第12讲 电磁感应

合集下载

2025年高考物理总复习配套课件第十章电磁感应第2讲法拉第电磁感应定律自感和涡流

2025年高考物理总复习配套课件第十章电磁感应第2讲法拉第电磁感应定律自感和涡流
[答案] A
考法(二) 倾斜切割情形
[例 2] 如图所示,abcd 为水平放置的平行光滑金属导轨,间距
为 l。导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为 B,
导轨电阻不计。已知金属杆 MN 倾斜放置,与导轨成 θ 角,单位长
度的电阻为 r。保持金属杆以速度 v 沿平行于 cd 的方向滑动(金属杆滑动过程中与导
()
解析:在 t=T4时,交流电图线斜率为 0,即磁场变化率为 0,由 E=ΔΔΦt =ΔΔBt S 知,E =0,故 A 正确。在 t=T2和 t=T 时,图线斜率最大,在 t=T2和 t=T 时感应电动势最大。 在T4到T2之间,电流由 Q 向 P 减弱,导线在 R 处产生垂直纸面向里的磁场,且磁场减弱, 由楞次定律知,R 产生的感应电流的磁场方向也垂直纸面向里,则 R 中感应电动势沿 顺时针方向,同理可判断在T2到34T 时,R 中电动势也为顺时针方向,在34T 到54T 时,R 中电动势为逆时针方向,C 正确,B、D 错误。
2.涡流 (1)定义:块状金属放在变化磁场中,或在磁场中有相对运动时,金属块内产生的
旋涡状感应电流。
(2)产生原因:金属块内_磁__通___量__变化→感应电动势→感应电流。
情境创设 1.如图甲所示,线圈两端a、b与一电阻R相连,线圈内有垂直于线圈平面向里的
磁场,t=0时刻起,穿过线圈的磁通量按图乙所示的规律变化。
D.金属棒运动过程中,外力F做功的功率恒定
[解析] 经过时间 t,金属棒切割磁感线的有效长度 L=2vttan θ,金属棒 切割磁感线产生的感应电动势 E=BLv=2Bv2ttan θ,则电容器极板上的电荷量 Q=CE=2BCv2ttan θ,则通过金属棒中的电流 I=ΔΔQt =2BCv2tan θ,A 正确; 当金属棒到达 x=x0时,即 vt=x0时,电容器极板上的电荷量 Q0=2BCvx0tan θ, B 错误;根据楞次定律可知,感应电流沿逆时针方向(从上往下看),则电容器 的上极板带正电,C 错误;因为金属棒做匀速运动,所以外力 F=F 安=BIL, 外力做功的功率 P=Fv=4B2Cv4ttan2 θ,是变化的,D 错误。

《电机及其控制技术》学习大纲

《电机及其控制技术》学习大纲

一、课程性质和目标 本课程是电工电子、电气工程及自动化、电子设备应用技术 、现代应用电 器与电子、楼宇自动化、计算机与自动检测专业一门技术基础课程。它的培养目 标是: 使学生掌握交直流电机拖动、电机的电气控制技术等方面的基本知识和技 能,将学生培养成为高素质技术应用性人才,同时为学习后继课程打好基础。
互锁、各种保护电路等,熟记这几种常用基本控制电路的构成。熟练掌握几种典 型的控制电路,如顺序控制、多地控制、正反转控制、起动控制、制动控制等。 这门课属于工科类课程, 对学生的逻辑分析能力要求较高, 且前面的内容是 后面内容的基础,前后内容的联系较为紧密,因此若没充分理解前面的内容,则 会在后续的学习中遇到较大的阻力,容易失去学习的信心。因此建议大家一定要 一步一个脚印, 在充分理解前面内容的前提下再进行后续内容的学习。由于时间 关系,课件仅是教材的精选部分,因此,仅仅是依赖课件是不够的。大家在听每 讲之前应先看一遍教材的内容,然后再去听课件,这样有助于跟上老师的思路, 有助于加深知识点的理解,取得事半功倍的学习效果。
电器、熔断器的结构原理、图形及文字符号。 应会:正确选择和使用低压电器;按钮、中间继电器、接触器、熔断器、时 间继电器和热继电器等的应用。 难点:低压断路器与漏电保护器的构成原理;各类电器图形与文字符号的区 别与记忆,特别是时间继电器不同的图形代表的含义。 易混淆的地方: 交流电磁铁与直流电磁铁,电磁铁中的电压线圈和电流线圈; 控制类电器线圈参数和触点参数,接触器与继电器。 第10讲: 课程内容:控制系统的分类,顺序控制、多地控制,其中顺序控制包括由主 电路直接实现的顺序控制和由控制电路实现的顺序控制。 应知: 电气常用的控制方法和分类。
《电机及其控制技术》学习大纲
课程名称:电机及其控制技术 教材名称:《电机与电气控制》,徐建俊主编,清华大学出版社 知识结构:电机基本理论(约 55%)+电机控制(约 45%) 成绩评估: 总成绩(100%)=作业(20%)+期末考试(70%)+平时 10% 考核题型(以下几种为主):填空题,选择题,简答题,计算题,设计题(绘图 题)等。

