温度后,使用适当的工具对焊接部位进行矫正。
可以使用锤子、顶板、液压装置等工具进行矫正。
矫正力度需要根据焊接变形情况和设备情况来确定。
步骤六:冷却。
在矫正完成后,需要将焊接部位迅速冷却。
可以使用空气冷却、水冷却等方法。
冷却的速度和方式需要根据材料和焊接参数来确定。
步骤七:检查。
矫正完成后,需要对焊接部位进行检查。
检查的重点是焊缝和周围的变形情况。
如果存在问题,可以进行修复或者重新矫正。
火焰矫正施工方法需要考虑以下几个因素:首先,需要根据焊接变形情况来选择合适的施工方法。
不同的焊接变形需要采用不同的矫正方法。
其次,要注意控制施工过程中的热量。
过高的温度和时间会引起新的变形或者材料的烧灼。
因此,在施工过程中需要控制好加热的温度和时间。
最后,要进行严格的检查和测试。
检查焊接部位的质量和矫正效果,确保焊接后的结构安全可靠。
总的来说,火焰矫正是一种有效的钢结构焊接变形修复方法。
通过合理施工和控制热量,可以有效地解决焊接变形问题,保证焊接结构的质量和安全。
H型钢焊接变形的控制与矫正
H型钢焊接变形的控制与矫正H型钢是一种常用的结构钢材,广泛应用于工业建筑、桥梁和船舶等领域。
焊接是H 型钢加工中的重要工艺,但焊接过程中容易产生变形,影响结构的几何尺寸和力学性能。
控制和矫正H型钢焊接变形是非常重要的。
H型钢焊接变形主要包括热变形和残余变形。
热变形是指在焊接过程中,由于焊缝区域受到高温热源的加热,导致材料膨胀或收缩引起的变形。
残余变形是指焊接完成后,由于焊接温度梯度和残余应力的存在,导致材料产生持久性的变形。
1. 优化焊接参数:通过调整焊接电流、电压和焊接速度等参数,控制焊接时的热输入量,减小热变形。
合理选择焊接顺序和焊接方向,避免在同一位置多次焊接,减少焊接热源对材料的影响。
2. 预热和后热处理:在焊接前进行预热,可以提高焊接接头的刚度和抗变形性能。
在焊接完成后,进行后热处理,通过控制材料的冷却速度,减小残余应力和变形。
预热和后热处理的温度和时间需要根据具体材料和焊接情况进行合理选择。
3. 使用焊接夹具和支撑装置:焊接夹具和支撑装置可以固定H型钢焊接件,并提供额外的支撑力,减小热变形和残余变形。
夹具和支撑装置的设计和使用需要考虑到焊接的位置和角度,确保焊接接头的稳定性和正确性。
4. 控制焊接顺序:对于多点焊接或多道焊接的H型钢结构,合理控制焊接顺序,避免同一位置多次焊接,减少残余应力的积累,并控制热输入和冷却速度,减小变形。
1. 机械矫正:通过施加机械力或采用液压系统,对焊接变形进行压缩或拉伸,恢复原始的几何尺寸。
机械矫正需要根据变形的类型和程度确定矫正的力和方向。
2. 加热矫正:对焊接变形区域进行局部加热,使其超过回复弹性变形的临界温度,然后迅速冷却,使材料发生形状记忆效应,恢复原始的几何形状。
3. 切割和重焊:对于焊接变形严重的H型钢结构,可以考虑采用切割和重焊的方法,重新调整焊接接头的几何尺寸和形状。
需要强调的是,控制和矫正H型钢焊接变形是一项复杂且技术性较高的工作。
在实际操作中,需要根据具体情况制定相应的方案,并通过试验验证其有效性。
钢结构焊接变形控制
浅谈钢结构焊接变形控制[摘要]为解决建筑钢结构焊接变形所引起的钢结构变形,对常见的焊接变形进行了分析,归纳出线形、角形、弯曲形、扭转形及波浪形五种变形方式,并对这种五种变形产生的原因进行了探讨。
对如何减少和预防焊接变形作了较详尽的介绍,重要的是采取有效措施时已变形的焊接构件进行矫正,以此将焊接变形带来的危害降到最低程度,增大经济效益。
[关键词]钢结构焊接变形变形防止变形矫正一、焊接应力和变形焊接过程是是一种局部高温加热的工艺过程,即焊缝熔池金属熔点处温度最高,而熔池周围金属温度由熔点递减,直到到达室温。
