门式钢架的受力分析实例

合集下载

浅谈门式刚架结构平房粮仓柱脚及基础设计实例与要点

浅谈门式刚架结构平房粮仓柱脚及基础设计实例与要点

浅谈门式刚架结构平房粮仓柱脚及基础设计实例与要点摘要:门式刚架结构形式的平房粮仓具备投资省、施工周期短、适应性强等优点,因而被大量应用于新建、改建的项目中。

门式刚架平房粮仓与普通门式刚架房屋相比较,前者的刚架结构要承受由堆粮产生的较大侧推力,在此工况下,其柱脚及基础设计也与普通情况有较大的区别。

本文结合实例提供一种设计方法,并将其中的要点与各位同行分享。

关键词:门式刚架,平房粮仓,抗剪键,配筋地坪Heel&Foundation Design examples and KeyPoints ofPortal FramestructureBungalow BarnFu Ruijun(Beijing Biotechina Environment Co., Ltd, Beijing 100083, China)Abstract:The portal frame structure bungalow barn has the advantages of investment saving, short construction period, strong adaptability, so it is widely used in construction, renovation project. Portal frame bungalow barn and common portal frame building are compared, the former rigid frame structure to withstand greater thrust produced by grain piles, under this condition, the column pedestaland foundation design also has the big difference with the ordinary circumstances. This paper provides a design method, and the key points to share with colleagues.Key words:portal frame;bungalow barn;shear key;reinforced ground1 前言平房粮仓按其结构形式的不同, 可分为折线形屋架平房仓、门式刚架平房仓、拱板平房仓等。

门式刚架设计实例

门式刚架设计实例

门式刚架设计实例(总27页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--轻型门式刚架——计算原理和设计实例 <9>来源:发布时间:06-06 编辑:段文雁二、设计实例一1 设计资料门式刚架车间柱网布置:长度60m;柱距6m;跨度18m。

刚架檐高:6m;屋面坡度1:10;屋面材料:夹心板;墙面材料:夹心板;天沟:钢板天沟;基础混凝土标号为C25,fc= N/mm2;材质选用:Q235-B f=215 N/mm2 f=125 N/mm2。

2 荷载取值静载:为 kN/m2;活载: kN/m2 ;雪载: kN/m2;风载:基本风压W0= kN/m2,地面粗糙度B类,风载体型系数如下图:图3-41 风载体型系数示意图3 荷载组合(1). 恒载 + 活载(2). 恒载 + 风载(3). 恒载 + 活载+ × 风载(4). 恒载+× 活载 + 风载4 内力计算(1)计算模型图3-42 计算模型示意图(2)工况荷载取用恒载活载左风右风图3-43 刚架上的恒载、活载、风载示意图各单元信息如下表:表3-5 单元信息表单元号截面名称长度(mm) 面积(mm2) 绕2轴惯性矩(x104mm4) 绕3轴惯性矩(x104mm4)1 Z250~450x160x8x10 5700 973974 82 L450x180x8x10 9045 7040 974 227283 L450x180x8x10 9045 7040 974 22728表中:面积和惯性矩的上下行分别指小头和大头的值图3-44 梁柱截面示意简图(3)计算结果刚架梁柱的M、N、Q见下图所示:图3-45 恒载作用时的刚架M、N、Q图图3-46 活载作用时的刚架M、N、Q图图3-47 (左风)风载作用时的刚架M、N、Q图选取荷载效应组合:(恒载 + 活载)情况下的构件内力值进行验算。

组合内力数值如下表所示:表3-6 组合内力表单元号小节点轴力N(kN) 小节点剪力Q2(kN) 小节点弯距M 大节点轴力N(kN) 大节点剪力Q2(kN) 大节点弯距M12345构件截面验算根据协会规程第条进行板件最大宽厚比验算。

罩棚门式刚架钢锚箱受力性能分析

罩棚门式刚架钢锚箱受力性能分析

P d r n e E a ai fHi w yF a rs【 】 e oma c v l t n o ih a e t e S . u o g u
【]N 1 1 , U P A T N AR O ME[] 5E 3 7 E RO E N S A D D N R S. 【】 6 囝书 明. 限元仿 真 方法 评价 护 栏安 全性 能 的可 行性 [ . 动 有 J振 】
况下 , 由于荷 载对 中腹板作用的不平衡 , 使得 中腹 板扭 曲变形 , 拉索锚 固区传力机制发生变化 , 基本 靠与钢锚箱 连接处前端和末端传递受力 ,应 力集 中明 显 ,接近 甚 至 超 过 钢 材 屈 服 强度 ,偏 于不 安
全。
图 9 罩棚 实景
参 考 文 献
【】 雪松 , 刚 , 1丁 熊 谢斌 . 大跨 度钢 箱梁 斜拉桥 索梁 锚固结 构 的发 展 与应 用[] 界桥梁 ,0 74:0 7 . J. 世 2 0 () - 3 7 [】 小珍 , 2李 蔡婧 , 士 中. 强 大跨度 钢箱 梁斜拉 桥索 梁锚 固结构形 式 的 比较 [1 J. 工程 力学 ,04 2 () 4 9 . 2 0 ,16: — 0 8
21 年 7 01 月第 7 期
城 市 道桥 与 防 洪
道路交通
8 3
罩 棚 门 式 刚架 钢 锚 箱 受 力 性 能 分 析
乔 建 刚 ,刘 志 才 , 传 亮 赵
( 天津市 市政 工程 设计 研 究院 , 津市 30 5 ) 天 00 1
摘 要 : 津京 津塘 高速公 路机 场 收费 站罩棚 结构 形式 为 带水 平拉 索 的钢箱 截 面拱形 两 铰 门式 刚架 , 中拉 索锚 固采用 了钢 天 其 锚箱 的形 式 。 锚箱 式锚 固形 式构 造复 杂, 钢 受力 集 中, 控制 设计 的关 键部 位 。 对钢 锚 箱的 布置 方式 , 出 了两种 布置方 案 ; 是 针 提

门式刚架荷载计算及内力组合

门式刚架荷载计算及内力组合

(一)荷载分析及受力简图:1、永久荷载永久荷载包括结构构件的自重和悬挂在结构上的非结构构件的重力荷载,如屋面、檩条、支撑、吊顶、墙面构件和刚架自重等。

恒载标准值(对水平投影面):板及保温层 0.30kN/㎡檩条 0.10kN/㎡悬挂设备 0.10kN/㎡0.50kN/㎡换算为线荷载:7.50.5 3.75 3.8/q KN m =⨯=≈2、可变荷载标准值门式刚架结构设计的主要依据为《钢结构设计规范》(GB50017-2003)和《冷弯薄壁型钢结构技术规范》(GB50018-2002)。

对于屋面结构,《钢结构设计规范》规定活荷载为0.5KN/2m ,但构件的荷载面积大于602m 的可乘折减系数0.6,门式刚架符合此条件,故活荷载标准值取0.3KN/2m 。