2024届高考一轮复习物理课件(新教材粤教版):探究影响感应电流方向的因素

2024届高考一轮复习物理课件(新教材粤教版):探究影响感应电流方向的因素

楞次定律的推论
内容
例证
磁体靠近线圈,B感与B原方向相反
增反
减同
当I1增大时,环B中的感应电流方向与I1相反; 当I1减小时,环B中的感应电流方向与I1相同
来拒去留 磁体靠近,是斥力 磁体远离,是引力阻碍磁体与圆环相对 运动
增缩减扩 P、Q是光滑固定导轨,a、b是可动金属棒,磁 (适用于单 体下移(上移),a、b靠近(远离),使回路面积有 向磁场) 缩小(扩大)的趋势
在闭合开关S的瞬间,根据右手螺旋定则可知穿 过金属环的磁通量向右增大,由楞次定律可知, 金属环中产生的感应电流从左侧看沿逆时针方向, 选项D错误.
例8 (多选)两圆环A、B置于同一水平面上,其中A为均匀带电绝缘环, B为导体环.当A以如图所示的方向绕中心转动的角速度发生变化时,B中 产生如图所示方向的感应电流,则 A.A可能带正电且转速减小
(2)把A线圈插入B线圈中,如果闭合开关时发现灵敏电流计的指针向右偏 转了一下,下面操作出现的情况有: ①向右移动滑动变阻器滑片,灵敏电流计指针将向_右___(选填“左”或 “右”)偏转;
闭合开关,穿过B线圈的磁通量增大, 灵敏电流计的指针向右偏了一下,滑片 向右移动则接入电路的电阻减小,电流 增大,磁通量增大,指针向右偏转;
变化生电
例9 (多选)如图所示,水平放置的两条光滑轨道上有
可自由移动的金属棒PQ、MN,PQ、MN均处在竖直向
下的匀强磁场中,当PQ在一外力的作用下运动时,MN
向右运动,则PQ所做的运动可能是
A.向右加速运动
√C.向右减速运动
√B.向左加速运动
D.向左减速运动
MN 向右运动,说明 MN 受到向右的安培力,因为 MN 处的磁场垂直纸面向里―左―手――定―则→MN 中的感应 电流方向为 M→N―安―培――定―则→L1 中感应电流的磁场方

大学物理-12第十二讲 感生电动势、自感、互感、磁场能量

大学物理-12第十二讲 感生电动势、自感、互感、磁场能量
3.按定义 L I
18
二、互感应
●由于一个载流回路中电流发生变化而引起邻近另 一回路中产生感生电流的现象称为“互感现象”, 所产生的电动势称为 “互感电动势”。
21N 2 21M 21I1 12N 1 12M 12I2
从能量观点可证明:
M12M21M
M称为互感系数简称互感 单位:亨利(H)
同理:
bo
ov r b E感dr0
ab oabo
o
E 感
L R2 L2 dB
2
4 dt
h
a
b
L
方向ab (Ub Ua )
9
vv
Байду номын сангаас法2: 用 LE感dl 求
vv
dE感dl
r 2
dB dt
cos
dl
h 2
dB dt
dl
vv
LE感dl
b h dB dl
a 2 dt 1 hL dB
缆单位长度的自感系数。
解: 两导体圆筒间磁场
B
I
2r
R2 R1
AB
通过单位长度一段的磁通量
I l 1
B vdS vR R 12Bldr2 IlnR R 1 2
DC
单位长度的自感系数 L lnR2 I 2 R1
17
总结L的计算方法 1.设回路电流为I,写出B的表达式(一般由安培
环路定理)
vv
2.计算磁通 B d S, N
LE库dvl
0
v
Ñ 感生电场是非保守力场 LE感dl 0
3
例:在半径为R 的长直螺线管中通有变化的电流,使
管内磁场均匀增强,求螺线管内、外感生电场的场强

第12讲 电磁感应规律及其应用

第12讲 电磁感应规律及其应用

第12讲 电磁感应规律及其应用考点 考题统计考情分析楞次定律 法拉第电磁感应定律2023·湖北卷T 5、2022·河北卷T 5、2022·广东卷T 4T 10、2022·山东卷T 12本讲主要考查电磁感应的基本规律和方法,熟练应用动力学和能量观点分析并解决电磁感应问题。

主要规律有:楞次定律和法拉第电磁感应定律的理解及应用;电磁感应中的平衡问题;电磁感应中的动力学和能量问题。

本专题选择题和计算题都有可能命题,选择题一般考查楞次定律和法拉第电磁感应定律的应用,题目有一定的综合性,难度中等;计算题主要考查电磁感应规律的综合应用,难度较大。

电磁感应中的电路、图像问题2023·辽宁卷T 4、2022·河北卷T 8、2022·全国乙卷T 24、2022·全国甲卷T 16、2021·辽宁卷T 9、2021·河北卷T 7、2021·广东卷T 10考点一 楞次定律 法拉第电磁感应定律1.感应电流方向的两种判断方法(1)楞次定律:线圈面积不变,磁感应强度发生变化的情形,往往用楞次定律。

(2)右手定则:导体棒切割磁感线的情形往往用右手定则。

2.楞次定律中“阻碍”的四种表现形式 (1)阻碍原磁通量的变化——“增反减同”; (2)阻碍物体间的相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——一般情况下为“增缩减扩”; (4)阻碍原电流的变化(自感现象)——一般情况下为“增反减同”。

3.感应电动势的四种求解方法 (1)法拉第电磁感应定律E =n ΔΦΔt{S 不变时,E =nS ΔBΔtB 不变时,E =nBΔS Δt (2)导体棒垂直切割磁感线:E =Blv 。