过程中高温金属受热膨胀,且受到周围金属的阻碍而无法自由膨胀,形成塑性变形。
焊后冷却过程中,金属塑性收缩,又受到周围金属的阻碍无法自由收缩,从而产生整体结构收缩,产生焊接变形和应力。
焊接应力和变形在一定条件下还影响焊接结构的性能,如强度、刚度、尺寸精度和稳定性、受压时的稳定性和抗腐蚀性等。
不仅如此,过大的焊接应力与变形,还会大大增加制造工艺中的困难和经济消耗,而且往往因焊接裂纹或变形过大无法矫正而导致产品的报废。
二、变形种类和影响因素焊接过程中焊件产生的变形称为焊接变形。
焊后,焊件残留的变形称为焊接残余变形。
焊接残余变形有纵向收缩变形、横向收缩变形、角变形、弯曲变形、扭曲变形和波浪变形等共六种,其中焊缝的纵向收缩变形和横向收缩变形是基本的变形形式,在不同的焊件上,由于焊缝的数量和位置分布不同,这两种变形又可表现为其它几种不同形式的变形。
在实际焊接过程中,不同条件下的焊接所产生的焊接变形量各不相同,在诸多工艺因素中焊接线能量与焊接变形成正比,焊接线能量越大则焊接时产生的塑性变形区面积越大,焊后的焊接变形越大,反之则越小。
决定焊接线能量的因素主要有:1.焊缝截面尺寸的大小:在板厚尺寸相同时,焊缝截面尺寸即破口尺寸越大则焊接所需线能量也越大,收缩变形越大。
2.焊接的分层方式:焊缝施焊时,分层焊的层数越多,每层所需的线能量越小,变形就越小。
钢结构焊接变形火焰矫正控制技术
照塑苎凰钢结构焊接变形火焰矫正控制技术杨光(大庆油田建设集团化建公司特种设备安装工程处,黑龙江大庆163159)∥。
÷j。
…。
j…j。
|。
“’|…?。
‘j;??2。
’一一一∥’…j?’、%;睛要】目前,钢结构已在厂房建筑中得到广泛的应用。
而钢结构厂房的主-Jt-构件是焊接H型钢柱、粱、撑。
这些构件在制作过程中都五;存在焊接变形问题,如果焊接变形不予以矫正,则不仅影响结构整体安装,还会降低工程的安全可靠性。
4 1’法-键翊焊接变形;火烙矫正;控制一,,,。
,。
:^}.一j?j....-。
|?j:…!。
???j j|t j?r|}i i,j…/』【i7.j i汕t?i j t j。
?I,r.?i_.,!一j?I t f t?t i。
t-_|i?i l j j j:{?//,j,j j??I.?4i¨_』/I j j j【j?__4j l dI 焊接钢结构产生的变形超过技术设计允许变形范围,应设法进行矫可采取低温矫正或中温矫正法。
这种方法有利于减少焊接内应力,但这正,使其达到符合产品质量要求。
实践证明,多数变形的构件是可以矫种方法在纵向收缩的同时有较大的横向收缩,较难掌握。
2)翼缘板上正的。
矫正的方法都是设法造成新的变形来达到抵消已经发生的变形。
作线状加热,在腹板E作三角形加热。
用这种方法矫正柱、梁、撑的弯1矫正方法曲变形,效果显著,横向线状加热宽度一般取20—90m m,板厚小时,在生产过程中普遍应用的矫正方法,主要有胡械矫正、火焰矫正加热宽度要窄一些,加热过程应由宽度中间向两边扩展。
线状加热最好和综合矫正。
但火焰矫正是一门较难操作的工作,,方法掌握、温度控制由两人同时操作进行,再分别加热三角形三角形的宽度不应超过板厚的不当还会造成构件新的更大变形。
因此,火焰矫正要有丰富的实践经2倍,三角形的底与对应的翼板上线状加热宽度相等。
加热三角形从顶验。
本文对钢结构焊接变形的种类、矫正方法作了—个相略的分析j部开始,然后从中心向两侧扩展,一层层加热直到三角形的底为止。
钢结构制造中焊接变形的控制方法
钢结构制造中焊接变形的控制方法
钢结构制造中焊接变形的控制方法主要包括以下几个方面:
