2.3矩阵级数与方阵的幂级数
矩阵级数
Department of Mathematics
c di 1 kdi 1 ki
c1 k1 ki ik
di di
所以
ck Ak ck (PJ k P1)
k 0
k 0
= P( ck J k )P1
k 0
= Pdiag(
,则它们按项
与B(k) k 0
相乘所得的矩阵级数
A(0) B(0) ( A(0) B(1) A(1) B(0) ) ( A(0) B(k)
也绝对收敛,且其和为AB
证明:只证4.及5.
均绝对收敛
A(k) B(0) )
4.因
A(k) A,记 S (n)
Department of Mathematics
其中
i
J
i
(i
)
1
i
(i 1, 2, , r) 1
i di di
于是
Ak
Pdiag( J1k
(1),
J
k 2
(2 ),
,
J
k r
(r
))
P
1
ik
J
k i
(i
)
c1 k1 ki ik
sA( k )(
n)
1
2k
a1
(1
q4kn
)
0
1 q11
(k 11)(2k
1 22) 3
1 34
矩阵级数与矩阵函数
{ A } 收敛于 A, 记为
(k )
lim A( k ) = A 或 A( k ) → A
k →∝ k →∝
不收敛的矩阵序列则称为发散的,其中又分为有界和无界的情况。 对于矩阵序列 A
(k ) aij <M
{ } ,若存在常数 M > 0 ,使得对一切 k 都有
(k )
则称 A
{ } 为有界的。
(k )
k =1
N
{S } 收敛,且有极限 S , 则称该矩阵级数收敛,且有和 S . 记为
S = ∑ A(k )
k =1 ∞
不收敛的矩阵级数称为是发散的。
6
若矩阵级数 对收敛。
∑A
k =1
∝
(k )
的所有元素
∑a
k =1
∝
(k ) ij
均绝对收敛,则称该级数为绝
2. 绝对收敛矩阵级数的性质 (1) 绝对收敛矩阵级数一定收敛,且任意调换它的项所得的级数仍收
k 0 k =0 k
∝
I ) 是绝对收敛的。 反之, 若 A 存
在落在 ϕ ( z ) 的收敛圆外的特征值, 则 ϕ ( A) 是发散的。 证明略. [推论] 若幂级数在整个复平面上收敛, 则对任何的方阵 A , ϕ ( A) 均收 敛。
11
四、 矩阵函数 如: e , sin A , cos A 以矩阵为自变量的“函数”(实际上是“函矩阵”)
三、 方阵的幂级数
A 为方阵 ,
Neumann 级数。
∑ c A ,( A
k =0 k
∝
= I ) 称为 A 的幂级数 .
∑A
k =0
∝
k
称为 A 的
1. Neumann 级数收敛的充要条件 [定理] Neumann 级数收敛的充要条件是 A 为收敛矩阵,且在收敛时其和 为 ( I − A) 。 证明: [必要性]
矩阵幂和矩阵指数函数的计算方法
矩阵幂和矩阵指数函数的计算方法矩阵幂和矩阵指数函数是矩阵运算中比较重要的两个概念。
在矩阵幂和矩阵指数函数的计算过程中,我们需要用到一些特殊的算法和方法。
本文将介绍矩阵幂和矩阵指数函数的概念、计算方法和应用等方面的内容,帮助读者更好地了解和掌握这两个概念。
一、矩阵幂的概念对于一个$n$阶矩阵$A$,设$k$为一个自然数,则$A^k$表示$k$次幂。
即:$A^k=\underbrace{A \times A \times \cdots \times A}_{k\text{个} A}$其中,当$k=0$时,$A^k$等于$n$阶单位矩阵$I_n$。
矩阵幂的计算过程中,我们需要用到矩阵乘法的定义。
对于两个$n$阶矩阵$A$和$B$,它们的乘积$AB$定义为:$AB=[c_{ij}]=\sum_{k=1}^na_{ik}b_{kj}$其中,$c_{ij}$表示矩阵的第$i$行第$j$列的元素,$a_{ik}$和$b_{kj}$分别表示第$i$行第$k$列的元素和第$k$行第$j$列的元素。
二、矩阵幂的计算方法矩阵幂的计算方法有两种:直接幂法和快速幂法。
1. 直接幂法直接幂法是一种比较简单的计算矩阵幂的方法。
对于一个$n$阶矩阵$A$和一个自然数$k$,我们可以通过$k-1$次连乘的方式计算出$A^k$的值。
即:$A^k=\underbrace{A \times A \times \cdots \times A}_{k-1\text{个} A} \times A$由此可见,计算矩阵幂的直接幂法需要进行$k-1$次矩阵乘法运算,时间复杂度为$O(kn^3)$。
2. 快速幂法快速幂法是计算矩阵幂的高效方法,它能够有效地减少运算次数,提高计算效率。
该方法基于指数的二进制表示,通过不断地平方和乘以相应的权值,最终计算出矩阵幂的值。
具体步骤如下:(1)将指数$k$转换成二进制数,例如,$k=13$转换成二进制数为$1101$。
矩阵分析
m× n
中的矩阵序列,并且 lim A k = A , lim B k = B ,则
k →∞ k →∞
lim (α A k + β B k ) = α A + β B,
k →∞
∀α , β ∈ C .
m× n
(2)
设 { A k }k =1 和 {B k }k =1 分 别 为 C
k →∞
∞
∞
∞ ∞
(2)
矩阵级数
∑ A k 为绝对收敛的充分必要条件是正项级数 ∑ A k 收敛.
k =1 k =1
∞
∞
(3)
设
∑A
k =1
k
为C
m× n
中的绝对收敛的级数,
∑B
k =1
k
为C
n×l
中的绝对收敛的级数,并且
∞
∞
∞
∞
A = ∑ A k , B = ∑ B k , 则 ∑ A k · ∑ B k 按任何方式排列得到的级数也是绝对收敛
根 据 这
m1 + m2 + ⋯ + ms = n 个方程,得到一个以 c0 , c1 ,⋯, c n−1 为未知数的线性方程组。事实上,
这即为以 λ1 , λ 2 , ⋯ , λ s 为插值节点的 Hermite 插值,因此方程组有唯一解。进一步,如果得 到 A 的最小多项式 m(λ ) ,则类似有 f ( z ) = m( z ) g ( z ) + r ( z ) ,而且,此时的余式 r ( z ) 的 次数可以更低,使得计算更为简单。 对于函数满足的恒等式, 只要能保证等式两边的矩阵函数同时为收敛的矩阵幂级数, 则 可以得到相应的矩阵函数恒等式,例如可以证明 (Ⅰ) ∀A ∈ C
矩阵论知识点
矩阵论知识点第一章:矩阵的相似变换1. 特征值,特征向量特殊的:Hermite矩阵的特征值,特征向量2. 相似对角化充要条件:(1)(2)(3)(4)3. Jordan标准形计算:求相似矩阵P及Jordan标准形求Jordan标准形的方法:特征向量法,初等变换法,初等因子法4. Hamilton-Cayley定理应用:待定系数法求解矩阵函数值计算:最小多项式5. 向量的内积6. 酉相似下的标准形特殊的:A酉相似于对角阵当且仅当A为正规阵。
第二章:范数理论1. 向量的范数计算:1,2,范数2. 矩阵的范数计算:1,2,,m , F 范数,谱半径3. 谱半径、条件数第三章:矩阵分析1. 矩阵序列2. 矩阵级数特别的:矩阵幂级数计算:判别矩阵幂级数敛散性,计算收敛的幂级数的和3. 矩阵函数计算:矩阵函数值,At e ,Jordan 矩阵的函数值4. 矩阵的微分和积分计算:函数矩阵,数量函数对向量的导数如,dt dA(t),dt dA(t),)()(X R AXX X X X f T T T 等5. 应用计算:求解一阶常系数线性微分方程组第四章:矩阵分解1. 矩阵的三角分解计算:Crout分解,Doolittle分解,Choleskey分解2. 矩阵的QR分解计算:Householder矩阵,Givens矩阵,矩阵的QR分解或者把向量化为与1e同方向3. 矩阵的满秩分解计算:满秩分解,奇异值分解4. 矩阵的奇异值分解第五章:特征值的估计与表示1. 特征值界的估计计算:模的上界,实部、虚部的上界2. 特征值的包含区域计算:Gerschgorin定理隔离矩阵的特征值3. Hermite矩阵特征值的表示计算:矩阵的Rayleigh商的极值4. 广义特征值问题AX转化为一般特征值问题计算:BX第六章:广义逆矩阵1. 广义逆矩阵的概念2. {1}逆及其应用计算:)(1A ,判别矩阵方程D AXB ,b Ax 解的情况3. Moore-Penrose 逆A计算:利用A 判别方程组b Ax 解的情况,并求极小范数解或极小范数最小二乘解第七章:矩阵的直积1. 矩阵的直积计算:B A 的特征值,行列式,迹2. 矩阵的行拉直计算:AXB 的行拉直,求解矩阵方程FXBAX 第八章:线性空间与线性变换1. 线性空间的基、维数、坐标计算:基、维数、坐标,值域和核空间2. 线性变换计算:线性变换的矩阵,线性变换的值域与核的基与维数3. 欧氏空间1. 求相似矩阵P 及Jordan 标准形2. 求解一阶常系数线性微分方程组3. Crout 分解,Doolittle 分解4. 矩阵的QR 分解或者把向量化为与1e 同方向5. 奇异值分解6. Gerschgorin 定理隔离矩阵的特征值7. 利用A 判别方程组b Ax 解的情况,并求极小范数解或极小范数最小二乘解8. 求解矩阵方程FXB AX 1.向量1,2,范数,矩阵的1,2,,m , F 范数,谱半径2.判别矩阵幂级数敛散性,计算收敛的幂级数的和3.矩阵函数值,At e ,Jordan 矩阵的函数值4.函数矩阵,数量函数对向量的导数如,dt dA(t),dt dsinAt ,)()(X R AX X X X X f TTT 等5.模的上界,实部、虚部的上界6.矩阵的Rayleigh 商的极值7.广义特征值BX AX 转化为一般特征值问题8.)(1A ,B A 的特征值,行列式,迹9.基、维数、坐标,值域和核空间10.线性变换的矩阵,线性变换的值域与核的基与维数。
矩阵分析及矩阵函数
xi , 称为1 范数,
i 1
x
max
1in
xi
,
称为 范数,
n
1
x ( p
xi p ) p(, 1 p ), 称为p 范数,
i 1
n
1
当p=2时,x ( 2
xi 2 )2,称为2 范数,它是酉空间范数;
i 1
n
1
当xi为实数时,x 2 ( xi2 )2 为欧氏空间范数;
i 1
定义 设a1 ( X ), a2 ( X ), , am ( X )对xi的偏导数都存在, 定义向量函数aT ( X )对向量X的导数为
a1( X )
x1
daT ( X ) dX
a1 ( X x2
)
a1( X ) xn
a2 ( X ) x1
a2 ( X ) x2
a2 ( X ) xn
例 设 y 是Cm上的一种向量范数,给定矩阵ACmn ,
且矩阵A的n个列向量线性无关,对任意x (x1, , xn )T
Cn ,规定 x Ax ,则 x 是Cn中的向量范数。
证
(1)设A 1
,
...,
An是矩阵A的n个线性无关的列向量,
那么x=(x1,..., xn )T 0,有
Ax
( A1,..., An )(x1,..., xn )T
dX
dX dX
(2) d ( f ( X )g( X )) g( X ) df (X ) f ( X ) dg( X ) .