由荷载规范查得,大连地区雪荷载标准值为0.40kN/㎡。

屋面活荷载取为 0.30kN/㎡雪荷载为 0.40kN/㎡取二者较大值 0.40kN/㎡换算为线荷载:7.50.43/q KN m =⨯=3、风荷载标准值 :0k z s z ωβμμω=(1) 基本风压值 20kN/m 6825.065.005.1=⨯=ω(2) 高度Z 处的风振系数z β 取1.0(门式刚架高度没有超过30m ,高宽比不大于1.5,不考虑风振系数)(3) 风压高度变化系数z μ由地面粗糙度类别为B 类,查表得:h=10m ,z μ=1.00;h=15m ,z μ=1.14内插:低跨刚架,h=10.5m ,z μ= 1.14 1.111.00(10.510)1510-+⨯--=1.014; 高跨刚架,h=15.7m ,z μ= 1.25 1.141.14(15.715)2015-+⨯--=1.155。

(4) 风荷载体型系数s μ其中,s μ=0.2010.2 4.760.032301230arctg -⨯=⨯=+ 1s μ=12 1.00.6(1)0.6(12)0.36915.710.5h h ⨯-=⨯-=+- 各部分风荷载标准值计算:w 1k =0z s z βμμω=7.5×1.0×0.8×1.014×0.6825=4.15 kN/mw 2k =0z s z βμμω=7.5×1.0×0.032×1.014×0.6825=0.17kN/mw 3k =0z s z βμμω=7.5×1.0×(-0.6)×1.014×0.6825=-3.11kN/mw 4k = 0z s z βμμω=7.5×1.0×0.369×1.014×0.6825=1.91 kN/mw 5k = 0z s z βμμω=7.5×1.0×(-0.2)×1.014×0.6825=-1.04 kN/mw 6k = w 7k =w 8k =0z s z βμμω=7.5×1.0×(-0.5)×1.014×0.6825=-2.60 kN/mw 9k = w 10k =0z s z βμμω=7.5×1.0×(-0.4)×1.014×0. 6825=-2.08 kN/m用PKPM 计算门式刚架风荷载结果如下:其中,'1k ω=4.2KN/m ≈1k ω=4.15 kN/m ;'2kω=0.2KN/m ≈2k ω=0.17 kN/m ; '3k ω=-3.1N/m ≈1k ω=-3.11 kN/m ;'4kω=2.2KN/m ≈2k ω=1.91 kN/m ; '5k ω=-1.2KN/m ≈1k ω=-1.04kN/m ;'6kω=-3.0KN/m ≈6k ω=-2.60kN/m ; '7kω=-3.0KN/m ≈7k ω=-2.60kN/m ;'8k ω=-2.6KN/m =8k ω; '9k ω=-2.1KN/m ≈9k ω=-2.08kN/m ;'10kω=-2.1KN/m ≈10k ω=-2.08kN/m 。

门式刚架计算原理和设计实例之五

门式刚架计算原理和设计实例之五

门式刚架计算原理和设计实例之五第五章辅助结构系统轻型钢结构的辅助结构系统包括挑檐、⾬篷、吊车梁、⽜腿、楼梯、栏杆、检修平台和⼥⼉墙等,它们构成了轻型钢结构完整的建筑和结构功能。

第⼀节⾬篷和挑檐⼀、⾬篷钢结构⾬篷同钢筋混凝⼟结构⾬篷⼀样,按排⽔⽅式可分为有组织排⽔和⾃由落⽔两种。

钢结构⾬篷的主要受⼒构件为⾬篷梁,其常⽤的截⾯形式有轧制普通⼯字钢、槽钢、H型钢、焊接⼯字形截⾯等,当⾬篷的造型为复杂的曲线时亦可选⽤矩形管或箱形截⾯等。

在轻型门式刚架结构中,⾬篷宽度通常取柱距,即每柱上挑出⼀根⾬篷梁,⾬篷梁间通过C型钢连接形成平⾯。

挑出长度通常为1.5m 或更⼤,视建筑要求⽽定。

⾬篷梁可做成等截⾯或变截⾯,截⾯⾼度应按承载能⼒计算确定。

通常情况下⾬篷梁挑出的长度较⼩,按构造做法,其截⾯做成与其相连的C型钢截⾯同⾼:当柱距为6m时,连接⾬篷梁的C型钢为16#,⾬篷梁亦取16#槽钢;当柱距为9m时,连接⾬篷梁的C型钢为24#,⾬篷梁取25#槽钢;有组织排⽔的⾬篷可将天沟设置在⾬篷的根部或将天沟悬挂在⾬篷的端部,⾬篷四周设置凸沿,以便能有组织的将⾬⽔排⼊天沟内。

图5-1~5-3为⼏种常见⾬篷的做法。

(a)(b)图5-1 ⾃由落⽔⾬篷(a)(b)(c)图5-2 有组织排⽔⾬篷(a)A-A (b)B-B(c)C-C图5-3 ⾬篷节点详图⼆、挑檐在轻型门式刚架⼚房结构中,通常将天沟(彩钢或不锈钢)放置在挑檐上,形成外天沟。

挑檐挑出构件的间距取柱距,即挑出构件作为主刚架的⼀部分,挑出构件之间由C型钢檩条连接,。

图5-4所⽰为典型的挑檐构造。

图5-4 典型的挑檐构造挑檐柱承受C型钢墙梁传递轻质墙体的竖向荷载和风荷载,挑檐梁主要承受考虑天沟积⽔满布荷载或积雪荷载。

挑檐各构件(挑檐柱、挑檐梁)截⾯通常采⽤轧制⼯字钢或⾼频H型钢,截⾯⼤⼩由承载⼒计算确定。

挑檐计算简图如图5-5所⽰,将挑檐柱和挑檐梁⽰作⼀个整体,端部与刚架柱固接,即作为悬臂构件计算。

门式刚架计算原理和设计实例之二

门式刚架计算原理和设计实例之二

第二章轻型门式钢刚架设计的差不多理论第一节结构布置和材料选用一、结构组成轻型门式钢刚架的结构体系包括以下组成部分:(1)主结构:横向刚架(包括中部和端部刚架)、楼面梁、托梁、支撑体系等;(2)次结构:屋面檩条和墙面檩条等;(3)围护结构:屋面板和墙板;(4)辅助结构:楼梯、平台、扶栏等;(5)基础。

图2-1给出了轻型门式钢刚架组成的图示讲明。

图2-1 轻型钢结构的组成平面门式刚架和支撑体系再加上托梁、楼面梁等组成了轻型钢结构的要紧受力骨架,即主结构体系。

屋面檩条和墙面檩条既是围护材料的支承结构,又为主结构梁柱提供了部分侧向支撑作用,构成了轻型钢建筑的次结构。

屋面板和墙面板起整个结构的围护和封闭作用,由于蒙皮效应事实上也增加了轻型钢建筑的整体刚度。

外部荷载直接作用在围护结构上。

其中,竖向和横向荷载通过次结构传递到主结构的横向门式刚架上,依靠门式刚架的自身刚度抵抗外部作用。

纵向风荷载通过屋面和墙面支撑传递到基础上。

二、结构布置轻型门式钢刚架的跨度和柱距要紧依照工艺和建筑要求确定。

结构布置要考虑的要紧问题是温度区间的确定和支撑体系的布置。

考虑到温度效应,轻型钢结构建筑的纵向温度区段长度不应大于300m,横向温度区段不应大于150m。

当建筑尺寸超过时,应设置温度伸缩缝。

温度伸缩缝可通过设置双柱,或设置次结构及檩条的可调节构造来实现。

支撑布置的目的是使每个温度区段或分期建设的区段建筑能构成稳定的空间结构骨架。

布置的要紧原则如下:(1)柱间支撑和屋面支撑必须布置在同一开间内形成抵抗纵向荷载的支撑桁架。

支撑桁架的直杆和单斜杆应采纳刚性系杆,交叉斜杆可采纳柔性构件。

刚性系杆是指圆管、H型截面、Z或C型冷弯薄壁截面等,柔性构件是指圆钢、拉索等只受拉截面。

柔性拉杆必须施加预紧力以抵消其自重作用引起的下垂;(2)支撑的间距一般为30m-40m,不应大于60m;(3)支撑可布置在温度区间的第一个或第二个开间,当布置在第二个开间时,第一开间的相应位置应设置刚性系杆;(4) 45的支撑斜杆能最有效地传递水平荷载,当柱子较高导致单层支撑构件角度过大时应考虑设置双层柱间支撑;(5)刚架柱顶、屋脊等转折处应设置刚性系杆。