1. 设计合理的焊接接头:在设计焊接结构时,尽量采用简化接头、减小接头长度、采用对称结构等措施,以减少焊接变形的可能性。
2. 控制焊接工艺参数:在焊接过程中,控制焊接电流、焊接速度、预热温度等焊接工艺参数,避免产生过大的热影响区,以减小焊接变形的发生。
3. 采用预应力或预拉伸技术:在焊接前对工件进行预应力或预拉伸处理,可以提前消除部分应力,减小焊接变形。
4. 采用适当的焊接顺序:根据焊接结构的形状和尺寸,合理安排焊接顺序,从而控制焊接变形的产生。
5. 使用焊接辅助物:在焊接过程中,使用一些焊接辅助物,如支撑物、夹具等,来固定和支撑工件,减少焊接变形的发生。
6. 焊后热处理:对已焊接的结构进行合适的热处理,如回火、正火等,可以进一步消除残余应力,控制焊接变形。
以上是钢结构制造中控制焊接变形的一些常用方法,通过合理的设计、控制焊接工艺参数和采用适当的辅助措施,可以有效地减小焊接变形的发生。
焊接结构件焊接变形的控制
焊接结构件焊接变形的控制摘要:在日常的焊接生产活动中,焊接结构件的焊后变形是多方面因素共同作用的结果,然而,影响结构件变形的主要因素也许就一个或者两个,当焊接环境适宜,焊接规范调整合理的情况下,焊接工艺完善与否往往成为影响结构件焊接变形的唯一主要因素,所以日常生产活动中,大量的实验和总结可以帮助完善焊接工艺,从而尽可能大的控制焊接变形。
关键词:焊接结构;焊接变形;分析原因在钢结构的制作过程中,焊接属于是一种主要的连接方法,但是在具体应用的过程中,由于焊接所产生的变形问题,对于结构的质量也产生了一定程度的影响,如何根据焊接变形的规律性内容防止不良的制作问题,是工作人员面临的重要内容。
本文通过对钢结构件制作焊接变形的控制方法进行探究,希望能够起到参考的作用。
1、焊接变形的形成及将导致的后果1.1焊接热过程是一个十分复杂的问题,在实施焊接作业时,焊接工艺选择的合理性与否,可能导致工件整体受热不均匀问题突出,从而造成工件内部应力分布不均匀、工件变形严重,无法正常使用。
(1)焊接热过程的局部性或不均匀性。
多数焊接过程都是进行局部加热的,只有在热源直接作用下的区域受到加热,有热量输入,其他区域则存在热量损耗。
受热区域金属熔化,形成焊接熔池,这种局部加热正是引起焊接残余应力和焊接变形的根源。
(2)焊接热过程的瞬时性。
由于在金属材料中热量的传播速度很快,焊接时必须利用高度集中的热源。
这种热源可以在极短的时间内将大量的热量由热源传递给工件,这就造成了焊接热过程的时变性和非稳态特性。
(3)焊接热源的相对运动。
由于焊接热源相对于工件的位置不断发生变化,这就造成了焊接热源的不稳定性。
1.2工件在没有外力作用的条件下,存在平衡于物体内部的内应力。
在进行焊接作业的工件上,工件受热后会膨胀,冷却后会收缩,温度的变化使工件产生变形,克服这种变形产生了平衡于工件的热应力,这种热应力是由于工件不均匀加热引起的。
在沿着焊缝方向上产生残余应力称为纵向应力;在垂直于焊缝方向产生的残余应力称之为横向应力,对进行施焊的工件而言残余应力的存在对焊接工件产生的影响是多方面的,其中不乏负面的影响。
建筑钢结构焊接变形控制措施
建筑钢结构焊接变形控制措施建筑钢结构焊接是现代建筑中常用的连接方式之一,其具有结构简单、施工便捷、耐久性好等优点。
然而,焊接这一过程中也存在着一定的问题,其中之一就是焊接变形问题。
在进行钢结构焊接时,由于热量的影响,很容易会造成钢结构件的变形,进而影响建筑工程的整体形态和稳定性。
因此,我们需要采取一定的控制措施,来防止焊接变形。
一、合理选材在进行钢结构焊接时,合理选材是十分重要的。
钢材的种类和尺寸会对焊接过程和结果产生很大的影响。