(3)导体棒以一端为圆心在垂直匀强磁场的平面内匀速转动:E =12Bl 2ω。

(4)线圈绕与磁场垂直的轴匀速转动(从线圈位于中性面开始计时):e =nBSωsin ωt 。

5.12电磁感应规律及其应用

5.12电磁感应规律及其应用

【拓展延伸】在【典题1】中,若把匀强磁场改为如图所示,其
他条件不变,则线框中产生的感应电流随位移变化的规律是怎
样的?试画出i-x图像。
【解析】在线框进入磁场的过程中,左边框切割磁感线,且有效
长度不变,根据公式i= BLv ,故感应电流大小不变,根据右手定
R
则可判断感应电流的方向为逆时针;
在线框离开磁场的过程中,右边框切
【破题关键】 (1)题干中导体棒ab从MN上方某处由静止下落→导体棒在磁场 产生E感 重力、安培力 作用下做 Ⅰ中切割磁感线_______→导体棒在 _____________ 加速运动。
R1、R2并联 组成 (2)电路的连接→导体棒切割磁感线是电源,__________
外电路。 (3)问题(2)中导体棒ab进入磁场Ⅱ后,电流大小始终保持不变 受力平衡 匀速运动 。 →导体棒_________→导体棒在磁场Ⅱ中做 _________
答案:(1)5m/s2 (2)1.35 m (3)F=(t+1.6)N
【拓展延伸】
(1)在【典题3】中,当导体棒进入磁场Ⅱ且电流恒定不变时,a、
b两点间的电势差大小是多少?
【解析】根据题意,导体棒进入磁场中,有mg=BI′L
则a、b两点间电势差为U=BLv′-I′r 代入数据解得:U=4V
(2)在【典题3】第(3)问中,请画出0~1.6s内外力F与时间t的
2ax,则位移在0~L和2L~3L范围内,I1′= BL 2ax ,方向为逆
时针,位移在L~2L范围内,I2′= 2BL 2ax ,方向为顺时针,故
R R
选项C正确、D错误。
热点考向二
电磁感应电路和动力学问题
【典题3·师生探究】如图所示,竖直平面内有一

工程电磁场作业合辑

工程电磁场作业合辑

d2
2、2
y
图2-29 具有两层介质的平行板电容器
答案:
T2-22 答:欧姆定律 : J E ,其物理意义是电流密度和电场强度成正比,说明电场 是推动大量电荷定向运动从而形成电流的原因,是导电媒质的基本构成关系。
T2-27 答:电流连续性方程由电荷守恒定律推导而来。
积分形式:
J
T2-27 电流连续性方程的特点是什么?
E2-29 一个有两层介质 1 、 2 的平行板电容器,两层介质都具有电导率,分别 为1 和 2 ,参见图 2.29。当外加电压为0 时,求通过电容器的电流和两层介质 分界面上的自由电荷面密度。
x
d1
1、1
E dl 0 :静电场沿任何一个封闭路径的标量线积分为 0。 l
第二讲 作业
E2-5 一个球形电荷分布 f 0 1 r2 b2 存在于区域 0 r b
中,这一电荷分布被一内半径为 ri b ,外半径为 r0 的导体球壳所包 围。计算各处的 E 。
E2-14
已知在园柱形区域( 0
a
)内的电场强度 E
E4-15. 均匀分布面电荷 s 的球,半径为 a ,以角速度 绕其一直径旋转,求磁 矩。
E4-17. 半径为 a 的磁介质球,具有磁化强度为:M ez (Az2 B) ,求磁化电流和 磁荷。
答案
T4-16. 标量磁位m , H m 只有在没有传导电流的区域中成立。用m 来表 征磁场的性质和分布,简化了静磁场的分析和计算,最终可化为求解满足一定边 界条件的拉普拉斯方程,计算方法和求解静电场的方法保持了一致性。其缺点在 于求解的局限性仅限于传导电流为零的区域。
槽绝缘的盖板。槽的电压为 0 ,而盖板的电压为0 ,求槽内的电位函数。

导线切割磁感线时的感应电动势精选文档

导线切割磁感线时的感应电动势精选文档

导线切割磁感线时的感应电动势精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-第六讲上课时间:2014年9月23日星期二课时:两课时总课时数:12课时教学目标:1.掌握导线切割磁感线时的感应电动势计算方法,2.掌握导体切割磁感线时产生的感应电动势。

3.掌握导体切割磁感线时产生的感应电动势大小的表达式。

会计算B、l、v三者相互垂直的情况下,导体切割磁感线时产生的感应电动势的大小。

教学重点:本节重点是导体切割磁感线时产生的感应电动势大小的计算教学难点:本节重点是导体切割磁感线时产生的感应电动势大小的计算教具:电子白板教学过程:一、组织教学检查学生人数,填写教室日志,组织学生上课秩序。

二、复习导入1.磁场中的几个基本物理量。

2.电磁力的大小计算公式及方向的判定。

三、讲授新课:(一)电磁感应电流和磁场是不可分的,有电流就能产生磁场,同样,变化的磁场也能产生电动势和电流。

通常把利用磁场产生电流的现象称为电磁感应现象。

在电磁感应现象中产生的电动势叫做感应电动势。

用字母e表示,国际单位伏特,简称伏,用符号V表示。

直导体切割磁感线时产生的感应电动势;螺旋线圈中磁感线发生变化时产生的感应电动势。

(二)直导体切割磁感线时产生的感应电动势直导体切割磁感线时产生的感应电动势的大小可用下面公式计算:e=BLvsinθ式中:e---感应电动势,单位伏特,简称伏,用符号V表示。

B――为磁感应强度,单位为特斯拉,简称特,用符号T表示。

L――导体在垂直于磁场方向上的长度,单位为米,用符号m表示。

v----导体切割磁感线速度,单位为米/秒,用符号m/s表示。

θ-----为速度v方向与磁感应强度B方向间的夹角。

上式说明:闭合电路中的一段导线在磁场中作切割磁感线时,导线内所产生的感应电动势与磁场的磁感应强度、导线的有效长度和导线切割磁感线的有效速度的乘积成正比。

由上式可知:当B⊥v时,θ=90o, sin90o=1,感应电动势e最大,最大为BLv;当θ=0o时, sin0o=0,感应电动势e最小为0.感应电动势的方向可用右手定则来判断:平伸右手,大拇指与其余四指垂直,并与手掌在同一平面内,手心对准N极,让磁感线垂直穿入手心,大拇指指向导体运动的方向,则其余四指所指的方向就是感应电动势的方向。