门式钢架设计实例(带计算书)

门式钢架设计实例(带计算书)

门式钢架设计实例(带计算书)门式刚架⼚房设计计算书门式刚架⼚房设计计算书⼀、设计资料该⼚房采⽤单跨双坡门式刚架,⼚房跨度21m ,长度90m ,柱距9m ,檐⾼7.5m ,屋⾯坡度1/10。

刚架为等截⾯的梁、柱,柱脚为铰接。

材料采⽤Q235钢材,焊条采⽤E43型。

22750.6450/160/mm EPS mm N mm g mm ≥2y 屋⾯和墙⾯采⽤厚夹芯板,底⾯和外⾯⼆层采⽤厚镀锌彩板,锌板厚度为275/gm ;檩条采⽤⾼强镀锌冷弯薄壁卷边Z 形钢檩条,屈服强度f ,镀锌厚度为。

(不考虑墙⾯⾃重)⾃然条件:基本风压:20.5/O W KN m =,基本雪压20.3/KN m 地⾯粗糙度B 类⼆、结构平⾯柱⽹及⽀撑布置该⼚房长度90m ,跨度21m ,柱距9m ,共有11榀刚架,由于纵向温度区段不⼤于300m 、横向温度区段不⼤于150m ,因此不⽤设置伸缩缝。

檩条间距为1.5m 。

⼚房长度>60m ,因此在⼚房第⼆开间和中部设置屋盖横向⽔平⽀撑;并在屋盖相应部位设置檩条、斜拉条、拉条和撑杆;同时应该在与屋盖横向⽔平⽀撑相对应的柱间设置柱间⽀撑,由于柱⾼<柱距,因此柱间⽀撑不⽤分层布置。

(布置图详见施⼯图)三、荷载的计算1、计算模型选取取⼀榀刚架进⾏分析,柱脚采⽤铰接,刚架梁和柱采⽤等截⾯设计。

⼚房檐⾼7.5m ,考虑到檩条和梁截⾯⾃⾝⾼度,近似取柱⾼为7.2m ;屋⾯坡度为1:10。

因此得到刚架计算模型:2.荷载取值屋⾯⾃重:屋⾯板:0.182/KN m 檩条⽀撑:0.152/KN m 横梁⾃重:0.152/KN m 总计:0.482/KN m 屋⾯雪荷载:0.32/KN m屋⾯活荷载:0.52/KN m (与雪荷载不同时考虑)柱⾃重:0.352/KN m风载:基本风压200.5/W kN m = 3.各部分作⽤荷载:(1)屋⾯荷载:标准值: 10.489 4.30/cos KN M θ=柱⾝恒载:0.359 3.15/KN M ?=kn/m(2)屋⾯活载屋⾯雪荷载⼩于屋⾯活荷载,取活荷载10.509 4.50/cos KN M θ=(3)风荷载010 1.0k z s z s h m ωµµωµµ=≤ 以风左吹为例计算,风右吹同理计算:根据公式计算:根据查表,取,根据门式刚架的设计规范,取下图:(地⾯粗糙度B 类)风载体形系数⽰意图2122231.00.250.50.125/0.1259 1.125/1.0 1.00.50.50/0.509 4.5/1.00.550.50.275/0.2759 2.475/1.00.650kN m q kN m kN m q kN m kN m q kN m ωωωω∴=??==?==-??=-=-?=-=-??=-=-?=-=-??k k k k 迎风⾯侧⾯,屋顶,背风⾯侧⾯,屋顶24.50.325/0.3259 2.925/kN m q kN m =-=-?=-,荷载如下图:kn/m4.内⼒计算:(1)截⾯形式及尺⼨初选:梁柱都采⽤焊接的H型钢68:梁的截⾯⾼度h⼀般取(1/301/45)l,故取梁截⾯⾼度为600mm;暂取H600300,截⾯尺⼨见图所⽰柱的截⾯采⽤与梁相同截⾯截⾯名称长度()mm⾯积2()mmx I 64(10)mm ?x W 43(10)mm ?y I 64(10)mm ?y W 43(10)mm ?x i柱 60030068H7200 9472 520 173 36 24234 61.6 梁60030068H10552 9472520 173 36 24234 61.68668612522.0610947210 1.9510, 2.06105201010 1.0710x EA kn EI kn m --==?=?=??(2)截⾯内⼒:根据各个计算简图,⽤结构⼒学求解器计算,得结构在各种荷载作⽤下的内计算项⽬计算简图及内⼒值(M 、N 、Q) 备注恒载作⽤恒载下弯矩恒载下剪⼒弯矩图剪⼒图“+” →轴⼒图(拉为正,压为负)恒载下轴⼒(忽略柱⾃重)活荷载作⽤活荷载(标准值) 弯矩图弯矩图活荷载作⽤活荷载(标准值)剪⼒图活荷载(标准值)轴⼒图剪⼒图“+”→轴⼒图(拉为正,压为负)作⽤风荷载(标准值)弯矩图.弯矩图剪⼒图“+”风荷载(标准值)剪⼒图风荷载(标准值)轴⼒图→轴⼒图(拉为正,压为负)向作⽤,风荷载只引起剪⼒不同,⽽剪⼒不起控制作⽤)按承载能⼒极限状态进⾏内⼒分析,需要进⾏以下可能的组合:① 1.2*恒载效应+1.4*活载效应② 1.2*恒载效应+1.4*风载效应③ 1.2*恒载效应+1.4*0.85*{活载效应+风载效应}取四个控制截⾯:如下图:各情况作⽤下的截⾯内⼒截⾯内⼒恒载活载左风Ⅰ-ⅠM000 N-45.36-47.2546.95 Q-19.32-18.0524.55内⼒组合值控制内⼒组合项⽬有:与相应的N,V(以最⼤正弯矩控制)①+Mmax与相应的N,V(以最⼤负弯矩控制)②-Mmax③ N与相应的M,V(以最⼤轴⼒控制)max与相应的M,V(以最⼩轴⼒控制)④ Nmin所以以上内⼒组合值,各截⾯的控制内⼒为:1-1截⾯的控制内⼒为0120.5848.45M N KN Q KN ==-=-,,2-2截⾯的控制内⼒为335.33120.5848.45M KN M N KN Q KN =-?=-=-,, 3-3截⾯的控制内⼒为335.3364.30115.40M KN M N KN Q KN =-?=-=,, 4-4截⾯的控制内⼒为246.7857.82 5.79M KN M N KN Q KN =?=-=,, A :刚架柱验算:取2-2截⾯内⼒平⾯内长度计算系数:00010.520.45 1.4620.45 1.46 2.667.27.2 2.6619.1x R R l K I H H Mµµ=+==∴=+?==?=c I ,其中K=,,,7200/23600mm ==0Y 平⾯外计算长度:考虑压型钢板墙⾯与墙梁紧密连接,起到应⼒蒙⽪作⽤,与柱连接的墙梁可作为柱平⾯外的⽀承点,但为了安全起见计算长度按两个墙梁间距考虑,即H19100360081.658.423461.6x y λλ∴====,⑴局部稳定验算构件局部稳定验算是通过限制板件的宽厚⽐来实现的。