dX
dX
dX
向量函数对向量的微分
x1
a1( X )
设
X
x2
,
a(
X
矩阵幂级数的收敛性质和应用
矩阵幂级数的收敛性质和应用孙延彬【摘要】根据矩阵幂级数的定义和数学分析中幂级数的收敛性质,运用类比的推理方法,在已知知识的基础上,验证并总结了矩阵幂级数的部分相应的收敛性质.【期刊名称】《和田师范专科学校学报》【年(卷),期】2010(029)003【总页数】4页(P198-201)【关键词】矩阵幂级数;范数;收敛性质【作者】孙延彬【作者单位】平顶山学院团委,河南平顶山,467000【正文语种】中文作为数学的一个重要分支,矩阵理论具有极为丰富的内容;作为一种基本的工具,矩阵理论在数学以及其他科学技术领域,如数值分析、最优化理论、概率论、运筹学、控制理论、力学、电学、信息科学与技术、管理科学与工程等学科都有着重要的应用。
其中矩阵级数以及矩阵幂级数在建立矩阵函数和解决微分方程的许多问题时,也有着重要的应用。
目前有很多关于矩阵、幂级数以及矩阵幂级数的研究:曹玉平发表过《矩阵幂级数绝对收敛性的判定》,林金火发表过《矩阵幂级数的收敛性质》等,这篇文章从矩阵序列的收敛性质来讨论矩阵级数以及矩阵幂级数的收敛性质,主要分四个部分:范数的定义和有关性质、矩阵序列的定义和收敛性质、矩阵幂级数的收敛性质和应用。
定义 1.1 设V是数域F(一般为实数域R或复数域C)上的线性空间,用表示按某个法则确定的与向量x对应的实数,且满足:(1)非负性:当当且仅当(2)齐次性:为任意数;(3)三角不等式:对于V中任何向量x, y都有则称实数是向量x的范数。
定义1.2 设向量对任意数称xp−量为向量的范数。
常用的范数有下述三种:(1)1-范数(2)2-范数也称为欧氏范数;(3)∞-范数定义1.3 设V是n维线性空间,和为任意两种向量范数(不限于p−范数),则总存在正数对V中所有向量x∈V,总有则称这两种向量范数是等价的。
定义1.4 对于任何一个矩阵A ∈ Cm×n,用表示按照某个法则确定的与矩阵A对应的实数,且满足:(1)非负性:当时,;当且仅当时,(2)齐次性:k为任意复数;(3)三角不等式:对于任意两个同类型矩阵A, B都有(4)矩阵乘法相容性:若A与B可乘,有则称对于A的这个实数是矩阵A的矩阵范数。
第4讲(1)矩阵序列与矩阵级数、矩阵函数
k a J k 1 k 0 P
1 P k a J k s k 0
19
6. 矩阵函数
定义 :设解析函数 f ( z ) ak z , 幂级数 ak Ak 收敛,
k k 0 k 0
则称 ak Ak 的和为矩阵函数 , 记作
(9) 一般的,eAeB≠eA+B. 如
1 1 1 1 A , B . 0 0 0 0
(10) 若AB=BA,则eAeB=eBeA=eA+B.
26
例:设
2 0 0 A 1 3 1 1 1 1
A At
求矩阵函数 e , sin A, e
0 e 2t 0
0 0 1 1 2t te 0 1 0 1 1 1 e 2t
0 1 0 2t e t 1 t t t t 1 t
32
例
设
2 0 0 A 1 1 1 , 1 1 3
16
k a k i k 0 ak J ik k 0
C a
k 1 1 k k
k 1
i
k r 1
C
r 1 k k
a i
k r 1
1 k 1 C a kk i k 1 k a k i k 0
21
1 3 1 5 ( 1)k sin z z z z z 2 k 1 3! 5! ( 2k 1)!
1 3 1 5 ( 1)k sin A A A A A2 k 1 3! 5! ( 2k 1)!
