2020北京市中考数学二模分类26题代数综合
2020年北京市朝阳区中考数学二模试卷(含答案解析)
2020年北京市朝阳区中考数学二模试卷一、选择题(本大题共8小题,共16.0分)1.若代数式x2−x的值等于零,则x=()x−1A. 1B. 0C. 0或1D. 0或−12.圆柱是由长方形绕着它的一边所在直线旋转一周得到的,那么下列四个图中绕着虚线旋转一周可以得到如图所示的立体图形的是().A.B.C.D.3.下列四个选项中,既是轴对称又是中心对称的图形是()A. 矩形B. 等边三角形C. 正五边形D. 正七边形4.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是()A. −a<−bB. a+b<0C. |a|<|b|D.5.若正六边形的边长为6,则其外接圆半径为()A. 3B. 3√2C. 3√3D. 66.若a+b=3且ab=1,则代数式(1+a)(1+b)的值等于()A. 5B. 1C. 3D. −17.某校七(3)班的同学进行了一次安全知识测试,测试成绩进行整理后分成四个组,并绘制如图所示的频数直方图,则第二组的频数是()A. 0.4B. 18C. 0.6D. 278.如图,矩形ABCD的长和宽分别为2cm和1cm,以D为圆心,AD为半径作弧AE,再以AB的中点F为圆心,FB长为半径作弧BE,则阴影部分的面积是()A. 1cm2B. 2cm2C. 3cm2D. 4cm2二、填空题(本大题共8小题,共16.0分)9.比√7大且比√10小的整数是______.10.如图,能用字母表示的直线有______条;能用字母表示的线段有______条;在直线EF上的射线有______条.11.如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是_______m(结果保留根号).12.如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,且AB=6,AC=5,AD=3,则⊙O的直径AE=______ .13.北京市2009~2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约________万人次,你的预估理由是______________.14.如图,在平面直角坐标系xOy中,点A(−3,0),B(−1,2).以原点O为旋转中心,将△AOB顺时针旋转90°,再沿x轴向右平移两个单位,得到△A’O’B’,其中点A’与点A对应,点B’与点B对应.则点A’的坐标为__________,点B’的坐标为__________.15.下表记录了某射击运动员同一条件下的成绩.射击次数n306020050010005000“射中9环以上”的次数m23491623998074001“射中9环以上”的频率mn0.7670.8170.8100.7980.8070.800(精确到0.001)由此估计这名运动员射中9环以上的概率约是________(精确到0.1).16.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.已知:直线a和直线外一点P.求作:直线a的垂线,使它经过P.作法:如图2,(1)在直线a上取一点A,连接PA;AP的长为半径作弧,(2)分别以点A和点P为圆心,大于12两弧相交于B,C两点,连接BC交PA于点D;(3)以点D为圆心,DP为半径作圆,交直线a于点E,作直线PE.所以直线PE就是所求作的垂线.请回答:该尺规作图的依据是______.三、解答题(本大题共12小题,共68.0分))−117.计算:√12−3tan30°+(π−4)0−(1218.解不等式x−24>x+13−1,并在数轴上表示解集.19.如图,在△ABC中;(1)作∠C的角平分线CE交AB于E(保留痕迹,不写作法),过点E分别作AC、BC的垂线EM、EN,垂足分别为M、N;(2)若EN=2,AC=4,求△ACE的面积.20.已知关于x的方程kx2−x−2k=0(k≠0).(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数k的值.21.如图,平面直角坐标系中,反比例函数y1=k图象与函数y2=mx图象交于点A,过点A作AB⊥xx轴于点B,已知点A坐标(2,1).(1)求反比例函数解析式;(2)当y2>y1时,求x的取值范围.22.如图1,▱ABCD的对角线AC,BD相交于点O,且AE//BD,BE//AC,OE=CD.(1)求证:四边形ABCD是菱形;(2)如图2,若∠ADC=60°,AD=4,求AE的长.23.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,且交⊙O于点E.连接OC,BE,相交于点F.(1)求证:EF=BF;(2)若DC=4,DE=2,求直径AB的长.24.在我市开展的“好书伴我成长”读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如表所示:(1)求这次调查的50名学生读书的册数的平均数和众数.(2)根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数.25.如图,Rt△ABC中,∠C=90°,AC=BC,AB=4cm.动点D沿着A→C→B的方向从A点运动到B点.DE⊥AB,垂足为E.设AE长为xcm,BD长为ycm(当D与A重合时,y=4;当D 与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:补全上面表格,要求结果保留一位小数.则t≈______.(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为______cm.26.