一般来说,应选择具有好的可焊性、抗变形性能强的钢材进行焊接,尽可能降低钢结构变形的风险。
二、控制焊接温度钢结构焊接的变形主要是由于焊接温度造成的,因此焊接温度的控制非常关键。
在钢结构焊接中,需要确保焊接温度尽量稳定,避免出现过高或过低的温度。
一般来说,可以通过适当的焊接方法、焊接速度以及控制加热时间等手段来实现温度的控制,从而避免钢结构的变形。
三、采用适当的焊接顺序在进行钢结构焊接时,要根据具体的焊接要求和结构特点来确定焊接顺序。
一般来说,需要先进行重要支撑部位的焊接,然后再进行次要部位的焊接,最后才是边角部位的焊接。
这样可以避免钢结构产生大幅度的变形,并使其能够保持一定的稳定性。
四、采用加劲、拉板等支撑方式在钢结构焊接过程中,为了防止钢结构的过度变形,可以采用加劲、拉板等支撑方式。
加劲和拉板是经过特殊处理的钢板,可以将焊接后会出现变形的部位进行支撑,从而保证结构的稳定性。
这一方法主要适用于较大的钢结构件和结构相对稳定的建筑工程中。
五、对变形进行修复如果建筑钢结构在焊接后出现了变形,我们可以通过一些手段来进行修复。
常见的修复方法包括冷弯法、加热法、局部焊接、切割法等等。
需要根据具体情况来确定修复的方法,从而避免钢结构造成更大的伤害。
综上所述,建筑钢结构焊接变形控制是一个非常重要的问题,需要我们在具体的建筑工程中不断积累经验并采取相应的控制措施。
只有采取有效的预防措施,才能确保建筑工程的稳定性和整体美观度。
钢结构焊接变形的控制及矫正
由大到小 的顺序 是: 氩弧焊 、 埋弧焊 、 手工 电弧焊和气 焊, 因此 我们都知 道 同一构件用气焊变形大, 用氩弧焊变形小就是这个道理。 ③缩小温差法, 这是指焊件焊后与空气温度的差。温差 大散热快 , 变 形就大 , 这是 因为金相组织转变 的产物 的性能与冷却 速度有关 , 如我们 在进行铸铁焊接时易产生裂纹。对此我们通常采用的方法就是焊接前进 行预热, 焊后进行缓冷 , 使之温度 差减 小, 从而达到防变形的 目的。 在实际生产 中, 虽然采取措施进行控制 , 但变形在所难免 , 当变形超 过设计允许的范围时, 则应设法进行矫正 。使其造成新 的变形来达到抵 消 已经发 生 的变 形 。
③在夹具上固定焊接 比没有夹具固定焊接收缩量 小。 掌握 了以上几种收缩规律 ,再通过合理 的备料和 正确 的焊接方法 , 在 一定程度上是可 以减小焊接后 的应力变形 ( 3 ) 采取合理的减小应力变形的技术措施 。生产 中常用 的主要措施
有:
豳2
②三角形加热法用于上拱与下挠 的弯 曲变形矫正 , 在翼缘板 上着 横 除发生肉眼所 见的形状变化外 , 一般都在发生着 以下几 种规律性的收缩变化: ①焊缝的纵 向收缩 和横 向l 收缩, 纵 向收缩量随着焊缝长度 的增加而 增加 。 横 向收缩则 由接头形式和焊 肉多少而定 , 焊 肉越多, 焊缝 的横 向收
缩越大 。 ②分断焊缝 比连续焊缝的收缩量小
行控制和 矫正 , 从而满足钢 结构施 工盼 精度要求 。
关键词 : 钢结构 : 焊接变 形分析; 控制 ; 矫 正
随着现代工业 的不断发展 , 钢结构工程 已在 生产生活 中得 到极为广 泛 的应用 。而钢构件主要是采用焊接成 型, 但在焊接过程 中由于热量 的 分 布不均匀 , 以及焊缝的收缩等 , 导致焊接成型后 的钢构 件存在不 同存 度 的变形 , 这些变形如不进行矫正将影 响到下道工序 的安装和整 体的使 用性能。因此对变形的钢构件必 须采取 效的技术措施进行矫 正, 使其 达 到产 品的质量要求 。
H型钢焊接变形的控制与矫正