教材第六章 矩阵函数
第六章 矩阵函数矩阵函数是矩阵理论的重要内容,它在力学、控制理论、信号处理等学科中具有重要作用.本章讨论矩阵函数——以方阵为“变量”、其“值”仍为方阵的函数.矩阵函数中最简单的是矩阵多项式,矩阵多项式是研究其他矩阵函数的基础,因为最终是通过它来定义和计算一般矩阵函数的.当然可以用收敛的矩阵幂级数来定义和计算某些矩阵函数.矩阵函数在线性微分方程组及矩阵方程的求解中都有重要的应用,而这些问题的求解是系统与控制理论中经常面临并且必须解决的实际问题.§6.1 矩阵级数定义1 设(){}k A 是m n C ⨯的矩阵序列,其中()()()k k m n ij A a C ⨯=∈,无穷和(1)(2)(3)()k A A A A +++++称为矩阵级数,记为()1k k A∞=∑.对正整数1k ≥,记()()1kk i i SA ==∑,称()k S 为矩阵级数()1k k A ∞=∑的部分和,如果矩阵序列(){}k S 收敛,且有极限S ,即()lim k k S S →∞=,则称矩阵级数()1k k A∞=∑收敛,并称S 为矩阵级数()1k k A∞=∑的和,记为()1k k A S ∞==∑.不收敛的矩阵级数称为发散的.由此定义可知,矩阵级数()1k k A ∞=∑收敛的充分必要条件是mn 个数项级数()1(1,2,;1,2,,)k ijk ai m j n ∞===∑ 都收敛.由矩阵级数的收敛性定义易知(1)若矩阵级数()1k k A ∞=∑收敛,则()lim 0;k k A →∞=(2)若矩阵级数()11k k As ∞==∑,()21k k B s ∞==∑ ,,a b C ∈,则()()121()k k k aAbB as bs ∞=+=+∑;(3)设m mP C⨯∈,n nQ C⨯∈,若矩阵级数()1k k A∞=∑收敛,则()1k k PA Q ∞=∑收敛且()()11()k k k k PAQ P A Q ∞∞===∑∑.定义2 设()1k k A ∞=∑是矩阵级数,其中()()()k k m n ij A a C ⨯=∈,如果mn 个数项级数()1k ijk a ∞=∑(1,2,;1,2,,)i m j n == 都绝对收敛,则称矩阵级数()1k k A ∞=∑绝对收敛.显然,若()1k k A ∞=∑绝对收敛,则它必是收敛的,但反之未必.定理1 矩阵级数()1k k A ∞=∑(其中()()()k k m n ij A a C ⨯=∈)绝对收敛的充分必要条件是对任何一种矩阵范数.,数项级数()1k k A ∞=∑都收敛.证 由各种矩阵范数的等价性,只须就某一种矩阵范数证明之,如考虑,max ij i jA a =.必要性()1k k A∞=∑绝对收敛,则()1k ij k a ∞=∑绝对收敛,该数项级数各项绝对值之和上方有界.今对1,2,,;1,2,i m j n == 的所有mn 个数项级数取共同上界M ,使对一切自然数N 及任意的,(1,1)i j i m j n ≤≤≤≤有()1Nk ijk aM =<∑.于是,对一切自然数N ,有()()()(),11111111max NNN m nm n Nk k k k ijijij i jk k k i j i j k Aaa a mnM =========≤=<∑∑∑∑∑∑∑∑,故此正项级数()1k k A ∞=∑收敛.充分性 若()1k k A ∞=∑收敛,则对一切,i j 有()()(),max ,1,2,k k k ij ij i ja a A k ≤==根据正项级数的比较判别法知()1k ij k a ∞=∑收敛(1,2,,;1,2,,i m j n == ),所以()1k k A∞=∑绝对收敛.定理得证.对矩阵级数也有幂级数的概念. 定义3 设n n A C ⨯∈,形如20120kk k k k c Ac E c A c A c A ∞==+++++∑的矩阵级数称为矩阵幂级数.由定理1即得如下定理. 定理2 设n nA C⨯∈,如果数项级数0kk k c A ∞=∑收敛,则矩阵幂级数0kk k c A ∞=∑绝对收敛,其中⋅是n n C ⨯上的某种相容矩阵范数.推论1 设n n A C ⨯∈,如果n n C ⨯上的某种相容矩阵范数⋅使得A 在幂级数20120kk k k k c zc c z c z c z ∞==+++++∑的收敛圆内,则矩阵幂级数0k k k c A ∞=∑绝对收敛.定理3 设n nA C⨯∈,并且幂级数0k k k c z ∞=∑的收敛半径为R .如果()A R ρ<,则矩阵幂级数0kk k c A ∞=∑绝对收敛;如果()A R ρ>,则矩阵幂级数0k k k c A ∞=∑发散.证 设矩阵A 的Jordan 标准形为J ,即存在可逆矩阵P 使得112(,,,)s P AP J diag J J J -==成立,其中10101i iiii i i n n J λλλλ⨯⎛⎫ ⎪⎪⎪= ⎪ ⎪⎪⎝⎭. 则112(,,,)k k k kk s P A P J diag J J J -== ,因此lim 0lim 0lim 0(1,2,,)k k k i k k k A J J i s →∞→∞→∞=⇔=⇔== ,而(1)11()()()()2!(1)!()()1()2!()()i n k i k i k i k i i k i k i ki k i k i k i f f f f n f f J f f f λλλλλλλλλ-⎛⎫''' ⎪- ⎪' ⎪ ⎪⎪= ⎪'' ⎪⎪' ⎪⎪⎝⎭,其中()k k f λλ=.所以1110000(,,)kk kk k k k k s k k k k c A P c J P Pdiag c J c J P ∞∞∞∞--====⎛⎫== ⎪⎝⎭∑∑∑∑ , 其中1111011110100i i i i in k n kk k i k k ik k i k k k n kk i k k k k i k k k i k n n c c C c C c J c C c λλλλλ∞∞∞--+-===-∞∞-==∞=⨯⎛⎫ ⎪⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭∑∑∑∑∑∑这里(1)(1),!0,i ki k k k k i C k i i C k i --+⎧=≥⎪⎨⎪=<⎩,则当()A R ρ<时,幂级数111,,k k k ik c C λ∞-=∑ 111(1,2,,)i i i n k n kk ik n c Ci s λ∞--+=-=∑ 绝对收敛,因此矩阵幂级数kk k c A∞=∑绝对收敛;当()A R ρ>时,则A 有某个特征值i R λ>,幂级数0kk i k c λ∞=∑发散,故矩阵幂级数0k k k c A ∞=∑发散.推论2 如果幂级数0k k k c z ∞=∑在整个平面上都收敛,则对任意n n A C ⨯∈,矩阵幂级数0k k k c A ∞=∑收敛.§6.2 矩阵函数的定义及性质受高等数学或复变函数的启发,我们可以利用矩阵幂级数来定义矩阵函数.定义4(矩阵函数的幂级数表示) 设n n A C ⨯∈,一元函数()f λ能够展开为λ的幂级数0()k k k f c λλ∞==∑,并且该幂级数的收敛半径为R .当A 的谱半径()A R ρ<时,则将收敛矩阵幂级数0kk k c A ∞=∑的和定义为矩阵函数,记为()f A ,即0()k k k f A c A ∞==∑.因为当z <+∞时,有21112!!z n e z z z n =+++++ ; 3521111sin (1)3!5!(21)!n n z z z z z n +=-+-+-++ ; 242111cos 1(1)2!4!(2)!n nz z z z n =-+-+-+ ; 则由推论2知,对任意n n A C ⨯∈,矩阵幂级数2112!!n E A A A n +++++ ;3521111(1)3!5!(21)!n n A A A A n +-+-+-++ ; 242111(1)2!4!(2)!n n E A A A n -+-+-+ 都是收敛的.它们的和分别记为A e ,sin A ,cos A .通常称A e 为矩阵指数函数,sin A 和cos A 为矩阵三角函数,对方阵A 的这三种函数,容易验证下列性质.对任意,n n A B C ⨯∈,,k l C ∈,有 (1)()kA lA k l A e e e +=; (2)1()A A e e --=;(3)当AB BA =时,A B B A A B e e e e e +==;(4)()AtAt At d e Ae e A dt ==; (5)(sin )cos()cos()dAt A At At A dt ==⋅; (6)(cos )sin sin dAt A At At A dt=-=-⋅. 利用定理3和推论2定义矩阵函数,其实质就是先将函数()f z 展开成z 的收敛幂级数,再将z 代以矩阵A 来定义矩阵函数()f A ,但这个条件比较强,一般不易满足.下面我们拓宽矩阵函数的定义.对矩阵n n A C ⨯∈,假定存在n 阶可逆矩阵P 使得11(,,)s P AP J diag J J -== , (1)其中i J 是前面定义的Jordan 块,则对任意多项式()g λ,有111()()((),,())s g A Pg J P Pdiag g J g J P --== , (2)(1)11()()()1!(1!)()()1()1!()i i in i i i i i i i i n n g g g n g g J g g λλλλλλ-⨯⎡⎤'⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥'⎢⎥⎢⎥⎣⎦ .(2)式表明,()g A 与A 的Jordan 标准形结构以及()g λ在A 的特征值处的函数值与各阶导数值有关.定义5 设矩阵A 的最小多项式为()()()()t mt mm λλλλλλλϕ---= 2121,即说A 之所有不同特征根为t λλλ,,,21 ,它们作为最小多项式()λϕ的根,其重数依次为t m m m ,...,,21.我们把A 的所有不同特征根连同它们在最小多项式中根的重数称为A 的谱.记为()()(){}t t m m m ,,,,,,2211λλλ .定义6 对任意函数()f λ,如果(1)(),(),,(),i m i i i f f f λλλ-' 1,2,i t =都存在,则称()f λ在A 的谱上有定义,并称(1)(),(),,(),i m i i i f f f λλλ-' (1,2,,i t = )为()f λ在A 的谱上的值.定义7 如果两个多项式()λf ,()λg 在A 的谱上有相同的值,即()i f λ=()i g λ,()i f λ'=()()()()()t i g f g i m i m i i i ,,2,1,,,11 =='--λλλ则说()λf 与()λg 在A 的谱上一致.