门式刚架最大承受荷载的计算分析

门式刚架最大承受荷载的计算分析

门式刚架最大承受荷载的计算分析摘要:门式刚架是一种较为成熟的结构体系。

门式刚架轻型房屋钢结构具有受力简单、传力路径明确、构件制作快键、便于工厂化加工、施工周期短等特点。

因此广泛应用于工业、商业及文化娱乐公共设施等工业与民用建筑中。

普通门式刚架轻型房屋钢结构的设计理论、计算方法、节点制作在传统设计中均有章可依。

然而,关于门式刚架的最大承载计算较少。

关键词:门式刚架;钢结构设计;最大荷载1轻型钢结构在我国的发展现状建筑工程中通常将按建筑面积平摊后,每平方米用钢量小于40公斤的钢结构房屋称为轻型钢结构。

轻型钢结构的层数一般为单层或二层,屋面、墙面通常采用轻质材料,其荷载较轻。

这种结构外形简洁、美观、节省钢材、安装方便、施工速度快、造价相对较低,并可形成系列化和装配化,能像其它商品一样,进行批量生产,是目前最具有竞争力的结构形式之一。

由于门式刚架轻钢结构具有许多其他结构所不具备的优点,而且经济效益十分显著,因此这种结构形式在国外一经推出就得到了广泛应用。

国外轻型钢结构发展较早,由于汽车工业的发展,最初用于建造私人汽车库等简易房屋。

二次世界大战时期,由于战争的需要,一些拆装方便的轻钢结构建筑用于营房和库房。

60年代以来,国外建筑钢材的发展有了很大突破,色彩丰富而耐久的彩色压型钢板的出现,以及H型钢和冷弯型钢的问世,极大地推动了轻型钢结构的发展,至今已形成为一种特殊的商品。

业主不是带着图纸委托加工,而是向承包商定购某种轻型钢结构房屋,承包商在短时间内按业主要求按质建成,并交付使用。

这种高质量的快速供货方式,使业主感到十分满意,轻钢结构得以迅速发展。

目前,欧美各国由轻钢结构体系建造的非居住单层建筑物占50%以上,日本新建的1—4层建筑大多采用轻钢结构。

许多国家如英、美、日、澳等国家己作为一种经济快捷的建筑结构体系,以商品的形式出售。

近几年以来,随着我国钢材产量的增加和焊接H型钢的出现,我国轻钢结构发展迅速。

特别是随着门式刚架轻型房屋钢结构技术规程6C(Ecs102:98)的颁布实施,对推动我国门式刚架轻型房屋钢结构的发展起了显著作用。

门式刚架结构的抗震分析

门式刚架结构的抗震分析

门式刚架结构的抗震分析摘要:《门式刚架轻型房屋钢结构技术规程》(CECS102;2002)对门式刚架结构的抗震计算规定不是十分明确。

通过地震烈度、刚架跨度、刚架高度等几种参数的组合,计算分析了单跨门式刚架结构的抗震设计,供相关技术人员参考。

关键词:门式刚架结构抗震地震烈度刚架跨度刚架高度一、引言对于门式刚架的抗震设计,《建筑抗震设计规范》(GB50011-2010)考虑到轻型房屋钢结构特点,抗震规范5.1.2条第一款规定轻型房屋钢结构抗震设计可按底部剪力法计算,当地震作用效应组合控制作用时,应对轻型钢结构的特点采取相应的抗震构造措施。

《门式刚架轻型房屋钢结构技术规程》[1]规定,单层门式刚架轻型房屋钢结构自重小,承载力一般不受地震作用效应组合控制,通长可不进行抗震计算。

但同时又补充规定,对于宽阔刚架,或高度很大的刚架,或很长的纵向刚架,或有夹层、吊重、桥式吊车等情况,则需进行地震作用效应组合验算。

在什么情况下地震作用效应组合起控制作用,需要进行抗震计算,规范中并没有明确规定,设计人员也不是十分清楚。

本文通过大量的计算分析,从跨度、纵向长度两个方面给出了单跨无吊车门式刚架结构需要进行抗震设计的临界参考尺寸。

二、抗震分析参数的确定具体设计时,各种设计参数较多,不能全部列举,仅对下面一些带有普遍性的相关参数进行分析:(1)地震参数地震烈度不小于9度,门式刚架要进行抗震设计,因此主要分析设防烈度为7、8度两种情况下的影响。

场地类别取Ⅱ类,设计地震分组计算时取第一组。

根据《建筑抗震设计规范》规定及轻钢规范3.1.6条规定,门式钢结构刚架的阻尼比取0.05。

一般情况下,门式刚架结构的特征周期都比较短,其值大多数位于反应谱曲线平直段所对应的特征周期时间段内。

因此在计算时水平地震影响系数取其最大值。

柱间支撑设计时,在风荷载作用下,按端部支撑承担一侧山墙的所有风荷载计算:地震作用下,按每道支撑承担36m长度(或柱间支撑间距长度)范围产生的地震力计算。

门式轻型钢结构的隅撑设计及其受力分析

门式轻型钢结构的隅撑设计及其受力分析

门式轻型钢结构的隅撑设计及其受力分析————————————————————————————————作者: ————————————————————————————————日期:ﻩ门式轻型钢结构的隅撑设计及其受力分析来源作者:宋新利发布于2012/9/4 16:27:44 评论(1)有2662人阅读1 概述随着轻钢结构的发展,大跨度屋面梁的应用随处可见。

为增加屋面钢梁的平面外刚度以及防止下翼缘在受压状态时的失稳, 特设置隅撑;隅撑选型以热轧角钢居多, 一侧连接在钢梁下翼缘或腹板处,另一侧连接在屋面檩条上,一般和钢梁腹板呈45°夹角, 最终形成由隅撑、檩条、钢梁组成的三角形稳定体系,见图1。

ﻫ图1 钢梁隅撑安装示意图2009年11月份,河南地区遭遇了50年一遇的罕见暴雪, 许多轻型房屋钢结构工程都遭到了不同程度的破坏。

破坏的部位多发生在屋面檩条等次钢部位, 破坏的形式多表现在檩条挠度过大、拉条拉断、屋面板漏水等现象; 但也出现了部分结构倒塌的事故, 下面是一组雪灾引起厂房倒塌的实例照片, 见图2; 通过这些照片来帮助我们理解隅撑在轻钢厂房中所起的作用。

照片中可以看出:压塌处梁柱破坏照片1~4 ﻫ图2一组雪灾引起厂房倒塌的实例照片(1)靠近柱端的檩条位置没有设置隅撑。

在梁柱节点区域,负弯矩的存在引起钢梁下翼缘受压, 当雪荷载超载后翼缘发生屈曲, 丧失承载力; ﻫ( 2) 部分隅撑连接破坏或发生屈曲, 丧失承载力,继而失去对钢梁的支撑约束, 引起钢梁侧向扭转破坏; ﻫ( 3) 钢梁屈曲部位不一定在应力最大部位,有些是发生在3 m间距的隅撑空档处, 由此可见在梁端部位的隅撑应该加密。