已知抛物线y=ax2−2ax−2(a≠0).(1)当抛物线经过点P(4,−6)时,求抛物线的顶点坐标;(2)若该抛物线开口向上,当时,抛物线的最高点为M,最低点为N,点M的纵坐标为11,求点M和点N的坐标;2(3)点A(x 1,y1),B(x2,y2)为抛物线上的两点,设,当时,均有,求t的取值范围.27.27.已知△ABC中,AC=BC,∠C=100°,AD平分∠BAC交BC于D,点E为AB上一点,且∠EDB=∠B.求证:AB=AD+CD.28.对于平面直角坐标系xOy中的点P和⊙M,给出如下定义:若⊙M上存在两个点A,B,使AB=2PM,则称点P为⊙M的“美好点”.(1)当⊙M半径为2,点M和点O重合时,1点P1(−2,0),P2(1,1),P3(2,2)中,⊙O的“美好点”是______;2点P为直线y=x+b上一动点,点P为⊙O的“美好点”,求b的取值范围;(2)点M为直线y=x上一动点,以2为半径作⊙M,点P为直线y=4上一动点,点P为⊙M的“美好点”,求点M的横坐标m的取值范围.【答案与解析】1.答案:B的值等于零,解析:解:∵代数式x2−xx−1∴x2−x=0,x−1≠0,解得:x=0.故选:B.直接利用分式的值为零条件进而分析得出答案.此题主要考查了分式为零的条件,正确把握定义是解题关键.2.答案:A解析:本题考查了面动成体,由于图中立体图形是由两个圆柱组合而成,根据“圆柱是由长方形绕着它的一边所在的直线旋转一周所得到的”这一规律,即可作出正确判断.解:由长方形绕着它的一边所在的直线旋转一周可得到圆柱体,图中立体图形是由两个圆柱组合而成,则需要两个一边对齐的长方形,绕对齐边所在的直线旋转一周即可得到,故选A.3.答案:A解析:解:A、矩形是轴对称图形,也是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、正五边形是轴对称图形,不是中心对称图形,故此选项错误;D、正七边形是轴对称图形,不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.答案:C解析:本题主要考查的是数轴的认识、有理数的加法、减法、绝对值性质的应用,掌握法则是解题的关键.根据点a、b在数轴上的位置可判断出a、b的取值范围,即可作出判断.解:根据点a、b在数轴上的位置可知−1<a<0,1<b<2,则−a>−b,a+b>0,|a|<|b|,a−b<0.故选:C.5.答案:D解析:本题考查学生对正多边形的概念掌握和计算的能力.解答此题要熟悉正多边形的边长、半径、边心距等概念,以及正六边形和正三角形的关系等概念.连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.解:边长为6的正六边形可以分成六个边长为6的正三角形,而正三角形的边长即为正六边形的外接圆半径,其长度为6cm.6.答案:A解析:本题考查了整式的混合运算—化简求值,能正确运用多项式乘多项式的法则进行化简是解此题的关键,用了整体代入得思想,难度适中.先根据多项式乘多项式的法则计算,再变形,最后整体代入求出即可.解:∵a+b=3,ab=1,∴(1+a)(1+b)=1+b+a+ab=1+(a+b)+ab=1+3+1=5,故选A.7.答案:B解析:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.根据频数分布直方图即可求解.解:根据频数分布直方图可知,第二组的频数是18.故选B.8.答案:A解析:解:∵AD=1cm,AB=2cm,AB的中点是F,AB=1cm=AD,∴AF=BF=12∴扇形DAE的面积=扇形FBE的面积,∴阴影部分的面积=1×1=1(cm2).故选:A.根据题意扇形DAE的面积与扇形FBE的面积相等,则阴影部分的面积等于矩形面积的一半.本题考查了扇形面积的计算,矩形的性质以及拼图的能力.得出阴影部分的面积等于矩形面积的一半是解题的关键.9.答案:3解析:此题主要考查了估算无理数的大小,基础题直接利用比√7大且比√10小的整数是√9即可得出答案.解:比√7大且比√10小的整数是:√9=3.故答案为:3.10.答案:3 6 6解析:解:图中有直线3条,分别是AB,AD,EF;线段有:AB、BC、AC、BD、CD,AD共有6条.有射线BE,CE,DE,BF,CF,DF,共有6条;故答案是:3,6,6.根据直线、射线、线段的表示法即可得到.本题考查了直线、射线、线段的表示法,理解三线的延伸性是关键.11.答案:(3√3+9)解析:此题考查了解直角三角形的应用−仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.根据在Rt△ACD中,tan∠ACD=ADCD ,求出AD的值,再根据在Rt△BCD中,tan∠BCD=BDCD,求出BD的值,最后根据AB=AD+BD,即可求出答案.解:在Rt△ACD中,∵tan∠ACD=ADCD,∴tan30∘=AD9,即AD9=√33,∴AD=3√3m.在Rt△BCD中,∵∠BCD=45°,∴BD=CD=9m,∴AB=AD+BD=(3√3+9)m.故答案为(3√3+9).12.答案:10解析:解:由圆周角定理得,∠E=∠C,∠ABE=90°,∵AD是△ABC的高,∴∠ADC=90°,∴△ABE∽△ADC,∴ABAD =AEAC,即63=AE5,解得,AE=10,故答案为:10.根据圆周角定理得到∠E=∠C,∠ABE=90°,证明△ABE∽△ADC,根据相似三角形的性质列出比例式,计算即可.本题考查的是三角形的外接圆与外心,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.13.答案:980;因为2012−2013年发生数据突变,故参照2013−2014增长进行估算.