感应电动势与电磁感应定律

感应电动势与电磁感应定律

27
此时:E=Blv=0.2×5 3×5 V=5 3 V 电路电阻为 R=(15+5 3+10 3)×0.2 Ω≈8.196 Ω 所以 I=ER=1.06 A 答案 5 3 m 5 3 V 1.06 A
第2讲 感应电动势与电磁感应定律
28
(2)3 s内回路中的磁通量变化了多少?此过程中的平均感应电动
导线不动而磁场运动时,也有电磁感应现象产生.
第2讲 感应电动势与电磁感应定律
图7
22
例3 如图8所示,一金属弯杆处在磁感应强度
大小为B、方向垂直纸面向里的匀强磁场中,
已知ab=bc=L,当它以速度v向右水平移动时, 图8
a、c两点间的电势差为( B )
A.BLv
B.BLvsin θ
C.BLvcos θ
Blv 计算导线切割磁感线所产生的感应电动势较方便.
第2n
ΔΦ Δt
求得的是一般平均感应电动势,但当Δt→0时,E=n
ΔΦ Δt
可表示瞬时感应电动势;E=Blv一般求得的是瞬时感应电动势,
但当v表示Δt时间内的平均速度时,E=Blv也可表示平均感应电
图12
第2讲 感应电动势与电磁感应定律
35
A.磁通量的变化量为0.25 Wb B.磁通量的变化率为2.5×10-2 Wb/s C.a、b间电压为0 D.在a、b间接一个理想电流表时,电流表的示数为0.25 A
解析 通过线圈的磁通量与线圈的匝数无关,若设Φ2=B2S为正, 则线圈中磁通量的变化量为ΔΦ=B2S-(-B1S),代入数据即ΔΦ =(0.1+0.4)×50×10-4 Wb=2.5×10-3 Wb,A错;
图11所示,在下列几段时间内,线圈中感应
电动势最小的是( D )

法拉第电磁感应定律(共39张PPT)

法拉第电磁感应定律(共39张PPT)
则产生感应电流,感应电流引起热效应等,所以 一灵敏电压表连接在当地入海河段的两岸,河宽100 m,该河段涨潮和落潮时有海水(视为导体)流过.设落潮时,海水自西向东流,流速为2 m/s.
2.在电磁感应现象中,既然闭合电路中有_______ (4)运用闭合电路欧姆定律、串并联电路特点、电功率、电热等公式联立求解.
单位 Wb
物理意义
表示某时刻或某 位置时穿过某一 面积的磁感线条 数的多少
计算公式 Φ=B·S⊥
8
物理量
磁通量的 变化量ΔΦ
单位 物理意义
表示在某一过程
Wb
中穿过某一面积 的磁通量变化的
多少
计算公式 ΔΦ=Φ2-Φ1
磁通量的
变化率
ΔΦ Δt
Wb/s
表示穿过某一面 积的磁通量变化 的快慢
9
特别提醒:(1)Φ、ΔΦ、ΔΔΦt 均与线圈匝数无关. (2)磁通量和磁通量的变化率的大小没有直接关系, Φ 很大时,ΔΔΦt 可能很小,也可能很大;Φ=0 时,ΔΔΦt 可能不为零.
D.只有乙 解析:选B.甲、乙、丁中切割磁感线的有效长度均为l, 故B对.
19
三、电磁感应现象中的电路问题
1.分析电路
在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势.若回路闭合,则产生感应电流,感应电流引起热效应等,所以电磁
在电磁感应现象中,切割磁感线的导体或磁通量 感应问题常与电路知识综合考查.解决与电路相联系的电磁感应问题的基本方法是:
岸,河宽100 m,该河段涨潮和落潮时有海水(视为 导体)流过.设落潮时,海水自西向东流,流速为2 m/s.下列说法正确的是( ) A.河北岸的电势较高 B.河南岸的电势较高
C.电压表记录的电压为9 mV

《大学物理A》教学大纲

《大学物理A》教学大纲

《大学物理A》教学大纲一、课程基本信息课程名称:大学物理 A课程类别:必修课程学分:具体学分课程总学时:具体学时授课对象:适用专业先修课程:高等数学二、课程性质、目的和任务大学物理 A 是高等院校理工科各专业学生一门重要的必修基础课程。

本课程旨在使学生熟悉自然界物质的结构、性质、相互作用及其运动的基本规律,为后续专业课程的学习以及将来从事科学研究和工程技术工作打下坚实的物理基础。

通过本课程的学习,学生应达到以下目标:1、掌握物理学的基本概念、基本理论和基本方法,能够运用所学知识分析和解决简单的物理问题。

2、培养学生的科学思维能力和创新意识,提高学生的科学素养和综合能力。

3、了解物理学在现代科学技术和社会发展中的应用,激发学生对科学的兴趣和探索精神。

三、课程教学内容及要求(一)力学1、质点运动学(1)理解质点、参考系、坐标系等基本概念。

(2)掌握位置矢量、位移、速度、加速度等物理量的定义及计算。

(3)熟练掌握质点运动学方程的建立及求解。

2、质点动力学(1)掌握牛顿运动定律的内容及应用。

(2)理解惯性系和非惯性系的概念,掌握惯性力的计算。

(3)掌握功、功率、动能、势能等概念及计算,熟练掌握动能定理和机械能守恒定律的应用。

3、刚体的定轴转动(1)理解刚体的概念,掌握刚体定轴转动的运动学描述。

(2)掌握转动惯量的概念及计算,熟练掌握刚体定轴转动定律和角动量守恒定律的应用。

(二)热学1、气体动理论(1)理解理想气体的模型,掌握理想气体状态方程。

(2)掌握压强和温度的微观本质,了解能量均分定理。

(3)掌握麦克斯韦速率分布律。

2、热力学基础(1)掌握热力学第一定律的内容及应用,理解热功转换的关系。

(2)掌握热力学第二定律的两种表述,了解熵的概念及熵增加原理。

(三)电磁学1、静电场(1)掌握库仑定律、电场强度的定义及计算。

(2)熟练掌握高斯定理的应用,理解电场线和电通量的概念。

(3)掌握电势的定义及计算,了解电场强度与电势的关系。

法拉第电磁感应定律讲义

法拉第电磁感应定律讲义

电磁感应讲义(二)【知识点】1、φ、φ∆、t ∆∆φ同v 、△v 、tv ∆∆一样都是容易混淆的物理量,如果理不清它们之间的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解。

