不错的Matlab神经网络工具箱实用指南

合集下载

Matlab地神经网络工具箱实用指南设计作者夏寒发布时间2000

Matlab地神经网络工具箱实用指南设计作者夏寒发布时间2000

实用标准文案2000/11/09 作者:夏寒Matlab的神经网络工具箱实用指南发布时间::文章摘要第一章是神经网络的基本介绍,第二章包括了由工具箱指定的有关网络结构和符号的基本材料。

第三章以反向传播网络为例trainadapt和new、init、以及建立神经网络的一些基本函数,例如讲解了反向传播网络的原理和应用的基本过程。

:正文静态网络中的批处理方式通train函数来实现,虽然由于由于采用了更高效的学习算法,train 批处理方式可以用adapt 或train函数只能用于批处理方式。

常是最好的选择。

增加方式只能用adapt来实现,。

让我们用前面用过的静态网络的例子开始,学习速率设置为0.1net = newlin([-1 1;-1 1],1,0,0.1);net.IW{1,1} = [0 0];net.b{1} = 0;adapt用函数实现静态网络的批处理方式,输入向量必须用同步向量矩阵的方式放置:P = [1 2 2 3; 2 1 3 1];T = [4 5 7 7];精彩文档.实用标准文案当我们调用adapt时将触发adaptwb函数,这是缺省的线性网络调整函数。

learnwh是缺省的权重和偏置学习函数。

因此,Widrow-Hoff学习法将会被使用:[net,a,e,pf] = adapt(net,P,T);a = 0 0 0 0e = 4 5 7 7注意网络的输出全部为0,因为在所有要训练的数据提交前权重没有被更新,如果我们显示权重,我们就会发现:>>net.IW{1,1}ans = 4.9000 4.1000>>net.b{1}ans =2.3000经过了用adapt函数的批处理方式调整,这就和原来不一样了。

现在用train函数来实现批处理方式。

由于Widrow-Hoff规则能够在增加方式和批处理方式中应用,它可以通过adapt和train触发。

我们有好几种算法只能用于批处理方式(特别是Levenberg-Marquardt算法),所以这些算法只能用train触发。

Matlab深度学习工具箱使用方法

Matlab深度学习工具箱使用方法

Matlab深度学习工具箱使用方法深度学习作为一种强大的机器学习技术,已经在许多领域展现了出色的性能和应用潜力。

为了帮助广大研究人员和工程师更好地使用深度学习技术,MathWorks公司推出了Matlab深度学习工具箱。

本文将介绍该工具箱的基本使用方法,并结合实例演示其强大的功能。

一、准备工作在使用Matlab深度学习工具箱之前,我们需要进行一些准备工作。

首先,确保你的电脑已经安装了Matlab软件和深度学习工具箱。

其次,如果你希望使用GPU进行运算加速,还需要确保你的电脑上安装了适当的GPU驱动程序。

二、创建深度学习模型在Matlab深度学习工具箱中,我们可以使用各种各样的函数和工具来创建深度学习模型。

首先,我们需要选择适合我们任务的网络结构。

Matlab深度学习工具箱中提供了许多常见的深度学习网络结构,如卷积神经网络(CNN)、循环神经网络(RNN)和生成对抗网络(GAN)等。

我们可以根据具体的任务需求选择合适的网络结构。

接下来,我们需要定义模型的输入和输出。

在Matlab深度学习工具箱中,我们可以使用图像数据存储对象(ImageDatastore)和标签数据存储对象(Datastore)来管理和预处理我们的数据。

同时,我们还可以使用预处理函数来对数据进行增强和归一化等操作,以提高模型的性能。

最后,我们可以使用trainNetwork函数来训练我们的深度学习模型。

在该函数中,我们需要指定训练数据、验证数据、损失函数和优化器等参数。

训练完成后,我们可以使用classify函数对新的数据进行分类预测,或使用predict函数对数据进行其他类型的预测。

三、模型调优与评估在创建深度学习模型之后,我们通常需要对其进行调优和评估。

在Matlab深度学习工具箱中,我们可以使用HyperparameterTuner对象来进行超参数的自动调优。

通过指定待调优的超参数范围和调优目标,我们可以在指定的训练框架中自动寻找最优的超参数组合。

matlab神经网络工具箱简介和函数及示例

matlab神经网络工具箱简介和函数及示例

目前,神经网络工具箱中提供的神经网络模型主 要应用于:
函数逼近和模型拟合 信息处理和预测 神经网络控制 故障诊断
神经网络实现的具体操作过程:
• 确定信息表达方式; • 网络模型的确定; • 网络参数的选择; • 训练模式的确定; • 网络测试
• 确定信息表达方式:
将领域问题抽象为适合于网络求解所能接受的 某种数据形式。
函数类型 输入函数
其它
函数名 称
netsum netprcd concur dotprod
函数用途
输入求和函数 输入求积函数 使权值向量和阈值向量的结构一致 权值求积函数
BP网络的神经网络工具箱函数
函数类型
函数名称 函数用途
前向网络创建 函数
传递函数
学习函数
函数类型 性能函数 显示函数
函数名 函数用途 称
三、BP网络学习函数
learngd 该函数为梯度下降权值/阈值学习函数,通过神经 元的输入和误差,以及权值和阈值的学习速率, 来计算权值或阈值的变化率。
调用格式; [dW,ls]=learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
二、神经元上的传递函数
传递函数是BP网络的重要组成部分,必须是连续可 微的,BP网络常采用S型的对数或正切函数和线性函数。
• Logsig 传递函数为S型的对数函数。 调用格式为: • A=logsig(N)
N:Q个S维的输入列向量; A:函数返回值,位于区间(0,1) 中
② info=logsig(code)
问题形式的种类:
数据样本已知; 数据样本之间相互关系不明确; 输入/输出模式为连续的或者离散的; 输入数据按照模式进行分类,模式可能会 具有平移、旋转或者伸缩等变化形式; 数据样本的预处理; 将数据样本分为训练样本和测试样本

MATLAB工具箱的安装与配置指南

MATLAB工具箱的安装与配置指南

MATLAB工具箱的安装与配置指南Matlab是一种强大的数学软件,广泛应用于工程和科学领域的数据分析和建模。

Matlab工具箱是Matlab软件的扩展包,提供了各种专业领域的工具和函数,使得用户可以更便捷地进行数据处理和模型构建。

本文将详细介绍Matlab工具箱的安装与配置指南,帮助读者快速上手使用这些功能强大的工具。

一、MATLAB工具箱的获取首先,我们需要获得Matlab软件及相关工具箱的安装包。

Matlab软件官方提供了学术试用版及商业版的下载,用户可以根据自己的需求选择相应的版本。

在获得Matlab软件安装包后,我们需要进一步获取相应的工具箱。

Matlab提供了丰富的工具箱,涵盖了各个学科领域,如信号处理、图像处理、机器学习等。

用户可以在Matlab官方网站上查找并下载所需的工具箱。

二、MATLAB工具箱的安装在获得Matlab工具箱的安装包后,我们可以开始进行安装。

1. 解压安装包使用解压软件将下载的工具箱包进行解压,解压后得到相应的文件夹。

2. 安装工具箱打开Matlab软件,在主界面点击"文件" -> "Set Path" -> "Add with Subfolders",选择解压后的工具箱文件夹。