解析:此题考查用样本估计总体有关知识,根据统计图进行用样本估计总体来预估即可.解:980,因为2012−2013年发生数据突变,故参照2013−2014增长进行估算.故答案为980;因为2012−2013年发生数据突变,故参照2013−2014增长进行估算.14.答案:(2,3),(4,1)解析:本题考查了旋转中的坐标变换和平移中的坐标变换.根据点A(−3,0),利用旋转的性质得到点A0的坐标,再利用平移的性质得A′坐标,同理得B′坐标.解:将OA以原点O为旋转中心,顺时针旋转90°到点A0外,则A0(0,3),再把A0沿x轴向右平移两个单位到A′处,则A′(2,3).将OB以原点O为旋转中心,顺时针旋转90°到点B0外,则B0(2,1),再把B0沿x轴向右平移两个单位到B′处,则B′(4,1).故答案为(2,3),(4,1).15.答案:0.8解析:本题考查的是利用频率估计概率,熟知大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率是解答此题的关键.根据大量的实验结果稳定在0.8左右即可得出结论.解:∵从频率的波动情况可以发现频率稳定在0.8附近,∴这名运动员射击一次时“射中9环以上”的概率是0.8.故答案为0.8.16.答案:直径所对的圆周角是直角.解析:解:由作图知,点E在以PA为直径的圆上,所以∠PEA=90°,则PE⊥直线a,所以该尺规作图的依据是:直径所对的圆周角是直角,故答案为:直径所对的圆周角是直角.由题意知点E在以PA为直径的圆上,根据“直径所对的圆周角是直角”可得∠PEA=90°,即PE⊥直线a.本题主要考查作图−尺规作图,解题的关键是掌握线段中垂线的尺规作图及其性质和直径所对的圆周角是直角.17.答案:解:原式=2√3−3×√3+1−23=2√3−√3+1−2=√3−1.解析:直接利用二次根式的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.答案:解:x−24>x+13−1,去分母,得3(x−2)>4(x+1)−12解这个不等式,得x<2∴不等式组的解集为:x<2,将不等式解集表示在数轴上如图:.解析:根据解一元一次不等式的方法可以解答本题,并在数轴上表示出不等式的解集.本题考查解一元一次不等式、在数轴上表示不等式的解集,解答本题的关键是明确解一元一次不等式的方法.19.答案:解:(1)如图所示:CE为∠ACB的角平线,(2)∵CE为∠ACB的角平线,∠EMC=∠ENC=90°,∴EM=EN=2,∴S=12AC×EM=4.解析:(1)利用角平分线的作法以及过一点作已知直线的作法得出即可;(2)利用角平分线的性质以及三角形面积求法求出即可.此题主要考查了复杂作图以及角平分线的性质,得出EM的长是解题关键.20.答案:(1)证明:∵k≠0,∴kx2−x−2k=0(k≠0)为关于x的一元二次方程,∵Δ=(−1)2−4k×(−2k)=9>0,∴方程总有两个不相等的实数根;(2)解:x=1±√92k =1±32k,解得x1=2k,x2=−1k,∵方程的两个实数根都是整数,且k是整数,∴k=−1或k=1.解析:本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.(1)先判断方程为关于x的一元二次方程,再计算出Δ=9,于是根据判别式的意义可判断方程总有两个不相等的实数根;(2)利用求根公式解方程得到x1=2k ,x2=−1k,然后利用整数的整除性确定k的值.21.答案:解:(1)∵反比例函数y1=kx经过点A(2,1),∴k=xy=2×1=2,∴反比例函数的解析式为y=2x.(2)根据对称性可知:A、C关于原点对称,可得C(−2,−1),观察图象可知,当y2>y1时,x的取值范围为−2<x<0或x>2.解析:本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会利用对称性确定点C坐标.(1)利用待定系数法即可解决问题;(2)根据对称性确定点C坐标,观察图象,y2的图象在y1的图象上方的自变量的取值,即为所求.22.答案:证明:(1)∵AE//BD,BE//AC,∴四边形AEBO是平行四边形,∵四边形ABCD是平行四边形,∴DC=AB,∵OE=CD,∴OE=AB,∴平行四边形AEBO是矩形,∴∠BOA=90°,∴AC⊥BD,∴平行四边形ABCD是菱形;(2)∵四边形ABCD是菱形,∴AD=CD=4,AC⊥BD,BO=DO,AO=CO,∠ADO=30°,∴AO=2,结合勾股定理得DO=√3AO=2√3=BO,∵四边形OBEA是平行四边形,∴AE=OB=2√3.解析:本题考查的是矩形的判定和性质,菱形的判定与性质,平行四边形的判定与性质,含30°的直角三角形的性质等有关知识.(1)证明平行四边形AEBO是矩形,得出AC⊥BD,根据菱形的判定证明即可;(2)由菱形的性质可得AD=CD=4,AC⊥BD,BO=DO,AO=CO,∠ADO=30°,可求AO=2,DO=√3AO=2√3=BO,由平行四边形的性质可求AE的长.23.答案:(1)证明:∵CD是⊙O的切线,D为切点,∴OC⊥CD,∵AD⊥CD,∴OC//AD,∴∠BFO=∠AEB,∵AB为⊙O的直径,∴∠AEB=90°,∴OC⊥BE∴EF=BF;(2)解:∵AB为⊙O的直径,∴∠AEB=90°,∴∠BFO=90º,∵∠OCD=∠CFE=90°,∴四边形EFCD是矩形,∴EF=CD,DE=CF,∵DC=4,DE=2,∴EF=4,CF=2,设⊙O的为r,∵∠OFB=90°,∴OB2=OF2+BF2,即r2=(r−2)2+42,解得,r=5,∴AB=2r=10,即直径AB的长是10.解析:本题考查切线的性质,圆周角定理及其推论和垂径定理,勾股定理.(1)有切线的性质得OC⊥CD,再由AD⊥CD得OC//AD,从而有OC⊥BE,再有垂径定理即可解答.