磁通量φ磁通量变化量φ∆磁通量变化率t∆∆φ物理意义 磁通量越大,某时刻穿过磁场中某个面的磁感线条数越多某段时间穿过某个面的末、初磁通量的差值表述磁场中穿过某个面的磁通量变化快慢的物理量大小计算⊥=BS φ,⊥S 为与B 垂直的面积12φφφ-=∆,SB ∆=∆φ或B S ∆=∆φt SBt ∆∆=∆∆φ 或tB S t ∆∆=∆∆φ 注 意若穿过某个面有方向相反的磁场,则不能直接用⊥=BS φ,应考虑相反方向的磁通量相互抵消以后所剩余的磁通量开始和转过1800时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,△φ=2 BS ,而不是零既不表示磁通量的大小,也不表示变化的多少,在φ—t 图象中用图线的斜率表示2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。

有的注意到三者之间的关系,发现不垂直后,在不明白θ角含义的情况下用E=Blvsin θ求解,这也是不可取的。

处理这类问题,最好画图找B 、l 、v 三个量的关系,如若不两两垂直则在图上画出它们两两垂直的有效分量,然后将有效分量代入公式E=Blv 求解。

此公式也可计算平均感应电动势,只要将v 代入平均速度即可。

⑵导体棒以端点为轴在垂直于磁感线的匀强磁场中匀速转动,计算此时产生的感应电动势须注意棒上各点的线速度不同,应用平均速度(即中点位置的线速度)来计算,所以ω221Bl E =。

⑶矩形线圈在匀强磁场中,绕垂直于磁场的任意轴匀速转动产生的感应电动势何时用E=nBs ωsin θ计算,何时用E=nBs ωcos θ计算,最容易记混。

法拉第电磁感应定律自感

法拉第电磁感应定律自感

大的线圈,其作用是: (1)日光灯启动时,产 生 瞬时高压 . (2)日光灯正常发光时,可 以 降压限流 .
图12-2-1
课堂互动讲练
一、感应电动势 E 与磁通量 Φ、磁通量 ΔΦ 的变化量 ΔΦ 以及磁通量变化率 之间 Δt 的关系 1. 感应电动势 E 的大小决定于穿过电
ΔΦ 路的磁通量的变化率 ,而与磁通量 Δt Φ、 磁通量的变化量 ΔΦ 的大小没有必 然联系.
高频考点例析
【易误警示】 (1)导体棒切割磁 感线时产生的感应电动势E=Blv中 的v为平均速度时,求得的是平均感 应电动势. (2)要能够准确地判断出导体棒从 速度v0减小到v1的过程中做匀减速运 动,平均速度等于初末速度的平均 值,这是解决本题的突破口.
高频考点例析
题型三 公式E=nΔΦ/Δt与E=BLv的选用
基础知识梳理
1 2 为 E=BL v = 2BL ω. (平均速度取中点 1 位置线速度 Lω) 2
名师点拨
ΔΦ E=n 往往用来求 Δt 时间内的平 Δt 均感应电动势;而 E=BLvsinθ 常
用来求瞬时感应电动势.但两公式 又是统一的,一般来说,公式 E= ΔΦ n 适用 于磁场变 化求感 应电 动 Δt 势,E=BLvsinθ 适用于切割磁感 线求感应电动势.
课堂互动讲练
名师点拨
名师点拨:自感作用延 缓了电路中电流的变化,使 得在通电瞬间含电感的电路 相当于断路;断电时电感线 圈相当于一个电源,通过放 电回路将储存的能量释放出 来.
课堂互动讲练
三、日光灯 1.启动器相当于一个自动开 关,当启动器自动断开时,镇流器 产生自感电动势 .(如图12-2-1) 2.镇流器是一个 自感系数 很
2.自感电动势的方向 (1)如果导体中原来的电流是增大的,自感电动势就要阻碍原 来电流的增大,即感应电流的方向与原电流方向相反. (2)如果导体中原来的电流是减小的,自感电动势就要阻碍原 来电流的减小,即感应电流的方向与原电流的方向相同.

第12章 第2讲 法拉第电磁感应定律、自感和涡流

第12章 第2讲 法拉第电磁感应定律、自感和涡流

第2讲法拉第电磁感应定律、自感和涡流【目标要求】1理解法拉第电磁感应定律,会应用E=图进行有关计算.2.会计算导体切割磁感线产生的感应电动势3了解自感现象、涡流、电磁驱动和电磁阻尼.考点一法拉第电磁感应定律的理解及应用必备知识1 .感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.(2)产生条件:穿过回路的发生改变,与电路是否闭合无关.2 .法拉第电磁感应定律⑴内容:闭合电路中感应电动势的大小,跟穿过这一电路的成正比.(2)公式:E=禺,其中〃为线圈I匝数.(3)感应电流与感应电动势的关系:I=.(4)说明:E的大小与勿、AG无关,决定于磁通量的变化率警.-判断正误1 .Φ=0,右不一定等于0.( )2 .穿过线圈的磁通量变化越大,感应电动势也越大.( )3 .穿过线圈的磁通量变化越快,感应电动势越大.( ).线圈匝数〃越多,磁通量越大,产生的感应电动势也越大.( )对公式石的理解1 .若已知图像,则图线上某一点的切线斜率为譬.2 .当AS仅由8的变化引起时,E=笠,其中S为线圈在磁场中的有效面积.若B=Bo3 .当△◎仅由S的变化引起时,E=nB÷.【例U (2023∙河北卷∙5)将一根绝缘硬质细导线顺次绕成如图所示的线圈,其中大圆面积为S,小圆面积均为S2,垂直线圈平面方向有一随时间f 变化的磁场,磁感应强度大小8=%+3%和k 均为常量,则线圈中总的感应电动势大小为()A.kSι C.k(S ∖5Si)听课记录:___________________________________________________________________________m 21(2023•全国甲卷・16)三个用同样的细导线做成的刚性闭合线框,正方形线框的边长与圆线框的直径相等,圆线框的半径与正六边形线框的边长相等,如图所示.把它们放入磁感应强度随时间线性变化的同一匀强磁场中,线框所在平面均与磁场方向垂直,正方形、圆形和正六边形线框中感应电流的大小分别为4、/2和/3.则()A.1∖<h<h C.I ∖=I2>h听课记录: _________________________________________________________________考点二动生电动势必备知识1 .导体平动切割磁感线产生感应电动势的算式E=B1v 的理解(1)直接使用E=B 加的条件是:在匀强磁场中,B 、I 、。

