锐角三角函数_余弦 -正切课件-课件ppt
锐角三角函数(正弦、余弦和正切)
2.同一锐角三角函数的关系:
如图, 在 Rt△ ABC中,∠ C=90°, sin A
a ,cos A
b
,
c
c
则 sin2 A cos2 A
2
a
c
2
b
c
a2 b2 c2
c2 c2
1,即同一锐角的
正弦、余弦的平方和等于
1,或者说若
α
为锐角, 则
sinห้องสมุดไป่ตู้
2
2
α+cos α =1.
规律 学习锐角三角函数时,应明确三角函数值的两个变化规律: 1.特殊角的三角函数值的记忆规律:
Rt△ ABC中,∠ A+∠ B=90°,由
三角函数定义得
sin A
a ,cos(90
a
b
A) cosB ,cos A
sin B sin(90
A) ,
c
c
c
所以 sin A=cos(90° - A),cos A= sin (90° - A).即任意锐角的余弦值等于它的余角的正
弦值,任意锐角的正弦值等于它的余角的余弦值.
锐角三角函数教案
概念
1.在直角三角形中,斜边大于直角边且各边均为正数,正弦、余弦都是直角边与斜边
的比值,正切是两直角边的比值,因此正弦值、余弦值都是小于
1 的正数,正切值是大于零
的数,并且都没有单位,即 0<sin A<1,0<cos A<1, tan A>0(∠ A为锐角).
2.每一个三角函数都是一个完整的符号, 如 sin A不能理解为 sin · A,sin A 中的“ A”
2.锐角三角函数值的增减性:锐角 α 的正弦 sin α 值随着∠ α 的增大而增大;锐角
第24讲 锐角三角函数
考点三
三角函数之间的关系
1.同角三角函数之间的关系
sin2α+cos2α=
1
;tan
α=csions
α α.
2.互余两角的三角函数之间的关系
若∠A+∠B=90°,则 sin A=cos B,
sin B=cos A,
tan A·tan B=1.
3.锐角三角函数的增减性 当 α 为锐角时,0<sin α<1,0<cos α<1,且 sin α,tan α 的值都随 α 的增大而 增大 ;cos α 的值随 α 的增大而 减小 . 温馨提示: 这些关系式都是恒等式,正反均可运用,同时还 要注意它们的变形公式.
Rt△ABD 中,cos A=AD=2 2=2 5.故选 D.
【答案】D
AB 10 5
3.把△ABC 三边的长度都扩大到原来的 3 倍,则
锐角 A 的正弦值( A )
A.不变
B.缩小为原来的13
C.扩大到原来的 3 倍 D.不能确定
4.在锐角三角形 ABC 中,若sin A- 23+(1-
tan B)2=0,则∠C 的度数是( C )
= 5
5+1.故选 C. 4
【答案】C
5.(2016·福州)如图,以 O 为圆心,半径为 1 的弧 交坐标轴于 A,B 两点,P 是 AB 上一点(不与 A,B 重合),连接 OP,设∠POB=α,则点 P 的坐标是( )
A.(sin α,sin α) B.(cos α,cos α) C.(cos α,sin α) D.(sin α,cos α)
考点三
三 角函数的增减性
例 3 如图,若锐角
△ABC 内接于⊙O,点 D 在
⊙O 外(与点 C 在 AB 同侧),
锐角三角函数讲义
锐角三角函数讲义【知识点拨】知识点一:锐角三角函数的概念:锐角三角函数包括正弦函数,余弦函数,和正切函数,如图,在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b ,c . ∠A 的正弦=A asin A=c∠的对边,即斜边;∠A 的余弦=A b cos A=c∠的邻边,即斜边,∠A 的正切=A a tan=A b∠的对边,即∠的邻边注意:我们说锐角三角函数都是在直角三角形中讨论的!若没有直角,要想方设法构造直角。
课堂练习:1. 把Rt △ABC 各边的长度都扩大3倍得Rt △A 'B 'C ',那么锐角A.A '的余弦值的关系为( ).A.cosA =cosA 'B.cosA =3cosA 'C.3cosA =cosA 'D.不能确定 2. 已知中,AC =4,BC =3,AB =5,则( )A .B .C .D .3. 三角形在正方形网格纸中的位置如图1所示,则sin α的值是( )A.34 B.43 C.35 D.45α图14.在△ABC中,∠C=90°,tan A=,则sin B=()A. B. C. D.5.在Rt△ABC中,∠C=90°,a=2,b=3,则cos A=,sin B=,tan B=,6.⑴如图1-1-7①、②锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律;⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小.知识点二:特殊角三角函数值的计算知识点三:运用三角函数的关系化简或求值 1.互为余角的三角函数关系.sin (90○-A )=cosA , cos (90○-A )=sin A tan (900-A )=ctan A ; ctan (900-A )=tan A2.同角的三角函数关系. ①平方关系:sin 2A+cos 2A=l ② 商数关系:sin cos tan ,cot cos sin A AA A A A==sin cos a a += ③倒数关系: tgα·ctgα=1.课堂练习:1. 如α∠是等腰直角三角形的一个锐角,那么cos α的值等于( )A.12D.12. 45cos 45sin +的值等于( ) A. 1B. 2C. 3D.213+ 3. 下列计算错误的是( )A .sin 60sin 30sin 30︒-︒=︒B .22sin 45cos 451︒+︒=C .sin 60cos 60cos 60︒︒=︒D .cos30cos30sin 30︒︒=︒4. 已知a 为锐角,sina=cos500则a 等于( )A 20°B 30°C 40°D 50°5. 若tan(a+10°)=3,则锐角a 的度数是 ( ) A 、20° B 、30° C 、35° D 、50°6. (兰州市)如果sin 2α+sin 230°=1那么锐角α的度数是( )A.15° B.30° C.45° D.60° 7. 已知α为锐角,且sin α-cos α=12 ,则sin α·cos α=___________8. cos 2α+sin 242○ =1,则锐角α=______.9. tan30°sin60°+cos 230°-sin 245°tan45°10. 22sin30cos60tan 60tan30cos 45+-⋅+︒.11. 22sin 45cos30tan 45+-知识点四:锐角三角函数的增减性三角函数的单调性1. 正弦和正切是增函数,三角函数值随角的增大而增大,随角的减小而减小.2. 余弦是减函数,三角函数值随角的增大而减小,随角的减小而增大。
7锐角三角函数
锐角三角函数一、一周知识概述1、锐角的三角函数在直角三角形中,锐角α的正弦(sinα)、余弦(cosα) 、正切(tanα),都叫做角α的三角函数.正弦:如图,在Rt△ABC中,∠C=90°,锐角α的对边与斜边的比叫做角α的正弦,记作sinα,即.余弦:锐角α的邻边与斜边的比叫做角α的余弦,记作cosα.即正切:锐角α的对边与邻边的比,叫做角α的正切,记作tanα.即.2、特殊角的三角函数值(需要记忆)3、同角三角函数间的关系(1)平方关系:sin2α+cos2α=1(2)商数关系:4、互余的两角的关系任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值.即若A+B=90°,则sinA=cosB,cosA=sinB,tanA·tanB=1.5、求已知锐角的三角函数值法求整数度数的锐角三角函数值.在计算器的面板上涉及三角函数的键有键,当我们计算整数度数的某三角函数值时,可先按这三个键之一,然后再从高位向低位按出表示度数的整数,然后按,则屏幕上就会显示出结果.例如:计算sin44°.解:按键,再依次按键.则屏幕上显示结果为0.69465837.求非整数度数的锐角三角函数值.若度数的单位是用度、分、秒表示的,在用计算器计算三角函数值时,同样先按和三个键之一,然后再依次按度键,然后按键,则屏幕上就会显示出结果.有的计算器在计算角的三角函数值时,角的单位用的是度,则必须先把度、分、秒统一为“度”.值得注意的是型号不同的计算器的用法可能不同.二、重难点知识归纳1、对锐角三角函数的理解(1)sinα和cosα都是一个整体符号,不能看成sin·α或cos·α.(2)是一个比值,没有单位,只与角的大小有关,而与三角形的大小无关.(3)sinα+sinβ≠sin(α+β),sinα·sinβ≠sin(αβ)(4)sin2α表示(sinα)2,cos2α=(cosα)2(5)0<sinα<1,0<cosα<12、同名三角函数值的变化规律当角α在0°~90°间变化时,它的正切和正弦三角函数值随着角度的增大而增大;余弦三角函数值随着角度的增大而减少.3、记忆特殊角的三角函数值的方法有三种:(1)列表法,就是利用课本上的表格记忆。
