162二次根式的除法(3)
16.2.2二次根式的除法教案

同时,我也注意到,学生在解决问题时,对于二次根式除法的运用还不够熟练。这可能是因为他们在平时的练习中缺乏针对性训练。在今后的教学中,我将增加一些有针对性的练习题,让学生在实际操作中提高运算速度和准确度。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式除法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二次根式除法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
16.2.2二次根式的除法教案
一、教学内容
本节课选自教材第十六章第二节,主要教学内容为二次根式的除法。内容包括:
1.理解二次根式Biblioteka 法的概念及法则;2.学会运用二次根式除法进行简化运算;
3.掌握二次根式除法在实际问题中的应用;
4.举例说明二次根式除法在几何、物理等学科中的应用。
二、核心素养目标
本节课的核心素养目标为:
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次根式除法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
16.2.2 二次根式的除法-初中数学人教版八年级下册教与练课件

(1)
4
4
= ;
9
9
(2)
16
16
=
;
25
25
(3)
36
36
=
.
49
49
思考:你能用字母表示你所发现的规律吗?
16
=_______;
25
一般地,二次根式的除法法则是:
根指数
被开方数
即:二次根式相除,________不变,________相除.
语言表述:算术平方根的商等于被开方数商的算术平方根.
(4)原式= 1
2 45 5 3 45 8 3 36 3 6 9
我们知道,把二次根式的乘法法则反过来就得到积的算术平方根的性质.
类似的,把二次根式的除法法则反过来,就得到
二次根式的商的算术平方根的性质:
a
a
(a 0, b 0).
b
b
语言表述:商的算术平方根,等于积中各因式的算术平方根的商.
(3) 4a 3 16a 2 .
x 1
x 1
1
2
=
;
解: (1)
2( x 1)
2
2
2x 2
1 5 6 7
1 4 6 6
1 2 3 3
(2) 0.125a b c = a b c =
a b c 2ac a b c 2ac
8
16
4
5 6 7
11.计算.
3
(1) 90 3 ;
5
(2)
3a 2
2
2
2
(3)
2
.
3
人教版八年级数学下册_16.2二次根式的乘除

特别提醒 进行二次根式的除法运算时,若两个被开方数可以
整除,就直接运用二次根式的除法法则进行计算;若两 个被开方数不能整除,可以对二次根式化简或变形后再 相除.
感悟新知
例 3 如果
a a-8
a a-8
成立,那么( D )
A.a ≥ 8
B.0 ≤ a ≤ 8
C.a ≥ 0
知3-练
D.a>8
解题秘方:紧扣“二次根式除法法则”成立的条
(式)移到根号外时,要注意应写在分母的位置上;
(3)“三化”,即化去被开方数中的分母.
感悟新知
知5-讲
特别提醒 判断一个二次根式是否是最简二次根式,要紧扣两个条件: 1. 被开方数不含分母; 2. 被开方数中每个因数(式)的指数都小于根指数2,即每个因
数(式)的指数都是1. 注意:分母中含有根式的式子不是最简二次根式.
感悟新知
知5-练
例8 下列各式中,哪些是最简二次根式?哪些不是最简二
次根式?不是最简二次根式的,请说明理由.
(1)
1 ;(2)
x2+y2 ;(3)
0.2;
3
(4)
24 x;(5)
2 .
3
解题秘方:紧扣“最简二次根式的定义”进行判断.
感悟新知
知5-练
解:(1)不是最简二次根式,因为被开方数中含有分母; (3) 不是最简二次根式,因为被开方数是小数(即含有分母); (4)不是最简二次根式,因为被开方数24x 中含有能开得尽 方的因数4,4=22; (2)(5)是最简二次根式.
感悟新知
知3-讲
(2)当二次根式根号外有因数(式)时,可类比单项式除以单 项式的法则进行运算,将根号外的因数(式)之商作为商 的根号外因数(式) ,被开方数(式)之商作为商的被开方 数(式) ,即a b÷c d = (a÷c ) b d ( b ≥ 0,d > 0,c ≠ 0 ).