大学物理实验讲义实验12用霍尔效应法测量磁场

大学物理实验讲义实验12用霍尔效应法测量磁场

实验 16 用霍尔效应法测量磁场在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范围可从 10 15 ~ 103 T(特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。

常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。

一般地,霍尔效应法用于测量 10 4 ~ 10 T 的磁场。

此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。

但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。

用半导体材料制成的霍尔器件,在磁场作用下会出现显著的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型( N 型或 P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。

如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。

了解这一富有实用性的实验,对于日后的工作将有益处。

【实验目的】1.了解霍尔效应产生的机理。

2.掌握用霍尔器件测量磁场的原理和基本方法。

3.学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。

4.研究通电长直螺线管内轴向磁场的分布。

【仪器用具】TH-H/S 型霍尔效应 /螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。

【实验原理】1.霍尔效应产生的机理置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879 年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。

特别是在半导体样品中,霍尔效应更加明显。

霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。

高三物理电磁感应现象、右手定则、楞次定律及其应用、自感现象 知识精讲

高三物理电磁感应现象、右手定则、楞次定律及其应用、自感现象 知识精讲

高三物理电磁感应现象、右手定则、楞次定律及其应用、自感现象 知识精讲【本讲主要内容】电磁感应现象、右手定则、楞次定律及其应用、自感现象【知识掌握】【知识点精析】一. 电磁感应现象:1. 磁通量(1)概念:穿过某一面积的磁感线条数,是标量。

(2)公式:φα==BS B S sin ⊥·,其中α是B 与S 的夹角:当S ∥B 时,φ=0;当S ⊥B 时,φ=B ·S 。

(3)单位:韦伯(W b ),1W b =1T ·m 2(4)合磁通:若通过一个回路中有方向相反的磁场,则不能直接用公式φα=BS ·sin 求φ,应考虑相反方向抵消以外剩余的磁通量,亦即此时的磁通是合磁通。

2. 产生感应电流的条件:①穿过闭合回路的磁通量发生变化。

②若电路不闭合,即使有感应电动势,也没有感应电流。

③导致磁通量变化的情况有:磁感应强度B 变化;回路面积变化;线圈在磁场中转动等。

二. 感应电流方向的判定:1. 右手定则:伸开右手,让大姆指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线垂直或斜着穿入手心,大姆指指向导体运动方向,其余四指所指的方向就是感应电流的方向。

(适用情景:部分导体切割磁感线运动。

)2. 楞次定律:(1)内容:感应电流具有这样的方向,就是感应电流产生的磁场,总要阻碍引起感应电流的磁通量的变化。

(适用情景:一切电磁感应现象。

)(2)理解:I :楞次定律“阻碍”二字含有四层意思:①谁阻碍谁?②阻碍什么?③如何阻碍?④结果如何?II :感应电流与原磁通量变化关系如下图:原磁通量变化感应电流的磁场感应电流 阻碍 产 生产生(3)楞次定律的应用步骤①明确所研究的闭合路,判断原磁场方向→②判断闭合回路内原磁通量的变化→③由楞次定律判断感应电流的磁场方向→④由安培定则根据感应电流的磁场方向判断感应电流的方向三、楞次定律的推广含义:1. 阻碍原磁通的变化:2. 阻碍(导体与磁体间、或导体间的)相对运动;(“来拒去留”)3. 阻碍原电流变化。

1.2 法拉第电磁感应定律

1.2 法拉第电磁感应定律

法拉第电磁感应定律精讲年级:高中 科目:物理 类型:选考 制作人:黄海辉知识点:法拉第电磁感应定律一 、法拉第电磁感应定律的应用1.法拉第电磁感应定律的理解(1)感应电动势的大小由线圈的匝数和穿过线圈的磁通量的变化率ΔΦΔt 共同决定,而与磁通量Φ的大小、变化量ΔΦ的大小没有必然联系。

(2)磁通量的变化率ΔΦΔt 对应Φ-t 图线上某点切线的斜率。

2.应用法拉第电磁感应定律的三种情况(1)磁通量的变化是由面积变化引起时,ΔΦ=B ·ΔS ,则E =n B ΔSΔt ;(2)磁通量的变化是由磁场变化引起时,ΔΦ=ΔB ·S ,则E =n ΔB ·SΔt;(3)磁通量的变化是由面积和磁场变化共同引起时,则根据定义求,ΔΦ=Φ末-Φ初,E =n B 2S 2-B 1S 1Δt ≠n ΔB ΔS Δt。

3. 应用法拉第电磁感应定律应注意的三个问题(1)公式E =n ΔΦΔt 求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值。