(2)先证明四边形EFCD是矩形,再由勾股定理得方程,解方程即可.,24.答案:解:(1)观察表格,可知这组样本数据的平均数为:(0×3+1×13+2×16+3×17+4×1)÷50=2,故这组样本数据的平均数为2;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;=108.(2)∵在50名学生中,读书多于2册的学生有18名,有300×1850∴根据样本数据,可以估计该校八年级300名学生在本次活动中读书多于2册的约有108名.解析:(1)先根据表格提示的数据得出50名学生读书的册数,然后除以50即可求出平均数;在这组样本数据中,3出现的次数最多,所以求出了众数;(2)从表格中得知在50名学生中,读书多于2册的学生有18名,所以可以估计该校八年级300名学=108.生在本次活动中读书多于2册的约有300×1850本题考查了加权平均数、众数,用样本估计总体的知识,解题的关键是牢记概念及公式.25.答案:(1)2.9;(2)根据已知数据描点连线得:(3)2.3解析:解:(1)根据题意量取数据为2.9故答案为:2.9(2)见答案(3)当DB=AE时,y与x满足y=x,在(2)图中,画y=x图象,测量交点横坐标为2.3.故答案为:2.3(1)按题意,认真测量即可;(2)利用数据描点、连线;(3)当DB=AE时,y=x,画图形测量交点横坐标即可.本题以考查画函数图象为背景,应用了数形结合思想和转化的数学思想.26.答案:解:(1)把P(4,−6)代入y=ax2−2ax−2得a=−12,又∵对称轴为直线x=1,∴代入解析式计算得该抛物线的顶点坐标为;(2)∵该二次函数的图象开口向上,对称轴为直线x=1,,∴当x=5时,y的值最大,即M(5,112),把M(5,112)代入y=ax2−2ax−2,解得a=12,∴该二次函数的表达式为y=12x2−2x−2,当x=1时,y=52,∴N(1,−52);(3)当a>0时,该函数的图象开口向上,显然不符合题意,当a<0时,该函数的图象开口向下,对称轴为直线x=1,,当时,具有,点A(x1,y1)B(x2,y2)在该函数图象上,∴,,t的取值范围.解析:本题考查二次函数的性质,函数的最值问题等知识,解题的关键是灵活运用所学知识解决问题.(1)抛物线经过点P(4,−6),代入抛物线即可求出顶点坐标;(2)根据图象的开口和增减性,可以求出抛物线的解析式.即可求出点M,点N的横坐标;(3)根据二次函数的开口的情况进行分类讨论即可.27.答案:见解析解析:由∠C=100°,AC=BC得到∠B=∠CAB=40°,再由∠EDB=∠B得到∠DEB=100°,BE=DE,则∠AED=80°,然后根据角平分线的定义得∠DAE=20°,于是利用三角形内角和定理可计算出∠ADE=80°,所以AD=AE,于是AB=AE+BE=AD+CD.【详解】∵∠C=100°,AC=BC,∴∠B=∠CAB=40°,∵∠EDB=∠B,∴∠DEB=100°,BE=DE,∴∠AED=80°,∵AD平分∠BAC,∴∠DAE=∠DAF=20°,∴∠ADE=180°−80°−20°=80°,∴AD=AE,过点D作DF⊥AC于点F,作DH⊥AB于点H,∴DF=DH,在△CDF和△EDH中,∵∴△CDF≌△EDH(AAS),∴CD=DE,∴CD=BE,∴AB=AE+BE=AD+CD.本题考查全等三角形的判定(AAS)与性质、等腰三角形的判定与性质,解题的关键是掌握全等三角形的判定(AAS)与性质、等腰三角形的判定与性质.28.答案:解:(1)P1和P2如图2中,(2)当直线y=4与⊙M相切时,切点分别为E或E′,连接ME,M′E′,∵EM=E′M′=2,∴M′(2,2),m(6,6),∴满足条件的m的取值范围为2<m<6.解析:解:(1)如图1中,∵OP1=2+r,OP2=√2<r,OP3=2√2>r,根据⊙M的“美好点”的定义可知,P1,P2是⊙M的“美好点”.故答案为P1和P2当直线y=x+b与⊙O相切时,设切点分别为T,该直线交x轴于K,交y轴于E.在Rt△OTK中,OT=2,∠TKO=45°,∴∠KEO=45°,OE=√2OT=2√2,∴b=2√2,根据对称性可知:OF=OE=2√2,∴b=−2√2,∴b的取值范围为:−2√2≤b≤2√2.(2)见答案(1)根据⊙M的“美好点”即可判断,求出直线y=x+b与⊙M相切时,b的值即可解决问题;(2)当直线y=4与⊙M相切时,求出点M的坐标,有两个值,由此即可解决问题;本题考查一次函数综合题、直线与圆的位置关系、解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会在取特殊位置解决问题,属于中考压轴题.。
13.代数综合:2020年北京市各区初三数学二模试题分类整理(教师版)
202006初三数学二模试题整理:代数综合(教师版)一、直线(或线段)与抛物线的交点问题:(一)定直线+动抛物线1.(2020 密云二模26)(1)定线段(2)动抛物线:①不变:对称轴、顶点;②变:开口大小方向在平面直角坐标系Xoy中,抛物线G:y=×2+bx+c与X轴交于A、B两点(点A在点B的左侧),与y轴交于点C.点B的坐标为(3, 0),将直线y=kx沿y轴向上平移3个单位长度后,恰好经过B、C两点.(1)求k的值和点C的坐标;(2)求抛物线Cl的表达式及顶点D的坐标;(3)己知点E是点D关于原点的对称点,若抛物线C2:y=a×2-2 (a 0)与线段4E恰有一个公共点,结合函数的图象,求α的取值范围.26. (I)解:・・・直线y=kx+3经过点B (3, 0)・・・3広+3=0 k=~∖1分∙∖y=-χ+3与尹轴的交点,即为点C (0, 3).. 2分(2)解:・・・抛物线y=×2+bx+c经过点B (3, 0)和点C (0, 3).・・y=×2+bx+3/. 9+3⅛+3=0 方=-4・・・抛物线C I的函数表达式为y=χ2-4x+3∙∙y=(x-2) 2-1・・・顶点D的坐标为(2, -1)(3)解:・・・点E是点D关于原点的对称点.∙.点E的坐标为(-2, 1) 3当y=a×2^2经过点E(-2, 1)时,a= 4当y=a×2-2经过点A (1, 0)时,a=2・・・。