锐角三角函数
锐角三角函数作为数学中的一个重要概念,锐角三角函数是我们学习三角函数的关键部分之一。
在几何学和三角学中,锐角指的是小于90度的角。
而锐角三角函数是以锐角作为自变量的三角函数。
一、正弦函数(sine function)在锐角三角函数中,正弦函数是最常见也是最重要的一个函数。
正弦函数可以表示为:sin(θ) = 对边/斜边其中,θ代表锐角的度数,对边代表锐角的对边长度,斜边代表锐角的斜边长度。
二、余弦函数(cosine function)余弦函数是锐角三角函数中的另一个核心函数,表示为:cos(θ) = 临边/斜边同样,θ代表锐角的度数,临边代表锐角的临边长度,斜边代表锐角的斜边长度。
三、正切函数(tangent function)正切函数是另一个重要的锐角三角函数,表达式为:tan(θ) = 对边/临边在这个公式中,θ代表锐角的度数,对边代表锐角的对边长度,临边代表锐角的临边长度。
四、余切函数(cotangent function)余切函数是正切函数的倒数,可以表示为:cot(θ) = 临边/对边θ代表锐角的度数,临边代表锐角的临边长度,对边代表锐角的对边长度。
五、正割函数(secant function)正割函数是余弦函数的倒数,可以表示为:sec(θ) = 斜边/临边θ代表锐角的度数,斜边代表锐角的斜边长度,临边代表锐角的临边长度。
六、余割函数(cosecant function)余割函数是正弦函数的倒数,可以表示为:csc(θ) = 斜边/对边在这个公式中,θ代表锐角的度数,斜边代表锐角的斜边长度,对边代表锐角的对边长度。
锐角三角函数在数学和实际应用中具有广泛的重要性。
无论是在几何学、物理学还是工程学中,锐角三角函数都扮演着重要的角色。
它们可以帮助我们计算和解决各种三角形和锐角相关问题。
在实际应用中,锐角三角函数还广泛应用于测量和建模等领域。
总结起来,锐角三角函数是数学中不可或缺的一部分。
通过掌握和理解正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数,我们可以更好地理解和解决与锐角有关的各种数学和实际问题。
锐角三角函数
锐角三角函数一、知识体系1、定义:(1)正弦:(2)余弦:(3)正切:2、特殊角的三角函数值:3、同角三角函数之间的关系:(1)平方关系:1cos sin 22=+αα(2)商的关系:αααcos sin tan =4、直角三角形的边角关系:5、仰角、俯角:6、坡度、坡角:(1)坡度:坡面的铅直高度h 和水平距离l 的比叫做坡度,lh i ==αtan 。
(2)坡角:坡面与水平面的夹角α叫坡角。
7、方向角:指南或指北方向线与目标方向线所成的小于90°的角。
二、知识巩固 1、【2015·广州中考】如图所示,△ABC 中,DE 是BC 的垂直平分线,DE 交AC于点E ,连接BE ,若BE=9,BC=12,则cosC= 。
2、【重庆中考】计算6tan45°-2cos60°的结果是( ) A.34 B.4 C.35 D.53、已知α为锐角,且cos α=32,求sin α,tan α的值。
4、【2014·成都中考】如图,在一次数学课外实践活动中,小文在点C 处测得树的顶端A 的仰角为37°,BC=20m ,求树的高度AB.(参考数据:,,)5、【2007·莆田中考】如图所示,有一飞行中的热气球,在A 处时热气球的探测器显示:从热气球看正前方一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,热气球离地面的高度为150米,为了安全,避免热气球撞上高楼,请问热气球此时至少应再上升多少米?(注:3≈1.732,结果精确到1米)6、【2010·攀枝花中考】如图所示,已知AD 为等腰△ABC 底边上的高,且tan ∠B=43,AC 上有一点E ,满足AE :CE=2:3,则tan ∠ADE 的值是( )31.21.32.53.D C B A 7、【武汉中考】如图所示,PA ,PB 切⊙O 于点A ,B 两点,CD 切⊙O 于点E ,交PA ,PB 于C 、D ,若⊙O 的半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是( )A .B .C .D .8、求下列各式的值.(1)sin30°+cos45° (2)sin 260°+cos 260°-tan45°(3)cos 45sin 45︒︒-tan45° (4)sin60°-tan45°(5)cos60°+tan60° (6)130sin 560cos 300-(7)22sin45°+sin60°-2cos45° (8)︒︒-︒30cos 30sin 260sin(9)0045cos 360sin 2+A B C图(1) 图(2)9、【2010·新疆中考】如图(1)是一张Rt ABC △纸片,如果用两张相同的这种纸片恰好能拼成一个正三角形,如图(2),那么在Rt ABC △中,sin B ∠的值是( ) A 、12 B 、32B 、C 、1D 、3210、在ABC ∆中,︒=∠90C ,若A B ∠=∠2,则tanA 等于( ). A 、3 B 、33 C 、23 D 、21 11、【2010·怀化中考】在Rt △ABC 中,∠C=90°,sinA=12,则∠A= _________. 12、【2010·达州中考】如图,一水库迎水坡AB 的坡度1i =︰3,则该坡的坡角α= 。
锐角三角函数
关系式
李善兰三角函数展开式 tanα·cotα=1 希腊三角函数公式 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 1+(tanα)^2=(secα)^2 1+(cotα)^2=(cscα)^2 锐角三角函数诱导公式 直角三角形中的锐角三角形函数sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα
三角函数值
取值范围
特殊角
变化情况
特殊角的三角函数值如下 : 注:非特殊角的三角函数值,请查三角函数表
θ是锐角: 0 0 tanθ>0 cotθ>0
1.锐角三角函数值都是正值。 2.当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大) ; 正切值随着角度的增大(或减小)而增大(或减小),余切值随着角度的增大(或减小)而减小(或增大); 正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。 3.当角度在0°≤A≤90°间变化时,0≤sinA≤1, 0≤cosA≤1;当角度在0°0。
锐角三角函数
数学函数
01 相关概念
03 关系式
目录
02 三角函数值
锐角三角函数是以锐角为自变量,以比值为函数值的函数。我们把锐角∠A的正弦、余弦、正切和余切都叫做 ∠A的锐角函数。
相关概念