然后点击"保存",等待Matlab完成工具箱的安装。

3. 激活工具箱完成工具箱的安装后,我们需要激活这些工具箱,使其能够在Matlab中正常使用。

在Matlab主界面点击"Home" -> "Help" -> "Licensing",将打开"Licensing"窗口。

选择"Activate Software",输入Matlab账户信息,点击"Next",根据指引完成激活过程。

快速入门Matlab神经网络的基本步骤

快速入门Matlab神经网络的基本步骤

快速入门Matlab神经网络的基本步骤神经网络是一种模仿人类大脑神经元之间相互连接和信息传递方式的数学模型。

它通过对大量数据的学习和分析,能够模拟和预测一些复杂的问题。

Matlab是一种功能强大的数值计算软件,它提供了丰富的神经网络工具箱,使得神经网络的设计和实现变得简单而高效。

本文将介绍Matlab神经网络的基本步骤,帮助读者快速入门。

第一步:安装和配置Matlab神经网络工具箱首先,确保已经正确安装了Matlab软件。

然后,在Matlab的主界面上找到"Add-Ons",点击进入。

在搜索栏中输入"Neural Network Toolbox",然后点击安装。

安装完成后,重启Matlab软件。

第二步:准备数据集神经网络的训练和测试需要大量的数据集。

在准备数据集时,需要确保数据集的质量和完整性。

一般来说,数据集应该包括输入和输出两部分,且输入和输出的维度需要匹配。

在Matlab中,可以通过导入已有的数据集文件或者手动创建数据集矩阵来准备数据集。

确保数据集是以矩阵的形式存储,且每一行表示一个样本,每一列表示一个特征或者标签。

第三步:创建神经网络模型在Matlab中,可以使用命令创建神经网络模型。

常见的创建方式包括使用神经网络应用程序、使用nprtool命令或者手动编写代码创建。

使用神经网络应用程序是最简单的方式。

在Matlab主界面上找到"Apps",点击进入"Neural Network Designer"。

在应用程序中,可以通过拖拽和调整网络结构、设置神经元的参数等方式创建自定义的神经网络。

使用nprtool命令可以更加灵活地创建神经网络。

在Matlab的命令行窗口中输入"nprtool",打开神经网络模型创建工具。

在工具中,可以根据需要选择不同的网络结构和参数,进行更加精细的控制。

手动编写代码创建神经网络具有最高的灵活性。

Matlab中的神经网络算法实现指南

Matlab中的神经网络算法实现指南

Matlab中的神经网络算法实现指南1. 引言神经网络是一种基于生物神经系统的模型,旨在模拟人脑的学习和决策过程。

在现代机器学习领域,神经网络被广泛应用于图像识别、语言处理、预测分析等各种任务中。

而Matlab作为一种功能强大的数值计算和可视化软件,提供了丰富的神经网络工具箱,可以帮助开发人员快速实现和调试各种神经网络算法。

本文将介绍Matlab中的神经网络工具箱,并提供一些实现神经网络算法的指南。

2. Matlab中的神经网络工具箱Matlab提供了一个名为"Neural Network Toolbox"的工具箱,包含了大量的函数和工具,用于构建、训练和评估神经网络模型。

该工具箱支持多种类型的神经网络结构,包括前馈神经网络、递归神经网络、卷积神经网络等。

此外,Matlab还提供了各种用于优化神经网络的算法,如反向传播算法、遗传算法等。

3. 构建神经网络模型在Matlab中,我们可以使用"feedforwardnet"函数来构建一个前馈神经网络模型。

该函数接受一个包含神经网络层结构的向量作为输入参数,并返回一个神经网络对象。

我们可以通过修改这个向量的元素来调整神经网络的结构和参数。

例如,下面的代码展示了如何构建一个包含两个隐藏层的前馈神经网络模型:```matlabnet = feedforwardnet([10, 5]);```4. 导入和预处理数据导入和预处理数据对于构建和训练神经网络模型至关重要。

Matlab提供了各种用于数据导入和预处理的函数和工具。

例如,可以使用"csvread"函数来导入CSV 格式的数据文件;可以使用"mapminmax"函数来对数据进行归一化处理;可以使用"splittingData"函数将数据划分为训练集、验证集和测试集等。

5. 为神经网络模型训练数据在Matlab中,我们可以通过调用"train"函数来训练神经网络模型。

【整理】Matlab神经网络工具箱介绍_2022年学习资料

【整理】Matlab神经网络工具箱介绍_2022年学习资料

Network/Data Manager-▣回X-Input Data:-零Network:-Output Data:-1输入向量X-3网络的输出向量-Target Data:-Error Data:-5神经网络模 -2目标输出向量Y-4网络的训练误差-Input Delay States:-Layer Delay St tes:-新建数据或网络-导入数据或网络-&Import.…-New...-□0pen…-◆Export. Delete-⑨Help-Close-图1图形用户界面-4/18/2019
·<step.3>建立网络-Network/Data-Create Network or Data-Man ger窗口中New.-Network Data-打开Create Network or-Name-netw rk1-Data,如右图。--Network Properties-Name:定义网络名为-Netwark Type:-Feed-forward backprop-networkl-Input data:-trai -Target data:-trainY-选择Input,/Target-Training functio :-TRAINLM-Data,设置训练函数等参-Adaption learning function:-L ARNGDM-Performance function:-MSE-数。-Number of layers: Properties for:Layer 1-·View:查看模型-Number of neurons:0-Transfer Function:-TANSIG-□View-Restore Defaults-4/ 8/2019-⑨Help-☆Create-☒Close