2隅撑的设置及受力分析ﻫ21隅撑的设置ﻫ《门式刚架轻型房屋钢结构技术规程》( CECS102-2002) (以下简称为《规程》) 中规定:隅撑的设置宜对称布置, 当有困难时也可单侧布置, 当隅撑对称布置时, 单个隅撑的轴向压力可取公式计算的一半。

门式轻型钢结构的隅撑设计及其受力分析

门式轻型钢结构的隅撑设计及其受力分析
中 图分 类 号 :T 3 7 U3 文 献 标 识 码 :B 文章编号 :17 4 1 (0 0 4— 0 3— 2 6 2— 0 1 2 1 )0 0 4 0
许多参考 书中对 隅撑 的分 析 以纯受压 杆件 居 多 ,我们 针对设置 的单 隅撑 和对称 设置 的双 隅撑 ,并根 据各 种工况 荷载下进行 了受力 分析 ,见 图 3 。 ( ) 钢梁扭转下 的隅撑受 力分析 。 1
¨ ¨ ¨ ¨ ¨ l
隅 、 梁
¨ ¨ ¨ ¨ ¨ ¨ l
隅 、 /
20 0 9年 1 月份 ,河南 地 区遭遇 了 5 1 O年 一遇 的罕 见暴 雪 ,许多轻型 房屋 钢 结构 工 程都 遭 到 了不 同 程度 的破 坏 。 破坏的部位多发生 在屋 面檩 条等 次钢 部位 ,破坏 的形式 多 表现在檩条挠 度过 大 、拉 条拉 断 、屋面 板漏 水等 现 象 ;但 也出现了部分结构 倒塌 的事 故 ,下 面是 一组 雪灾 引起 厂房 倒 塌的实例照片 ,见图 2 ;通过这些照片来 帮助 我们理解隅 撑在轻钢 厂房中所起 的作用 。照片 中可以看出 。


N( 力 )、 压 、

I J
l 钢 梁


隅力\J梁 撑 、『 、 、钢 、I l N拉 )、 (
\ 一 ,

侧 向 扭 转
侧 向 扭 转

隅 撑 、 、 、
\ l 梁/ I / 钢


隅撑 、 、

、 l 梁, 、 l /, 钢

+ 拇 舞
压一拉设计 。
《 门式 刚 架 轻 型 房 屋 钢 结 构 技 术 规 程 》( E S 12 C C 0 :

不同建筑结构实例与分析

不同建筑结构实例与分析

不同建筑结构实例与分析一、一样平板结构实例一:日本小住宅小屋周围的农场种植着蔬菜,日本漂亮的四季在那个地址轮回不息。

建筑与自然共存。

小屋离日本避暑胜地不远,那个地址健壮的生长着西红柿和黄瓜。

按日本标准看,那个地址的夏天较热冬季也较冷。

因此建筑师设计了一个不依托空调的冬暖夏凉室内自然环境。

扇形的平面布置,开口大的一边朝南,温暖的阳光在冬季进入建筑内部,在夏日被屋檐遮挡,南北双向开窗引入对流风。

尽管布局简单,可是不同的房间有不一样的风光。

建筑评论:从照片中咱们能够清楚地看到该建筑是木构的梁板式结构。

这种结构超级大体适合于建造小型住宅和多层建筑。

本建筑充分利用了梁板结构的空间性质,营造了一个超级舒畅的空间感受。

实例二:巴塞罗那的111社会保障住宅整个建筑为混凝土建筑,朴实无华的建筑也因此成了前方松林最好的背景,映射着景观的转变的阴影和自然的纹理。

表皮独特的波浪状均为植模板现场浇筑。

其工业化的水准保证了完工时刻。

最后形成的表皮节拍鲜明,明暗对照强烈,并与周围的松林相得益彰。

建筑评论:从第二张图咱们能够看出这栋建筑是无梁式平板,结构这种结构没有梁更为美观。

从内部空间来看该建筑营造了大量的室内灰空间,表现出了建筑师追求邻里和睦的社区精神。

二、悬挑结构实例一:流水别墅别墅总共分为三层,建筑的结构运用了钢筋混凝土。

它的每—层楼板连同边上的栏墙支承在墙和柱墩上,各层的空间大小和形状各不相同,筑师充分利用了钢筋混凝土结构的悬挑力,将建筑外形向各个方向悬伸出来。

流水别墅最具标志性特点的是建筑外形上一道道横墙和几条竖向的石墙,还有那顺流而下的瀑布。

组成一幅错落有致的山水画,栏墙色泽洁白滑腻,石墙粗犷奔放,使整个建筑不仅有水平和垂直的结构对照,还有颜色和质感给人以视觉和触觉上的享受.建筑评论:超级闻名的一个建筑几个错落的大平台的悬挑令整个建筑更具生机活力,同时竖向和横向的交织恍如与周围的景观融为一体。

实例二:“手指”旅店建筑的造型像张开的手指,手指探向大海,朝向不同的岛屿,让每一个房间取得不同的景观视野。

门式刚架计算原理和设计实例-基础设计

门式刚架计算原理和设计实例-基础设计

第八章基础设计房屋建筑设计总体上分为上部结构设计和下部结构设计两大部分,轻型钢结构建筑也不例外,前面几章已介绍了其上部结构,本章对其下部结构一一基础作一些讨论。

众所周知,在房屋建筑中,基础造价约占整个建筑物的30%左右,对于轻钢结构而言,最大优点就是重量轻,从而直接影响基础设计,与其它结构型式的基础相比,轻钢结构基础尺寸小,可以减少整个建筑物造价,另外对于地质条件较差地区,可优先考虑采用轻钢结构,这样容易满足地基承载力方面的要求。

那么轻钢结构基础与砼结构基础有什么不同?轻钢结构基础是如何设计的?在轻钢结构基础设计时应注意哪些方面?本章针对这些问题进行探讨,而不涉及基础本身设计的有关内容。

第一节基础设计的特点由于结构型式、荷载取值、支座条件等方面的不同,传至基础顶面内力是不同的,轻钢结构与传统的砼结构相比,最大差别就是在柱脚处存在较小的竖向力和较大的水平力,对于固接柱脚,还存在较大的弯矩,在风荷载起控制作用的情况下,还存在较大的上拔力。

柱底水平力会使基础产生倾覆和滑移,基础受上拔力作用,在覆土较浅的情况下,会使基础向上拔起,有关这方面的问题,后面再作详述。

由于轻钢结构的这些受力特点,导致其基础设计与其它结构存在很大的不同,主要表现在以下几个方面:1.基础形式基础型式选择应根据建筑物所在地工程地质情况和建筑物上部结构型式综合考虑,对于砼结构基础,常见的基础型式有独立基础、条形基础、片筏基础、箱形基础、桩基等等,而对于轻钢结构而言,由于柱网尺寸较大,上部结构传至柱脚的内力较小,一般以独立基础为主,若地质条件较差,可考虑采用条形基础,遇到暗浜等不良地质情况,可考虑采用桩基础,一般情况下不采用片筏基础和箱形基础。