图1直角三角形锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割 (csc)都叫做角A的锐角三角函数。初中学习的锐角三角函数值的定义方法是在直角三角形中定义的,所以在初 中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到如图1所示的直角三角形中,则 锐角三角函数可表示如下:
锐角三角函数的简单运用
锐角三角函数的计算方法包括直接计算、利用三角恒等式化简、利用同角关系式化简等。 掌握这些计算方法是解决三角函数问题的基本技能。
对未来学习锐角三角函数的建议
01
深入理解概念
在学习锐角三角函数的过程中,要深入理解其概念,掌握其性质和定理,
这样才能更好地运用它们解决实际问题。
02 03
利用三角函数求长度
在直角三角形中,已知角度和一边长度,可以利用正弦、余弦、正切等三角函数 求出另一边的长度。
利用三角函Байду номын сангаас求距离
在平面几何问题中,可以利用三角函数求两点之间的距离,或者点到直线的距离 。
判断三角形形状问题
利用三角函数判断三角形形状
通过比较三角形的三个内角的三角函数值,可以判断三角形是锐角三角形、直角三角形还是钝角三角 形。
正弦函数的性质
01
02
03
定义域
正弦函数在第一象限和第 二象限有定义,即角度范 围在0到180度之间。
值域
正弦函数的值域为[-1,1], 表示角度的正弦值永远不 会超过1或小于-1。
单调性
正弦函数在第一象限和第 二象限内是单调递增的, 随着角度的增加,正弦值 也会增加。
余弦函数的性质
定义域
余弦函数在第一象限和第 四象限有定义,即角度范 围在0到180度之间。
锐角三角函数的 简单运用
目录
• 引言 • 锐角三角函数的性质 • 锐角三角函数的计算方法 • 锐角三角函数在几何问题中的应
用 • 锐角三角函数在实际问题中的应
用 • 总结与展望
01
引言
锐角三角函数的定义
锐角三角函数是三角函数中的一种, 主要研究锐角的角度与其边长之间的 关系。常见的锐角三角函数有正弦、 余弦和正切。
锐角三角函数
锐角三角函数知识要点一、锐角三角函数1. 正弦及其公式如图,在Rt △ABC 中,∠C=90°,如果锐角A 确定,那么∠A 的对边与斜边的比也随之确定,这个比叫做∠A 的正弦.记作sinA ,即ca斜边的对边∠A sinA ==.2. 余弦及其公式如图,在Rt △ABC 中,∠C=90°,如果锐角A 确定,那么∠A 的邻边与斜边的比也随之确定,这个比叫做∠A 的余弦.记作cosA ,即cb斜边的邻边∠A cosA ==.3. 正切及其公式如图,在Rt △ABC 中,∠C=90°,如果锐角A 确定,那么∠A 的对边与邻边的比也随之确定,这个比叫做∠A 的正切.记作tanA ,即ba∠A的斜边∠A的对边tanA ==.4. 锐角三角函数的定义锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数.对于一个锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是∠A 的函数.同样,cosA 、tanA 也是∠的函数,其中∠A 是自变量,其取值范围是0°<∠A <90°,sinA 、cosA 、tanA 分别是对应的函数.由于在直角三角形中,斜边大于直角边,且各边长均为正数,所以:0<sinA <1,0<cosA <1,tanA >0.二、特殊三角函数锐角α 三角函数30°45°60°sinA2122 23 cosA23 22 21 tanA33 13例题精讲第一部分:正弦函数【例1】 (2011桂林)如图,已知Rt △ABC 中,∠C=90°,BC=3,AC=4,则sinA 的值为( )A .43 B .34 C .53 D .54【例2】(2012滨州)把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦函数值( )A .不变B .缩小为原来的31C .扩大为原来的3倍D .不能确定【例3】 (2007宿迁)如图,△ABC 的顶点都是正方形网格中的格点,则sin ∠ABC 等于( )A .5B .552 C .55 D .32【例4】 (2009广州)已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ,如图所示,则sinθ的值为( ) A .125 B .135 C .1310 D .1312【例5】 如图所示,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,D 为垂足,若AC=4,BC=3,则sin ∠ACD 的值为 .【例6】 把含30°角的三角板ABC ,绕点B 逆时针旋转90°到三角板DBE 位置(如图所示),求sin ∠ADE 的值.第二部分:余弦函数【例7】 (2011来宾)在Rt △ABC 中,∠C=90°,AB=5,BC=3,则∠A 的余弦值为( )A .53 B .43 C .54 D .34【例8】 (2006湖北)如图,直角三角板的直角顶点0在直线AB 上,斜边CD ∥AB ,则cosα= .第三部分:正切函数【例9】 (2011苏州)如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC等于( ) A .43 B .34 C .53 D .54【例10】 (2011黔东南州)如图,在Rt △ABC 中,∠ACB=90°,CD 是AB 边上的中线,若BC=6,AC=8,则tan ∠ACD 的值为( )A .53 B .54 C .34 D .43【例11】 (2008泰安)直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B重合,折痕为DE ,则tan ∠CBE 的值是( ) A .724B .37C .247D .31 【例12】(2008桂林)如图,在Rt △ABC 中,∠C=90°,∠A=30°,E 为AB 上一点且AE :EB=4:1,EF ⊥AC 于F ,连接FB ,则tan ∠CFB 的值等于( )A .33B .332C .335D . 35【例13】 (2005泰安)直角三角形纸片的两直角边AC 与BC 之比为3:4.(1)将△ABC 如图1那样折叠,使点C 落在AB 上,折痕为BD ;(2)将△ABD 如图2那样折叠,使点B 与点D 重合,折痕为EF . 则tan ∠DEA 的值为( )A .43 B .34 C .2519 D .54第四部分:特殊角的三角函数值【例14】 (2011烟台)如果△ABC 中,sinA=cosB=22,则下列最确切的结论是( ) A .△ABC 是直角三角形 B .△ABC 是等腰三角形 C .△ABC 是等腰直角三角形 D .△ABC 是锐角三角形【例15】(2002杭州)在△ABC 中,∠A 和∠B 都是锐角,且sinA=21,cosB=22,则△ABC 三个内角的大小关系为( )A .∠C >∠A >∠B B .∠B >∠C >∠AC .∠A >∠B >∠CD .∠C >∠B >∠A【例16】(2010济南)如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则cos ∠OMN 的值为( )A .21B .22C .23 D .1【例17】(2009贺州)已知a=3,且(4tan 45°-b )2+0213=-+c b ,以a ,b ,c 为边组成的三角形面积等于( )A .6B .7C .8D .9【例18】(2007襄阳)计算:cos 245°+tan60°•cos30°等于( ) A .1 B .2 C .2D .3【例19】(2006潍坊)计算:tan60°+2sin45°-2cos30°的结果是( ) A .2 B .3 C .2 D . 1 【例20】 (2012南昌)计算:sin30°+cos30°•tan60°【例21】(2011深圳)计算:2-1+3cos30°+|-5|-(π-2011)0.