(2)利用公式E =nS ΔBΔt 求感应电动势时,S 为线圈在磁场范围内的有效面积。

(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关。

推导如下:q =I Δt =n ΔΦΔt ·RΔt =n ΔΦR 。

二、导体棒切割磁感线产生感应电动势的计算1.E =Bl v 的三个特性(1)正交性:本公式要求磁场为匀强磁场,而且B 、l 、v 三者互相垂直。

(2)有效性:公式中的l 为导体切割磁感线的有效长度。

如图9-2-5中,导体棒的有效长度为ab 间的距离。

图9-2-5(3)相对性:E =Bl v 中的速度v 是导体相对磁场的速度,若磁场也在运动,应注意速度间的相对关系。

2.导体转动切割磁感线当导体在垂直于磁场的平面内,绕一端以角速度ω匀速转动时,产生的感应电动势为E =Bl v =12Bl 2ω,如图9-2-6所示。

法拉第电磁感应定律讲评课

法拉第电磁感应定律讲评课

法拉第电磁感应定律(一)学习目标知识与技能:1、复习巩固法拉第电磁感应定律的相关知识点2、对法拉第电磁感应定律在解题过程中的易错的知识点引起注意3、能熟练应用公式=E n t ΔΔΦ与E=BLVsin θ解决电磁感应的题目4、能合理的选择使用电磁感应定律的两个公式过程与方法:1、培养学生的分析问题、解决问题的能力2、培养学生的逻辑思维和推理能力情感态度价值观:1、培养学生用于解决问题的精神和团结合作的精神2、培养学生勇于解决困难的精神(二)教学重难点重点:学会选择使用=E n t ΔΔΦ与E=BLVsin θ两个公式难点:容易忽略磁通量的方向性(一) 展示答案学生对照答案自主探究,自己纠错自己纠错后,小组讨论,对自己不能解决的题目有小组共同解决。

提出问题:对小组不能解决的题目有小组长负责提出。

(二) 反馈考情优秀85以上:28人;良好70以上:48人;70以下:4人根据考情,明确自己的位置,以利再战。

(三)公布错的较多的题目6、10、12、14(四)错例探究例1:矩形线圈abcd 共有n 匝,总电阻为R ,部分置于有理想边界的匀强磁场中,线圈平面与磁场垂直,磁感应强度大小为B ,让线圈从图示位置开始以ab 边为轴匀速转动,角速度为ω,ab 边长为L 1,ad 边长为L 2,在磁场部分为52L 2,则线圈从图示位置转过45°的过程中感应电动势的大小为多少?教师:不知道在转动过程中磁通量的变化如何求解?学生:(学生到黑板画图讲解)本题中线圈在转动到45°的过程中线圈的cd 边还没有进入磁场中也就是说线圈在转动过程中,线圈在垂直磁场方向的有效面积一直都没变53L 1L 2,因此磁通量没有改变,感应电动势为零。

教师:思考本题的关键在哪里?学生:判定磁通量是否改变。

拓展变形:将上题中所有条件都不改变,你能求出线圈转动过程中磁通量改变的位置吗?例2:一个电阻是R ,半径为r 的单匝线圈在磁感应强度为B 的匀强磁场中,如图,若以线圈的直径为轴旋转180°,则在此过程中,导线横截面积上通过的电荷量?教师:初末位置的磁通量是相等的,感应电动势为何不为零?学生:(学生到黑板讲解)虽然初末位置磁通量的大小都等于B πr 2,但是初末位置磁感线确实从线圈的正反两面穿越的,因此初末位置的磁通量差一个负号,磁通量的变化率为2B πr 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B lv cos
Rr
U 1 Ir (8 1.25 1)V 6.75V
3。平行金属导轨相距l = 0.3m,电池.电动势ε= 6V, 内阻不计,串联电阻R = 5Ω,匀强磁场方向垂直于纸 面向里.金属棒在磁场力作用下由静止开始向左 滑.设摩擦阻力f = 0.1N.为使金属棒速度有最大值vm, 磁感强度B应为多大?此时的vm为多大?
当线框绕ad边竖直站起来时,穿过线框的磁通量的变化 量为△φ2=B2l1l2-B1l1l2,所以 △φ2=RΔQ2,
(B2-B1)l1l2=RΔQ2
可解得
B 2R 2 l1 l 2
2
B
B1 B 2
2
2
Q 1 2 Q 1Q 2 2 Q 2
2
7.如图所示电路,无限长螺 线管(垂直图平面)中的电流 大小随时间线性增加,方向如 图中箭头所示。直流电源的电 动势等于包围螺线管回路的感 应电动势,均为ε . 1、2、3是三个完全一样的灯泡,其电阻均为R,电池内 阻为r(r《R),试问: (1)通过三个灯泡的电流强度各是多少? (2)在图示电路中,用短路导线经螺线管右侧联结A、 B,通过每个灯泡的电流强度又如何?A、B两点哪一点 的电势高? (3)在图示电路中,用短路导线经螺线管左侧联结A、 B,通过每个灯泡的电流强度如何?电池的端电压为多 少?A、B两点的电势哪点高?
解法一: 金属棒在水平方向上受到安培力和摩擦力的作用.随 着棒速度的增加,它两端的感生电动势ε’也增加.流过 棒的电流将减小,它受到的安培力也将减小.当安培 力与摩擦力相等时,金属棒的加速度为零,速度达到 最大值vm.此时, BIL f ① 整个装置的等效电路如图所示.
' B lv m
解:①如图 I I1 I 2
I回路: 2 I 2 R I 1 R II回路: Ir I 1 R 可求得: 2R r 2 R
I1 R 2 R 3r 2R
2


R
I2
I1 R
2R



R 2R R
R
②选择ACBA回路: I 1 R , I 1 (与图中I1反方向)
I
'