H型钢焊接变形的控制与矫正H型钢焊接变形是钢结构焊接过程中不可避免的问题,如果不加以控制和矫正,将会影响钢结构的质量和稳定性。
对H型钢焊接变形进行有效的控制和矫正是非常重要的。
在H型钢焊接过程中,主要存在的变形问题有翘曲变形、收缩变形和焊接应力变形等。
这些变形的产生主要受到内应力、温度变化和材料性能等因素的影响。
为了有效地控制和矫正这些变形,下面将分别从焊接工艺优化、预热控制和焊后矫正方面进行探讨。
焊接工艺的优化对于控制H型钢焊接变形至关重要。
在确定焊接工艺参数时,应该尽量选择对变形影响较小的工艺,比如采用适度的预压焊接和反向焊接等方法。
还要合理设置焊接顺序,尽量减小焊道温度梯度,避免产生过大的应力和变形。
预热控制也是控制H型钢焊接变形的关键措施之一。
通过适当的预热,可以有效减小焊接温度梯度和内应力,从而降低变形的发生。
预热温度和保温时间的选择应根据具体材料和焊接结构来确定,一般预热温度为200-300摄氏度,保温时间为30-60分钟。
焊后矫正可以进一步减小H型钢焊接变形。
常用的矫正方法有机械矫直、热处理矫正和剪切矫正等。
机械矫直是通过施加力或采用机械装置进行变形的控制和修复,通常适用于较小的变形。
热处理矫正则是通过对焊接接头进行再加热和冷却处理,改变材料的组织结构和应力分布,从而实现变形的矫正。
剪切矫正则是通过剪切和修剪来修复和调整变形的形状和尺寸。
针对H型钢焊接变形的控制与矫正,应综合考虑焊接工艺优化、预热控制和焊后矫正等方面的措施。
通过科学合理地设计和操作,可以有效地减小和修复H型钢焊接变形,提高钢结构的质量和稳定性。
浅谈钢结构工程施工中钢梁变形控制和矫正
浅谈钢结构工程施工中钢梁变形控制和矫正结合实例工程青龙坞流云展演大厅施工中主钢梁过大变形问题,具体从设计、下料、施工等各个环节对其问题进行了探讨,并提出相应的防变形和矫正技术措施,希望对今后类似项目的设计具有一定的指导意义。
标签:钢结构施工方案;钢梁变形;分析原因;加固方案近几年来,随着科学技术的迅速发展,钢结构由于较混凝土结构具有自重轻、施工周期短、整体刚度好、强度高等良好的性能,在工业及民用建筑中的实际应用越来越广泛。
然而钢结构带来的许多实际问题也随之产生,同时对钢结构施工单位技术人员也是一种挑战。
1、工程概况浙江省杭州市桐庐县流云项目---青龙坞展演大厅为钢结构框架结构,屋面分为多块区域且高度不一,斜屋面与平屋面交替连接,柱顶平均高度为6m,柱距宽度平均为10m,跨度为20m。
设计时钢屋架均采用普通焊接工字钢梁与钢柱刚接,局部按照平面井字型排布,工字钢梁之间均刚性连接。
设计中按最不利受力工况计算,最长钢梁长度为15米,跨中扰度为27m(包含上人屋面荷载)。
而设计人员在考察施工现场时发现,施工单位人员仅在安装完工字钢梁和次梁之后,跨中扰度变形就已经达到30mm,如果再加载上人屋面荷载,钢梁变形将大大超过设计要求,所以设计人员,马上对其变形过大问题进行原因分析和矫正控制,使其达到安装范围误差内,方可进行下一部工序。
2、原因分析钢结构施工中造成大跨度钢梁扰度过大的原因很多,设计人员通过对施工现场的实际调查,发现导致钢梁变形异常原因如下:2.1施工过程中未做好设置临时支撑等设施的搭建临时支柱不仅仅是大跨度钢结构施工过程中的有效应用的主要设施,也是实现基于结构承载力为主的相应的受力性能的有效分析,进而将结构的受力状态及相应的临时支承点问题进行分析,从而实现基于构件完整性与安全性的有效分析。
在钢结构未形成空间整体受力体系时,结构在其平面外的稳定性很差,若没有设置临时支撑设施,将会导致结构平面外的整体倾覆和变形;或者平面内由于钢梁跨度过大,平面内也会出现过大变形。
H型钢焊接变形的控制与矫正
