表观遗传学精品PPT课件

合集下载

表观遗传学(共20张PPT)

表观遗传学(共20张PPT)
异性降解的现象。PTGS是启动了细胞质内靶mRNA序列特异性的降解机制。
• 近几年来RNAi研究取得了突破性进展,被《Science》杂志评为2001年的十大科 学进展之一,并名列2002年十大科学进展之首。由于使用RNAi技术可以特异性剔 除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及 恶性肿瘤的基因治疗领域。
表观遗传学 EPIGENETICS
什么是表观遗传学?
表观遗传学是研究除DNA序列 变化外的其他机制引起的细胞表 型和基因表达的可遗传的改变。 表观遗传学调控真核基因表达, 与人类重大疾病,如肿瘤、神经 退行性疾病、自身免疫性疾病等 密切相关。
举两个例子~
在胚胎发育过程中,果蝇存在很多体节。对 Hox 基因来 说,在有些体节中表达,有些中不表达。一开始,这种表 达或不表达经不在了,由原来不 表达(Hox 基因)的细胞衍生的后代呢,这些基因仍然不 表达;表达那些 Hox 基因的细胞衍生的细胞,仍然表达。
• 最常见的DNA甲基化形式是将甲基加到胞嘧啶环的 5‘位置上,形成5’-甲基胞嘧啶。哺乳动物中大约有 5%的胞嘧啶被甲基化,而甲基化与否,基因的转录活 性相差了上百万倍。
• DNA甲基化的作用主要体现于抑制基因转录活性,而具 体的抑制机制还尚未明确
• MeCP1所结合的DNA序列常需要有10个以上的甲基化CpG, 这一蛋白广泛存在于许多组织。
工蜂和蜂王都由同种受精卵发育而来,如 果能吃到蜂王浆,就变成蜂后;吃不到就 变成工蜂。
与工蜂相比,蜂王的成熟期短平均在半
个月左右,而工蜂则需要二十天以上;
寿命长蜂王可以活几年,而工蜂则只有
几十天的寿命;有生殖能力蜂王每天可
蜂王
工蜂
以产下几百枚卵,而工蜂一般终生都不

表观遗传学(共49张PPT)

 表观遗传学(共49张PPT)
遗传信息的传递:中心法则
• 1. DNA自身通过复制传递遗传信息;
• 2. DNA转录成RNA; • 3. RNA自身能够复制 (RNA病毒);
• 4. RNA能够逆转录成DNA;
• 5. RNA翻译成蛋白质。
• 1939年,生物学家 Conrad Hal Waddington首先在《现代遗传学导论》
微小RNA(microRNA ,miRNA—单链)。
• RNA干扰(RNAi):是通过小RNA分子在mRNA水平上介导mRNA 的降解诱导特异性序列基因沉默的过程。
• 诱导染色质结构的改变,决定着细胞的分化命运,还对 外源的核酸序列有降解作用以保护本身的基因组。
21
2.长链非编码RNA (long noncoding RNA, lncRNA)
DXPas34 长度超过200bp;
DNA甲基化状态的保

11
• (一)DNMTs(DNA methyltransferases)
DNA甲基转移酶 结构特点:
-NH2末端调节结构域,介导胞核定位,调节与其他蛋白相互 作用。DNMT2无。
-COOH末端催化结构域,参与DNA甲基转移反应。 • 1.DNMT1
20
• 三、其他表观遗传过程
• (一)非编码RNA的表观遗传学
• 非编码RNA(non-protein-coding RNA,ncRNA)
• tRNA,rRNA;短链非编码RNA,长链非编码RNA。
• 短链RNA(又称小RNA),小干涉RNA(short interfering RNA ,siRNA—双链) 和
S-腺苷甲硫氨酸: S-adenosylmethionine,SAM S-腺苷同型半胱氨酸:S-adenosylhomocysteine,SAH