【例22】 (2009芜湖)(-1)2009×(21-)-2+(-3π)0+|1-sin60°|【例23】(2011兰州)已知α是锐角,且sin (α+15°)=23,计算 8-4cosα-(π-3.14)0+tanα+(31)-1的值.解直角三角形知识要点一、锐角三角函数关系:(1)平方关系: sin 2A + cos 2A = 1; (2)互为余角的两个三角函数关系: 若∠A+∠B=∠90,则sinA=cosB,cosA=sinB.二、解直角三角形的应用中的几个概念 1.仰角、俯角如图1所示,当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫仰角,在不平线下方的角叫做俯角.2.水平距离、垂直距离、坡面距离如图2所示,BC 代表水平距离,AC 代表垂直距离,AB 代表坡面距离.铅垂线仰角 俯角视线 水平线视线图 1ABC垂 直 距 离 坡面距离水平距离 图23.坡度、坡角如图3所示,把坡面的铅直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母i 表示,即lhi =,坡度一般写成l h :的形式,如⎪⎭⎫ ⎝⎛==515:1i i 即. 坡面与水平的夹角α叫做坡角,坡角与坡度之间有如下关系:αtan ==lhi .坡度越大,则α角越大,坡面越陡.4.方向角指北或指南方向线与目标方向线所成的小于︒90的水平角,叫方向角,如图4,OA ,OB ,OC ,OD 的方向角分别表示北偏东︒60,北偏西︒30,西南方向,南偏东︒20.lhlh i =α图3东南西北 BA︒60︒45C D图4例题精讲第一部分:解直角三角形的实际应用【例1】 某人上坡走了60米,他升高了230米,这坡的坡度是( )A .︒30B .1:1C .︒45D .22 【例2】 小明沿着坡度为1:2的山坡向上走了1000m ,则他升高了( )A .5200mB .500mC .3500mD .1000m 【例3】 在距电视塔S 米的地面测得塔顶的仰角是α,则塔高是( )A .αsin S B .αcos SC .αcot ⋅SD .αtan ⋅S 【例4】 如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为______米(保留根号).【例5】 (2010年辽宁省丹东市)如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的眼睛距地面的距离),那么这棵树高是( ) A .(53332+)m B .(3532+)m C . 533m D .4m【例6】 如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,AB A E D C30°处受噪音影响的时间为( )A .12秒B .16秒C .20秒D .24秒【例7】 如图,瞭望台AB 高20m ,瞭望台底部B 测得对面塔顶C 的仰角为60°,从瞭望台顶A 测得C 的仰角为45°,已知瞭望台与塔CD 地势高低相同,求塔CD 的高.【例8】 如图所示,水坝的横断面是梯形ABCD ,迎水坡DA 的坡度为1:2.5,背水坡CB 的坡度为1:2,坝高DE为8米,坝顶宽DC 为6米. 求:(1)坝底的宽AB ;(2)1米长的堤坝所需的土石方(体积).【例9】 如图所示,从塔底同一水平线上的测量仪上,测得塔顶的仰角为︒45,向塔前进了10米(两次测量在塔的同侧),又测得塔顶的仰角为︒60,测量仪器的高为1.5米,求塔高(精确到0.1米).AEDCB【例10】某兴趣小组用高为1.2米的仪器测量建筑物CD 的高度.如示意图,由距CD 一定距离的A 处用仪器观察建筑物顶部D 的仰角为β,在A 和C 之间选一点B ,由B 处用仪器观察建筑物顶部D 的仰角为α.测得A ,B 之间的距离为4米,tan 1.6α=,tan 1.2β=,试求建筑物CD 的高度.【例11】如图所示,在东西方向的海岸线上,有A 、B 两个码头,相距()13100-米,由码头A 测得一只船K在北偏东︒60,由码头B 测得K 在北偏西︒15.求船只K 到海岸线AB 的距离.【例12】如图所示,已知海岛P 的周围18千米的范围内有暗礁,一艘海轮在点A 处测得海岛P 在北偏东︒30方向,向正北航行12千米到达点B 处,又测得海岛P 在北偏东︒45的方向,如果海轮不改变航向,继续向北航行,有没有触礁的危险?ABC GFDEA BM K北北东西ACDBE F β αG【例13】如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.【例14】如图所示,已知:在山脚C 处测得出顶A 的仰角是︒45,沿着斜角为︒30的斜坡前进300m 到达D ,在D 点测得山顶A 的仰角为︒60.求山高AB .【例15】如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)ABC P东北AB DC第二部分:解直角三角形几何综合题【例16】在ABC ∆中,32sin 90=︒=∠A C ,,那么=B tan ( ) A .55 B .25 C .552 D .53【例17】菱形的边长为4,有一个内角为︒40,则较短的对角线长是( )A .︒40sin 4B .︒20sin 4C .︒20sin 8D .︒20cos 8 【例18】 已知在等腰ABC ∆中,顶角A 的平分线与对边交于D 点,若AB:BC=13:10,则=∠DAC cos . 【例19】 三角形三边的长分别为17,32,5,则此三角形最大内角的度数是 .【例20】一个三角形的一边长为2,这边上的中线长为1,另两边长之和为31+,则这个三角形的面积为( )A .1B .23 C .3 D .43【例21】方程()01242=++-m x m x ,的两根恰好是某直角三角形的两锐角的正弦,则m 的值为( )A .2B .3C .2±D .3±【例22】已知在ABC ∆中,B A C ∠>∠︒=∠,90,且A tan 和B tan 的值是方程013342=+-x x 的两个根,则=∠A . 【例23】如图,在梯形ABCD 中,AD ∥BC ,BD ⊥DC ,∠C =60°,AD =4,BC =6,求AB 的长.ABC D【例24】 一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F=∠ACB=90°, ∠E=45°,∠A=60°,AC=10,试求CD 的长.课后练习1.菱形ABCD 的对角形AC=10cm ,BD=6cm ,那么2tanA等于( ) A .53 B .54C .343D .345 2.等腰三角形底边长10cm ,周长为36cm ,那么底角的余弦等于( ) A .135 B .1312 C .1310 D .125 3.在ABC Rt ∆中,31tan ,90=︒=∠A C ,则=B sin . 4.直角三角形中,一锐角的正切值为125,周长为18,则三边长为 . 5.如图所示,一树的上段CB 被风折断,树梢着地,与地面成︒30角,树梢着地处B 与树根A 相距6m ,则原来的树高是 .6.已知在ABC ∆中,3=AB ,AC=4,BC=3,BD 是AC 边上的中线,则BD 的长为 .A BC7.已知,如图,海岛A 四周20海里范围内是暗礁区.一艘货轮由东向西航行,在B 处测得岛A 在北偏西︒60,航行24海里后到C 处,测得岛A 在北偏西︒30.请通过计算说明,货轮继续向西航行,有无触礁危险?ABC 3060。
第9讲 锐角三角函数