MATLAB神经网络工具箱的使用指南

MATLAB神经网络工具箱的使用指南

MATLAB神经网络工具箱的使用指南引言:在当今信息时代的浪潮中,神经网络作为一种模仿人类神经系统运行方式的数学计算模型,被广泛应用于各个领域。

而MATLAB神经网络工具箱作为一款功能强大、易于使用的软件工具,成为许多科学家和工程师进行神经网络研究和应用实践的首选。

本文旨在为读者提供MATLAB神经网络工具箱的全面介绍,并指导读者如何利用其进行神经网络的搭建、训练和应用。

一、神经网络基础知识在正式介绍MATLAB神经网络工具箱之前,我们先来了解一些神经网络的基础知识。

神经网络由输入层、隐藏层和输出层组成,其中输入层接收外部输入,隐藏层进行数据转换和处理,输出层输出最终结果。

神经网络模拟人类大脑的工作原理,通过调整神经元之间的连接权重来实现对输入数据的学习和对未知数据的预测。

二、MATLAB神经网络工具箱的使用1. 环境准备在使用MATLAB神经网络工具箱之前,我们需要先安装MATLAB软件,并确保已经安装了神经网络工具箱。

安装完成后,可以通过在命令窗口输入“nntool”命令来打开神经网络工具箱界面。

2. 神经网络搭建在神经网络工具箱中,可以通过图形用户界面进行神经网络的搭建。

点击界面左上角的“New”按钮,选择“Feedforwardnet”或“Patternnet”等网络类型,并设置输入层、隐藏层和输出层的节点数。

接下来,可以通过拖拽节点和连接来构建网络。

此外,还可以使用“Layer”和“Connection”选项卡来对网络的结构和参数进行进一步设置。

3. 数据准备成功搭建神经网络后,我们需要准备用于训练和测试的数据。

MATLAB提供了丰富的数据处理函数,可以将数据从不同格式的文件中导入,或者通过代码生成。

导入数据后,可以使用数据处理工具对数据进行清洗、归一化等预处理操作,以提高神经网络的训练效果。

4. 神经网络训练数据准备完毕后,可以通过神经网络工具箱提供的训练函数对神经网络进行训练。

常用的训练函数包括“trainlm”、“traingd”、“trainrp”等,它们采用不同的优化算法来调整网络中的连接权重。

Matlab中的神经网络工具箱介绍与使用

Matlab中的神经网络工具箱介绍与使用

Matlab中的神经网络工具箱介绍与使用神经网络是一种模拟人脑思维方式的计算模型,它通过由多个神经元组成的网络,学习数据的特征和规律。

在计算机科学领域,神经网络被广泛应用于模式识别、数据挖掘、图像处理等诸多领域。

Matlab作为一种功能强大的科学计算软件,提供了专门用于神经网络设计和实现的工具箱。

本文将介绍Matlab中的神经网络工具箱,并探讨其使用方法。

一、神经网络工具箱的概述Matlab中的神经网络工具箱(Neural Network Toolbox)是一款用于构建和训练神经网络的软件包。

它提供了丰富的函数和工具,可用于创建不同类型的神经网络结构,如前向神经网络、反向传播神经网络、径向基函数神经网络等。

神经网络工具箱还包括了各种训练算法和性能函数,帮助用户对神经网络进行优化和评估。

二、神经网络的构建与训练在使用神经网络工具箱前,我们需要先了解神经网络的基本结构和原理。

神经网络由输入层、隐藏层和输出层组成,每一层都包含多个神经元。

输入层接受外部输入数据,通过权重和偏置项传递给隐藏层,最终输出到输出层,形成网络的输出结果。

构建神经网络的第一步是定义网络的结构,可以使用神经网络工具箱中的函数创建不同层和神经元的结构。

例如,使用feedforwardnet函数可以创建一个前向神经网络,输入参数指定了每个隐藏层的神经元数量。

然后,可以使用train函数对神经网络进行训练。

train函数可以选择不同的训练算法,如标准反向传播算法、Levenberg-Marquardt算法等。

通过设置训练参数,例如训练迭代次数和学习速率等,可以对网络进行优化。

三、神经网络的应用案例神经网络在许多领域都有广泛的应用,下面以图像分类为例,介绍如何使用神经网络工具箱来训练一个图像分类器。

首先,我们需要准备训练数据和测试数据。

训练数据通常包含一组已经标记好的图像和相应的标签。

为了方便处理,我们可以将图像转化为一维向量,并将标签转化为二进制编码。

matlab神经网络工具箱怎么用

matlab神经网络工具箱怎么用

matlab神经网络工具箱怎么用标题:Matlab神经网络工具箱的使用方法导言:Matlab神经网络工具箱是一个功能强大的工具,用于建立、训练和评估各种类型的神经网络。

本文将介绍如何使用Matlab神经网络工具箱进行神经网络的建立、训练和评估,帮助您更好地理解和使用这个工具箱。

一、Matlab神经网络工具箱的安装首先,您需要确保已成功安装了Matlab软件。

然后,您可以通过以下步骤来安装Matlab神经网络工具箱:1. 打开Matlab软件。

2. 在工具栏上选择“工具”菜单。

3. 在下拉菜单中选择“添加预定目录”。

4. 在弹出的窗口中,选择“文件夹”选项。

5. 点击“浏览”按钮,并选择包含神经网络工具箱的文件夹。

6. 点击“选择文件夹”按钮,然后点击“添加文件夹”按钮。

7. 点击“关闭”按钮,完成神经网络工具箱的安装。

二、神经网络的建立Matlab神经网络工具箱提供了多种类型的神经网络模型,如前馈神经网络、递归神经网络和自组织神经网络。

下面我们以前馈神经网络为例,介绍神经网络的建立方法:1. 打开Matlab软件,并在命令窗口中输入“nprtool”命令,打开“神经网络模式选择器”窗口。

2. 在“神经网络模式选择器”窗口中,选择“构建”按钮。

3. 在“神经网络模式选择器”窗口中,选择“前馈神经网络”选项,并点击“下一步”按钮。

4. 在“选择网络架构”窗口中,选择神经网络的层数、神经元数量和输入、输出数据的维度。

5. 点击“下一步”按钮,然后点击“完成”按钮,完成神经网络的建立。

三、神经网络的训练神经网络的训练是指通过将已知的输入和输出数据进行反复迭代调整网络参数,从而使网络能够更好地拟合输入输出之间的关系。

下面我们介绍神经网络的训练方法:1.在命令窗口中输入“trainlm”命令,选择Levenberg-Marquardt算法作为训练函数。

2.输入训练数据和目标数据,通过“trains”命令开始训练神经网络。

MATLAB中的神经网络工具箱详解

MATLAB中的神经网络工具箱详解

MATLAB中的神经网络工具箱详解神经网络是一种模拟人脑神经系统工作方式的计算模型,广泛应用于科学、工程和金融等领域。

而在MATLAB软件中,也有专门的神经网络工具箱,提供了丰富的功能和算法,用于实现神经网络的建模、训练和应用。

本文将对MATLAB中的神经网络工具箱进行详细的解析和介绍。

一、神经网络基础知识在深入了解MATLAB神经网络工具箱之前,我们首先来了解一些神经网络的基础知识。

1. 神经元和激活函数神经元是神经网络的基本单位,它接收来自其他神经元的输入,并通过激活函数将输入转化为输出。

在MATLAB中,可以使用`newff`函数创建一个前馈神经网络,可以通过`sim`函数进行网络的模拟和计算。

2. 训练算法神经网络的训练是指通过一系列的输入和输出样本来调整网络的参数,使得网络能够正确地学习和推断。

常用的训练算法包括误差逆传播算法(Backpropagation)、Levenberg-Marquardt算法等。

在MATLAB中,可以使用`train`函数进行网络的训练,可以选择不同的训练算法和参数。

二、MATLAB神经网络工具箱的使用1. 创建神经网络对象在MATLAB中,可以使用`newff`函数创建一个前馈神经网络对象,该函数的参数包括网络的结构、激活函数等。