的取值范围是3SY<242.(2020 顺义二模26)(1)定线段(2)动抛物线:①不变:过定点②变:开口、对称轴在平面直角坐标系X©中,已知抛物线y二mx2-3(m -l)x+ 2m-l(m ≠ 0).(1)当加=3时,求抛物线的顶点坐标;(2)已知点/(1, 2).试说明抛物线总经过点川(3)已知点B(0,2),将点B向右平移3个单位长度,得到点C,若抛物线与线段BC 只有一个公共点,求加的取值范围.26.解:(1)把〃尸3 代入y = mx2—3(m-l)x+2m-1 中,得y=3×2-6x+5=3(x-1)2+ 2,・・・抛物线的顶点坐标是(1, 2). ................. 2分(2)当x=l 时,y=m — 3(m —1)+2m —1 = m —3m + 3+2m-1 = 2・•・・点/ (b 2),・・・抛物线总经过点/・ ............................... 3分(3)•・・点、B(0, 2),由平移得C (3, 2).①当抛物线的顶点是点宜(1, 2)时,抛物线与线段BC只有一个公共点.由(1)知,止岀寸,m=3 ∙ ......................... 4分②当抛物线过点B (0, 2)时,将点B (0, 2)代入抛物线表达式,得2/7/-1=2.∙m=—>0-1此时抛物线开口向上(如图1)・・・・当0V7"V时,抛物线与线段BC只有一个公共点. ..... 5分③当抛物线过点C (3, 2)时,将点C(3, 2)代入抛物线表达式,得9nr9(ι∏-1 )+2〃厂1 =2 ∙∙Φ∙7∏=-3<O∙此时抛物线开口向下(如图2)・・・・当-3SVO时,抛物线与线段BC只有一个公共点.综上,的取值范围是Jn=3或0<m<£或^3<7∕Z<O.3.(2020 朝阳二模26)(1)定线段(2)动抛物线:①不变:与y轴交点②变:开口、对称轴,顶点坐标在隐藏函数图象上动在平面直角坐标系XoV中,抛物线y =aχ2 + a2χ+c与歹轴交于点(o,2)・(1)求C的值;(2)当α二2时,求抛物线顶点的坐标;(3)己知点/(-2,0),3(1,0),若抛物线y=a×2 + a2χ+c与线段4S有两个公共点,结合函数图象,求d的取值范围.26.解:(1)・・・抛物线y = aχ2÷a2χ+c与歹轴交于点(o,2),.∙.c=2∙(2)当α=2时,抛物线为y=2χ2+4x+2,・・・顶点坐标为(-1,0)・(3)当a>0时,①当α=2时,如图1,抛物线与线段只有一个公共点.结合函数图象可得2<a≤1 + √2・当a<0时,抛物线与线段只有一个或没有公共点.综上所述,α的取值范围是2<a≤1 + √2・(二)含同参的动线段+动抛物线4.(2020 房山二模26)(1)动线段:一个端点定,另一个端点在y轴动(2)动抛物线:①不变:对称轴,与X轴交点②变:开口在平而直角坐标系中,己知抛物线y =a×2+2ax+c与X轴交于点A、B,且AB=4抛物线与y轴交于点C ,将点C向上移动1个单位得到点D.(1)求抛物线对称轴;(2)求点D纵坐标(用含有a的代数式表示);(3)已知点P(-4,4),若抛物线与线段PD只有一个交点,求a的取值范围.2a26. (1)对称轴一=-1 .......................... 1分2a(2) VAB=4A(・3, 0), B(1, 0).......................... 2 分把(1, 0)代入表达式:a + 2a + c = 0^#: C = -3a ........ 3 分・∙・ C(0, -3a)综上所述,当a≥^或a = -1时,抛物线与线段PD只有一个交点.5. (2020 燕山二模 26)(1) 动线段:一个端点定(2) 动抛物线:①不变:对称轴,与X 轴交点②变:开口在平面直角坐标系XOy 中,抛枚线y=a×2-4ax(a^0)与X 轴交于点/, (A 在B 的左侧).(1)求点/, B 的坐标及抛物线的对称轴;⑵ 已知点P(2, 2), 0(2+2α, 5d),若抛物线与线段P0有公共点,请结合函数图象,求a的取值范围.26.解:(1)V y = a×2-4ax = ax(x-4),・•・抛物线与X 轴交于点/(0, 0), 5(4,0).(2) y=a×2-4ax = a(×2-4x) =a(x-2)2-4a,抛物线的顶点坐标为(2, —4d)・ 令y=5a,得ax2—4aχ = 5a,a(×-5)(x÷1) = 0,解得X = -1,或X = 5,・•・当y =5a 时,抛物线上两点M(-l, 5α), N(5, 5d)・• y 1 M l I①当a>0⅛⅛,抛物线开口向上,顶点普£抛物线y = a χ2 - 4a×的对称轴为直线:-Aa∙∙∙∙∙∙∙∙∙ 3QlM* X 轴下方,且0(2+2α,5α)l ⅛ ll 点P 的右侧, Qy4如图1,当点0与点N重合或位于点力右侧时,抛物线与线段P0有公共点, 此时2+2住5,解得a n —.2②当a V 0时,抛牧线开口向下,顶点位于X车扣二方,点0(2+2α, α)位于点P的左侧,(i)如图2,当顶点与点卩重合或位于点P下方时,抛物线与线段P0有公共点,此时一4处2,1解得a、一—.2(ii)如图3,当顶点位于点卩上方,点0与点M重合或位于点M左侧时,抛物线与线段P0有公共点,此时2+2a<-l f解得a ≤ - .23 1 3综上,d的取值范围是a≥或—㊁WaV0,或a≤--. .................. 