第9讲锐角三角函数知识点1 锐角三角函数1.如图在△ABC中,∠C是直角,锐角A的正弦(sin),余弦(cos)和正切(tan)叫做角A的锐角三角函数.2.特殊角的三角函数值3.锐角三角函数值的变化规律当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小;当0°<α<90°时,tanα随α的增大而增大.【典例】例1在△ABC 中,∠C =90°,如果AC =8,BC =6,那么∠A 的正弦值为( ) A .35B .45C .34D .43例2在Rt △ABC 中,∠C =90°,∠A =α,BC =2,那么AC 的长为( ) A .2sin α B .2cos αC .2tan αD .2cot α例3计算:tan 260°−2sin30°4cos 245°+cot30°.【随堂练习】1.已知在Rt △ABC 中,∠C =90°,AB =3,BC =2,那么tan B 的值等于( ) A .23B .√53C .√52D .2.已知在Rt △ABC 中,∠C =90°,∠B =α,AC =2,那么AB 的长等于( ) A .2sinαB .2sin αC .2cosαD .2cos α3.计算:2sin45°+2sin60°﹣tan60°•tan45°.4.计算:tan 245°cot30°−2cos45°−2sin60°.知识点2 解直角三角形1.定义:在直角三角形中,由已知元素求未知元素的过程,就是解直角三角形.2.基础知识在Rt △ABC 中,∠A ∠B ∠C 所对的边分别是a ,b ,c. (1)三边之间的关系:a 2+b 2=c 2 (2)锐角之间的关系:A ∠+B ∠=C ∠=90(3)边角之间的关系:sin A =a c cos A =b c tan A =ab sin B =bc cos B =ac tan B =ba(4)面积公式:S=12ab=12ch (h 为斜边上的高) 3. 解直角三角形的基本类型及其解法【典例】例1如图,在△ABC 中,BD ⊥AC ,AB =4,AC =3,∠A =30°.(1)求AD 的长. (2)求sin C 的值.例2如图,在△ABC 中,AB =AC =5,BC =8.若∠BPC =12∠BAC ,求sin ∠BPC .例3如图,在△ABC 中,cos B =√22,sin C =35,AC =10,求△ABC 的面积.【随堂练习】1.如图,在△ABC 中,tan C =35,点D 在边BC 上,AB =AD ,CD =2BD =4,求sin B 的值.2.在Rt △ABC 中,∠C =90°,BC =12,AC =4√3,解这个直角三角形.3.如图,在△ABC 中,已知∠C =90°,sin A =,点D 为边AC 上一点,若∠BDC =45°,DC =6,求AD 的长.(结果保留根号)知识点3 解直角三角形的应用——坡度、坡角问题1.坡角:坡面与水平面的夹角,用字母α表示.2.坡度(坡比):坡面的铅直高度h 和水平宽度l 的比,用字母i 表示,则i=ℎl =tan α.【典例】例1如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC ∥AD ,BE ⊥AD ,斜坡AB 长26m ,斜坡AB 的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A 不动,则坡顶B 沿BC 至少向右移 m 时,才能确保山体不滑坡.(取:i h l=hlαtan50°≈1.2)例2如图所示,某拦水大坝的横断面为梯形ABCD,AE、DF为梯形的高,其中迎水坡AB 的坡角α=45°,坡长AB=6米,背水坡CD的坡度i=1:,求背水坡的坡长CD为多少米.例3 如图,我市在建高铁的某段路基横断面为梯形ABCD,DC∥AB.BC长6米,坡角β为45°,AD的坡角α为30°,则AD长为6√2米(结果保留根号).【随堂练习】1.如图,某河堤迎水坡AB的坡比i=tan∠CAB=1:√3,堤高BC=5m,则坡面AB的长是()A.5 m B.10m C.5√3m D.8 m2.小明一家去某著名风景区旅游,准备先从山脚A走台阶步行到B,再换乘缆车到山顶C.从A到B的路线可看作是坡角为30°的斜坡AB,长度为1000米;从B到C的缆车路线可看作是线段BC,长度为2400米,其与水平线的夹角为48°,求山顶C到地面AD的距离CE 的长.(参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)3.农用温棚的上半部分如图所示,迎阳坡AD 的坡度i =1:1.8,背阳坡AC 坡度i =1:0.5,棚宽CD =11.5米,要铅直竖立两根立柱AB 、EF ,其中BF =AB .求AB 、EF 的长.知识点4 解直角三角形的应用——仰角俯角问题1.仰角和俯角 在进行测量时,从下向上看,视线与水平线的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角.【典例】例1如图所示,某小组同学为了测量对面楼AB 的高度,分工合作,有的组员测得两楼间距离为50米,有的组员在教室窗户处测得楼顶端A 的仰角为30°,底端B 的俯角为10°,请你根据以上数据,求出楼AB 的高度.(精确到0.1米)仰角水平线视线视线俯角(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,=1.41, 1.73)例2某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥.如图,河旁有一座小山,山高BC=80m,点C、A与河岸E、F在同一水平线上,从山顶B 处测得河岸E和对岸F的俯角分别为∠DBE=45°,∠DBF=31°.若在此处建桥,求河宽EF的长.(结果精确到1m)[参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60]例3如图,永州市德雅、高峰学校老师们联合组织九年级学生外出开展数学活动,路经白石山公园时,发现工人们正在建5G信号柱,于是老师们就带领学生们对信号柱进行测量.已知信号柱直立在地面上,在太阳光的照射下,信号柱影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得信号柱顶端A的仰角为30°,在C处测得信号柱顶端A的仰角为45°,斜坡与地面成60°角,CD=8米,求信号柱AB的长度.(结果保留根号)【随堂练习】1.如图,小颖在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,测得居民楼AB与CD之间的距离AC为35m,在点N处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小颖的观测点N距地面1.6m.求居民楼AB的高度.(结果精确到1m)【参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43】2.某地有一座大桥(图1),某初中数学兴趣小组想测量该大桥的外拱塔的最高点D距离桥面的高度CD,他们在桥面上选取了一个测量点A测得点D的仰角为26.6°,然后他们沿AC方向移动40m到达测量点B(即AB=40m),在B点测得点D的仰角为37°,如图2所示.求外拱塔的最高点D距离桥面的高度CD.【参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50】3.校内数学兴趣小组组织了一次测量探究活动.如图,大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=12米,AE =24米.(测角器的高度忽略不计,结果精确到0.1米,参考数据:,≈1.73,sin53°≈,(1)求点B距水平地面AE的高度;(2)求广告牌CD的高度.知识点5 解直角三角形的应用——方向角问题1. 方位角:从某点的指北方向按顺时针转到目标方向的水平角.目标方向线PA,PB,PC的方位角分别是40°,135°,225°.2.方向角:指北或指南方向线与目标方向所成的小于90°的角.如下图所示,目标方向线OA,OB,OC分别表示北偏东60°,南偏东30°,北偏西70°.特别地,若目标方向线与指北或指南的方向线成45°的角,目标方向线OD与正南方向成45°角,通常称为西南方向.【典例】例1如图,灯塔B在灯塔A的正东方向,且AB=75km.灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向.(1)求∠ACB的度数;(2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.