2.柱脚受力(a)铰接柱脚(b)刚接柱脚图8-1不同柱脚型式的受力情况砼结构柱脚均为刚接,即同时存在轴向力N、水平剪力V和弯矩M,故基础尺寸较大,轻钢结构常见的柱脚型式有刚接和铰接两种(图8-1 ),其受力是不同的,对于铰接柱脚,只存在轴向力N和水平力V,对于刚接柱脚,除存在轴向力N和水平力V之外,还存在一定的弯矩M,从而使刚接柱脚的基础大于铰接柱脚。

干货!门式刚架结构设计实例

干货!门式刚架结构设计实例

干货!门式刚架结构设计实例工程概况(一)设计资料某客户需要建设66X75m的仓库,根据客户要求,宽度方向为66m,设3跨,跨度分别为24m、18m、24m,柱距取7.5m,檐口高度为6m。

屋面为0.5mm压型钢板+75mm 厚保温棉(容重14kg/m3)+0.4mm内衬板,材质采用Q345。

(二)方案选取1.跨度:考虑到特殊的使用要求(中间18m兼做交通走道),客户指定了上述的跨度要求。

为使读者理解如何寻找最经济的结构方案,笔者又研究了21m+24m+21m或18m+30m+18m的跨度方案,三种方案的每榀框架的用钢量对比如下:24m+18m+24m,每榀框架用钢量 4.9吨;21m+24m+21m,每榀框架用钢量 4.2吨;18m+30m+18m.,每榀框架用钢量 4.6吨;通常来说,如可能尽量将框架设计成对称结构,各跨跨度基本相同,中间跨跨度度略大于边跨将是一种比较经济的方案。

本项目由于客户需要将中间跨(18m)设置为走道,故笔者没有建议他们改为较为经济的跨度方案(21m+24m+21m)。

2.柱距选择:鉴于本工程总长度为75m,故取柱距为7.5m,即10@7.5。

读者也可以比较7.75+*****+7.75的柱距方案。

后者也是一种比较经济的株距方案。

3.屋面梁拼接节点设置节点设置需要考虑下列因素:(1) 拼接点尽可能靠近反弯点,一般反弯点位置在1/4~1/6跨度处,按照此原则,对于24m跨,拼接点设在离柱24*(1/4~1/6)=4~6m处比较合适。

对于18m跨,则应该设在18*(1/4~1/6)=3~4.5m比较合适;(2) 单元长度不要超过可运输最大长度,一般不宜超过12.5 m;(3) 尽量减少拼接数量,因为拼接节点需要端板及高强螺栓,同样会增加项目造价;(4) 拼接节点应避开抗风柱及屋面系杆的连接位置,以避免出现连接上的不便;综合多种因素,我们将屋面梁做了分段,见图3-26。

A节点为边柱与梁拼接节点,D为中柱与梁拼接,通常此处屋面梁不断,这是考虑此处弯矩较大,对于屋脊节点 F,通常我们也不建议此处屋面梁断开,原因是此处通常会有抗风柱及屋面系杆,若设置屋面系杆,将引起连接上的不便。

门式刚架荷载计算及内力组合

门式刚架荷载计算及内力组合

(一)荷载分析及受力简图:1、永久荷载永久荷载包括结构构件的自重和悬挂在结构上的非结构构件的重力荷载,如屋面、檩条、支撑、吊顶、墙面构件和刚架自重等。

恒载标准值(对水平投影面):板及保温层0.30kN/㎡檩条0.10kN/㎡悬挂设备0.10kN/㎡0.50kN/㎡换算为线荷载:7.50.5 3.75 3.8/=⨯=≈q KN m2、可变荷载标准值门式刚架结构设计的主要依据为《钢结构设计规范》(GB50017-2003)和《冷弯薄壁型钢结构技术规范》(GB50018-2002)。

对于屋面结构,《钢结构设计规范》规定活荷载为0.5KN/2m,但构件的荷载面积大于602m的可乘折减系数0.6,门式刚架符合此条件,故活荷载标准值取0.3KN/2m 。

由荷载规范查得,大连地区雪荷载标准值为0.40kN/㎡。

屋面活荷载取为 0.30kN/㎡ 雪荷载为 0.40kN/㎡ 取二者较大值 0.40kN/㎡换算为线荷载:7.50.43/q KN m =⨯=3、风荷载标准值 :0k z s z ωβμμω=(1) 基本风压值 20kN/m 6825.065.005.1=⨯=ω(2) 高度Z 处的风振系数z β 取1.0(门式刚架高度没有超过30m ,高宽比不大于1.5,不考虑风振系数)(3) 风压高度变化系数z μ由地面粗糙度类别为B 类,查表得:h=10m ,z μ=1.00;h=15m ,z μ=1.14 内插:低跨刚架,h=10.5m ,z μ= 1.14 1.111.00(10.510)1510-+⨯--=1.014;高跨刚架,h=15.7m ,z μ= 1.25 1.141.14(15.715)2015-+⨯--=1.155。

(4) 风荷载体型系数s μ-0.5-0.6-0.4-0.4-0.5-0.5-0.2+0.8μsμs1其中,s μ=0.2010.24.760.032301230arctg -⨯=⨯=+ 1s μ=12 1.00.6(1)0.6(12)0.36915.710.5h h ⨯-=⨯-=+-各部分风荷载标准值计算:w 1k =0z s z βμμω=7.5×1.0×0.8×1.014×0.6825=4.15 kN/m w 2k =0z s z βμμω=7.5×1.0×0.032×1.014×0.6825=0.17kN/m w 3k =0z s z βμμω=7.5×1.0×(-0.6)×1.014×0.6825=-3.11kN/m w 4k = 0z s z βμμω=7.5×1.0×0.369×1.014×0.6825=1.91 kN/m w 5k = 0z s z βμμω=7.5×1.0×(-0.2)×1.014×0.6825=-1.04 kN/mw 6k = w 7k =w 8k =0z s z βμμω=7.5×1.0×(-0.5)×1.014×0.6825=-2.60 kN/m w 9k = w 10k =0z s z βμμω=7.5×1.0×(-0.4)×1.014×0. 6825=-2.08 kN/m 用PKPM 计算门式刚架风荷载结果如下:其中,'1k ω=4.2KN/m ≈1k ω=4.15 kN/m ;'2k ω=0.2KN/m ≈2k ω=0.17 kN/m ; '3k ω=-3.1N/m ≈1k ω=-3.11 kN/m ;'4k ω=2.2KN/m ≈2k ω=1.91 kN/m ; '5k ω=-1.2KN/m ≈1k ω=-1.04kN/m ;'6k ω=-3.0KN/m ≈6k ω=-2.60kN/m ; '7kω=-3.0KN/m ≈7k ω=-2.60kN/m ;'8k ω=-2.6KN/m =8k ω; '9k ω=-2.1KN/m ≈9k ω=-2.08kN/m ;'10kω=-2.1KN/m ≈10k ω=-2.08kN/m 。

门式刚架钢结构(大跨度索支承实腹式)实例分析

门式刚架钢结构(大跨度索支承实腹式)实例分析

门式刚架钢结构(大跨度索支承实腹式)实例分析为分析索支撑实腹式门式刚架的受力性能,在此就跨度、檐口高度、柱距、屋面坡度1:20的某粮食仓库采用索支撑门式刚架进行了计算。