6分6.(2020 丰台二模26)(1)动线段:一两个端点都动(2)动抛物线:①不变:对称轴,与X轴交点②变:开口在平面直角坐标系XOV中,抛物线y = aχ2- 4ax + 3a与y轴交于点A.(1)求点/的坐标(用含α的式子表示);(2)求抛物线与X轴的交点坐标;(3)己知点P(α, 0), 0(0, a-2),如果抛物线与线段P0恰有一个公共点,结合函数图彖,求d的取值范围.26•解:(1)令X=0,则y=3a.・•・点/的坐标为(0, 3α).................................. 1分(2)令严0,贝IJ aχ2— 4αx+3α=0. 2分Tα≠O,・:解得X = 1/X = 3.1 2・:抛物线与X轴的交点坐标分别为(1,0), (3, 0). ...... 4分(3)①当QVO时,可知3αNα - 2. 解得a>-l.∙*∙ a的取值范围是-l<6f<0 .②当a>0时,由①知QAl时,点Q始终在点/的下方,所以抛物线与线段P0恰有一个公共点时,只要1乞<3即可.综上所述,Q的取值范围是-l<a<0或1应V 3 ......................7分二、定抛物线(部分图彖)与动抛物线的交点问题:7.(2020 海淀二模26)在平面直角坐标系XOy中,已知二次函数尸〃X2+2MX+3的图象与X轴交于点A(-3z0), 与歹轴交于点将其图象在点/, B之间的部分(含/,B两点)记为F.(1)求点B的坐标及该函数的表达式;(2)若二次函数.尸χ2+2x+α的图象与F只有一个公共点, 结合函数图象,求α的取值范围.26.解:(1) Ty=加X2+2MX+3的图象与与y轴交于点・•・点B的坐标为(0, 3).T尸加χ2+27".r+3的图彖与X轴交于点A(-3z0), 将A(-3l0)代入J尸〃rτ2+27"x+3 可得9m-6m + 3=0.・;Jn= -1.・:该函数的表达式为y=-x2 -2x+3.(2)T将二次函数戸"χ2+2%x+3的图象在点/, B之间的部分(含/,B两点)记为F,・・・尸的端点为/』,并经过抛物线.尸加χ2+2Mx+3的顶点C (其中C点坐标为(-1,4))•・・・可画F如图1所示.T二次函数尸χ2+2x+α的图象的对称轴为x=・l,且与F只有一个公共点,•I可分别把&5 C的坐标代入解析式.尸χ2+2x+α中.・•・可得三个α值分别为-3, 3, 5.可画示意图如图2所示.・・・结合函数图彖可知:二次函数尸χ2+2x+α的图象与F只有一个公共点时,a的取值范围是∙3Wαv3或d=5.三、整点问题8.(2020平谷二模26)含同参的动线段+动抛物线。
2020北京中考数学二模分类汇编26题代数综合
2020年北京中考 二模26代数综合
【2020 西城二模】
2020年北京中考 二模26代数综合
【2020 海淀二模】
2020年北京中考 二模26代数综合
【2020 朝阳二模】
2020年北京中考 二模26代数综合
26.在平面直角坐标系 xOy 中,抛物线 y = ax2 + a2x + c 与 y 轴交于点(0,2). (1)求 c 的值; (2)当 a=2 时,求抛物线顶点的坐标; (3)已知点 A( 2,0),B(1,0),若抛物线 y = ax2 + a2x + c 与线段 AB 有两个公共点, 结合函数图象,求 a 的取值范围.
1234x
y 4 3 2 1
–4 –3 –2 –1 O –1 –2 –3 –4
1234x
【2020 平谷二模】
2020年北京中考 二模26代数综合
26.在平面直角坐标系 xOy 中,抛物线 y=mx2-2mx-1(m>0)与 x 轴的交点为 A,B,与 y 轴交点 C.
(1)求抛物线的对称轴和点 C 坐标; (2)横、纵坐标都是整数的点叫做整点.抛物线在点 A,B 之间的部分与线段 AB 所围成 的区域为图形 W(不含边界).
【2020 燕山二模】
2020年北京中考 二模26代数综合
26.在平面直角坐标系 中,抛物线
与 x 轴交于点 A,B(A 在 B 的左侧).
(1) 求点 A,B 的坐标及抛物线的对称轴;
(2) 已知点 P(2,2),Q(2+2a,5a),若抛物线与线段 PQ 有公共点,请结合函数图象,求 a 的取值范围.
【2020 石景山二模】
2020年北京中考 二模26代数综合
2020年北京市朝阳区中考二模数学试题(有答案)
……
请参考上面的想法,帮助小聪求出CD的长(一种方法即可).
(3)用等式表示线段AC,BC,CD之间的数量关系(直接写出即可).
29.在平面直角坐标系xOy中,对于半径为r(r>0)的⊙O和点P,给出如下定义:
2011年,朝阳区生产总值3272.2亿元.2012年,朝阳区生产总值3632.1亿元,比上年增长359.9亿元.2013年,朝阳区生产总值4030.6亿元,比上年增长398.5亿元.2014年,朝阳区生产总值4337.3亿元,比上年增长7.6%.2015年,朝阳区生产总值4640.2亿元,比上年增长7.0%,其中,第一产业1.2亿元,第二产业358.0亿元,第三产业4281.0亿元.2016年,朝阳区生产总值4942.0亿元,比上年增长6.5%,居民人均可支配收入达到59886元,比上年增长8%.
(2)预估理由须包含折线图中提供的信息,且支撑预估的数据.
25.(1)证明:连接OB.
∵∠A=45°,
∴∠DOB=90°.
∵OD∥BC,
∴∠DOB+∠CBO =180°.
∴∠CBO=90°.
∴直线BC是⊙的切线.
(2)求解思路如下:
如图,延长BO交⊙于点F,连接AF.
①由AB=AC,∠BAC=45°,可得∠ABC=67.5°,∠ABF=22.5°;
27.解:(1)由题意,当x=0时,y=2.
∴A(0,2).
∵,
∴对称轴为直线x=1.
∴B(1,0).
(2)由题意,C(-1,0),D(3,0).