例2 某公园中有条东西走向的小河,河宽固定,小河南岸边上有一块石墩A,北岸边上有一棵大树P,小杨利用它们测量小河的宽度,于是,他去了河边,如图.他从河的南岸石墩A处测得大树P在其北偏东30°方向,然后他沿正东方向步行80米到达点B处,此时测得大树P在其北偏西60°方向.请根据以上所测得的数据,计算小河的宽度.(结果保留根号)例3 一艘货船以30海里/小时的速度向正北航行,在A处看见灯塔C在船的北偏东30°,20分钟后货船至B处,看见灯塔C在船的北偏东60°,已知灯塔C周围7.1海里以内有暗礁,问这艘船继续航行是否能绕过暗礁?(提供数据:√2≈1.414,√3≈1.732)【随堂练习】1.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A .100mB .100√2mC .100√3mD .200√33m2.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为( )A .200tan70°米B .200tan70°米C .200sin 70°米D .200sin70°米3.如图,MN 是公园劳动湖边一段东西走向的笔直湖岸,A ,B 是岸边两建筑物,一小艇在点C 处,与MN 的距离CE =60米,小艇向北偏西30°方向行驶100米到达点D ,此时,小艇上的人测量A 在小艇的南偏西60°方向,B 在南偏西30°方向,求A 、B 两建筑物之间的距离.综合运用1.在Rt△ABC中,∠C=90°,BC=5,sin B=1213,则AC的长是()A.25B.12C.5D.13 2.计算:(1)2sin30°一3tan45°•sin45°+4cos60°;(2)sin45°cos30°−tan60°+cos45°•sin60°.3.如图,某建筑AB与山坡CD的剖面在同一平面内,在距此建筑AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度i=1:0.75,山坡坡底C点到坡顶D点的距离CD=50m,在坡顶D点处测得建筑楼顶A点的仰角为30°,求此建筑AB的高度.(结果用无理数表示)4.设Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,若b=6,c=10,求sin A、cos A和tan A.5.如图所示,某水库大坝的横断面是四边形ABCD,AD∥BC,坝顶宽AD=2.5米,坝高AE=DF=4米,背水坡AB的坡度是1:1,迎水坡CD的坡度是1:1.5,求坝底宽BC.6.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2,使用时为了散热,她在底板下面垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=36cm,O'C⊥AC于点C,O′C=18cm.(1)求∠CAO′的度数.(2)显示屏的顶部B′比原来升高了多少?(3)如图4,垫入热架后,要使显示屏O′B′与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?7.近日,市委、市政府公布了第七批重庆市爱国主义教育基地名单,重庆市育才中学创办的陶行知纪念馆位列其中,如图,为了测量陶行知纪念馆AB的高度,小李在点C处放置了高度为1.5米的测角仪CD,测得纪念馆顶端A点的仰角∠ADE=51°,然后他沿着坡度i=1:2.4的斜坡CF走了6.5米到达点F,再沿水平方向走4米就到达了纪念馆底端点B.(结果精确到0.1,参考数据:sin51°≈0.78,cos51°≈0.63,tan51°≈1.23)(1)求点D到纪念馆AB的水平距离;(2)求纪念馆AB的高度约为多少米?8.如图,小岛C和D都在码头O的正北方向上,它们之间距离为6.4km,一艘渔船自西向东匀速航行,行驶到位于码头O的正西方向A处时,测得∠CAO=26.5°,渔船速度为28km/h,经过0.2h,渔船行驶到了B处,测得∠DBO=49°.(1)直接写出:在小岛C看点A俯角大小是;点B在小岛D什么方位?;(2)求渔船在B处时距离码头O有多远?(结果精确到0.1km)(参考数据:sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50,sin49°≈0.75,cos49≈0.66,tan49°≈1.15)。
完整版)锐角三角函数超经典讲义
完整版)锐角三角函数超经典讲义锐角三角函数锐角三角函数是三角函数的一种,包括正弦、余弦和正切。
在一个锐角三角形中,锐角的对边、邻边和斜边之间的比例就是锐角三角函数。
具体来说,对于锐角A,其正弦、余弦和正切分别表示为sinA、cosA和XXX。
其中,XXX表示A的对边与斜边的比,cosA表示A的邻边与斜边的比,XXX表示A的对边与邻边的比。
这些符号都是完整的,单独的“sin”没有意义。
在用大写字母表示角度时,一般省略“∠”符号。
在求解锐角三角函数时,关键在于构造以此锐角所在的直角三角形。
例如,在一个直角三角形ABC中,如果已知∠C=90°,cosB=4/5,则AC:BC:AB=3:4:5.另外,需要注意的是,正弦、余弦和正切是实数,没有单位,它们的大小只与角的大小有关,而与所在直角三角形无关。
例1:在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE。
证明△ABE≌△DFA,并求sin∠EDF的值。
解:首先,连接AC,易得△ABC为等腰直角三角形,∠BAC=45°。
又因为AE=BC,所以△ABE和△ACD相似,即∠ABE=∠ACD,∠XXX∠ADC。
又因为∠ADC=90°,所以∠AEB=90°。
因此,△ABE和△DFA是全等三角形。
接下来,求sin∠EDF的值。
由于∠BAC=45°,所以∠AED=45°。
由于△ABE和△DFA全等,所以∠XXX∠BAE=45°。
因此,sin∠EDF=sin45°=1/√2.例2:在△ABC中,∠A=60°,∠B=45°,AB=8,求△ABC面积(结果可保留根号)。
解:由于∠A=60°,∠B=45°,所以∠C=75°。
根据三角函数的定义,可以得到:sin75°=cos15°=(sin60°cos45°+cos60°sin45°)/2=√6+√2/4cos75°=sin15°=(sin60°cos45°-cos60°sin45°)/2=√6-√2/4因此,△ABC面积为S=(1/2)AB·BC·sin75°=4(√6+√2)。
第1节 锐角三角函数
第二十八章 锐角三角函数 第一节 锐角三角函数一、课标导航二、核心纲要1.锐角三角函数的概念(1)定义:在Rt △ABC 中,锐角A 的正弦、余弦和正切统称为锐角A 的三角函数. (2)如下图所示,在Rt △ABC 中,∠C =90°,①正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记作sin A ,即sinA =A ac =∠的对边斜边.②余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ,即cosA =A bc=∠的邻边斜边.③正切:锐角A 的对边与邻边的比叫做∠A 的正切,记作tan A ,即tanA =A aA b=∠的对边∠的邻边.注:(1)锐角三角函数没有单位.(2)锐角三角函数值只与角的大小有关,与直角三角形的大小和位置无关.(3)sin A 是一个整体符合,即表示∠A 的正弦,习惯省去角的符号“∠”,但不能写成sin ·A ,三个大写字母表示一个角时,角的符号“∠”不能省略,如sin ∠BA C .(4)当0°<∠A <90°时,0<sin A <1,0<cos A <1,tan A >0. 2.特殊角的三角函数(如下表所示)注:特殊角的锐角三角函数值的记忆方法(1)数形结合记忆法如下左图、中图所示,有定义可得各角的三角函数值.(2)增减规律记忆法①sin a的值随着a的增大而增大,依次为:222,,.