H型钢焊接变形的控制与矫正H型钢是一种常用的结构钢材,广泛应用于建筑工程、桥梁工程、机械制造等领域。
而H型钢的焊接变形是在焊接过程中常常面临的难题之一。
焊接变形对H型钢的整体性能和使用效果都会产生影响,因此控制和矫正焊接变形是非常重要的。
本文将从H型钢焊接变形的原因、特点和影响入手,结合相关案例和实践经验,探讨H型钢焊接变形的控制与矫正方法。
1. 焊接热量引起的热变形焊接是通过加热和冷却的过程将两个或更多的工件相连接。
在焊接过程中,热源集中在焊缝附近,导致焊缝处的局部温度升高,使焊缝处的材料发生膨胀,而临近区域的材料则受热变形。
当焊接热量作用于H型钢时,由于H型钢是厚板结构,在焊接过程中,焊缝附近的热变形会引起整个H型钢的变形,甚至产生塑性应力,导致焊接变形。
焊接完成后,焊接接头的冷却和收缩过程中会产生残余应力,这些残余应力会引起H型钢的变形。
残余应力是由于焊接材料热胀冷缩以及热循环引起的变形应力,这些应力将影响H型钢的整体性能,甚至产生裂缝和变形。
焊接工艺参数的选择会影响焊接过程中的热量输入和热量分布,从而影响焊接变形。
如果焊接工艺参数选择不当,如焊接电流、焊接速度、焊接层间温度等参数未进行有效的控制,就会导致焊接变形增加。
4. 材料刚度引起的变形H型钢是一种高强度、高刚度的结构钢材料,在焊接时,材料的刚度会影响焊接变形。
如果焊接接头附近的材料没有得到有效的支撑或约束,焊接过程中就会产生材料的塑性变形,从而导致焊接变形。
5. 焊接应力引起的微观组织改变焊接过程中产生的焊接残余应力不仅会影响H型钢的整体形状,还会引起H型钢的微观组织改变。
残余应力会改变材料的晶格结构和内部组织,使得材料的性能发生变化,从而影响焊接接头的力学性能。
1. 多种形式的变形H型钢在焊接过程中的变形形式多种多样,例如扭曲变形、翘曲变形、弯曲变形、挠曲变形等。
这些变形形式不仅会影响H型钢的外观和尺寸,还会影响其力学性能。
而且这些变形形式往往会相互影响,相互叠加,使得H型钢的变形更加复杂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢结构焊接变形控制校正
钢结构焊接变形控制及校正
1、材料控制
为保证钢结构构件焊成品的几何尺寸符合图纸要求,对所采购的钢管均要从看货、采购、装车、运输、卸车到加工车间全过程实行质量控制,要做到变形钢管不采购,装车、卸车要文明装卸,不摔、不轧、不砸,保证每根钢管的有效利用。
在下料加工中做到变形钢管不下料。
2、拼装控制
在构件拼装过程中要认真消化设计图纸,在拼装工作平台上要精确放样,核对无误后将零件固定于平台上,各约束点均应固定可靠,夹紧,再行点焊定位。
对焊缝分布不对称的构件可和用反变形法定位,正确估计反变形量,使焊后构件焊缝收缩后达到图纸要求。
3、焊接操作控制见第五节
4、构件变形的校正
对焊成后变形超差的构件应予校正,对超差较少的构件可用人工校正,人工校正由经验丰富的操作工执行,必要时应加垫木校正,避免对构件造成塑性变形。
对超差较大的构件可采用火焰校正,采用火焰校正时应根据构件的变形方向合理选择加热点和加热区域,火焰加热时应严格观察火焰颜色,把加热温度控制在600℃-800℃之间,防止加热过烧,根据变形量正确掌握加热温度和冷却时机,把构件变形调整到允差范围内。
施焊时应先焊对接焊缝,后焊腹杆焊缝。
先焊受力较大的焊缝,后焊受力小的焊缝。
对长条桁架应从中间向两端自由端运动,使应力有释放空间,对已焊完的构件可采用锤击焊缝法降低应力。
锤击应保持均匀适度,避免锤击过重而产生裂纹。
也可在焊缝两侧局部加热法消除应力,这样可使加热的伸长变形补偿焊缝收缩变形以消除收缩应力。
感谢您的阅读!。