例如,`net = newff(input, target, hiddenSize)`可以创建一个具有输入层、隐藏层和输出层的神经网络对象。

2. 设置神经网络参数创建神经网络对象后,可以使用`setwb`函数设置网络的权重和偏置值,使用`train`函数设置网络的训练算法和参数。

例如,`setwb(net, weights, biases)`可以设置网络的权重和偏置值。

3. 神经网络的训练神经网络的训练是通过提供一系列的输入和输出样本,调整网络的参数使得网络能够正确地学习和推断。

在MATLAB中,可以使用`train`函数进行网络的训练,该函数的参数包括训练集、目标值、训练算法和其他参数。

MATLABANN工具箱实用指南

MATLABANN工具箱实用指南

上面所示的网络有 R1 个输入,第一层有 S1 个神经元,第二层有 S2 个神经元,以次类 推。一般不同层有不同数量的神经元。每一个神经元的偏置输入是常量 1。
你可以通过运行示例程序 nnd2n2 来试验有 2 个元素的神经元。 3.网络结构 两个或更多的上面所示的神经元可以组合成一层,一个典型的网络可包括一层或者多 层。我们首先来研究神经元层。 单层神经元网络 有 R 输入元素和 S 个神经元组成的单层网络如下图所示:
在一个单层网络中,输入向量 p 的每一个元素都通过权重矩阵 W 和每一个神经元连接 起来。第 I 个神经元通过把所有加权的输入和偏置加起来得到它自己的标量输出 n(i)。不同 的 n(i)合起来形成了有 S 个元素的网络输入向量 n。最后,网络层输出一个列向量 a,我们 在图的底部显示了 a 的表达式。
这里输入向量 p 用左边的黑色实心竖条代表,p 的维数写在符号 p 下面,在图中是 Rx1。 (注意我们用的是大写字母,正如在以前句子里 R 用来表示向量大小时一样。)因此,p 是 一个有 R 个输入元素的向量。这个输入列向量乘上 R 列单行矩阵 W。和以前一样,常量 1 作为一个输入乘上偏置标量 b,给转移函数的网络输入是 n,它是偏置与乘积 Wp 的和。这 个和值传给转移函数 f 得到网络输出 a,在这个例子中它是一个标量。注意如果我们有超过 一个神经元,网络输出就有可能是一个向量。
这种传递函数通常用于反向传播(BP)网络,这得益于函数的可微性。 在上面所示的每一个转移函数图的右边方框中的符号代表了对应的函数,这些图表将替 换网络图的方框中的 f 来表示所使用的特定的转移函数。 第 13 章列出了所有的转移函数和图标。你能够定义自己的传递函数,你可以不限于使 用第 13 章所列的转移函数。你能够通过运行示例程序 nn2n1 来试验一个神经元和各种转移 函数。 带向量输入的神经元 一个有 R 个元素输入向量的神经元如下图所示。这里单个输入元素 乘上权重

MATLAB-神经网络工具箱-PPT

MATLAB-神经网络工具箱-PPT

train
net=train(net, P, T)
被训练网络 输入向量 目标向量
net.tranParam.epochs=10 ; %预定的最大训 练次数为10, 感知器经过最多训练10次后停止,
adapt
net=adapt(net, P, T) 自适应训练函数
权值和阀值学习函数
learnp
dW=learnp(W,P,Z,N,A,T,E,D,gW,gA,LP,LS)
两个长度为5的向量构成输入样本矩阵P,行向量T为目标向量。利用PLOTPV画 出这个向量的图像。例如: P = [-0.5 -0.5 +0.3 -0.1 -4; -0.5 +0.5 -0.5 +1.0 5]; T = [1 1 0 0 1]; plotpv(P,T); % plotpv函数利用感知器的输入向量和目标向量来画输入向量的图像
dW:权值或阀值的变化矩阵 W:权值矩阵或阀值向量 P:输入向量 T:目标向量 E:误差向量 其他可以忽略,设为[ ]
learnpn 归一化学习函数
网络仿真函数
sim
a = sim(net, P)
网络输出
输入向量
➢分类结果显示绘图函数
plotpv
plotpv(P,T)
画输入向量的图像
plotpc
plotpc(W,b)
这个感知器正确的区分了我们的新点(用红色表示)作为”zero”类(用圆圈表示), 而不是”one”类(用+号表示),尽管需要比较长的训练时间,这个感知器仍然适当的进 行了学习。最后放大感兴趣的区域
实验一 利用感知器进行分类(2)
Step3 添加神经元的初始化值到分类图
初始化的权值被设为0,因此任何输入都会给出同样的输出,并且分类线不会 出现在这个图中,不用害怕,我们会继续训练这个神经网。 hold on linehandle = plotpc(net.IW{1},net.b{1}); //plotpc函数用来画分类线

(完整word版)Matlab的神经网络工具箱入门

(完整word版)Matlab的神经网络工具箱入门

Matlab的神经网络工具箱入门在command window中键入help nnet〉〉help nnetNeural Network ToolboxVersion 7。

0 (R2010b) 03-Aug-2010神经网络工具箱版本7.0(R2010b)03八月,2010图形用户界面功能.nnstart —神经网络启动GUInctool —神经网络分类工具nftool —神经网络的拟合工具nntraintool —神经网络的训练工具nprtool —神经网络模式识别工具ntstool - NFTool神经网络时间序列的工具nntool - 神经网络工具箱的图形用户界面。

查看—查看一个神经网络。

网络的建立功能。

cascadeforwardnet —串级,前馈神经网络。

competlayer —竞争神经层.distdelaynet - 分布时滞的神经网络。

elmannet —Elman神经网络。

feedforwardnet —前馈神经网络.fitnet - 函数拟合神经网络。

layrecnet —分层递归神经网络。

linearlayer —线性神经层.lvqnet —学习矢量量化(LVQ)神经网络。

narnet - 非线性自结合的时间序列网络。

narxnet —非线性自结合的时间序列与外部输入网络。

newgrnn —设计一个广义回归神经网络。

newhop —建立经常性的Hopfield网络。

newlind —设计一个线性层.newpnn —设计概率神经网络.newrb - 径向基网络设计.newrbe - 设计一个确切的径向基网络.patternnet - 神经网络模式识别.感知- 感知。

selforgmap - 自组织特征映射。

timedelaynet - 时滞神经网络。

利用网络。

网络—创建一个自定义神经网络。

SIM卡—模拟一个神经网络.初始化- 初始化一个神经网络.适应—允许一个神经网络来适应。

Matlab的神经网络工具箱实用指南(2)