二次根式的乘除运算

二次根式的乘除运算1、因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.2、有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.一、分母有理化:把分母中的根号化去,叫做分母有理化。
二、有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:1a =b a -与b a -等分别互为有理化因式。
2、两项二次根式:利用平方差公式来确定。
如a与a3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式。
例、已知x =y =,求下列各式的值:(1)x y x y +-(2)223x xy y -+ 小结:一般常见的互为有理化因式有如下几类: ①与; ②与; ③与; ④与.三、二次根式的乘除1、积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
a≥0,b≥0)2、二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
a≥0,b≥0)注意:1、公式中的非负数的条件;2、在被开方数相乘时,就应该考虑因式分解(或因数分解;3、c=abc( a ≥0,b≥0,c ≥03、商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根a≥0,b>0)4.二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。
a≥0,b>0)注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.例1.=,且x为偶数,求(1+x的值.解:由题意得9060xx-≥⎧⎨->⎩,即96xx≤⎧⎨>⎩∴6<x≤9∵x为偶数∴x=8∴原式=(1+x=(1+x=(1+x∴当x=8时,原式的值.例2=成立的的x的取值范围是()A 、2x >B 、0x ≥C 、02x ≤≤D 、无解例3、·(m>0,n>0)解: 原式==-22n n m m =-例4、(a>0)解:原式规律公式:1、观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=-,32=-同理可得:计算代数式(+)的值.解:原式=(……)=() =2002-1=20012、观察下列各式及其验证过程:,验证:;验证:.(1)按照上述两个等式及其验证过程的基本思路,猜想(2)针对上述各式反映的规律,写出用a(a>1的整数)表示的等式,并给出验证过程.(aa>1))。
16.2 二次根式的乘除

例 6 计算:(1)-2 15÷3 3×6 5;
(2)
3
·
2
÷
2
1
2
3
;(3)3 2 × -
1
8
15 ÷
1
2
2
.
5
分析(1)利用二次根式的乘除法则计算即可;(2)先根据二次根式
的除法法则计算括号里的,再计算即可;(3)先把乘除法混合运算转
化成乘法运算,再进行乘法运算即可.
22
教材新知精讲
(4)公式里的字母可以是具体的数,也可以是值为非负数的代数
式.
(5)当二次根式前面系数不为 1 时,可以类比单项式与单项式相
乘的法则,先把系数相乘,再把被开方数相乘,即
m ·
n =mn (a≥0,b≥0).
3
教材新知精讲
知识点一
知识点二
知识点三
例 1 计算:(1)
5
×
3
知识点四
知识点五
综合知识拓展
10、阅读一切好书如同和过去最杰出的人谈话。17:50:0617:50:0617:509/12/2021 5:50:06 PM
教材新知精讲
综合知识拓展
11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.9.1217:50:0617:50Sep-2112-Sep-21
平方根的性质结合起来使用.商的算术平方根实质是二次根式除法
法则的逆用.
(5)利用商的算术平方根的性质,可以把被开方数的分母是开得尽
方的数的二次根式进行化简.