2024年度-遗传学表观遗传学PPT课件

2024年度-遗传学表观遗传学PPT课件
研究生物遗传信息传递、表达和调控 的科学。
研究领域
包括基因结构、功能、表达调控,基 因突变、重组、进化,以及遗传与发 育、免疫、疾病等关系。
4
遗传物质基础:DNA与RNA
DNA
脱氧核糖核酸,生物体主要遗传物质,由碱基、磷酸和脱氧 核糖组成。
RNA
核糖核酸,参与蛋白质合成过程,由碱基、磷酸和核糖组成 。
染色质重塑过程及影响因素
ATP依赖的染色质重塑复合物
01
利用ATP水解产生的能量改变核小体结构,使DNA易于接近转
录因子。
组蛋白变体
02
替换常规组蛋白,改变染色质结构和功能。
非编码RNA
03
通过与DNA或蛋白质相互作用调节染色质结构和基因表达。
Байду номын сангаас
21
组蛋白修饰在基因表达调控中作用
01
组蛋白修饰影响转录因子结合
非编码RNA在肿瘤中发挥着重要的调控作用,包括miRNA、lncRNA 等,它们可通过表观遗传学机制影响肿瘤的发生和发展。
29
神经退行性疾病中表观遗传学机制探讨
DNA甲基化与神经退行 性疾病
DNA甲基化在神经退行性疾病中的研究日 益增多,其与疾病的发生和发展密切相关。
组蛋白修饰与神经退行性疾 病
组蛋白修饰在神经退行性疾病中也发挥着重要作用 ,如乙酰化、磷酸化等修饰可影响神经元功能和生 存。
磷酸化
调节蛋白质构象和活性,影响DNA与组蛋白 相互作用。
甲基化
可发生在不同氨基酸残基上,具有不同效应 ,如基因激活或抑制。
泛素化
标记蛋白质进行降解,参与转录调控和DNA 损伤修复。
19
组蛋白修饰酶系及其作用机制

表观遗传学 - EpigeneticsPPT课件

表观遗传学 - EpigeneticsPPT课件
(2)转录抑制复合物干扰基因转录。甲基化DNA结合蛋 白与启动子区内的甲基化CpG岛结合,再与其他一些 蛋白共同形成转录抑制复合物(TRC),阻止转录因 子与启动子区靶序列的结合,从而影响基因的转录。
(3)通过改变染色质结构而抑制基因表达。染色质构型 变化伴随着组氨酸的乙酰化和去乙酰化,许多乙酰化 和去乙酰化本身就分别是转录增强子和转录阻遏物蛋 白。
表观遗传学 Epigenetics
概念
表观遗传学
研究不涉及DNA序列改变的基因表达和调控的可遗传变 化的,或者说是研究从基因演绎为表型的过程和机制 的一门新兴的遗传学分支。
表观遗传
所谓表观遗传就是不基于DNA差异的核酸遗传。即细胞 分裂过程中,DNA 序列不变的前提下,全基因组的基 因表达调控所决定的表型遗传,涉及染色质重编程、 整体的基因表达调控(如隔离子,增强子,弱化子, DNA甲基化,组蛋白修饰等功能 ), 及基因型对表型的 决定作用。
表观遗传学的特点:
可遗传的,即这类改变通过有丝分裂或减数分 裂,能在细胞或个体世代间遗传;
可逆性的基因表达调节,也有较少的能用DNA序列变化来解 释。
表观遗传学的研究内容:
基因选择性转录表达 基因转录后的调控 的调控
DNA甲基化
❖ 目前认为基因调控元件(如启动子)的CpG岛中发生 5mC修饰会在空间上阻碍转录因子复合物与DNA的结 合。因而DNA甲基化一般与基因沉默相关联。
DNA甲基化的转录抑制机制:
(1)直接干扰特异转录因子与各自启动子结合的识别位 置。DNA的大沟是许多蛋白因子与DNA结合的部位,胞 嘧啶的甲基化干扰转录因子与DNA的结合。
染色质重塑是由染色质重塑复合物介导的 一系列以染色质上核小体变化为基本特征 的生物学过程。