Matlab的神经网络工具箱实用指南(2)

多层神经元网络一个网络可以有几层,每一层都有权重矩阵W,偏置向量b和输出向量a。

为了区分这些权重矩阵、输出矩阵等等,在图中的每一层,我们都为感兴趣的变量以上标的形式增加了层数。

你能够看到在下面所示的三层网络图和等式中使用层符号。

上面所示的网络有R1个输入,第一层有S1个神经元,第二层有S2个神经元,以次类推。

一般不同层有不同数量的神经元。

每一个神经元的偏置输入是常量1。

注意中间层的输出就是下一层的输入。

第二层可看作有S1个输入,S2个神经元和S1 xS2 阶权重矩阵W2 的单层网络。

第二层的输入是a1,输出是a2,现在我们已经确定了第二层的所有向量和矩阵,我们就能把它看成一个单层网络了。

其他层也可以照此步骤处理。

多层网络中的层扮演着不同的角色。

给出网络输出的层叫做输出层。

所有其他的层叫做隐层。

上图所示的三层网络有一个输出层(第三层)和两个隐层(第一和第二层)。

有些作者把输入作为第四层,这里不用这种指定。

上面所示的三层网络的简洁画法如下图所示:多层网络的功能非常强大。

举个例子,一个两层的网络,第一层的转移函数是曲线函数,第二层的转移函数是线性函数,通过训练,它能够很好的模拟任何有有限断点的函数。

这种两层网络集中应用于"反向传播网络"。

注意我们把第三层的输出a3标记为y。

我们将使用这种符号来定义这种网络的输出。

4.数据结构这一节将讨论影响网络仿真的输入数据结构的格式。

我们首先讨论静态网络,在讨论动态网络。

我们将关心两种基本的输入向量类型:同步(同时或者无时序)向量和异步向量。

对异步向量来说,向量的顺序是非常重要的。

对同步向量来说,顺序是不重要的,并且如果我们已经有一定数量的并行网络我们就能把一个输入向量输入到其中的任意网络。

静态网络中的同步输入仿真仿真静态网络(没有反馈或者延迟)是网络仿真最简单的一种。

在这种情况中,我们不需要关心向量输入的时间顺序,所以我们可以认为它是同时发生的。

Matlab神经网络工具箱介绍(Neural Network Toolbox)

Matlab神经网络工具箱介绍(Neural Network Toolbox)

2020/5/6
10
• <step.3>建立网络
• Network/Data
Manager窗口中New… 打开Create Network or Data,如右图。
• Name:定义网络名为 network1
• 选择Input/Target Data,设置训练函数等参 数。
• View:查看模型
2020/5/6
f ( p)
Forecasting error xn1 t '
2020/5/6
6
• <step.1>数据构造与预处理 •
2020/5/6
7
• <step.2>训练数据导入nntool
• 根据数据的多少,数据文件的格式等获取样本 数据的方法有:
• 1)直接输入数据:通过采用元素列表方式输 入。适用于样本数目较少时。New…按钮
2020/5/6
21
总结
需要注意的是,源文件名及路径名不能是汉 字,否则导致读取文件失败。
本部分介绍了MATLAB 神经网络工具箱的 图形用户界面,为尚不熟悉以MATLAB 编程进 行神经网络设计与仿真的用户提供了一个非常 好的交互式图形界,使得神经网络的设计和仿真 变得轻而易举。
2020/5/6
22
单击Simulate Network按钮,则在Network/ Data Manager窗口的Outputs和Errors区域分 别显示出相应的仿真结果,选中变量名,单击该 窗口的Open按钮,弹出数据窗口,在该窗口可以 查看仿真结果的具体数据,如图 所示。
2020/5/6
19
• <step.6>结果Export和Save

MATLAB中的循环神经网络实现指南

MATLAB中的循环神经网络实现指南

MATLAB中的循环神经网络实现指南引言:循环神经网络(Recurrent Neural Network)是一类特殊的神经网络结构,具有记忆和上下文依赖的能力,在自然语言处理、时间序列分析等领域有广泛的应用。

在MATLAB中,我们可以利用神经网络工具箱(Neural Network Toolbox)来实现循环神经网络,并通过调整网络结构和参数来获得所需的性能。

本文将详细介绍如何在MATLAB中实现循环神经网络,并提供一些实用的技巧和注意事项。

一、循环神经网络基础1.1 循环神经网络结构循环神经网络由若干个神经元组成,这些神经元之间通过权重进行连接,形成一个有向图结构。

不同于前馈神经网络,循环神经网络中的神经元可以接受自身之前的输出作为输入,因此具备记忆和上下文依赖的能力。

循环神经网络的结构可以通过图形化方式表示,例如循环神经网络解析图(Recurrent Neural Network Diagram)。

1.2 循环神经网络模型常见的循环神经网络模型包括Elman网络、Jordan网络和长短时记忆网络(Long Short-Term Memory, LSTM)。

Elman网络是一种最简单的循环神经网络模型,每个神经元接收上一时刻的自身输出和外部输入作为输入;Jordan网络在Elman网络的基础上,将当前时刻的自身输出也作为输入。