15
教材新知精讲
知识点一
知识点二
16_2_2二次根式的除法同步作业 解析版【2023春人教版八下数学优质备课】

16.2 二次根式的乘除第 2 课时 二次根式的除法参考答案与试题解析夯基训练知识点1二次根式的除法法则1. 计算√5×√15√3的结果是_____________.1.【答案】52.√a−3√a−1=√a−3a−1成的条件是( )A.a ≠1B.a ≥1且a ≠3C.a>1D.a ≥32.【答案】D解:由√a √a =√a b (a ≥0,b>0),得{a −3≥0a −1≥0所以a ≥3.故选D. 3.计算√34÷√16的结果是( )A.√22B.√24C.3√22D.√32 3.【答案】C解:掌握二次根式的除法,直接计算即可.4.下列计算结果正确的是( )A.2+√3=2√3B.√8÷√2=2C.(-2a 2)3=-6a 6D.(a+1)2=a 2+14.【答案】B 知识点2商的算术平方根的性质 5若√a 2−a =√a √2−a ,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥05解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C. 方法总结:运用商的算术平方根的性质:√b a =√b √a a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.6化简:(1)√179; (2)√3c 34a 4b 2(a >0,b >0,c >0).6解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式7.下列各式计算正确的是( ) A.√32=√32 B.√82=√3 C.√34=√32 D.√a 9b =√a 3b 7.【答案】C 8.若√1−a a 2=√1−a a ,则a 的取值范围是( )A.a ≤0B.a<0C.a>0D.0<a ≤18.【答案】D解:由题意得1-a ≥0且a>0,解得0<a ≤1.此题容易忽略1-a ≥0这个条件.9.下列等式不一定成立的是( )A.√a b =√a√b (b ≠0) B.a 3·a −5=1a 2(a ≠0) C.a 2−4b 2=(a+2b)(a-2b)D.(-2a 3)2=4a 69.【答案】A10.下列计算正确的是( )A.√12=2√3B.√32=√32 C.√−x 3=x D.√x 2=x10.【答案】A知识点3 最简二次根式11在下列各式中,哪些是最简二次根式?哪些不是?并说明理由. (1)45;(2)13;(3)52;(4)0.5;(5)145. 解析:根据满足最简二次根式的两个条件判断即可. 解:(1)45=35,被开方数含有开得尽方的因数,因此不是最简二次根式;(2)13=33,被开方数中含有分母,因此它不是最简二次根式; (3)52,被开方数不含分母,且被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4)0.5=12=22,被开方数含有小数,因此不是最简二次根式; (5)145=95=355,被开方数中含有分母,因此它不是最简二次根式. 方法总结:解决此题的关键是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母; (2)被开方数不含能开得尽方的因数或因式.题型总结题型1 利用二次根式的乘除法法则计算 12计算:(1)9√45÷3√212×32√223; (2)a 2∙√ab ∙b √b a ÷√9b 2a解析:先把系数进行乘除运算,再根据二次根式的乘除法则运算.解:(1)原式=9×13×32×45×25×83=183; (2)原式=a 2·b ·ab ·b a ·a 9b 2=a 2b 3a . 方法总结:二次根式乘除混合运算的方法与整式乘除混合运算的方法相同,在运算时要注意运算符号和运算顺序,若被开方数是带分数,要先将其化为假分数. 题型2利用商的算术平方根的性质求代数式的值13.已知√x−69−x =√x−6√9−x ,且x 为奇数,求(1+x)·√x 2−5x+4x 2−1的值. 13.解:∵√x−69−x =√x−6√9−x , ∴{x −6≥09−x ≥0∴6≤x<9. 又∵x 是奇数,∴x=7.∴(1+x)√x 2-5x+4x 2-1=(1+x)√(x -1)(x -4)(x+1)(x -1)=(1+x)√(x -4)(x+1)=√(x +1)(x −4).当x=7时,原式=√(7+1)(7−4)=2√6.