表观遗传学课件 PPT

表观遗传学课件 PPT

核小体
• 核小体定位是核小体在DNA上特异性定位的现象。 • 核小体核心DNA并不是随机的,其具备一定的定向特性。 • 核小体定位机制:
内在定位机制:每个核小体被定位于特定的DNA片断。 外在定位机制:内在定位结束后,核小体以确定的长度 特性重复出现。
• 核小体定位的意义:
核小体定位是DNA正确包装的条件。 核小体定位影响染色质功能。
• 组蛋白修饰种类
乙酰化-- 一般与活化的染色质构型相关联,乙酰化修饰 大多发生在H3、H4的 Lys 残基上。
甲基化-- 发生在H3、H4的 Lys 和 Arg残基上,可以与 基因抑制有关,也可以与基因的激活相关,这往往取决 于被修饰的位置和程度。 磷酸化-- 发生与 Ser 残基,一般与基因活化相关。 泛素化-- 一般是C端Lys修饰,启动基因表达。 SUMO(一种类泛素Байду номын сангаас白)化-- 可稳定异染色质。 其他修饰(如ADP的核糖基化)
组蛋白修饰的检测方法
1.免疫染色
2.染色质免疫共沉淀
3.质谱
三、染色质重塑
• 染色质重塑(chromatin remodeling)是一个重要的表观遗传学 机制。 • 染色质重塑是由染色质重塑复合物介导的一系列以染色质上核小 体变化为基本特征的生物学过程。 • 组蛋白尾巴的化学修饰(乙酰化、甲基化及磷酸化等)可以改变 染色质结构,从而影响邻近基因的活性。
ton) 在 Endeavour 杂志
首次提出表观遗传学。
基因型的遗传(heredity)或
传承(inheritance)是遗传学
研究的主旨 ,而基因型产生
表型的过程则是属于表观
遗传学研究的范畴。
1987 年 ,霍利德( Holliday) 进一步指出可在两个层面上 研究高等生物的基因属性。 第一个层面是基因的世代间传递的规律 ——遗传学。 第二个层面是生物从受精卵到成体的发育过程中基因

第十一章-表观遗传学PPT课件

第十一章-表观遗传学PPT课件

二、基因组印迹(genomic imprinting)
概念:依赖于父、母源性的等位基因的差异性 表达,即父亲和母亲的基因组在个体发育中有 着不同的影响,这种现象称基因组印迹。
两个亲本的等位基因差异性甲基化是基因组印 迹现象的基础。
疾病的基础: 15q11-13 微缺失
Prader-Willi syndrome, PWS(父源):肥胖、矮 小, 中度智力低下
2. 表遗传(epigenetic)信息
,提供何时、何地、如何应
用遗传学信息的指令,保证
基因适时启闭
One genome--------multiple epigenome
-
12
一、表观遗传修饰
表达模式的信息标记: DNA特定碱基的修饰:胞嘧啶的甲基化; 染色质构型重塑:如,组蛋白的乙酰化、 甲基化
果蝇中的杂色(眼)位置效应(positioneffect variegation): 野生红眼基因W+(显性) 突变白眼基因w(隐性)
基因定位于X染色体长臂末端
W+
“W+/W+”和“W+/w”均表现正常红眼 意外情况: W+异位至着丝粒附近(异染
色质区), “W+/w”杂合体表现为花斑 眼(杂色),即:部分细胞正常红色, 部分少量红色,部分白色。
设计实验拟解决:“RNA 干扰”是否与转入的RNA 结构有关。
-
22
意外发现:导入双链RNA的产生功能干扰的有效 性远高于导入单链RNA, sense or antisense RNA导入均如此。
仅需少数分子即可产生干扰效应,提示酶促反 应或分子扩增的存在。
-
23
上述现象提示: 1. 存在超越简单反义RNA作用的机理。 2. RNA靶向的作用也不能排除。 3. 同时可能存在RNA与染色质的直接作用,影 响RNA的转录。