②cos a的值随着a的增大而减小,依次为:222,,.③tan a的值随着a的增大而增大,依次为:31.3.锐角三角函数之间的关系如下右图所示,在Rt△ABC中,∠C=90°.(1)互余关系:sin A=cos(90°-∠A)=cos B,cos A=sin(90°-∠A)=sinB.(2)平方关系:sin 2A+cos2A=1.(3)倒数关系:tan A·tan B=1.(4)商数关系:sintancosAAA=.4.通过构造合适的图形,求15°和75°的三角函数值(如下表所示)5.求三角函数值的常用方法 ①根据特殊角的三角函数值求值. ②借助边的数量关系求值. ③借助等角求值. ④根据三角函数关系求值.本节重点讲解:一个概念,一个特殊值,一个方法.三、全能突破基 础 演 练1.(1)在△ABC 中,∠C =90°,cos B =25,AB =15,则BC 的长为( ).A .B .C .6D .23(2)在Rt △ABC 中,∠C =90°,若BC =1,AB ,则tan A 的值为( ).A .5B .5C .12D .22.如图28-1-1所示,菱形ABCD 的边长为10cm ,DE ⊥AB ,sin A =35,则这个菱形的面积为 ( )cm 2.A .40B .60C .80D .1003.在平面直角坐标系中,已知点A (2,1)和点B (3,0),则sin ∠AOB 的值等于( ).A .5B .2C .2D .124.如图28-1-2所示,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若AC =AB =,则tan ∠BCD 的值为( ).AB .2C .3D .35.点A (sin30°,-tan30°)关于原点对称点A 1的坐标是 .6.在△ABC 中,若∠A 、∠B 满足|cos (A -15°-12|+(sin B )2=0,则∠C = .7.计算:201cos 60tan 30sin 60cos 45cos30sin 30tan 60-?胺??+??°()().8.如图28-1-3所示,AB 是⊙O 的直径,C 是⊙O 上一点,CD ⊥AB ,垂足为点D ,F 是AC 的中点,OF 与AC 相交于点E ,AC =8cm ,EF =2cm .(1)求AO 的长. (2)求sin C 的值.能 力 提 升9.已知a 为锐角,且1sin 22a <<,则a 的取值范围是( ). A .0°<a <30° B .60°<a <90° C .45°<a <60° D .30°<a <45° 10.直线y =2x 与x 轴正半轴的夹角为a ,那么下列结论正确的是( ). A .tan a =2B .cot a =2C .sin a =2D .cos a =211.如图28-1-4所示,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF =2,BC =5,CD =3,则tan C 等于( ).A .34B .43C .35D .4512.在Rt △ABC 中,∠C =90°,∠A 、∠B 的对边是a 、b ,且满足a 2-ab -b 2=0,则tan A =( ).A .1B .2C .12- D .12± 13.小明在学习“锐角三角函数”中发现,将图28-1-5所示的矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 上的点E 处,还原后,再沿过点E 的直线折叠,使点A 落在BC 上的点F 处,这样就可以求出67.5°角的正切值是( ).A 1B 1+C .2.5D 14.(1)如图28-1-6所示,在8×4的矩形网格中,每个小正方形的边长都是1,若△ABC 的三个顶点都在图中相应的格点上,则sin ∠A 的值为 .(2)如图28-1-7所示,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是 ...15.(1)如图28-1-8所示,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则cos B 的值为 .(2)如图28-1-9所示,已知△ABC 的外接圆⊙O 的半径为1,D 、E 分别是AB 、AC 的中点,则sin ∠BAC 的值等于线段 的长.16.如图28-1-10所示,在Rt △ABC 中,∠C =90°,AB 的垂直平分线与BC 、AB 的交点分别为D 、E .(1)若AD =10,sin ∠ADC =45,求AC 的长和tan B 的值. (2)若AD =1,∠ADC =a ,参考(1)的计算过程直接写出tan 2a的值(用sin a 和cos a 的值表示).17.已知a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 的对边,关于x 的一元二次方程a (1-x )2+2bx +c (1+x 2)=0有两个相等的实数根,且3c =a +3b .(1)判断△ABC 的形状. (2)求sin A ·sin B 的算术平方根.18.当0°<a <60°时,下列关系式中有且仅有一个正确.A .2sin (a +30°)=sin aB .2sin (a +30°)=2sin aC .2sin (a +30°)a +cos a (1)正确的选项是 .(2)如图28-1-11(a )所示,在△ABC 中,AC =1,∠B =30°,∠A =a ,请利用此图证明(1)中的结论.(3)两块分别含45°和30°的直角三角板按图28-1-11(b )所示方式放置在同一平面内,BD =S △AD C .中 考 链 接19.(2013·四川乐山改编)如图28-1-12所示,定义:在Rt △ABC 中,锐角a 的邻边与对边的比叫做角a 的余切,记作cot a ,即cot ==ACBC角的邻边角的对边a a a ,根据上述角的余切定义,解下列问题:(1)cot 30°= .(2)已知3tan =4A ,其中∠A 为锐角,试求cot A 的值. (3)已知第一象限内的点A 在反比例函数2y x=的图像上,第二象限内的点B 在反比例函数ky x=的图像上,且OA ⊥OB ,cot A =3,直接写出k 的值.20.(2013·广东湛江改编)阅读下面的材料,先完成阅读填空,再按要求答题:sin30°=12,cos 30°sin 230°+cos 230°= .①sin45°=2,cos 30°=2,则sin 245°+cos 245°= .②sin60°=2,cos 30°=12,则sin 260°+cos 260°= .③ 观察上述等式,猜想:对任意锐角A ,都有sin 2A +cos 2A = .(1)如图28-1-13所示,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想.(2)已知:∠A为锐角(cos A>0),且sin A=0.335,求cosA.(3)在Rt△ABC中,∠C=90°,且sin A、cos A是关于x的方程3x2-mx+1=0的两根,m为实数,则sin4A+cos4A= .巅峰突破21.在△ABC中,∠ACB=90°,∠ABC=15°,BC=1,则AC=().A.B.2-C.0.3 D22.如图28-1-14所示,在等腰直角三角形ABC中,∠C=90°,D为BC中点,将△ABC折叠,使点A与D点重合,若EF为折痕,则sin∠BED的值为,DEDF的值为.。
1锐角三角函数
层做过自由落体运动的实 验.
B
“斜而未倒”
AB=54.5m BC=5.2m
α
A
小明在打网球时,击出一个直线球恰好擦网 而过,且刚好落在底线上,已知网球场的底线到 网的距离(OA)是12米,网高(AC)是1米,击 球高度(BD)是2米,你能求出球飞行的距离吗? (精确到0.01米) 击球高度与球 若小明第二次击的 球的飞行直线与 直线球仍擦网而过 飞行的距离比 地面的夹角有变 且刚好落在底线上, 值有变化吗? 化吗? 击球高度(B1 D1 ) 是3米这时球飞行的 距离是多少米?