例1 设A 的最小多项式为()()()423--=λλλϕ,则多项式()()()35423++--=λλλλf 与()()()35424++--=λλλλg在A 的谱上一致.[)2('')2(''),2(')2('),4()4(),2()2(g f g f g f g f ====]定理4 对于方阵A 及多项式()λf ,()λg ,()()f A g A =的充分必要条件是()λf 与()λg 在A 的谱上一致.证 设A 之最小多项式为()()()()t mt mm λλλλλλλϕ---= 2121,记 ()()()λλλg f h -=.必要性 ()()A g A f =即()0=A h ,则()λh 是A 的化零多项式,于是()()λλϕh |,即有多项式()λq 使()()()()()()()t mt mm q q h λλλλλλλλϕλλ---== 2121.由于()λh 中至少含有i λλ-的i m 次方幂,对()λh 逐次求导必有()()()()0,,0,01=='=-i m i i i h h h λλλ , (3)即()()()()()()()()t i g f g f g f i m i m i i i i i i ,2,1,,,,11=='='=--λλλλλλ (4) 可见()λf 与()λg 在A 的谱上一致.充分性 若()λf 与()λg 在A 的谱上一致,则(4)式成立.由()λh 在i λλ=处的Taylor 展式()2()()()()'()()''()()2!!i i m m i i i i i i i i h h h h h m λλλλλλλλλλλ-=+-+++-+ ,前i m 项为0,可知i λλ-至少是()λh 的i m 重因式.注意t λλλ,,,21 互异,从而()λϕ必是()λh 的因式,即有多项式()λq 使()()()λλϕλq h =,又()0=A ϕ,因而()0=A h ,()()A g A f =.现在利用多项式给出矩阵函数的另一种定义. 定义8 设矩阵n n A C ⨯∈的最小多项式为()()()()tm t m m λλλλλλλϕ---= 2121,函数)(λf 在A 的谱上有定义.如果存在在A 的谱上与()f λ一致的多项式()g λ,即),()(i i g f λλ=)(')('i i g f λλ=)()(,,)1()1(i m i m i i g f λλ--= (1,2,,i t = ),则定义矩阵函数()f A 为()()f A g A ≡.§6.3 矩阵函数的计算方法矩阵函数的计算问题,是矩阵在应用中的关键问题.矩阵函数的计算是相当复杂的,例如,简单的矩阵函数101A 就要计算100次矩阵A 的乘积;若A 是5阶方阵,则要进行22500次加法和乘法运算.因此,研究如何方便地计算矩阵函数是非常有意义的.本节将讨论四种计算方法.一、递推公式计算法设()f E A λλ=-,根据Cayley-Hamilton 定理知,()0f A =,由此可得A 的递推关系式,从而计算给定的矩阵A 的函数.例1 设4阶方阵A 的特征值为,,0,0ππ-,求sin ,cos A A 解 设A 的特征多项式222422()()f λλλπλλπ=-=-. 由()0f A =,得4220A A π-=,即422A A π=.因此5423A A A A π==,752254A A A A A ππ===,9724563A A A A A ππ===,…………21(21)33223k k k A A A ππ++--==,…………从而357211111sin (1)3!5!7!(21)!k k A A A A A A k +=-+-++-+ 324221111((1))3!5!7!(21)!k k A A k πππ-=+-+-++-++ 335731111()3!5!7!A A ππππππ⎡⎤=+-+-+-+⎢⎥⎣⎦ 331(sin )A A πππ=+-+ 321A A π=-.同理可得242111cos (1)2!4!(2)!k k A E A A A k =-+-+-+ 222E A π=-.二、利用Jordan 标准形的计算法由递推公式计算法知,若A 是有限阶方阵,则由矩阵幂级数定义的矩阵函数()f A 与矩阵A 的某一多项式相等.因此,对给定的有限阶方阵A ,计算()f A 的问题,就是计算矩阵多项式的问题,因而关键是计算m A 的问题,下面就A 为各种不同矩阵情况下的计算问题进行讨论.(1)A 为对角矩阵设12n a a A a ⎛⎫⎪⎪= ⎪ ⎪⎝⎭,则12n m m m m a a A a ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭. (2)A 为对角形分块矩阵设12k A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,其中12,,,kA A A 为A 的子方阵,由于分块矩阵的乘积与矩阵乘积类似,故对上述分块矩阵A ,有12k m m m m A A A A ⎛⎫ ⎪ ⎪=⎪ ⎪ ⎪⎝⎭. (3)A 为一般矩阵由于对任意方阵,总有A 的Jordan 标准形J 及满秩方阵P ,使得1A PJP -=,因此1m m A PJ P -=.若12s J J J J ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, (1) 其中111i ii ii i n n J λλλ⨯⎛⎫ ⎪⎪⎪= ⎪ ⎪⎪⎝⎭,1,2,,i s = . (2) (1,2,,)i i s λ= 为A 的i n 重特征根,且12s n n n n +++= ,则1211s mmm m m J J A PJ P P P J --⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦.由上述讨论知,对一般的n 阶方阵A ,要计算m A ,实质上是计算A 的Jordan 块i J 的函数i m J ,并且通过上述(1)、(2)、(3)的讨论可知,A 的多项式及A 的幂级数的计算问题亦可化为计算A 的Jordan 块的函数.(4)计算Jordan 块i J 的函数()i f J设111i ii i k kJ λλλ⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ ,令010110i k k H ⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ ,则 i i i J E H λ=+,即 i i i H J E λ=-,又2001100i k kH ⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ ,3000101000i k kH ⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ ,… …0p i H =,()p k ≥.设函数()f λ在i λ处的Taylor 展开式为()0()()()!m m i i m f f m λλλλ∞==-∑,则2()()()()()()1!2!i i i i i i i i f f f J f E J E J E λλλλλ'''=+-+-+ ()()()!m m i i i f J E m λλ+-+(1)21()()()()01!2!(1)!i k k i i i i i i f f f f E H H H k λλλλ--'''=+++++-(1)()()()()2!(1)!()2!()()k i i i i i i i f f f f k f f f λλλλλλλ-''⎛⎫' ⎪- ⎪⎪ ⎪='' ⎪ ⎪ ⎪' ⎪ ⎪⎝⎭.由上述讨论可知,对于给定的一般矩阵A 及函数()f λ,计算()f A 的步骤如下:第一步,经过相似变换将A 化成A 的Jordan 标准形J ,并求相似的变换矩阵P ,使得1A PJP -=,其中J 与i J 如(1)、(2)式;第二步,计算()f J12()()()()k f J f J f J f J ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 其中(1)(2)()()()()2!(1)!()()0()()(2)!000()i i n i i i i i n i i i i i i f f f f n f f J f f n f λλλλλλλλ--⎡''⎤'⎢⎥-⎢⎥⎢⎥'=⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦;第三步,计算()f A1()()f A Pf J P -=.例2 设n n A C ⨯∈,它的Jordan 标准形为12s J J J J ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 其中 111i ii ii i n n J λλλ⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,1,2,,i s = , 且1A PJP -=,试写At e .解 此时()t f e λλ=,()t f te λλ'=, …………(1)1()i i n n t f t e λλ--=,1211k J tJ tAt Jt J t e e e Pe P P P e --⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦, 其中122112!(1)!10(1,2,,).(2)!00i i i i i i i i i i i i itt t n t i ttn t J ti t n n e te t e t e n e te t e e i s n e λλλλλλλλ--⨯⎡⎤⎢⎥-⎢⎥⎢⎥==⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦例3 设⎪⎪⎪⎭⎫ ⎝⎛-----=221111122A ,求At e ,sin At .解 令()t e f λλ=,()sin g t λλ=.求得A 的Jordan 标准形为⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=111121J J J . 再求相似的变换矩阵P .设1123(,,),,,P P AP J AP PJ ηηη-===使则即()()123123110,,,,010001A ηηηηηη⎛⎫ ⎪= ⎪ ⎪⎝⎭123,,ηηη应满足1121233A A A ηηηηηηη=⎧⎪=+⎨⎪=⎩即13,ηη是()0A E x -=两个线性无关的解.