LSTM是一种具备记忆和遗忘机制的循环神经网络模型,能够有效地解决长期依赖问题。

二、MATLAB中的循环神经网络实现2.1 环境准备在实现循环神经网络之前,我们需要做一些准备工作。

首先,确保已经安装了MATLAB以及神经网络工具箱。

其次,准备好数据集,可以是文本数据、时间序列数据等。

需要注意的是,数据集要经过预处理,例如归一化、分词等。

最后,为了提高训练效果,可以考虑使用GPU加速。

2.2 网络建模在MATLAB中,我们可以通过构建网络模型对象来实现循环神经网络。

首先,选择合适的网络模型。

[matlab工具箱]神经网络NeuralNet

[matlab工具箱]神经网络NeuralNet

[matlab⼯具箱]神经⽹络NeuralNet//⽬的是学习在BP神经⽹络的基础上添加遗传算法,蚁群算法等优化算法来优化⽹络,这是后话。

先简单了解了MATLAB中的神经⽹络⼯具箱,⼯具箱功能还是⾮常强⼤的,已经可以拟合出⾮常多的曲线来分析了。

神经⽹络⼯具箱选择(4种)今天下载了⾃带的example跑了⼀次试⼀下选择隐藏神经元个数训练结束后可以在plot查看各种图表,这⾥只对⼯具箱操作做简单介绍最近⼀段时间在研究如何利⽤预测其销量个数,在⽹上搜索了⼀下,发现了很多模型来预测,⽐如利⽤回归模型、时间序列模型,GM(1,1)模型,可是⾃⼰在结合实际的⼯作内容,发现这⼏种模型预测的精度不是很⾼,于是再在⽹上进⾏搜索,发现神经⽹络模型可以来预测,并且有很多是结合时间序列或者SVM(⽀持向量机)等组合模型来进⾏预测,本⽂结合实际数据,选取了常⽤的BP神经⽹络算法,其算法原理,因⽹上⼀⼤堆,所以在此不必⼀⼀展⽰,并参考了这篇博⽂,运⽤matlab 2016a,给出了下⾯的代码,并最终进⾏了预测clcclear allclose all%bp 神经⽹络的预测代码%载⼊输出和输⼊数据load C:\Users\amzon\Desktop\p.txt;load C:\Users\amzon\Desktop\t.txt;%保存数据到matlab的⼯作路径⾥⾯save p.mat;save t.mat;%注意t必须为⾏向量%赋值给输出p和输⼊tp=p;t=t;%数据的归⼀化处理,利⽤mapminmax函数,使数值归⼀化到[-1.1]之间%该函数使⽤⽅法如下:[y,ps] =mapminmax(x,ymin,ymax),x需归化的数据输⼊,%ymin,ymax为需归化到的范围,不填默认为归化到[-1,1]%返回归化后的值y,以及参数ps,ps在结果反归⼀化中,需要调⽤[p1,ps]=mapminmax(p);[t1,ts]=mapminmax(t);%确定训练数据,测试数据,⼀般是随机的从样本中选取70%的数据作为训练数据%15%的数据作为测试数据,⼀般是使⽤函数dividerand,其⼀般的使⽤⽅法如下:%[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio)[trainsample.p,valsample.p,testsample.p] =dividerand(p,0.7,0.15,0.15);[trainsample.t,valsample.t,testsample.t] =dividerand(t,0.7,0.15,0.15);%建⽴反向传播算法的BP神经⽹络,使⽤newff函数,其⼀般的使⽤⽅法如下%net = newff(minmax(p),[隐层的神经元的个数,输出层的神经元的个数],{隐层神经元的传输函数,输出层的传输函数},'反向传播的训练函数'),其中p为输⼊数据,t为输%tf为神经⽹络的传输函数,默认为'tansig'函数为隐层的传输函数,%purelin函数为输出层的传输函数%⼀般在这⾥还有其他的传输的函数⼀般的如下,如果预测出来的效果不是很好,可以调节%TF1 = 'tansig';TF2 = 'logsig';%TF1 = 'logsig';TF2 = 'purelin';%TF1 = 'logsig';TF2 = 'logsig';%TF1 = 'purelin';TF2 = 'purelin';TF1='tansig';TF2='purelin';net=newff(minmax(p),[10,1],{TF1 TF2},'traingdm');%⽹络创建%⽹络参数的设置net.trainParam.epochs=10000;%训练次数设置net.trainParam.goal=1e-7;%训练⽬标设置net.trainParam.lr=0.01;%学习率设置,应设置为较少值,太⼤虽然会在开始加快收敛速度,但临近最佳点时,会产⽣动荡,⽽致使⽆法收敛net.trainParam.mc=0.9;%动量因⼦的设置,默认为0.9net.trainParam.show=25;%显⽰的间隔次数%指定训练参数% net.trainFcn = 'traingd'; %梯度下降算法% net.trainFcn = 'traingdm'; %动量梯度下降算法% net.trainFcn = 'traingda'; %变学习率梯度下降算法% net.trainFcn = 'traingdx'; %变学习率动量梯度下降算法% (⼤型⽹络的⾸选算法)% net.trainFcn = 'trainrp'; % RPROP(弹性BP)算法,内存需求最⼩%共轭梯度算法% net.trainFcn = 'traincgf'; %Fletcher-Reeves修正算法% net.trainFcn = 'traincgp'; %Polak-Ribiere修正算法,内存需求⽐Fletcher-Reeves修正算法略⼤% net.trainFcn = 'traincgb'; % Powell-Beal复位算法,内存需求⽐Polak-Ribiere修正算法略⼤% (⼤型⽹络的⾸选算法)%net.trainFcn = 'trainscg'; % ScaledConjugate Gradient算法,内存需求与Fletcher-Reeves修正算法相同,计算量⽐上⾯三种算法都⼩很多% net.trainFcn = 'trainbfg'; %Quasi-Newton Algorithms - BFGS Algorithm,计算量和内存需求均⽐共轭梯度算法⼤,但收敛⽐较快% net.trainFcn = 'trainoss'; % OneStep Secant Algorithm,计算量和内存需求均⽐BFGS算法⼩,⽐共轭梯度算法略⼤% (中型⽹络的⾸选算法)%net.trainFcn = 'trainlm'; %Levenberg-Marquardt算法,内存需求最⼤,收敛速度最快% net.trainFcn = 'trainbr'; %贝叶斯正则化算法% 有代表性的五种算法为:'traingdx','trainrp','trainscg','trainoss', 'trainlm'%在这⾥⼀般是选取'trainlm'函数来训练,其算对对应的是Levenberg-Marquardt算法net.trainFcn='trainlm';[net,tr]=train(net,trainsample.p,trainsample.t);%计算仿真,其⼀般⽤sim函数[normtrainoutput,trainPerf]=sim(net,trainsample.p,[],[],trainsample.t);%训练的数据,根据BP得到的结果[normvalidateoutput,validatePerf]=sim(net,valsample.p,[],[],valsample.t);%验证的数据,经BP得到的结果[normtestoutput,testPerf]=sim(net,testsample.p,[],[],testsample.t);%测试数据,经BP得到的结果%将所得的结果进⾏反归⼀化,得到其拟合的数据trainoutput=mapminmax('reverse',normtrainoutput,ts);validateoutput=mapminmax('reverse',normvalidateoutput,ts);testoutput=mapminmax('reverse',normtestoutput,ts);%正常输⼊的数据的反归⼀化的处理,得到其正式值trainvalue=mapminmax('reverse',trainsample.t,ts);%正常的验证数据validatevalue=mapminmax('reverse',valsample.t,ts);%正常的验证的数据testvalue=mapminmax('reverse',testsample.t,ts);%正常的测试数据%做预测,输⼊要预测的数据pnewpnew=[313,256,239]';pnewn=mapminmax(pnew);anewn=sim(net,pnewn);anew=mapminmax('reverse',anewn,ts);%绝对误差的计算errors=trainvalue-trainoutput;%plotregression拟合图figure,plotregression(trainvalue,trainoutput)%误差图figure,plot(1:length(errors),errors,'-b')title('误差变化图')%误差值的正态性的检验figure,hist(errors);%频数直⽅图figure,normplot(errors);%Q-Q图[muhat,sigmahat,muci,sigmaci]=normfit(errors);%参数估计均值,⽅差,均值的0.95置信区间,⽅差的0.95置信区间[h1,sig,ci]= ttest(errors,muhat);%假设检验figure, ploterrcorr(errors);%绘制误差的⾃相关图figure, parcorr(errors);%绘制偏相关图运⾏之后的,结果如下:BP神经⽹络的结果分析图训练数据的梯度和均⽅误差之间的关系图验证数据的梯度与学习次数残差的正态的检验图(Q-Q图)在⽹上,发现可以通过神经⽹络⼯具箱这个GUI界⾯来创建神经⽹络,其⼀般的操作步骤如下:1:在输⼊命令⾥⾯输⼊nntool命令,或者在应⽤程序这个选项下找到Netrual Net Fitting 这个应⽤程序,点击打开,就能看见如下界⾯2:输⼊数据和输出数据的导⼊(在本⽂中选取了matlab⾃带的案例数据)3:随机选择三种类型的数据所占的样本量的⽐例,⼀般选取默认即可4:隐层神经元的确定5:训练算法的选取,⼀般是选择默认即可,选择完成后点击<train>按钮即可运⾏程序6:根据得到的结果,⼀般是MSE的值越⼩,R值越接近1,其训练的效果⽐较,并第⼆张图给出了神经⽹络的各参数的设置以及其最终的结果,其拟合图R越接近1,模型拟合的更好最终的结果图7:如果所得到的模型不能满⾜你的需求,则需重复上述的步骤直⾄能够得到你想要的精确度8:将最终的得到的各种数据以及其拟合值进⾏保存,然后查看,就可以得到所要的拟合值最后参考了⽹上和MATLAB的帮助,给出了⼀些与神经⽹络相关的函数,希望能够帮助⼤家。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab的神经网络工具箱实用指南文章摘要:第一章是神经网络的基本介绍,第二章包括了由工具箱指定的有关网络结构和符号的基本材料以及建立神经网络的一些基本函数,例如new、init、adapt和train。