考虑到撑竿在施加预应力过程中伸长量很大,计算时应考虑大变形。

本文采用几何非线性方法进行计算,以一榀刚架为单元,按平面结构处理。

施工过程中刚架的实际受荷过程分三个阶段:第一阶段刚架在现场拼装完成后,此时刚架只承受自重。

第二阶段刚架拼装后,安装钢拉索和撑竿,然后旋撑竿施加预应力,此时刚架同时承受自重和预应力。

第三阶段刚架在正常使用阶段承受全部使用荷载。

因此,刚架受力性能分析计算按照以上三个阶段进行。

刚架在正常使用阶段的荷载最不利组合考虑以下几种计算工况:(1)1. 2恒荷载+1.4活荷载(2)1.0恒荷载+1.4风荷载(向右)(3)1.2恒荷载+1.4风荷载(向右)(4)1.2恒荷载+1.40.85(活荷载+风荷载(向右))通过仔细分析数据和不同阶段刚架内力变化图可以看出,施加了预应力后的梁柱节点弯矩由自重作用下的-503.67KNm增至217.03KNm,梁跨中弯矩由313.78KNm减至-365.96KNm。

此时刚架梁柱的内(应)力几乎与竖向荷载作用下的内(应)力反号,预应力对刚架起到了很好的卸载作用,而且刚架梁柱的应力均不大。

刚架承受外荷载作用时,虽然2、3两种荷载组合作用下由于风荷载对屋盖向上的吸力作用,刚架的内力在施加预应力后的内力基础上略有增加,但结果表明这两种工况引起的最终内力都不起控制作用。

在竖向荷载作用下,刚架梁柱节点和跨中内力分别由第二阶段的217.03KNm和-365.96KNm逐渐变到-1273.12KNm和116.05KNm。

施加预应力后刚架梁的跨中挠度由自重作用下的(向下)变为(向上),柱顶侧移由(向外)变为(向内)(表1)。

对截面进行进一步优化后,上述跨度的粮仓采用索支承预应力门式刚架用钢量(仅为刚架部分,未包括钢拉索和撑竿)为/m2,比原来用普通门式刚架节省用钢量约35%左右。

门式刚架计算原理和设计实例-基础设计

门式刚架计算原理和设计实例-基础设计

第八章基础设计房屋建筑设计总体上分为上部结构设计和下部结构设计两大部分,轻型钢结构建筑也不例外,前面几章已介绍了其上部结构,本章对其下部结构一一基础作一些讨论。

众所周知,在房屋建筑中,基础造价约占整个建筑物的30%左右,对于轻钢结构而言,最大优点就是重量轻,从而直接影响基础设计,与其它结构型式的基础相比,轻钢结构基础尺寸小,可以减少整个建筑物造价,另外对于地质条件较差地区,可优先考虑采用轻钢结构,这样容易满足地基承载力方面的要求。

那么轻钢结构基础与砼结构基础有什么不同?轻钢结构基础是如何设计的?在轻钢结构基础设计时应注意哪些方面?本章针对这些问题进行探讨,而不涉及基础本身设计的有关内容。

第一节基础设计的特点由于结构型式、荷载取值、支座条件等方面的不同,传至基础顶面内力是不同的,轻钢结构与传统的砼结构相比,最大差别就是在柱脚处存在较小的竖向力和较大的水平力,对于固接柱脚,还存在较大的弯矩,在风荷载起控制作用的情况下,还存在较大的上拔力。

柱底水平力会使基础产生倾覆和滑移,基础受上拔力作用,在覆土较浅的情况下,会使基础向上拔起,有关这方面的问题,后面再作详述。

由于轻钢结构的这些受力特点,导致其基础设计与其它结构存在很大的不同,主要表现在以下几个方面:1.基础形式基础型式选择应根据建筑物所在地工程地质情况和建筑物上部结构型式综合考虑,对于砼结构基础,常见的基础型式有独立基础、条形基础、片筏基础、箱形基础、桩基等等,而对于轻钢结构而言,由于柱网尺寸较大,上部结构传至柱脚的内力较小,一般以独立基础为主,若地质条件较差,可考虑采用条形基础,遇到暗浜等不良地质情况,可考虑采用桩基础,一般情况下不采用片筏基础和箱形基础。

2.柱脚受力(a)铰接柱脚(b)刚接柱脚图8-1不同柱脚型式的受力情况砼结构柱脚均为刚接,即同时存在轴向力N、水平剪力V和弯矩M,故基础尺寸较大,轻钢结构常见的柱脚型式有刚接和铰接两种(图8-1 ),其受力是不同的,对于铰接柱脚,只存在轴向力N和水平力V,对于刚接柱脚,除存在轴向力N和水平力V之外,还存在一定的弯矩M,从而使刚接柱脚的基础大于铰接柱脚。

工业厂房单榀门式刚架有限元分析

工业厂房单榀门式刚架有限元分析
收 稿 日期 : 2 0 1 3 — 0 6 — 0 5
作者简 介 : 孟
超( 1 9 8 7 ・) , 男, 在读硕士 ; 王志骞 ( 1 9 5 2 .) , 男, 教授
笋 2 0 9 I = 1 3 在 年 月 2 8 3 智
孟 血 超 胆 等 守 : 工 上 业 厂 , 房 厉 单 旱 榀 佃J I ] 式 工 - 刚 架 木 有 日 限 I 限 元 几 分 万 析 T
关键词 : 门式 刚架 , 摇摆柱 , 屈 曲法 中图分类号 : T U 3 2 8 文献标识码 : A 架, 位于新 疆图木舒 克市 东工业 园。 1 ) 基本风压 t : 0 . 5 5 k N / m, 调整 系数 为 1 . 0 5 。
0 引言
轻型门式钢结构是一种重要的结构形 式 , 轻钢 结构具有 自重 轻、 材质均匀 、 制造简单 、 安装方便 等显著特 点。随着工业 的快速
对本次结构设计 方案进行 承载能力分 析 , 分析方法 采用 特征 需要 在边榀框架设置抗风柱 J 。为节 省用钢量 , 抗风 柱一般设 计 值屈 曲分析 。具体 简化方 法 与设计荷 载作 用下 的有 限元 分析 相 成上下两端铰接 的摇摆 柱。设 置摇摆 柱可 以 同时减 小梁柱 内力 同 , 分析结果为 :
2 ) 基本雪压 : S= 0 . 4 5 k N / m, 屋 面积雪分布系数 1 . 2 5 。
3 ) 屋面恒荷载 : 0 . 2 0 2 k N / m。 4 ) 屋面活荷载 : 0 . 3 0 k N / m。
发展和钢结构技术 的发展 , 轻 型门式刚架在单 层工业厂 房中得到 了广泛应用 , 并 呈现出跨 度大 , 承载重 的发展趋势 , 因此对 门式 刚 架结构进行承载能力分析显得尤 为重要… 。结合工程实例 , 对某 性全范 围承载极 限能力分析 , 并且在摇摆 柱连接方式 的不 同以及 2 有无摇摆柱情况下 , 对结构的受力变形进行 了分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.分析种类:结构力学静力分析二.基本理论:结构矩阵分析是结构力学的一种分析方法。