解1211210121x -⎛⎫⎪--= ⎪ ⎪--⎝⎭,同解方程组12320x x x +-=,令23,x x 分别取(1,1),(0,1),得得13111,011ηη-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,便有101100111P -⎛⎫ ⎪= ⎪ ⎪⎝⎭,计算出1010121110P -⎛⎫⎪=-- ⎪ ⎪⎝⎭.于是()()()()1112At f J e f A Pf J P P P f J --⎛⎫===⎪⎝⎭ 1)1()1()1()1(-⎪⎪⎪⎭⎫⎝⎛'=P f f f f P⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=0111210100000111001101t t t te e te e ⎪⎪⎪⎭⎫ ⎝⎛+-----+=t t t t t t t t t e t 122121. 1sin ()()At g A Pg J P -==101sin cos 0010cos sin 2cos cos 1000sin 0121cos sin 2cos cos 11100sin 110cos 2cos cos sin t t t t t tt t t t t t t t t t t t t t t t t t t -+-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪=--=---⋅ ⎪⎪⎪ ⎪ ⎪⎪⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭三、拉格朗日——西尔维斯特(Lagrange-Sylvester)插值多项式表示法给定方阵A 及在A 的谱上有定义的函数()λf 时,按照定义,对任一在A 的谱上与()λf 一致的多项式()λg ,都可由()g A 给出()A f .而这样的()λg 有无穷多个,拉格朗日—西尔维斯特插值多项式()p λ就是其中一个,它的次数比A 的最小多项式次数还低.设n 阶矩阵A 的最小多项式为()()()()tm t m m λλλλλλλϕ---= 2121 (3)n m m m m t ≤=+++ 21.为找到一个次数比()λϕ低的多项式()p λ在A 的谱上与()λf 一致,我们设想将真分式()()λϕλp 展开为部分分式()()()()()∑=--⎥⎥⎦⎤⎢⎢⎣⎡-++-+-=tk k m k m k k m k k k k k a a a p 11,110λλλλλλλϕλ . (4)为求出待定系数,,,,1,10-k m k k k a a a 以()k mk λλ-乘(4)式两端并按()k λλ-的升幂排列加以整理有()()()()()()k k k mk m k m k k k k k q a a a p λλλλλλλλϕλ-+-++-+=--11,10 (5)其中()()()km k k λλλϕλϕ-=()()()()111111k ktmm m mk k t λλλλλλλλ-+-+=----()()()(),10111l l l tl m l l m m l l l l l k a a a q λλλλλλλ--=≠⎡⎤=+++⎢⎥---⎢⎥⎣⎦∑ ()λq 是λ的一个有理函数,在k λλ=处有定义且多次可导.今对式(5)两端逐次求导()()()()()21,2112----++-+=⎥⎦⎤⎢⎣⎡k k m k m k k k k k k a m a a p d d λλλλλϕλλ ()()[]k mk q d d λλλλ-+, ()()22k p d d λλϕλ⎡⎤=⎢⎥⎣⎦()()()()323,12!3!12k k m k k k k k k m k a a m m a λλλλ--+-++--- ()()[]k mk q d d λλλλ-+22,……………()()()()()[]kk k k k k m k m m m k k k m m q d d a m p d d λλλλλϕλλ-+-=⎥⎦⎤⎢⎣⎡-----111,11!1. 上述各等式之左端出现的无非是()()λλϕp k ,及它们的各阶导数,各式右端最后一项都有()k λλ-的正整数方幂作为因式.今在上述各式及(5)式中令k λλ=,并注意()()()()()0,1,2,,1l l k k k p f l m λλ==- ,则有()()()(),k kiiii k k p f d d d d λλλλλλλϕλλϕλ==⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦ 从而得 ()()k k k k f a λϕλ=0,()()kk k f d d a λλλϕλλ=⎥⎦⎤⎢⎣⎡=1, ()()k k k f d d a λλλϕλλ=⎥⎦⎤⎢⎣⎡=222!21, ……()()()t k f d d m a kk k k k m m k m k ,,2,1,!11111, =⎥⎦⎤⎢⎣⎡-==---λλλϕλλ. (6)将上述系数代入(4)即可得()()()()(),10111k k k tk m k k m m k k k k a a a p λϕλλλλλλλ--=⎡⎤=+++⎢⎥---⎢⎥⎣⎦∑ , 或()()()()101,11k k tm k k k k m k k k p a a a λλλλλϕλ--=⎡⎤=+-++-⎣⎦∑ .这就是所求的拉格朗日——西尔维斯特插值多项式(简记为L-S 多项式),它与()λf 在A 的谱上一致且其次数显然少于()λϕ(至少要少一次).于是()()()()()101,11k k tm k k k k m k k k f A p A a E a A E a A E A λλϕ--=⎡⎤==+-++-⎣⎦∑ . (7)例4 用拉格朗日-西尔维斯特插值多项式表示方法求例3中的At e . 解 设()t e f λλ=,由A 的若当标准形知A 的最小多项式为()()21-=λλϕ,()λf 在A 的谱上有定义,特征根11=λ,并且()11=λϕ.拉格朗日-西尔维斯特插值多项式应为()()[]()λϕλλ111101-+=a a p ,按(6)式有()()t t t te e d d a e f a =⎥⎦⎤⎢⎣⎡====1)(,11111110λλϕλϕλ,故()()1t t p e te λλ=+-.于是()()()At t t e f A p A e E te A E ===+-⎪⎪⎪⎭⎫ ⎝⎛-----+⎪⎪⎪⎭⎫ ⎝⎛=121121121tt tt te e e e ⎪⎪⎪⎭⎫ ⎝⎛+-----+=t t t t tt t t t e t 122121. 例5 已知4156142153A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,求ln A .解 2415610014201015300(1)E A λλλλλλ--⎛⎫⎛⎫ ⎪ ⎪-=-+-→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭.故1111J ⎛⎫ ⎪= ⎪ ⎪⎝⎭为A 的Jordan 标准形,且A 最小多项式为2(1)λ-.设()ln f λλ=,则()f λ在A 的谱上有定义.特征根11λ=,并且1()1ϕλ=.设L-S 多项式[]10111()(1)()p a a λλϕλ=+-101111(1)0(1)[ln ]1f a da d λϕλλ=====故()1p λλ=-.所以3156ln ()()152152A f A p A A E -⎛⎫⎪===-=- ⎪ ⎪-⎝⎭.例6 已知1000112000002021A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,求矩阵函数A . 解 求得A 的最小多项式2()(1)ϕλλλ=-.令()f λλ=,则()f λ在A 的谱上有定义.L-S 多项式为10120212()()[(1)]()p a a a λϕλλϕλ=++-,其中21()(1)ϕλλ=- ,2()ϕλλ=;102100()0()(1)f a λλλλϕλλ=====-,20211()1()f a λλλλϕλλ===== ,23211111122d a d λλλλλ-==⎡⎤==-=-⎢⎥⎣⎦ .于是 11()1(1)(3)22p λλλλλ⎡⎤=--=-⎢⎥⎣⎦.便有2000124011()()(3)0000222042A f A p A E A A ⎛⎫⎪⎪===-=⎪⎪⎝⎭. 四、待定系数法按矩阵函数的定义8只需求出多项式g ()λ,使得()()i i f g λλ= ,(1)(1)()(),,()(),i i m m i i i i f g f g λλλλ--''== (8)1,2,,i t = ,设A 的最小多项式为(3)式,由于()f λ在A 的谱上给定,从而确定了m 个条件,因此,可用这m 个条件确定()g λ的系数.即令210121()m m g a a a a λλλλ--=++++ (m 为A 的最小多项式的系数),则由条件(8)列出方程组,解出011,,,m a a a - 从而求出()g λ,进而计算()()f A g A =.例7 使用待定系数法求例5中的ln A .解 由例5知A 的最小多项式为2()(1)ϕλλ=- ,特征值11λ=是2重根, 令01()g a a λλ=+ ,由于()ln f λλ= ,且11()()f g λλ=,11()()f g λλ''= , 故011ln101a a a =+=⎧⎨=⎩ 于是解得01a =-,11a =,从而3156()ln ()152152f A A g A E A -⎡⎤⎢⎥===-+=-⎢⎥⎢⎥-⎣⎦.例8 使用待定系数法求例6中的A .解 A 的最小多项式为2()(1)ϕλλλ=- .特征值 10λ=是单根,21λ=是二重根.令2012()g a a a λλλ=++ .由于()f λλ=,且11()()f g λλ= ,22()()f g λλ= ,22()()f g λλ''=故00121201122a a a a a a=⎧⎪⎪=++⎨⎪=+⎪⎩,于是解得0120,3,21.2a a a =⎧⎪⎪=⎨⎪⎪=-⎩ 从而 231()()22f A A g A A A ===-200012401000022042⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦.*§6.4 矩阵函数应用举例运用矩阵函数与矩阵微积分理论可以求得某些微分方程组,也可以求解某些矩阵的微分方程.