B lv m
l f

代入①式得
B
R R B lv m
R
vm
B l R f B l
2 2
1 l Rf 1 2 2 2 l B B l
2
R f l B R f
R f 2 B
2 2 1 l 6 2 m / s 18m / s l 2 R f 4Rf 4 5 0 .1
而且v'2=v2+2a's由以上两式及①式可得电容器储藏的电 2 2 能 CB L
E C m g s s in m CB L
2 2
5。一导体平板沿x轴放置,宽度为L,电阻 忽略不计。aebcfd是圆弧形均匀导线,电阻为 3R,圆弧与x轴垂直,圆弧的两端a、d与导体 板的两个侧面相接触,并可在其上滑动.圆弧 ae = eb = cf = fd = 1/8圆周长,圆弧bc =1/4圆周 长.一个内阻为Rr = nR的体积很小的电压表位 于圆弧的圆心O处,与b、c相连。整个装置处 于磁感强度为B、方向垂直向上的匀强磁场中。 导体板不动,圆弧与电压表一起以恒定速度v 沿x轴方向运动。(1)求电压表的读数;(2)求e点 与f点的电势差Uef。
解:(1)当s接1时,棒在重力、安培力和垂直斜面向 上的弹力的作用下运动.设某时刻棒的速度为v,这时 棒中产生的感生电动势ε=BLv.方向与电源电动势方向 BLv 相反,故回路中的电流 I
R
考察棒受的安培力 根据牛顿第二定律 故棒ab下滑的加速度
F=BIL=BL(ε-BLv)/R
m g sin B L ( B L v ) R
ua uc ? (2)ac间电势最低点的位置。
解:(1)根据含源电路欧姆定律:Ua-Uc=-εac+IR 式中R是ac边电阻,由对称性:
ac
所以 Ua Uc
1 4 1
4

总 总
4R R 0
(2)不能得到(1)相同的结论(因为 a b 2 a c ) 因为ac上各点v呈现性变化,所以

R
在选择ACB23A回路: 0 I 2 2 R ,2 0 (2、3熄灭) I 从I1的方向可看出 U B U A(ACB为电源) ③选A1BDA回路:0 I1 R ,I1 0 (1熄灭) I 选A23BDA回路: I 2 R , 2 从ADBεA回路看,有
4。在倾角为α的足够长的两条光滑平行金属导轨 上,放一根质量为m、电阻不计的金属棒ab.整个空 间有磁感强度为B的匀强磁场,方向垂直于轨道平面 向上,导轨宽度为L,电源电动势为ε,电源内阻为R, 导轨电阻不计,电容器的电容为C,问:(1)S接1时, ab的稳定速度为多少? (2)ab达到稳定速度时S投向2, 稳定后ab再下滑距离s,这过程中电容器储藏的电能 是多少?
解:(1)当金属杆在轨道上下滑时,整个装置的等效 电路如图(a)所示.金属杆加速下滑,其感生电动势ε ' 将增大,整个电路中电流随之增大.因此R两端的电压降 和电池内阻上的电压降都升高,所以电压表V2的示数增 大,电压表V1的示数将减小。 (2)金属杆下滑时, 其受力情况如图(b) 所示,设杆下滑的 加速度为2m/s2时, 其速度为v.此时杆 两端 的感生电动势 Blv cos
解:根据地磁场的特征可知,在北半球的地磁场方向是 向北向下的.只要求出这个磁感强度的竖直分量B1和水 平分量B2,就可以求出该处磁感强度B的大小. 当线圈翻个身时,穿过线圈的磁通量的变化量为 △φ1=2B1S,因为感生电动势

t RI R Q t
所以
△φ1=R△Q1,2B1l1l2=RQ1

电路中的电流 I

Rr

B lv cos
Rr
由牛顿第二定律
m g sin BIl cos m a

ma
将①式代入得 m g sin B l cos 代入数据解得 代入①式得 所以电压表V1的读数 v = 6.25m/s I = 1.25A
由左手定则可知棒受的安培力沿斜面向上,由牛顿第二 定律得棒的加速度
a ' g sin BI ' L m m g sin m CB L
2 2

由此可知棒做匀加速运动,棒下滑一段距离后,由能 量守恒定律得 1 1 2 2
m gs sin mv ' 2 2 m v EC
U b U c I1 R 1 U b U c I3Rg 3 3 U b U c 2I2R
以及 I1+I3=I2,注意到2ε3=ε1,且Rg=nR,可解得
I3
1
(3 n 2 ) R
I2
( n 1) 1 (3 n 2 ) R
1 1 1 2 a b B v a b sin B x c x c tan R x c tan 4 2 8 2 同理可得: a c B x c ta n 2
1
欧姆定律: U b U c b c 而
总 R 1 3 2 I R B x c tan 2 8 4R 2
pm 4R
这个输出功率全部用来克服摩擦阻力做功,所以有

2
4R
fv m
vm

2

6
2
4Rf
4 5 0 .1
m / s 18m / s
因为在外阻等于内阻时,路端电压等于电动势的一半, 所以有
B vm l

2
6 T 5 9 T
B

2 lv m
2 0 .3 1 8
B l sin 2
2

4R
R l
B l sin 2
2

2
2 B xc
tan
Rl R

Rl R

l ac
Ud Ua
1 4
B l sin 2
1 2

2 B xc
tan
l ac
这是一个关于l的二次方程,可求得当
l b 2a
1 8
2R
r 忽略电池内产生的感生电动势, U Ir 0 短路导线为一理想电源,感应电动势从B到A,因此
UA UB
Ir , I

8. 3.有一质量为 m,电量为 q 的粒子,以速率 v0 在含有匀强
磁场 B1 的长螺线管中绕管轴作圆周运动, (1)若该粒子突然进 入匀强磁场 B2 的区域,则其半径为多少?(2)若磁场 B1 突然 变为 B2,则粒子半径又将是多少。
a g sin B LБайду номын сангаас( B L v ) mR
ma
当a=0时,棒ab速度达到最大值vm,即稳定速度,其 值为
vm m gR sin B L B L
2 2
(2)将s扳向2后,电容器充电,充电电流
I Q t C t CBL v t CBLa '
2
总 4 ac 2 Bx c tan
Ub Uc 1 8
B x c ta n
2
(3)设ac间离a点l远处的d点电势最低。
U a U d l IRl
U d U a l IR l U a Ua 1 4 1 4 1 2
相关文档
最新文档