题型3 利用商的算术平方根的性质确定字母的取值范围14若√a 2−a =√a √2−a ,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥0解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C. 方法总结:运用商的算术平方根的性质:b a =b a(a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.题型4 利用商的算术平方根的性质化简二次根式15化简:(1)√179; (2)√3c 34a 4b 2(a >0,b >0,c >0).解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式拓展培优拓展角度1利用二次根式的性质活用代数式表示数16.老师在讲解“二次根式及其性质”时,在黑板上写下了下面的一题作为练习:已知√7=a,√70=b,用含有a,b 的代数式表示√4.9.甲的解法:√4.9=√4910=√49×1010×10=√7×√7010=ab 10; 乙的解法:√4.9=√49×0.1=7√0.1, 因为√0.1=√110=√770=√7√70=a b , 所以√4.9=7√0.1=7·a b =7a b .请你解答下面的问题:(1)甲、乙两人的解法都正确吗?(2)请你再给出一种不同于上面两人的解法.16.解:(1)都正确.(2)∵√10=√707=√70√7=b a , ∴√4.9=√4910=√49×1010×10=710√10=710·b a =7b 10a .拓展角度2 利用二次根式的乘除法法则进行分母有理化(类比思想)19.化简√3+√2,甲、乙两位同学的解法如下:甲:√3+√2=√3-√2(√3+√2)(√3-√2)=√3−√2; 乙:√3+√2=√3+√2=√3+√2)(√3-√2)√3+√2=√3−√2.以上两种化简的步骤叫做分母有理化.仿照上述两种方法化简:√7−√5.19.解:方法1:√7−√5=√7+√5)(√7−√5)(√7+√5)=2(√7+√5)2=√7+√5. 方法2:√7−√5=√7−√5=√7+√5)(√7−√5)√7−√5=√7+√5.拓展角度3二次根式除法的综合运用20座钟的摆针摆动一个来回所需的时间称为一个周期,其周期计算公式为T =2π√l g ,其中T 表示周期(单位:秒),l 表示摆长(单位:米),g =9.8米/秒2,假若一台座钟摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分钟内,该座钟大约发出了多少次滴答声(π≈3.14)?解析:由给出的公式代入数据计算即可.要先求出这个钟摆的周期,然后利用时间除周期得到次数.解:∵T =2π√0.59.8≈1.42,60T =601.42≈42(次),∴在1分钟内,该座钟大约发出了42次滴答声.方法总结:解决本题的关键是正确运用公式.用二次根式的除法进行运算,解这类问题时要注意代入数据的单位是否统一.。
16.2二次根式的乘除法(教案)

1.教学重点
本节课的教学重点主要包括以下内容:
a.掌握二次根式乘法的运算法则,特别是\( \sqrt{a} \times \sqrt{b} = \sqrt{ab} \)的形式,以及如何将其他形式的二次根式乘法转化为这一形式;
b.理解并应用二次根式除法的运算法则,特别是\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)和\( \frac{\sqrt{a}}{b} = \frac{\sqrt{a}}{\sqrt{b^2}} \)的形式,以及如何处理分母中含有二次根式的情况;
(3)\( \sqrt{a^2} \times \sqrt{b^2} = |a||b| \)(a、b为任意实数)
2.掌握二次根式除法的运算法则,能够正确计算以下形式的除法:
(1)\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)(a≥0,b>0)
2.培养学生的逻辑思维能力,使其能够理解并运用二次根式乘除法的性质,解决实际问题;
3.培养学生的数学建模能力,通过解决实际情境中的问题,让学生体会数学知识在实际生活中的应用;
4.培养学生的数学抽象能力,让学生从具体的二次根式乘除运算中抽象出一般性规律,形成数学认知结构;
5.培养学生的合作交流意识,鼓励学生在小组讨论和交流中,共同探索二次根式乘除法的运算规律,提高解决问题的能力。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式乘除法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示二次根式乘除法的基本原理,如使用尺子和直角三角形模型来计算对角线长度。