考虑一阶线性微分方程组1111122112211222221122(),(),()n n n n n n n nn n n dx a x a x a x f t dt dx a x a x a x f t dtdx a x a x a x f t dt⎧=++++⎪⎪⎪=++++⎪⎨⎪⎪⎪=++++⎪⎩ (1)其中t 为自变量,()ij ij a a t =(,1,2,,)i j n = ,()i f t (1,2,,)i n = 都是t 的已知函数,()(1,2,,)i i x x t i n == 是t 的未知函数.若记()()12,,,,()[()]Tn ij n n x t x x x A t a t ⨯== ,则方程组(1)可改写为如下的微分方程()()()()dx t A t x t f t dt=+ (2) 如设微分方程组(1)的初始条件为1010202000(),(),...,()n n x t x x t x x t x ===, (3)可以表示成0010200()(,,,)T n x t x x x x == , (4) 则成为一般的初值问题.定理5 设A 是n 阶常数矩阵,则一阶线性常系数微分方程组的初值问题00()(),().dx t Ax t dtx t x ⎧=⎪⎨⎪=⎩ (5) 有且仅有唯一解0()0A t t x e x -=. (6)证 将0()(1,2,,)i x t i n t t == 在处展开成幂级数2000001()()()()()(),2i i i i x t x t x t t t x t t t '''=+-+-+ !从而有2000001()()()()()().2x t x t x t t t x t t t '''=+-+-+ !因为002200002()(),()()(),t t t t t t dx d x dx t A x t x t Ax A x t dt dt dt ==='''===== ,于是[]02()00001()()()()()2!A t t x t E A t t A t t x t e x t -⎧⎫=+-+-+=⎨⎬⎩⎭,这说明初值问题(5)的解必有0()0()A t t x t e x -=的形式.另一方面,由于000()()()000[]()()A t t A t t A t t dx d d e x e x Ae x Ax t dt dt dt---====. 因此,初值问题(5)的唯一解为(6).定义9 设A 是n 阶常数矩阵,如果对任意的0t 和0x ,初值问题(5)的解()x t 都满足lim ()0,t x t →∞=则称微分方程组()dxAx t dt=的解是渐近稳定的. 微分方程组()dxAx t dt=解的渐近稳定性是系统与控制理论的基本问题,对此有如下结果.定理6 对任意的0t 和0x ,初值问题(5)的解()x t 渐近稳定的充分必要条件是矩阵A 的特征值都有负实部.证 必要性 采用反证法.假若矩阵A 有一个特征值111i λαβ=+满足10α≥,设i x 是对应于特征值1λ的特征向量,则111Ax x λ=由定理5知,初值问题1()(0)dxAx t dtx x ⎧=⎪⎨⎪=⎩, 的解为1111111()(cos sin )t t At x t e x e x e t i t x λαββ===+.因为10,α≥则lim ()0t x t →+∞≠,这与必要性的假设矛盾.因此A 的特征值都有负实部.充分性 对任意的0t 和0x ,初值问题(5)的解为0()0()A t t x t e x -=.如果矩阵A 的特征值都有负实部,则0()lim 0A t t t e -→+∞=,故lim ()0t x t →+∞=,即初值问题(5)的解()x t 渐近稳定.定义10 设A 是n 阶矩阵,如果A 的特征值都有负实部,则称A 为稳定矩阵.由定理6和定义10知,初值问题(5)的解()x t 渐近稳定的充分必要条件是矩阵A 为稳定矩阵.例1 求微分方程组1221,.dx x dtdx x dt⎧=⎪⎪⎨⎪=-⎪⎩ (7) 满足初始条件12(0)1,(0)1x x ==- (8)的解.解 (7)、(8)即0(0)dxAx dt x x ⎧=⎪⎨⎪=⎩,其中001,(1,1)10TA x ⎛⎫=- ⎪-⎝⎭.A 之特征方程2()1f λλ=+,由Cayley-Hamilton 定理知()0f A =,即2A E =-.进而便有3456,,,,A A A E A A A E =-===- ,故()∑∞=--++--+==065432!6!5!4!3!2!k kAtE t A t E t A t E t tA E k At eA t t t E t t t ⎪⎪⎭⎫ ⎝⎛-+-+⎪⎪⎭⎫ ⎝⎛+-+-= !5!3!6!4!2153642()c o s s i nc o s (s i n )s i n c o stt t E t A t t ⎛⎫=+=⎪-⎝⎭. 由定理5可知原问题的解为()0cos sin sin cos At t t x t e x t t -⎛⎫== ⎪--⎝⎭.定理7 设A 是n 阶常数矩阵,则微分方程组初值问题()()()()00dx t Ax t f t dt x t x ⎧=+⎪⎨⎪=⎩(9) 的解为()()()000A t t At A tx t e x e e f d t τττ--=+⎰,或写成()()()()000A t t A t t x t ex e f d t τττ--=+⎰. (10)证 首先有()[]()()()dtt dx e t x A e t x e dt d At At At ---+-= ()()()t f e t Ax dt t dx e At At --=⎥⎦⎤⎢⎣⎡-=将上式在],[0t t 上积分,得()()00A A t t d e x d e f d t t d τττττττ--⎡⎤=⎣⎦⎰⎰,即 ()()()000At At A te x t e x t ef d t τττ----=⎰.于是()()000[]At At A t x t e e x e f d t τττ--=+⎰()()000A t tAt A t e x e e f d t τττ--=+⎰.例2 已知()2022110031,0,02130t t e A f t x te ⎛⎫-⎛⎫⎛⎫⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,在()∞+∞-上解初值问题()()()()00x t Ax t f t x '=+⎧⎪⎨=⎪⎩. 解 其解为()()()()()00ttt At A tAx t e x ef d e f d ττττττ--=+=⎰⎰,A 的最小多项式为()()422--λλ,故设()t e λϕλ=,2012()g a a a λλλ=++.由t e λ与()g λ在A的谱{}(2,2),(4,1)上一致,由待定系数法可定出220221222(4),(13),1(12).4t t t t t t a e e t a e e t a e e t ⎧=-⎪⎪=-++⎨⎪=--⎪⎩ 所以222221(4)(13)(12)4tA t t t t e e e t E e t A e t A ⎡⎤=-+-+++--⎢⎥⎣⎦.()2()2()22()211()[(4())0()13())0t A t t t t e f e e t e e t e A ττττττττττ----⎛⎫⎛⎫ ⎪ ⎪=--+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭222()1(12())0]4t e A e t ττττ-⎛⎫⎪+--- ⎪ ⎪⎝⎭22222222222244133004433t t t t t t e e t e e t e e A e e t e e t τττττττττττττ----⎛⎫⎛⎫-+-++- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪-+-++-⎝⎭⎝⎭22222221220422t tt e e t e A e e t τττττττ--⎛⎫--+ ⎪+ ⎪ ⎪--+⎝⎭. 积分得22()20231222()()0124423t tt A tt e t x t e f d e e t t τττ-⎛⎫-- ⎪ ⎪==+ ⎪ ⎪ ⎪--- ⎪⎝⎭⎰222222222322313122222004114422244222t t t tt t e t e t t t e e A A e t t t e t t t ⎛⎫⎛⎫-+++--- ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-++++---- ⎪ ⎪⎝⎭⎝⎭将211031213A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,264628610410A -⎛⎫⎪=-- ⎪ ⎪⎝⎭代入并化简得2212222322331388443333()884433338844t t t t e t t x x t x e e t t x e t t ⎛⎫-+- ⎪⎛⎫ ⎪ ⎪ ⎪==-+++ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪--+ ⎪⎝⎭.习 题 六1、讨论下列矩阵幂级数的敛散性.1)kk k∑∞=⎪⎪⎭⎫ ⎝⎛--1231711; 2)kk k k∑∞=⎪⎪⎭⎫⎝⎛--012816. 2、设nn CA ⨯∈,证明:Neumann 级数∑∞=0k kA收敛的充要条件是1)(<A ρ,且其和为1)(--A E .3、设A 为3阶方阵,可逆矩阵P 使⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-3211λλλAP P , 求A e Acos ,及A sin .4、已知多项式43()21p λλλλ=-+-与矩阵⎪⎪⎪⎭⎫⎝⎛-=311111002A ,计算(),Ap A e .5、已知⎪⎪⎭⎫ ⎝⎛-=5113A 求A 及Ae .6、已知⎪⎪⎪⎪⎭⎫ ⎝⎛---=12121210201A , 求At e .7、知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010100014πA ,求A sin . 8、设⎪⎪⎭⎫⎝⎛=1221A ,求Ate . 9、已知矩阵210100212A ⎛⎫⎪=- ⎪ ⎪--⎝⎭试求矩阵函数)(A f 的Lagrange-Sylvester 内插值多项式表示,并用其计算矩阵函数A e tA πsin ,.10、已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=121)(,101024012te t b A .1)求Ate .2)用矩阵函数方法求微分方程()()()dx t Ax t b t dt=+满足初始条件T x )1,1,1()0(-=的解.。
矩阵幂级数收敛和