《表观遗传学》PPT课件

《表观遗传学》PPT课件
发展高通量表观遗传学检测技术
研发高通量、高灵敏度的表观遗传学检测技术,提高检测效率和准确 性。
推动表观遗传学在临床应用中的转化
加强表观遗传学与临床医学的交叉融合,推动表观遗传学研究成果在 临床应用中的转化。
关注表观遗传学的伦理和社会问题
在推动表观遗传学发展的同时,关注相关的伦理和社会问题,确保技 术的合理应用和社会责任。
03
神经系统发育与表 观遗传
表观遗传调控在神经系统发育过 程中发挥关键作用,影响神经细 胞的分化和功能。
代谢性疾病与表观遗传关联
肥胖与表观遗传
肥胖的发生和发展与DNA甲基化、组蛋白修饰等表观遗传调控密 切相关。
糖尿病与表观遗传
糖尿病及其并发症的发病机制涉及多种表观遗传调控异常。
心血管疾病与表观遗传
揭示生物多样性的本质
生物多样性的形成不仅与基因序列的 变异有关,还与基因表达的调控密切 相关。
解析复杂疾病的发生机制
许多复杂疾病如癌症、神经退行性疾 病等的发生与表观遗传调控异常密切 相关。
指导个体化医疗和精准治疗
通过解析患者的表观遗传特征,可以 为个体化医疗和精准治疗提供指导。
推动生物技术的发展
表观遗传学的研究为基因编辑、细胞 重编程等生物技术的发展提供了新的 思路和方法。
3
亚硫酸氢盐测序PCR
结合重亚硫酸盐处理和PCR技术,对特定区域的 DNA甲基化进行高灵敏度检测。
组蛋白修饰检测技术
染色质免疫沉淀技术
利用特异性抗体与组蛋白修饰结合,通过沉淀和洗脱步骤富集特 定修饰的组蛋白,进而研究其功能。
质谱分析技术
通过质谱仪对组蛋白修饰进行定性和定量分析,揭示修饰的种类 和程度。
《表观遗传学》PPT 课件

表观遗传学(共14张PPT)

表观遗传学(共14张PPT)
第五页,共14页。
二、组蛋白修饰
❖ 组蛋白修饰是表观遗传研究的重要内容。
❖ 组蛋白的N端是不稳定的、无一定组织的亚单位,其延 伸至核小体以外,会受到不同的化学修饰,这种修饰 往往与基因的表达调控密切相关。
❖ 被组蛋白覆盖的基因如果要表达,首先要改变组蛋白的修
饰状态,使其与DNA的结合由紧变松,这样靶基因才能
▪ 非甲基化一般与基因活化相关联;
▪ 而去甲基化往往与一个沉默基因的重新激活相 关联。
第三页,共14页。
二、组蛋白修饰
组蛋白(histones)真核生
物体细胞染色质中的碱性蛋白质,
根 据 氨基酸成分和分子量不同,主 要分成5类H1、H2A、H2B、H3、H4, 由4种组蛋白H2A、H2B、H3和H4, 每一种组蛋白各二个分子,形成一 个组蛋白八聚体,约200bp的DNA分 子盘绕在组蛋白八聚体构成的核心 结构外面,形成了一个核小体。连 接相邻2个核小体的DNA分子上结合 了另一种组蛋白H1染色质就是由一 连串的核小体所组成。
❖RNA干扰是一种重要而普遍表观遗传的现象。
第十一页,共14页。
五、其他表观遗传机制
❖ 除DNA甲基化、组蛋白修饰、染色质重塑、和 RNA调控以外,还有遗传印迹、X染色体失活、 等。
❖ 遗传印迹、X染色体失活的本质仍为DNA甲基化 、组蛋白修饰、染色质重塑。
第十二页,共14页。
一、概述
❖染色质免疫沉淀技术
ISW复合物等,这些复
合物及相关蛋白均与转 录激活和抑制、DNA甲
基化、DNA修复及细 胞周期相关。
八聚体转移
八聚体滑动
第十页,共14页。
四、RNA调控
❖ RNA干扰(RNAi)作用是生物体内的一种通过双 链RNA分子在mRNA水平上诱导特异性序列基因 沉默的过程。