①当m>0时,
结合函数图象可知,满足题意的抛物线的顶点须在x轴下方,
2020年北京市西城区中考数学二模试卷(解析版)
2020 年北京市西城区中考数学二模试卷、选择题(共 8 小题)1.下列各组图形中,能将其中一个图形经过平移变换得到另一个图形的是(名为“天问”,将中国首次火星探测任务命名为“天问一号”.火星具有与地球十分相 近的环境, 与地球最近的时候距离约 5500 万千米, 将 5500 用科学记数法表示为 ( ) 3.如图是某个几何体的平面展开图,该几何体是5.如图,实数 a ,b 在数轴上的对应点的位置如图所示,则正确的结论是6.如图,△ ABC 内接于⊙O ,若∠ A =45°, OC =2,则 BC 的长为B .”之际宣布,将中国行星探测任务命A .0.55×104B .5.5×103C . 5.5×102D .55× 1024.下列运算正确的是(A .a? a 2= a 3B .a 6÷a 2=a 3C . 2a 2﹣a 2=2D . 3a 2)2= 6a 4A .|a|>3B .﹣ 1<﹣ b < 0C .a <﹣bD .a+b >0 A . A .)7.某人开车从家出发去植物园游玩, 设汽车行驶的路程为 S (千米) ,所用时间为 t (分) ,C .加油后汽车行驶的速度为 60 千米/时D .加油后汽车行驶的速度比加油前汽车行驶的速度快如表:① 2019 年 10 月至 2020 年 3 月通话时长统计表② 2020 年 4 月与 2020 年 5 月,这两个月通话时长的总和为 根据以上信息,推断张老师这八个月的通话时长的中位数可能的最大值为(二、填空题(本题共 16 分,每小题 2分) C .2D .4s 与 t 之间的函数关系如图所示.若他早上 8 点从家出发,汽车在途中停车加油一次,则A .汽车行驶到一半路程时,停车加油用时 10 分钟B .汽车一共行驶了 60 千米的路程,上午 9点 5分到达植物园8.张老师将自己 2019 年 10 月至 2020 年 5 月的通话时长 单位:分钟) 的有关数据整理 时间10 月 11 月 12 月 1月 2月 3月 时长(单位:分钟)520 530 550 610 650 6601100 分钟A .550B .580C .610D .6309.若分式 在实数范围内有意义,则 x 的取值范围是10.因式分解: a 3﹣ a =11.如图, D ,E 分别是△ ABC 的边 AB , AC 的中点,若△ ADE 的面积为 1, 则△ ABC 的 面积等于列描述中,不正确的是(14.如图,用 10 个大小、形状完全相同的小矩形,拼成一个宽为 50cm 的大矩形,设每个 小矩形的长为 xcm ,宽为 ycm ,则可以列出的方程组是 .15.某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员 年龄分布统计图和当地 90 后从事互联网行业岗位分布统计图:对于以下四种说法,你认为正确的是 (写出全部正确说法的序号)∠ D =∠ E ,点 F 在 AB 的延长线上,则∠ CBF 的度数y = mx 交于 A , B 两点,若点 A 的坐标为( 2,3),则点B的坐标为① 在当地互联网行业从业人员中,90 后人数占总人数的一半以上② 在当地互联网行业从业人员中,80 前人数占总人数的13%③在当地互联网行业中,从事技术岗位的90 后人数超过总人数的20%④在当地互联网行业中,从事设计岗位的90 后人数比80 前人数少16.一个袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任意取出两个球,如果先放入甲盒的球是红球,则另一个球放入乙盒;如果先放入甲盒的球是黑球,则另一个球放入丙盒.重复上述过程,直到袋中所有的球都被放入盒中.(1)某次从袋中任意取出两个球,若取出的球都没有放入丙盒,则先放入甲盒的球的颜色是.(2)若乙盒中最终有 5 个红球,则袋中原来最少有个球.三、解答题(本题共68分,第17-22题,每小题5分,第23-26 题,每小题5分,第27,28 题,每小题 5 分)解答应写出文字说明、演算步骤或证明过程.17.计算:+(π﹣2020)0﹣3tan30 °+| ﹣1|.18.解方程:+1=.19.已知关于x 的一元二次方程x2﹣(2k+1)x+2k=0.(1)求证:方程总有两个实数根;(2)若该方程有一个根大于2,求k 的取值范围.20.下面是小明设计的“在已知三角形的一边上取一点,使得这点到这个三角形的另外两边的距离相等”的尺规作图过程:已知:△ ABC .求作:点D,使得点 D 在BC 边上,且到AB,AC 边的距离相等.作法:如图,作∠BAC 的平分线,交BC 于点D.则点 D 即为所求.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:作DE⊥AB 于点E,作DF ⊥AC 于点F,∵AD 平分∠ BAC ,21.如图,在Rt △ABC 中,∠ ACB=90°, D 为AB 的中点,AE∥DC,CE∥DA.(1)求证:四边形ADCE 是菱形;(2)连接DE ,若AC=2 ,BC=2,求证:△ ADE 是等边三角形.22.某医院医生为了研究该院某种疾病的诊断情况,需要调查来院就诊的病人的两个生理指标x,y,于是他分别在这种疾病的患者和非患者中,各随机选取20 人作为调查对象,将收集到的数据整理后,绘制统计图如根据以上信息,回答下列问题:1)在这40 名被调查者中,① 指标y 低于0.4 的有人;② 将20 名患者的指标x 的平均数记作,方差记作S12,20 名非患者的指标x 的平均数记作,方差记作S22,则2)来该院就诊的 500名未患这种疾病的人中, 估计指标 x 低于 0.3的大约有 人;3)若将“指标 x 低于 0.3,且指标 y 低于 0.8”作为判断是否患有这种疾病的依据,则 发生漏判的概率是 .23.如图, AB 是⊙O 的直径, C ,D 是⊙O 上两点,且 = ,连接 OC ,BD ,OD .( 1)求证: OC 垂直平分 BD ;2)过点 C 作⊙O 的切线交 AB 的延长线于点 E ,连接 AD ,CD .小明根据学习函数的经验,分别对函数 y 2, y 2随自变量 x 的变化而变化的规律进行了探 究.面是小明的探究过程,请补充完整:1)按照表中自变量 x 的值进行取点、画图、测量,分别得到了 值: x/cm0 1 2 3 4 5 6 y 1/cm2.49 2.64 2.883.25 3.804.65 6.00y 2/cm 4.59 4.24 3.80 3.25 2.510.00 2)在同一平面直角坐标系 xOy 中,描出补全后的表中各组数值所对应的点( x ,y 1), x ,y 2),并画出函数 y 1,y 2 的图象:S 22(填“>”,“=”或“<”24.