矩阵幂级数收敛和矩阵幂级数收敛是当前数学领域讨论得最多的一个主题。
它和传统的收敛理论有着相当大的不同。
随着科学技术的发展,矩阵幂级数收敛理论越来越受到关注,越来越多的人从事这方面的研究,并取得了不少的成果。
矩阵幂级数收敛是一种拟非线性的数学工具,用于分析矩阵的性质,对于求解一类特定的问题有很大的帮助。
它的使用也使研究者可以从一类复杂的问题中获得更多的洞察力。
矩阵幂级数收敛可以用来解决数学建模中的矩阵问题,以及一些特殊的非线性方程。
它既可以用于学术研究,也可以用于实际问题的建模和计算。
矩阵幂级数收敛主要分为三个方面:一是矩阵的收敛性;二是矩阵的收敛特征;三是矩阵的收敛误差估计。
矩阵的收敛性是指矩阵的幂次的无限和是否收敛,以及收敛的快慢,这个收敛性很大程度上决定了矩阵的收敛特征。
矩阵的收敛特征是指矩阵收敛时所表现出来的一系列特性,如它的时间和空间分布、其他性质等,这些特性受到矩阵的收敛性的影响。
最后,矩阵的收敛误差估计则是用来估计矩阵的收敛误差的,它是利用矩阵的收敛特性来推算出矩阵的收敛误差的一种方法。
矩阵幂级数收敛的应用也非常广泛,从经济学中研究价格变动,到天文学中研究星体运动,再到机械工程中研究物体的动态行为。
在电子计算机领域,矩阵幂级数收敛技术也被广泛应用,如在复杂的运算系统中,矩阵幂级数收敛可以帮助研究人员容易地控制系统的运行过程。
在有限元分析中,矩阵幂级数收敛也有很大的影响力。
有限元分析是一种用于数值解给定的微分方程的精确或近似解的方法,也是计算机辅助设计中最为重要的一方面。
通过应用矩阵幂级数收敛理论,研究者可以从计算机模拟中获得更多的信息,从而大大地提高分析的准确性。
矩阵幂级数收敛的研究将对现代的数学理论的发展产生重要的影响。
它的出现改变了研究者工作的方法,也提供了新的数学工具和思路,使研究者可以从一类复杂的问题中获得更多的洞察力。
矩阵幂级数收敛还有助于数学家们更好地理解现代的数学问题,并能够更好地解决它们。
附录-矩阵序列与级数
1
2
8 2 1 16 ( 5)( 3) 0 1
1 5 2 ( A) 。 1 ( A) , 2 6
lim Ak 0
k
得 1 ( B) 5, 2 ( B) 3,进而得
5 ( A) 1 于是, 6
0 q 1
A k 0 根据定理1 即知 lim A k 0。 于是,lim k k
推论
设 A∈Cn×n, lim A k 0 的充分必要条件是
k
存在Cn×n上的某种范数 ,使得 A 1
( A) < 1
lim A k 0
k
A 1
判断一个矩阵序列是否收敛到零矩阵:
证 必要性 由定理1知 lim A k 0 的充分必要条件是对任意
A k 0。 因此对充分大的k, 必有 Ak 1 一种矩阵范数 均有lim k
k
k
因此得
(A)
k
(Ak ) Ak 1
利用矩阵谱半径的定义以及相容矩阵范数的性质有:
( A) < 1
Ak
其中 det Aij( k ) ( n 1)( n 1)
(k ) (k ) det( A ) det( A 12 22 ) det( A( k ) ) det( A( k ) ) 1n 2n i, j 1, 2, , n 为Ak的第ij个代数余子式。
mn 推论 设A k A C , ,并且 k 1
lim A k A
k
Ak A 则 klim
此结论只是充分条件,反过来不一定成立。 给定矩阵序列 Ak 1
矩阵分析与计算--08-矩阵极限与级数
Matrix Analysis and Computations
矩 阵 分 析 与 计 算 ——矩阵极限与矩阵级数 Matrix Limit & Series
λ J ( )= 1 λ
k J2
P -1 k Js
考虑一个一般的Jordan块,
1 λ C r r 1 λ
记
0 U=
0 1 0
1 0
1 0
C r r 1 0
矩阵序列Cauchy收敛准则 定理4: 矩阵序列{Ak}收敛的充要条件是:对于 任给的正数ε,总存在一个自然数N, 使得 n,m>N时,都有 ||An - Am||<ε
二 矩阵级数
1.矩阵级数的定义
定义 4 矩阵序列 Ak 的无穷和 A 1 + A2 +
n
+ Ak +
叫做矩阵级数, 而 Sn =
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0
J ( )=( E i k i C k U U i i 0 i 0 i ! d k k
2、幂级数
定义 5
A 为方阵, ck Ak , A0 E 称为 A 的幂级数.
k=0
k A 称为 k=0
A 的 Neumann 级数.
《线性代数》教学大纲
《线性代数》教学大纲教学目的和要求:线性代数是数学学科中的一门重要基础课程,也是高等院校大部分专业的主要基础理论课,对于培养面向21世纪人才起着重耍的作用。
目前也是华东师范大学各专业的重要基础课之一本课程主要学习线性代数中行列式,矩阵,n维向量和线性方程组,向量空间,矩阵的特征值和特征向量,二次型,线性变换的基本概念,基本计算及有关的计算方法。
为适应培养面向21世纪人才的需要,要求学生比校系统理解线性代数的基本概念,基本理论,掌握线性代数的基本计算方法。
要求较好地理解线性代数这门课的抽象理论,具有严谨逻辑推理能力,空间想象能力,运算能力和综合运用所学的知识分析问题和解决问题的能力。
教学基本内容和学时分配:第一章:行列式教学内容:行列式的定义,行列式的基本性质,行列式按行(列)展开定理,行列式的计算,克莱姆法则。
教学要求:理解行列式的概念,掌握行列式的性质,会用行列式的性质和行列式按行(列)展开定理计算行列式,会用克莱姆法则解线性方程组。
第二章:矩阵教学内容:矩阵的概念,矩阵的线性运算,矩阵的乘法,方阵的幂,方阵乘积的行列式,矩阵的转置,逆矩阵的概念和性质,矩阵可逆的充要条件,伴随矩阵,矩阵的初等变换,初等矩阵,矩阵的等价,矩阵的秩,初等变换求矩阵的秩和逆矩阵的方法,分块矩阵及其运算。
教学要求:理解矩阵的概念,了解单位矩阵,对角矩阵,数量矩阵,三角矩阵,对称矩阵,正交矩阵,掌握矩阵的加法,数乘,乘法,转置及它们的运算法则,了解方阵的方幂和方阵乘积的行列式。
理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充要条件,会用伴随矩阵求逆矩阵,了解矩阵的初等变换和初等矩阵的概念,理解矩阵秩的概念。
掌握矩阵的初等变换,会用初等变换求矩阵的秩和逆矩阵,了解分块矩阵掌握分块矩阵的运算法则。
第三章:n维向量与线性方程组教学内容:向量的概念、向量的线性组合和线性表示、向量的线性相关与线性无关、向量组的极大线性无关组、等价向量组、向量组的秩、向量组的秩和矩阵的秩之间的关系、齐次线性方程组有非零解的充要条件、非齐次线性方程组有解的充要条件、线性方程组解的性质和解的结构、齐次线性方程组及基础解系和通解,非齐次线性方程组的通解,行初等变换求线性方程组的方法。
幂级数-PPT
由阿贝尔定理知: 收敛范围为一单位圆域 z 1,
在此圆域内, 级数绝对收敛, 收敛半径为1, 且有 1 1 z z2 zn .
1 z
26
例2 求下列幂级数的收敛半径:
zn
(1) n1 n3
(并讨论在收敛圆周上的情形)
(2) (z 1)n (并讨论 z 0 , 2 时的情形)
zn 收敛,
n1
和函数 S(z) zn 1 zn 1 1 ,
n1
z n0
z 1 z
所以
I
c(1z
1
1
z
)dz
c1z
dz
c1
1
z
dz
2i 0 2i.
36
五、小结与思考
这节课我们学习了幂级数得概念和阿贝尔定 理等内容,应掌握幂级数收敛半径得求法和幂级 数得运算性质、
37
思考题
级数逐项求导得到, 即 f (z) ncn(z a)n1.
n1
23
(3) f (z) 在收敛圆内可以逐项积分,
即 f (z)dz cn (z a)ndz, c z a R.
c
n0 c
或
z
f ( )d
cn (z a)n1.
a
n0 n 1
简言之: 在收敛圆内, 幂级数得和函数解析;
18
课堂练习 试求幂级数
zn
n1 n p
( p为正整数) 的收敛半径.
答案
因为
cn
1, np
lim cn1
n cn
lim( n ) p n n 1
lim
n
(1
1 1)p
1.
n
所以 R 1 1.
矩阵理论特征值
k 0 ak J k
即矩阵幂级数 k 0 ak J 收敛,由于 k 0 ak J 的对角线元素为
k k k 所以,这些复数项幂级数收敛,且 k 0 ak j f (i ) ( j 1, , n) k a k 0 k j
( j 1, , n)
k
由于幂级数
k 0
ak ( ( A) )k
收敛,根据正项级数的比较审敛法知矩阵幂级数
k a A k 0 k
绝对收敛 2. 由于 ( A) max j ,设 l max j ,则 ( A) l
当 ( A) r 时,l r
nn 由Jordan定理,P Cn ,使得
An 0 A是收敛矩阵 lim n S lim S ( n ) ( I A)1
n
矩阵的幂级数 – 举例 设
0.2 0.1 0.2 A 0.5 0.5 0.4 0.1 0.3 0.2
k
判断矩阵幂级数 k 0 A 的敛散性,若收敛,求其和
收敛。由于
k 0 P 1 (ak Ak ) P P1 ( k 0 (ak Ak )) P P1 f ( A) P
1 k 1 k P ( a A ) P a ( P k 0 k 0 k A P) k
k 0 ak ( P 1 AP)k
并且在此级数收敛时,其和为 ( I A)1
k A 收敛 k 0
( A) 1
证明:
充分性: ( A) 1 幂级数 k 0 kz 的收敛半径为1
k
k 收敛 A k 0
必要性:若矩阵幂级数
23矩阵函数的其他等价定义
k
North University of China
目录 上页 下页 返回
结束
且 A PJP 1 ,试写出 e At ,sin At , Am. 解 ⑴计算 e At . 此时,
f et , f tet , f t 2 et , f i
§2.3 矩阵函数的其他等价定义
一、矩阵函数的性质
§2.2 中定义的矩阵函数有如下两个基本性质
1 1 A SBS f A Sf B S 1)
2) f A1
Al f A1
f Al
1 证:1)由 A SBS 知 mA mB ,从而A B
i
( 假设 m li 1 ), 则
J1m Am PJ m P 1 P
m J2
P 1 m Jk
目录 上页 下页 返回 结束
North University of China
其中
1 m 1 2 m2 im Cm i Cm i m 1 m 1 0 C i m i J im 0 0 0 (i 1, 2, k ) li 1 m li 1 Cm i li 2 m li 2 Cm i im l l
1 SAS J1 设
Jm 是 A
f A S 1 f J1
的 Jordan 标准形,则 f J m S .