遗传学第十二章表观遗传学精选课件

遗传学第十二章表观遗传学精选课件
染色质重塑与表观遗传调控
探讨染色质重塑与DNA甲基化、组蛋白修饰等表观 遗传调控之间的相互作用及联合用药策略。
THANKS
感谢观看
异常影响
异常的染色质重塑与多种疾病相关,如癌症、神经系统疾病等。同时, 核小体定位的改变也可能导致基因表达的异常和疾病的发生。
03 表观遗传机制探 讨
基因印记与X染色体失活
01 02 03
基因印记定义与特点
基因印记是指来自父方或母方的等位基因在发育过程中产生 专一性的加工修饰,导致后代体细胞中两个等位基因出现不 同的表达特性。这种修饰是稳定和可遗传的,但不涉及DNA 序列的改变。
甲基化特异性PCR 根据甲基化和非甲基化DNA设计特异性引物,通 过PCR扩增来检测特定基因的甲基化状态。
3
甲基化敏感的限制性内切酶法
利用对甲基化敏感的限制性内切酶切割DNA,通 过比较切割前后的DNA片段差异来判断甲基化水 平。
组蛋白修饰检测技术
01
染色质免疫沉淀
利用特异性抗体与组蛋白修饰位点结合,再通过沉淀和洗涤等步骤富集
遗传学第十二章表观遗传学 精选课件
目 录
• 表观遗传学概述 • 表观遗传变异类型 • 表观遗传机制探讨 • 实验方法与技术手段 • 疾病发生发展中作用 • 药物研发及临床应用前景
01 表观遗传学概述
表观遗传学定义与特点
定义
表观遗传学是研究基因表达发生可 遗传变化而不涉及DNA序列改变的 学科。
异常影响
异常的非编码RNA表达与多种疾病相 关,如癌症、心血管疾病等。
作用
非编码RNA能够通过与靶基因结合或 调控转录因子等方式,影响基因表达 和细胞功能。
染色质重塑与核小体定位
定义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11
DDNNAA 甲甲基基化化
2
组蛋白修饰
3
染色质重塑
4
RNA 调 控
2020年/101/02月5 25日
8
一、DNA甲基化
以基因型为a/a的母鼠 及其孕育的基因型为 AVY/a的仔鼠作实验对象。 孕鼠分为两组,试验组孕 鼠除喂以标准饲料外,从 受孕前两周起还增加富含 甲基的叶酸、乙酰胆碱等 补充饲料,而对照组孕鼠 只喂饲标准饲料。
2020/10/25
19
DNA甲基化与组蛋白去乙酰化
乙酰化酶基因突变导致基因不能表达: Rubinstein Taybi综合征、肿瘤、急性 进行性髓性白血病。
去乙酰化酶相关基因的突变导致错误募集 去乙酰化酶:Rett综合征、急性早幼粒细 胞性白血病,急性淋巴细胞性白血病和非 何杰金氏淋巴瘤的治疗。
甲基化-- 发生在H3、H4的 Lys 和 Asp 残基上,可以 与基因抑制有关,也可以与基因的激活相关,这往往 取决于被修饰的位置和程度。
磷酸化-- 发生与 Ser 残基,一般与基因活化相关。 泛素化-- 一般是C端Lys修饰,启动基因表达。 SUMO(一种类泛素蛋白)化-- 可稳定异染色质。 其他修饰
❖ 意义:
任何一个层面异常,都将影响染色质结构和基因表达 ,导致复杂综合征、多因素疾病以及癌症。和DNA序 列改变不同的是,许多表观遗传的改变是可逆的,这 就为疾病的遗传学的研究内容:
基因选择性转录表达 的调控
DNA甲基化 组蛋白共价修饰 染色质重塑 基因印记
基因转录后的调控
表观遗传学
(epigenetics)
2020/10/25
发展历史
❖1939年,Waddington CH 首先在《现代遗传学导 论》中提出了epihenetics这一术语。
❖ 1942年定义为生物学的分支 ,研究基因与决定表 型的基因产物之间的因果关系。
❖1975年,Hollidy R 对表观遗传学进行了较为准 确的描述。
一、DNA甲基化
❖ 哺乳动物基因组中5mC占胞嘧啶总量的2%-7%,约70% 的5mC存在于CpG二连核苷。
❖ 在结构基因的5’端调控区域, CpG二连核苷常常以成簇 串联形式排列,这种富含CpG二连核苷的区域称为CpG岛 (CpG islands),其大小为500-1000bp,约56%的编码 基因含该结构。