第三章以反向传播网络为例讲解了反向传播网络的原理和应用的基本过程。

第一章介绍1.神经网络神经网络是单个并行处理元素的集合,我们从生物学神经系统得到启发。

在自然界,网络功能主要由神经节决定,我们可以通过改变连接点的权重来训练神经网络完成特定的功能。

一般的神经网络都是可调节的,或者说可训练的,这样一个特定的输入便可得到要求的输出。

如下图所示。

这里,网络根据输出和目标的比较而调整,直到网络输出和目标匹配。

作为典型,许多输入/目标对应的方法已被用在有监督模式中来训练神经网络。

神经网络已经在各个领域中应用,以实现各种复杂的功能。

这些领域包括:模式识别、鉴定、分类、语音、翻译和控制系统。

如今神经网络能够用来解决常规计算机和人难以解决的问题。

我们主要通过这个工具箱来建立示范的神经网络系统,并应用到工程、金融和其他实际项目中去。

一般普遍使用有监督训练方法,但是也能够通过无监督的训练方法或者直接设计得到其他的神经网络。

无监督网络可以被应用在数据组的辨别上。

一些线形网络和Hopfield网络是直接设计的。

总的来说,有各种各样的设计和学习方法来增强用户的选择。

神经网络领域已经有50年的历史了,但是实际的应用却是在最近15年里,如今神经网络仍快速发展着。

因此,它显然不同与控制系统和最优化系统领域,它们的术语、数学理论和设计过程都已牢固的建立和应用了好多年。

我们没有把神经网络工具箱仅看作一个能正常运行的建好的处理轮廓。

我们宁愿希望它能成为一个有用的工业、教育和研究工具,一个能够帮助用户找到什么能够做什么不能做的工具,一个能够帮助发展和拓宽神经网络领域的工具。

因为这个领域和它的材料是如此新,这个工具箱将给我们解释处理过程,讲述怎样运用它们,并且举例说明它们的成功和失败。

我们相信要成功和满意的使用这个工具箱,对范例和它们的应用的理解是很重要的,并且如果没有这些说明那么用户的埋怨和质询就会把我们淹没。

所以如果我们包括了大量的说明性材料,请保持耐心。

我们希望这些材料能对你有帮助。

这个章节在开始使用神经网络工具箱时包括了一些注释,它也描述了新的图形用户接口和新的运算法则和体系结构,并且它解释了工具箱为了使用模块化网络对象描述而增强的机动性。

最后这一章给出了一个神经网络实际应用的列表并增加了一个新的文本--神经网络设计。

这本书介绍了神经网络的理论和它们的设计和应用,并给出了相当可观的MA TLAB和神经网络工具箱的使用。

2.准备工作基本章节第一章是神经网络的基本介绍,第二章包括了由工具箱指定的有关网络结构和符号的基本材料以及建立神经网络的一些基本函数,例如new、init、adapt和train。

第三章以反向传播网络为例讲解了反向传播网络的原理和应用的基本过程。

帮助和安装神经网络工具箱包含在nnet目录中,键入help nnet可得到帮助主题。

工具箱包含了许多示例。

每一个例子讲述了一个问题,展示了用来解决问题的网络并给出了最后的结果。

显示向导要讨论的神经网络例子和应用代码可以通过键入help nndemos 找到。

安装神经网络工具箱的指令可以在下列两份MATLAB文档中找到:the Installation Guide for MS-Windows and Macintosh 或者the Installation Guide for UNIX。

第二章神经元模型和网络结构1.符号数学符号下面给出等式和数字中用到的基本符号:标量--小写的斜体字.....a,b,c向量--小写加粗的非斜体字.....a,b,c矩阵- 大写加粗的非斜体字.....A,B,C向量表示一组数字数学符号和字符的等价从数学符号到字符的转换或者反过来可以遵循一些规则,为了便于今后引用我们将这些规则列出。

为了从数学符号变为MA TLAB符号用户需要:变上标为细胞数组标号例如变下标为圆括号标号例如和变圆括号标号为二维数组标号例如变数学运算符为MA TLAB 运算符和工具箱函数例如2.神经元模型单神经元下图所示为一个单标量输入且无偏置的神经元。

这个输入标量通过乘以权重为标量w的连结点得到结果wp,这仍是一个标量。

这里,加权的输入wp仅仅是转移函数f的参数,函数的输入是标量a。

右边的神经元有一个标量偏置b,你既可以认为它仅仅是通过求和节点加在结果wp上,也可以认为它把函数f左移了b个单位,偏置除了有一个固定不变的输入值1以外,其他的很像权重。