注:上述定义和§2.2 中的定义是等价的, 它们各有特点.§2.2 中的定义, 我们明 确的知道,对函数 f 及矩阵 A ,有多 项式 P 使 f A p A .
North University of China
矩阵幂级数word版
§4. 矩阵的幂级数在研究矩阵幂级数之前先研究一下矩阵(主要是方阵)级数。
一、矩阵级数1.Df 1.:若给定n n C ⨯中的一方阵序列, ,,,10m A A A 则和式+++++m A A A A 210)1(称为方阵级数,记为∑∞=0m m A 。
其中m A 为通项,m —求和变量。
∑==+++=Nm mN N A A A A S 010 称为(1)的前N 项部分和序列(矩阵序列)若S S N →}{,则称(1)收敛,且其和为S说明:若记ij m A )( 表示的 m A 第i 行第j 列位置上的元素,根据定义1显然有,∑∞=0m mA 收敛2n ⇔个数项级数∑∞==0),,2,1,()(m ijm n j i A收敛。
Df 2.若2n 个数项级数∑∞=0)(m ij m A 绝对收敛,则称∑∞=0m m A 绝对收敛。
2.收敛方阵级数的性质:①若方阵级数∑∞=0m m A 绝对收敛,则它一定收敛,且任意交换各项的次序,所得新级数仍收敛且和不变。
②方阵级数∑∞=0m m A 收敛⇔对任一方阵范数⋅,正项级数∑∞=0m mA 收敛。
下面研究矩阵(方阵)幂级数 二、矩阵幂级数Df 1.设nn C A ⨯∈,称∑∞=0m m m A c 为矩阵A 的幂级数,其中}{m c 为一复数序列,称∑==N m mm N A c S 0为幂级数∑∞=0m m m A c 的部分和,若S S NN =∞→lim ,称∑∞=0m mm A c 收敛于S ,并称S 为幂级数∑∞=0m m m A c 的和矩阵。
注:若令m m m A A c =,则矩阵幂级数→矩阵级数的形式。
因此,矩阵级数的结论对矩阵幂级数的形式是适用的。
即:Th 1.矩阵幂级数∑∞=0m mm A c 收敛于∑∞===⇔0),2,1,()()(m ijijm m n j i S A c S其中,ij m m A c )(,ij S )(分别表示m m A c 和S 的第i 行,第j 列元素。
2.3矩阵级数与方阵的幂级数ljg
N →∞ N
=S
∞ k =1
(收敛 则称级数∑ A 收敛 收敛), 收敛, 收敛
k =1 k ∞ k k =1 k
Hale Waihona Puke ∞S 为级数 ∑ A 的和 记作 ∑ A = S . 的和,
发散, 若 { S }发散 则称 ∑ A 发散 发散.
∞
n k =1 k
收敛, 定理 A ∈ C , ∑ A 收敛
矩阵级数是绝对收敛 绝对收敛的 称 ∑ A 矩阵级数是绝对收敛的. 性质1 A ∈ C , ∑ A 绝对收敛
m× n k
k =1 k ∞
收敛. ⇒ ∑ Ak 收敛.
k =1
∞
性质2
⇔
Ak ∈ C
n× n
方阵, 方阵 ∑ A 绝对收敛
k =1 k
∞ k =1 k
∞
对任意方阵范数 || ⋅ || , 有∑ || A ||收敛. 收敛
∞ k k =0 k 0
则当 ρ ( A − λ E ) < R 时,
0
绝对收敛; ck ( A − λ0 E )k 绝对收敛 ∑
k =0
∞
发散. 当 ρ ( A − λ E ) < R 时, ∑ c ( A − λ E ) 发散
k
0
∞
k =0
k
0
推论2 推论 若 ∑ c z 收敛半径为 +∞ , 则对任意方阵 A ,有 有
n×n n× n k
∑c A
k =0 k
∞
k
称为方阵的幂级数 . 称为方阵的幂级数
2. 方阵的幂级数的收敛性
定理: 定理 设复数项级数(幂级数 幂级数) 设复数项级数 幂级数 ∑ c z 的收敛半
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讨论 A 收敛性.
k k 0
z 的收敛半径为1,
又 ( A) || A || 0.9 1
1
故 A 收敛.
k k 0
School of Math. & Phys.
10
North China Elec. P.U.
nn
2015/10/20
k 1 k
J. G. Liu
nn
性质3 A C ,方阵 A S(收敛) P , Q C
k
( PAk Q )=P ( Ak )Q PSQ (收敛).
k 1 k 1
( 考虑
S N Ak k 1 RN ( PAk Q ) PS N Q
nn
k 0
k
( A) , 则
①当 ( A) R 时, 方阵幂级数 ck Ak发散; k 0 k 方阵幂级数 c A k ②当 ( A) R 时,
k 0
收敛于和 f ( A) .
School of Math. & Phys. 8 North China Elec. P.U.
k
0
k 0
k
0
k c ( A E ) 发散 . 当 ( A 0 E ) R 时, k 0 k 0
推论2
若 c z 收敛半径为 , 则对任意方阵 A ,有
k k 0 k
k 收敛. c A k k 0
School of Math. & Phys.
k ห้องสมุดไป่ตู้1 N
N
lim R P (lim S )Q
N N N N
)
School of Math. & Phys.
5
North China Elec. P.U.
Mathematical Methods & its Applications
2015/10/20
J. G. Liu
性质4 A 方阵, A 绝对收敛
k
k 1 k
Ak 收敛.
k 1
性质2
A C 方阵, A 绝对收敛
nn k
k 1 k
对任意方阵范数 || || , 有 || A ||收敛.
k 1 k
School of Math. & Phys.
4
North China Elec. P.U.
Mathematical Methods & its Applications
Mathematical Methods & its Applications
2015/10/20
J. G. Liu
推论1 复数项级数 c ( z ) , 收敛半径为 R .
k k 0 k 0
则当 ( A E ) R 时, c ( A E ) 绝对收敛;
k
k 1 k
PAk Q 绝对收敛
k 1
( 由 || PA Q |||| P || || A || Q 及性质2易知)
k k
School of Math. & Phys.
6
North China Elec. P.U.
Mathematical Methods & its Applications
Mathematical Methods & its Applications
2015/10/20
J. G. Liu
2. 方阵的幂级数的收敛性
定理: 设复数项级数(幂级数) c z 的收敛半
k k 0 k
径为 R ,和函数 f ( z ) c z , A C 的谱半径为
k
mn k k 1 k
2015/10/20
J. G. Liu
定理 A C , A 收敛, lim S 存在
N N
A 收敛于零矩阵 ( N )
kN k
证明:
设 A (a ) A ( a ) 收敛
(k ) k ij mn
(k )
k 1
k
k 1
一、矩阵级数与其性质
mn
2015/10/20
J. G. Liu
定义 A C , k 1,2, ,称 A 为矩阵 级数. 记 S A , N 1,2,
k
k 1 k
N N k 1 k
S : A 的部分和序列.
N k 1 k
若 lim S
N
N
S (收敛),
Mathematical Methods & its Applications
2015/10/20
J. G. Liu
§3. 矩阵级数与方阵的幂级数
一、矩阵级数及其性质
二、方阵的幂级数
School of Math. & Phys.
1
North China Elec. P.U.
Mathematical Methods & its Applications
2015/10/20
J. G. Liu
二、方阵的幂级数
定义
A C , c C
nn nn k
k 称为方阵的幂级数 . c A k k 0
注:幂级数
ck z k 0
k
k
的收敛半径为
R = lim
ck ck +1
7 North China Elec. P.U.
School of Math. & Phys.
2015/10/20
(k ) ij
J. G. Liu
定义
k 1 k
A (a )
(k ) k ij
mn
, 若 | a
k 1
mn
i 1, 2, , m | 收敛, j 1, 2, , n
称 A 矩阵级数是绝对收敛的. 性质1 A C , A 绝对收敛
9
North China Elec. P.U.
Mathematical Methods & its Applications
2015/10/20
J. G. Liu
例 设 解
0.2 0.1 0.2 A 0.5 0.5 0.4 0.1 0.3 0.2
k k 0
k 1 k
则称级数 A 收敛,
k 1 k k 1 k
S 为级数 A 的和, 记作 A S .
若 S 发散, 则称 A 发散.
n
k 1
k
School of Math. & Phys.
2
North China Elec. P.U.
Mathematical Methods & its Applications
ij
m n
lim S 存在.
N N
注
Ak 收敛 lim A O. k 1
k k
(级数收敛的必要条件)
School of Math. & Phys. 3 North China Elec. P.U.
Mathematical Methods & its Applications