2020年10月25日
Bryan M. Turner, nature cell biology, 2007
17
二、组蛋白修饰
❖ 组蛋白修饰是表观遗传研究的重要内容。
❖ 组蛋白的 N端是不稳定的、无一定组织的亚单位,其 延伸至核小体以外,会受到不同的化学修饰,这种修 饰往往与基因的表达调控密切相关。
❖ 启动子区域的CpG岛一般是非甲基化状态的,其非甲基 化状态对相关基因的转录是必须的。
❖ 目前认为基因调控元件(如启动子)的CpG岛中发生 5mC修饰会在空间上阻碍转录因子复合物与DNA的结 合。因而DNA甲基化一般与基因沉默相关联。
2020年10月25日
11
一、DNA甲基化
DNA甲基化(DNA methylation)是研究得最 清楚、 也是最重要的表观遗传修饰形式,主要是 基因组 DNA上的胞嘧啶第5位碳原子和甲基间的 共价结合,胞嘧啶由此被修饰为5甲基胞嘧啶(5methylcytosine,5mC)。
结果试验组孕鼠产下的仔鼠大多数在身体的不同部位出现了大小不等的棕 色斑块,甚至出现了以棕褐色为主要毛色的小鼠。而对照组孕鼠的仔鼠大多数 为黄色。分析表明喂以富甲基饲料的孕鼠所产仔鼠的IAP所含CpG岛的甲基化 平均水平远高于对照组,转录调控区的高甲基化使原该呈异位表达的基因趋于 沉默,毛色也趋于棕褐色。
DNMT1
SAM S-腺苷甲硫氨酸
胞嘧啶
5-甲基胞嘧啶
胞嘧啶甲基化反应
2020年/101/02月5 25日
12
二、组蛋白修饰
2020年/101/02月5 25日
15
二、组蛋白修饰
2020年/101/02月5 25日
16
二、组蛋白修饰
❖ 组蛋白中被修饰氨基酸的种类、位置和修饰类型被 称为组蛋白密码(histone code),遗传密码的 表观遗传学延伸,决定了基因表达调控的状态,并 且可遗传。
基因组中非编码RNA 微小RNA(miRNA) 反义RNA 内含子、核糖开关等
X染色体失活
2020年/101/02月5 25日
5
概述
遗 传 与 表 观 遗 传
2020年/101/02月5 25日
6
基 因 组 与 表 观 基 因 组
2020年/101/02月5 25日
概述
经组织归类的信息
7
表观遗传学机制
❖ 被组蛋白覆盖的基因如果要表达,首先要改变组蛋白 的修饰状态,使其与DNA的结合由紧变松,这样靶基 因才能与转录复合物相互作用。因此,组蛋白是重要 的染色体结构维持单元和基因表达的负控制因子。
2020年/101/02月5 25日
18
二、组蛋白修饰
❖组蛋白修饰种类
乙酰化-- 一般与活化的染色质构型相关联,乙酰化修 饰大多发生在H3、H4的 Lys 残基上。
❖ 基因调控元件(如启动子)所含CpG岛中的5mC会阻碍转录 因子复合体与DNA的结合。 DNA甲基化一般与基因沉默相关联; 非甲基化一般与基因的活化相关联; 而去甲基化往往与一个沉默基因的重新激活相关联。
2020年10月25日
10
一、DNA甲基化
CpG
频 率
5’
Rb基因
3’
❖ CpG岛主要处于基因5’端调控区域。
没有DNA序列的改变或不能用DNA序列变 化来解释。
2020年10月25日
3
概述
❖ 三个层面调控基因表达:
DNA修饰 :DNA共价结合一个修饰基团,使具有相 同序列的等位基因处于不同的修饰状态。
蛋白修饰:通过对特殊蛋白修饰或改变蛋白的构象实 现对基因表达的调控。
非编码RNA调控:通过某些机制实现对基因转录的调 控,如RNA干扰。
❖1996年James G Herman 和Stephen B Baylin 发明 MSP技术,并发现肿瘤细胞中抑癌基因启动子区 CpG呈高甲基化状态。
2020年/101/02月5 25日
2
概述
❖表观遗传学:
可遗传的,即这类改变通过有丝分裂或减数 分裂,能在细胞或个体世代间遗传;
可逆性的基因表达调节,也有较少的学者描 述为基因活性或功能的改变;
相关文档
最新文档