450
300
450
┌
600
┌
做一做
B
Sin45 ° =
2
2 2
2
45°
1 C
A 1
cos45°=
2
tan45°= 1
做一做
B
sin60°=
3
2
2
60°
3
C
1 cos60°= 2
tan60°=
A
1
3
特殊角的三角函数值表
三角函数 正弦sinα 余弦cosα 正切tanα 锐角α
300
要能记 450 住有多 好
如:∠A的正弦 记作:sinA 即 a ∠A的对边 sinA= = 斜边 c
B
C 斜边
a
对 边
(
C
b
A
定 义
斜边
注意:三角函数的定义,必须在直角三角形中. B
∠A的对边
斜边
sinA
∠A的对边
cosA tanA
∠A的邻边 斜边
A ∠A的邻边
锐角三角函数
24.3.1锐角三角函数
长春市第七十中学
马智
这是一位技术高超的驾驶员在征服一座很陡的山坡,我们在敬佩 之余,有时也会想,这个山坡有多高呢? 也让我们去征服它一次吧
实际问题转化几何问题:
B 斜坡AB近似的 看成一条直线
已知: AB=100米 求高度BC
∠A=40°
转化为 已知:Rt△ABC中的∠A,斜边AB, 求∠A的对边BC
AB叫做斜边 BC叫做∠A的对边
AC叫做∠A的邻边
A
C
水平地面
结论:可见,在Rt△ABC中,锐角A与其对边 与斜边的比值存在一种一一对应的关系(函数 关系)
我们把这种对应关系叫做∠A 的正弦
记作sine 英音:[sain]美音:[saɪn]
∠A
简写为sin
的
斜边
邻 边
即 ∠A的正弦:sinA=
A的对边 斜边
例1. Rt△ABC中,AC=3,BC=4,AB=5,求: ∠A的正弦,余弦,正切,余切。
例2:在Rt△ABC中,∠C=90° ,BC=12,AC =5, 求:∠B的正弦,余弦,正切,余切。
例3:在Rt△ABC中,∠C=90° ,
1
tanA= ,BC =6, 求:AC,BC
3
问题解决
斜坡A的余弦:cosA=
A的邻边 斜边
cosine英音:['kəusain]
∠A的正切:tanA=
A的对边 A的邻边
tangent英音:['tændʒənt]
∠A的余切:cotA=
A的邻边 A的对边
cotangent英音:['kəu'tændʒənt]
这里的正弦,余弦,正切,余切都是关于 锐角的函数,统称为锐角三角函数。
锐角三角函数
1.问题探究
为了绿化荒山,某地打算从位于山脚下的机井房沿 着山坡铺设水管,在山坡上修建一座扬水站,对坡 面的绿地进行灌溉。现测得斜坡与水平面所成角的 度数是30o,为使出水口的高度为35m,那么需要准备 多长的水管?
问题归结为,在Rt△ABC中,∠C=90o,∠A=30o, BC=35m,求AB? 根据“再直角三角形中,30o角所对的边等于斜 边的一半”,即 可得AB=2BC=70m.即需要准备70m长的水管。
1.已知角度求函数值 例如 求sin18°利用计算器的sin键并输入角度值 18得到结果sin18°=0.309016994。 2.已知函数值求锐角 如果已知锐角三角函数值也可以使用计算器求 出相应的锐角例如已知sinA=0.5018用计算器求锐 角A器可以按照下面方法操作: 依次按键2ndf sin然后输入函数值0.5018得到 ∠A=30.11915867°如果锐角A精确到1°则结果为 30°对于余弦与正切也有相类似的求法。
例1 如图1在Rt△ABC中∠C=90°求sinA和sinB的值。
问题?我们定义出了这三个三角函数,那么之间 是否存在关系呢?
数学活动
现在有其两个直角三角形,他们锐角的度数分别 为300,600,450,如下图所示:
设其AB , A’ B’ 边长为1,已知∠ACB=300, ∠A’ C’ B’=450,根据勾股定理求出各个觉的三角函 数值并完成下表
以上是我们通过勾股定理和三角函 数求出来的值,通过这些函数值我 们观察下是否能从中得到一些发现?
1.对于特殊的450来说正弦与余弦值是相等的
2.而对于30和60来说,它们两个角互余,而 其一个角的正弦值等于余角的余弦值。 猜想:在直角三角形中,一个角的正弦值等 于其余角的余弦值。(可以借助计算器来证 明)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sin ∠ACD=
= AC 5
∴sinB=
4 5
求一个角的正弦值,除了用定义直接求外,还可以转化
为求和它相等角的正弦值。
2.在等腰△ABC中,AB=AC=5,BC=6, 求sinB,cosB,tanB.
A
B
C
D
3.如图平面直角坐标系中,点P的坐标为(4,3)。求OP与x 轴正半轴夹角α的A BC 2,cos A AC 5 ,tan A BC 2 2 5 .
AB 3
AB 3
AC 5 5
sin B AC 5 ,cosB BC 2,tan B AC 5 .
AB 3
AB 3
BC 2
延伸:由上面的计算,你能猜想∠A,∠B的正弦、余弦值 有什么规律吗?
锐角三角函数
——余弦 正切
复习与探究:
在 RtABC 中,C 90
B 1.锐角正弦的定义
c
A
b
a ∠A的正弦: sinA A的对边 BC a
斜边 AB c
C
2、当锐角A确定时,∠A的对边与斜边的比就随之 确定。此时,其他边之间的比是否也随之确定?为 什么?
新知探索: 1、你能将“其他边之比”用比例的
y
P(4,3)
α O
x Q
提示:过P作PQ 轴于Q点,这样来构造一个直角三 角形,再利用定义即可以求出答案。
思考:如果P为(4,-3),问题不变,答案又是多少?
• 求三角函数的几种方法:
1.直接利用定义来求解。 2.知道一边和一个函数值,先求出另一边,再利
用定义求解。 3.利用等角来代换。 4.如果不是直角三角形,要构造成直角三角形。
tan
A
A的对边 A的邻边
a b
同样地, cosA, tanA也是A的函数。
锐角A的正弦、余弦、 正切都叫做∠A的锐角三角 函数.
例1 如图,在Rt△ABC中,∠C=90°,BC=2,
AB=3,求∠A,∠B的正弦、余弦、正切值.
B
解:在RtABC中, AC AB2 BC2 32 22 5,
• cosA,tanA没有单位,它表示一个比值, 即直角三角形中∠A的邻边与斜边的比、对 边与邻边的比,与三角形的大小无关。
• cosA不表示“cos”乘以“A”, tanA不表 示“tan”乘以“A”。
在 RtABC 中,C 90
sin
A
A的对边 斜边
a c
cos
A
A的邻边 斜边
b c
对于锐角A的每一 个确定的值,sinA有 唯一确定的值与它对 应,所以sinA是A的函 数。
cos A AC 4 ,tan B AC 4 .
AB 5
BC 3
C
1、如图, ∠C=90°CD⊥AB.
sinB可以写成哪两条线段之比?
A
若AC=5,CD=3,求sinB
解: ∵∠B=∠ACD
┌
D
B
∴sinB=sin∠ACD
在Rt△ACD中,AD= AC2-CD2 = 52-32 =4
AD 4
余弦(cosine),记作cosA, 即
斜边c
cos
A
A的邻边 斜边
b c
A 邻边b
B 对边a C
★我们把锐角A的对边与邻边的比叫做∠A的
正切(tangent),记作tanA, 即
tan
A
A的对边 A的邻边
a b
注意
• cosA,tanA是一个完整的符号,它表示 ∠A的余弦、正切,记号里习惯省去角的符 号“∠”;如果用三个字母表示角时,符 号“∠”不能省略。
B 式子表示出来吗?这样的比有多少
?
c
a
ba
A
b
C
cb
2、当锐角A确定时,∠A的邻边与斜边的比, ∠A 的对边与邻边的比也随之确定吗?为什么?交流并 说出理由。
方法一:从特殊到一般,仿照正弦的研究过程;
方法二:根据相似三角形的性质来说明。
如图,在Rt△ABC中,∠C=90°,
★我们把锐角A的邻边与斜边的比叫做∠A的
结论:一个锐角的正弦等于它余角的余弦,或一个锐角的 余弦等于它余角的正弦。
例2 如图,在Rt△ABC中,∠C=90°,
BC=6,sin A 3 ,求cosA和tanB的值. B
5
6
解: sin A BC , AB
A
C
AB BC 6 5 10. sin A 3
又AC AB2 BC2 102 62 8,
常见的几种情况如下: 一是一些特殊三角形,如等腰三角形; 二是在平面直角坐标系中; 三是由题意直接构造直角三角形。