人教版数学八年级下册16.2《二次根式的乘除》教学设计3

人教版数学八年级下册16.2《二次根式的乘除》教学设计3一. 教材分析《二次根式的乘除》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行学习的。
二次根式的乘除法运算是初中数学中的重要内容,也是后续学习高中数学的基础。
本节内容主要让学生掌握二次根式的乘除法运算规则,理解并掌握二次根式乘除法运算的性质和规律,提高学生的数学运算能力。
二. 学情分析学生在学习本节内容之前,已经掌握了二次根式的性质和加减法运算,但对于二次根式的乘除法运算可能还存在一定的困难。
因此,在教学过程中,需要教师引导学生理解二次根式的乘除法运算规则,通过大量的练习,让学生熟练掌握二次根式的乘除法运算。
三. 教学目标1.让学生掌握二次根式的乘除法运算规则。
2.提高学生的数学运算能力。
3.培养学生的逻辑思维能力。
四. 教学重难点1.二次根式的乘除法运算规则。
2.二次根式的混合运算。
五. 教学方法1.讲解法:教师通过讲解,让学生理解二次根式的乘除法运算规则。
2.练习法:让学生通过大量的练习,熟练掌握二次根式的乘除法运算。
3.小组合作法:让学生通过小组合作,共同探讨二次根式的乘除法运算,培养学生的团队协作能力。
六. 教学准备1.PPT课件:教师需要准备PPT课件,用于展示二次根式的乘除法运算规则。
2.练习题:教师需要准备适量的练习题,用于让学生进行练习。
七. 教学过程1.导入(5分钟)教师通过复习二次根式的性质和加减法运算,引导学生进入二次根式的乘除法运算学习。
2.呈现(10分钟)教师通过PPT课件,呈现二次根式的乘除法运算规则,让学生初步了解二次根式的乘除法运算。
3.操练(10分钟)教师让学生进行二次根式的乘除法运算练习,引导学生掌握二次根式的乘除法运算规则。
4.巩固(10分钟)教师通过讲解和练习,让学生巩固二次根式的乘除法运算规则。
5.拓展(10分钟)教师引导学生进行二次根式的混合运算,提高学生的数学运算能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习提问
1.二次根式的两个基本性质:
a 2=a (a≥ 0) a (a≥ 0) a 2 =∣a∣ = -a (a<0) 2.二次根式的乘法:
a • b ab
ab a • b 2020/5/10
(a 0,b 0)
复习提问
3. 二次根式的除法
a =
a (a
≥ 0,b
>
0)
越远,从而能收看到电视节目的区域就越大.如
果电视塔高hkm,电视节目信号的传播半径为
rkm,则它们之间存在近似关系 r 2Rh ,
其中R是地球半径,R≈6400km.如果两个电视
塔的高分别是h1km,h2km,那么它们的传播半
径的比是 2R h1 .你能将这个式子化简吗? 2R h2
2020/5/10
b
b
a a (a ≥0,b 0) bb
2020/5/10
练习 计算:
(1) 72 3(用两种方法计算)
(3) 90 3 3 5
(5)9 1 ( 3 2 1) 48 2 4
(2) 11 11 35
(4) 0.2 1 0.125 2
(6) 1 a (1 a 1) 1a
2020/5/10
2020/5/10
5(. 1)当 a 1时,求 (a1)2 1 2a的值; a
(2)当 a 1时,求 (a1)2 1 2a的值。 a
2020/5/10
一路下来,我们结识了很多新知识, 你能谈谈自己的收获吗?说一说,让大 家一起来分享。
2020/5/10
1.计算:
11 2 2 13 3 35
2.电流发热的功率为P=I2R,若一家用电器铭牌 上的额定功率为200W,电阻为240Ω,求这个家 用电器的额定电流.
3.已知长方形的长是 140 cm,宽是 35
cm,求与长方形面积相等的圆的半径.(用计算器
计算,结果保留两个有效数字)
4.已知x 2 1,求x 1 x2 的值。 x 1
ab
(1)
解:
(1)原式
b
c2 ab
cb
a• b a cb c
当a=6,c=5时,
原式 6 5 2020/5/10
(2) 2 ab abc
(2)原式 2 ab c • ab
2 2 c 2 c c c• c4 电视塔越高,从塔顶发射的电磁波传播得
做一做
例1.计算:
(1) 75 ( 6 • 12)
(2) 2 • 5 50
解:(1)原式 75 6 2 75 5 3 62 62
5 3• 2 5 6 6 2 • 2 12
(2)原式 10 50 10 10 1
5
50 50 5
2020/5/10
5
做一做
例2.已知a=6,b=3,c=5,求下列各式的值.