结构矩阵分析方法认为:结构整体可以看作是由有限个力学小单元相互连接而组成的集合体,每个单元的力学性能可以比作建筑物中的砖瓦,装配在一起就提供整体结构的力学特性。

有限元法的基本思想是:1. 假想把连续系统分割成数目有限的单元,单元只在数目有限的节点相连。

在节点引进等效载荷,代替实际作用与系统的外载荷2. 对每个单元由分块近似的思想,按一定的规则建立求解未知量与节点相互作用之间的关系3. 把所有单元的这种特性关系按一定条件集合起来,引入边界条件,构成一组以节点变量为未知量的代数方程组,求解就得到有限个节点处的待求变量所以,有限元法实质上是把具有无限个自由度的联系系统,理想化为只有有限个自由度的单元集合体,使问题转化为适合于数值求解的结构型问题静力分析用于求解静力载荷作用下结构的位移和应力等。

静力分析包括线性和非线性分析。

而非线性分析涉及塑性,应力刚化,大变形,大应变,超弹性,接触面和蠕变。

本次分析为结构线性静力分析静力分析计算在固定不变的载荷作用下结构的效应,它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。

可是,静力分析可以计算那些固定不变的惯性载荷对结构的影响(如重力和离心力),以及那些可以近似为等价静力作用的随时间变化载荷。

静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移,应力,应变和力。

固定不变的载荷和响应是一种假定;即假定载荷和结构的响应随时间的变化非常缓慢。

静力分析所施加的载荷包括:l. 外部施加的作用力和压力2. 稳态的惯性力(如中力和离心力)3. 位移载荷4. 温度载荷线性静力分析的求解步骤1.建模2.施加载荷和边界条件,求解3.结果评价和分析三.有限元方法及软件:利用位移函数—虚功原理推导梁单元的有限元计算公式第一步:写出单元位移、节点力向量应用软件ANSYS10.0在ANSYS产品家族中有七种结构分析的类型。

结构分析中计算得出的基本未知量(节点自由度)是位移,其他的一些未知量,如应变,应力,和反力可通过节点位移导出。

本次分析静力分析(Stastic)四.实例:门式钢架的受力分析4.1 问题描述:门式钢架受到均布载荷q=200N/m作用,其柱高5m,横梁长10m,柱和梁均采用刚梁制作,杨氏模量E=2.1e5MPa,泊松比u=0.3,且已知柱与梁的横截面积形式均为工字梁,其中柱的参数为W1=0.2、W2=0.2、W3=0.4、t1=0.02、t2=0.02、t3=0.01,梁的参数为柱的参数的1.565倍要求:求在均布载荷q作用下门式钢架的剪力、最大弯距、最大转角,绘制弯距图以及剪力图。

示意图:4.2求解过程:(一):前处理1. 修改工作名及标题名:File&gt;Change Jobname 工作文件名取为workFile&gt;Change Title 标题名取为Beam analysis2. 设定单元类型Preprocessor/Element Type/Add/Edit/Delete谈出Element Types对话框,分别添加Beam类型中的2 node 188与3 node 189 3.设定单元截面形式Preprocessor&gt;Sections&gt;Beam&gt;Common Sects。

将出现梁工具对话框.按已知条件输入参数4.定义材料属性Preprocessor&gt;Material Props&gt; Material&gt;Material Models弹出Define Material Model Behavior对话框,在右边选择:Structural&gt;Linear&gt;Elastic&gt;Isotropic定义材料15.创建模型(1).Preprocessor&gt;Modeling-Create&gt;Keypoints&gt;In Active CS定义四点关键点号:1 坐标值:0,0,0关键点号:2 坐标值:0,5,0关键点号:3 坐标值:10,0,0,关键点号:4 坐标值:10,5,0(2). Preprocessor&gt;Modeling&gt;Create&gt;Lines&gt;Lines&gt;Straight Line依次选择1和2,3和4,2和4创建三条直线(3). Preprocessor&gt;Meshing&gt;Meshing Attributes&gt;Picked Lines选择直线1,在材料属性MAT下拉列表中选择1,单元类型TYPE下拉列表中选择1 BEAM 188,单元截面形状SECT下拉列表中选择1 COLUMN,Pick Orientation Keypoints项选择Yes,选择3点作为左侧柱子的定向关键点。

Preprocessor&gt;Meshing&gt;Meshing Attributes&gt;Picked Lines选择直线2,在材料属性MAT下拉列表中选择1,单元类型TYPE下拉列表中选择1 BEAM 188,单元截面形状SECT下拉列表中选择1 COLUMN,Pick Orientation Keypoints项选择Yes,选择1点作为右侧柱子的定向关键点。

Preprocessor&gt;Meshing&gt;Meshing Attributes&gt;Picked Lines选择直线3,在材料属性MAT下拉列表中选择1,单元类型TYPE下拉列表中选择2 BEAM189,单元截面形状SECT下拉列表中选择2 BEAM,Pick Orientation Keypoints项选择Yes,选择1点作为横梁的定向关键点。

(4). Preprocessor&gt;Meshing&gt;Size Cntrls&gt;Manual Size&gt;Lines&gt;Picked Lines选择直线1和2,设置划分分数DAIV为5,同样方法划分直线3为10(5). Preprocessor&gt;Meshing&gt;Mesh&gt;Lines划分直线1,2,3(6).此时,图形窗口中,可看到钢架的有限元模型,如图所示(二):施加载荷及求解(1). Solution&gt;Loads&gt;Apply&gt;Structural&gt;Displacement&gt;On Keypoints选择底端的1和3点,建立全约束ALL DOF(2). Solution&gt;Loads&gt;Apply&gt;Structural&gt;Pressure&gt;On Beams选择横梁,按已知条件设定压力VALI为-200 (3). Solution&gt;Analysis Type&gt;New Analysis选择Static项(4). Solution&gt;Solve&gt;Current LS查看检查模型信息,确认无错后求解。

(三):后处理1. 求门式钢架的剪力值和最大弯距值(1).General Postproc&gt;Element Table&gt;Define Table在Lab文本框输入Ishear,在By sequence num在上列表选择SMISC在右下框输入5建立I节点剪力的单元表数据在Lab文本框输入Jshear,在By sequence num在上列表选择SMISC在右下框输入18建立J节点剪力的单元表数据在Lab文本框输入IM,在By sequence num在上列表选择SMISC在右下框输入2建立I节点弯距的单元表数据在Lab文本框输入JM,在By sequence num在上列表选择SMISC在右下框输入15建立J节点剪力弯距的单元表数据(2). General Postproc&gt;List Results&gt;Elem Table Date在弹出的List Elem Table Date对话框中依次选择Ishear、Jshear、IM、JM四组数据表,可查看所求的各项值,如图所示2. 画出门式钢架的剪力图和弯距图(1). General Postproc&gt;Plot Results&gt;Contour Plot&gt;Line Elem Res 在LabI列表中选择IM在LabJ列表中JM绘出门式钢架的弯距图如图所示(2). General Postproc&gt;Plot Results&gt;Contour Plot&gt;Line Elem Res 在LabI列表中选择Ishear在LabJ列表中Jshear 绘出门式钢架的剪力图如图所示3. 求门式钢架的最大转角General Postproc&gt;List Results&gt;Nodal Solution在弹出的List Nodal Solution左列表中选择DOF solution右列表中选择ROTZ单击OK 其所求各项值如图所示4. 画出门式钢架的变形图General Postproc&gt;Plot Results&gt;Deformed Shape选择Def shape only显示门式钢架的变形图如图所示5. 求支座反力General Postproc&gt;List Results&gt;Reaction Solu在弹出的List Reaction Solu对话框选择All items,列处所有形式的支座反力如图所示4.3分析五.总结。

相关文档
最新文档