标量n是加权输入wp和偏置b的和,它作为转移函数f的参数。

函数f是转移函数,它可以为阶跃函数或者曲线函数,它接收参数n给出输出a,下一节将给出各种不同的转移函数。

注意神经元中的w和b 都是可调整的标量参数。

神经网络的中心思想就是参数的可调整使得网络展示需要和令人感兴趣的行为。

这样,我们就可以通过调整权重和偏置参量训练神经网络做一定的工作。

或者神经网络自己调整参数以得到想要的结果。

在这个工具箱里所有的神经元都提供偏置,我们的许多例子中都用到了偏置并且假定它在这个工具箱的大多数情况下都要用到。

可是,如果你愿意的话,你也可以在一个神经元中省略偏置。

正如上面所提到的,在神经元中,标量b是个可调整的参数。

它不是一个输入。

可是驱动偏置的常量1却是一个输入而且当考虑线性输入向量时一定要这样认为。

转移函数在这个工具箱里包括了许多转移函数。

你能在"Transfer Function Graphs"中找到它们的完全列表。

下面列出了三个最常用的函数。

上图所示的阶跃转移函数限制了输出,使得输入参数小于0时输出为0,大于或等于0时输出为1,在第三章中我们将用它来进行分类。

工具箱中有一个函数hardlim来数学上的阶跃,如上图所示。

我们可以输入以下代码n = -5:0.1:5;plot(n,hardlim(n),'c+:');它产生一张在-5到5之间的阶跃函数图。

所有在工具箱中的数学转移函数都能够用同名的函数实现。

线性转移函数如下图所示这种类型的神经元将在第四章的自适应线性滤波中用作线性拟合。

下图显示的曲线转移函数的输入参数是正负区间的任意值,而将输出值限定于0到1之间。

这种传递函数通常用于反向传播(BP)网络,这得益于函数的可微性。

在上面所示的每一个转移函数图的右边方框中的符号代表了对应的函数,这些图表将替换网络图的方框中的f来表示所使用的特定的转移函数。

第13章列出了所有的转移函数和图标。

你能够定义自己的传递函数,你可以不限于使用第13章所列的转移函数。

你能够通过运行示例程序nn2n1来试验一个神经元和各种转移函数。

带向量输入的神经元一个有R个元素输入向量的神经元如下图所示。

这里单个输入元素乘上权重得到加权值输入求和节点。

它们的和是Wp,单行矩阵W和向量p的点乘。

这个神经元有一个偏置b,它加在加权的输入上得到网络输入n,和值n是转移函数f 的参数。

表达式自然可用MATLAB代码表示为:n =W*p + b可是,用户很少要写如此底层的代码,因为这些代码已经被建立到函数中来定义和模拟整个网络。

上面所示的图包括了许多细节。

当我们考虑有许多神经元和可能是许多神经元组成的多层网络时,我们可能会漏掉许多细节。

因此,作者设计了一个简洁的符号代表单个神经元。

这个符号如下图中所示,它将会在以后的多重神经元电路中用到。

这里输入向量p用左边的黑色实心竖条代表,p的维数写在符号p下面,在图中是Rx1。

(注意我们用的是大写字母,正如在以前句子里R用来表示向量大小时一样。

)因此,p是一个有R个输入元素的向量。

这个输入列向量乘上R列单行矩阵W。

和以前一样,常量1作为一个输入乘上偏置标量b,给转移函数的网络输入是n,它是偏置与乘积Wp的和。

这个和值传给转移函数f得到网络输出a,在这个例子中它是一个标量。

注意如果我们有超过一个神经元,网络输出就有可能是一个向量。

上面图中定义了神经网络的一层。

一层包括权重的组合,乘法和加法操作(这里就是向量乘积Wp),偏置b和转移函数f。

输入数组,即向量p不包括在一层中。

这个简洁的网络符号每一次都会被用到,向量的大小会显示在矩阵变量名字的下面。

我们希望这个符号会让你理解神经网络的结构以及与之相关的矩阵数学。

正如前面所讨论的,当特定的转移函数在一张图中被使用时,转移函数将用上面所示的符号代替。

下面是几个例子:你可以通过运行示例程序nnd2n2来试验有2个元素的神经元。

3.网络结构两个或更多的上面所示的神经元可以组合成一层,一个典型的网络可包括一层或者多层。

我们首先来研究神经元层。

单层神经元网络有R输入元素和S个神经元组成的单层网络如下图所示:在一个单层网络中,输入向量p的每一个元素都通过权重矩阵W和每一个神经元连接起来。

第I个神经元通过把所有加权的输入和偏置加起来得到它自己的标量输出n(i)。

不同的n(i)合起来形成了有S个元素的网络输入向量n。

最后,网络层输出一个列向量a,我们在图的底部显示了a的表达式。

注意输入元素个数R和神经元个数S通常是不等的,我们也并不需要这两者相等。

你也可以建立一个简单的复合神经元层,它将上面所示的网络并行的合在一起,使用不同的转移函数。

所有的网络都有相同的输入,而每一个网络都会产生输出。

输入向量元素经加权矩阵W作用输入网络。

W=注意加权矩阵W的行标标记权重的目的神经元,列标标记待加权的输入标号。

因此,的标号表示从输入信号的第二个元素到第一个神经元的权重是。

有S个神经元和R个输入元素的神经网络也能够简化成以下符号:这里,p是一个有R个元素的输入向量,W是一个SxR的矩阵,a和b是有S个元素的向量。

如前面所定义的,神经元层包括权重矩阵,乘法运算,偏置向量b,求和符和转移函数框。

输入和层我们将要讨论多层网络,所以我们需要拓展我们的符号来描述这样的网络。

特别是我们要弄清连接输入的权重矩阵和连接层的权重矩阵之间的区别。

我们也要分清权重矩阵的目的和源。

我们将把连接输入的权重矩阵成为输入权重,把来自层输出的权重矩阵称为层矩阵。

进一步说,我们在各个权重和其他网络元素中将用上标区分源(第二个标号)和目的(第一个标号)。

作为示例,我们用简化的形式重画了上面所画的单层多输入网络。

你可以看到,我们把连接输入向量p的权重矩阵标记为输入权重矩阵(IW1,1),第二个标号1是源,第二个标号1是目的。

同样,第一层的元素,比如偏置、网络输入和输出都有上标1来表示它们属于第一层。

在下一章节,我们将用LW表示层权重矩阵,用IW表示输入权重矩阵。

你可以复习以下这一章开始的符号那一节,它把特定的网络net中用数学符号表示的层权重矩阵转换成代码,如下所示:IW1,1 net. IW{1,1}这样,你就可以写代码来得到对转移函数的网络输入了:n{1}=net.IW{1,1}*p+net.b{1}多层神经元网络一个网络可以有几层,每一层都有权重矩阵W,偏置向量b和输出向量a。

相关文档
最新文档