如图,在△ ABC 中,AE 平分∠ BAC 交BC 于点 E ,D 是AB 边上一动点,连接 CD 交 AE 于点 P ,连接 BP .已知 AB = 6cm ,设 B ,D 两点间的距离为 xcm ,B ,P 两点间的 距离为 y 1cm , A , P两点间的距离为 y 2cm . y 1, y 2 与 x 的几组对应 ① 依题意补全图形;,求 CD 的长.①当AP=2BD 时,AP 的长度约为cm;②当BP平分∠ ABC 时,BD 的长度为cm.25.在平面直角坐标系xOy 中,函数y=(x>0)的图象G 与直线l:y=kx﹣4k+1 交于点 A (4,1),点 B (1,n)(n≥4,n 为整数)在直线l 上.(1)求m 的值;(2)横、纵坐标都是整数的点叫做整点.记图象G与直线l 围成的区域(不含边界)为W.①当n=5时,求k的值,并写出区域W 内的整点个数;② 若区域W 内恰有 5 个整点,结合函数图象,求k 的取值范围.26.在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于点A,B(A在 B 的左侧),抛物线的对称轴与x 轴交于点D,且OB=2OD.(1)当b=2 时,① 写出抛物线的对称轴;② 求抛物线的表达式;( 2)存在垂直于 x 轴的直线分别与直线 l : y = x+ 和拋物线交于点 P ,Q ,且点 P , Q 均在 x 轴下方,结合函数图象,求 b 的取值范围.27.在正方形 ABCD 中, E 是 CD 边上一点( CE >DE ), AE ,BD 交于点 F . (1)如图 1,过点 F 作 GH ⊥AE ,分别交边 AD ,BC 于点 G ,H . 求证:∠ EAB =∠GHC ;(2)AE 的垂直平分线分别与 AD ,AE ,BD 交于点 P ,M ,N ,连接 CN .① 依题意补全图形;② 用等式表示线段 AE 与 CN 之间的数量关系,并证明28.对于平面直角坐标系 xOy 中的定点 P 和图形 F ,给出如下定义:若在图形 点 N ,使得点 Q ,点 P 关于直线 ON 对称,则称点 Q 是点 P 关于图形 F 的定向对称点. (1)如图, A (1,0), B ( 1, 1), P (0,2),①点 P 关于点 B 的定向对称点的坐标是 ;②在点 C (0,﹣ 2), D ( 1,﹣ ), E (2,﹣ 1)中,是点 P 关于线段 AB的定向对称点.(2)直线 l :y = x+b 分别与 x 轴, y 轴交于点 G ,H ,⊙M 是以点 M ( 2, 0)为圆 心, r (r >0)为半径的圆.①当 r =1时,若⊙M 上存在点 K ,使得它关于线段 GH 的定向对称点在线段 GH 上, 求 b 的取值范围; ②对于 b >0,当r =3时,若线段 GH 上存在点 J ,使得它关于 ⊙M 的定向对称点在 ⊙M 上,直接写出 b的取值范围. F 上存在一参考答案、选择题(本题共16分,每小题2分)第1-8 题均有四个选项,符合题意的选项只有个. 1.下列各组图形中,能将其中一个图形经过平移变换得到另一个图形的是()【分析】根据平移的性质,结合图形,对选项进行一一分析,选出正确答案.解:各组图形中,选项 A 中的图形是一个图形经过平移能得到另一个图形,故选: A .2.中国国家航天局2020 年 4 月24 日在“中国航天日”之际宣布,将中国行星探测任务命名为“天问”,将中国首次火星探测任务命名为“天问一号”.火星具有与地球十分相近的环境,与地球最近的时候距离约5500 万千米,将5500 用科学记数法表示为()A.0.55×104B.5.5×103C.5.5×102D.55× 102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10 时,n 是正数;当原数的绝对值< 1 时,n 是负数.解:5500=5.5×103,故选: B .3.如图是某个几何体的平面展开图,该几何体是()解:观察图形可知,这个几何体是三棱柱.故选: D .4.下列运算正确的是( )A .a? a 2= a 3B .a 6÷a 2=a 3 【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则 即可求解;解: a? a 2= a 1+2=a 3,A 准确;a 6÷a 2=a 6﹣2=a 4,B 错误;2a 2﹣a 2=a 2,C 错误;(3a 2)2=9a 4,D 错误;故选: A .5.如图,实数 a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A . |a|>3B . ﹣ 1<﹣ b <0C .a <﹣ bD .a+b >0【分析】根据数轴的性质以及有理数的运算法则进行解答即可.解:选项 A ,从数轴上看出, a 在﹣3 与﹣2 之间,∴|a|<3,故选项 A 不合题意;选项 B ,从数轴上看出, b 在在原点右侧,∴b >0,故选项 B 不合题意;选项 C ,从数轴上看出, a 在﹣3与﹣ 2 之间, b 在 1和 2之间, ∴﹣b 在﹣1和﹣ 2之间,∴ a < b ,故选项 C 符合题意; C .2a 2﹣a 2=2 D .( 3a 2)2=6a 4 分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.选项D,从数轴上看出,a在﹣3与﹣2之间, b 在 1 与 2 之间,∴﹣ 3< a <﹣ 2,1<b <2,∴|a|<|b|, ∵a <0,b >0, 所以 a+b < 0, 故选项 D 不合题意. 故选: C .分析】根据圆周角定理得到∠ BOC = 2∠A = 90°,根据等腰直角三角形的性质即可得 到结论.解:由圆周角定理得,∠ BOC = 2∠ A = 90°,∴ BC = OC = 2 ,故选: B .7.某人开车从家出发去植物园游玩, 设汽车行驶的路程为 S (千米) ,所用时间为 t (分)C .加油后汽车行驶的速度为 60 千米/时D .加油后汽车行驶的速度比加油前汽车行驶的速度快【分析】根据函数的图象可知,横坐标表示时间,纵坐标表示距离,由于函数图象不是 平滑曲线,故应分段考虑.解: A 、车行驶到一半路程时,加油时间为 25 至 35 分钟,共 10 分钟,故本选项正确, 不符合题意;B 、汽车一共行驶了 60 千米的路程,上午 9 点 05 分到达植物园,故本选项正确,不符 合题意;C 、汽车加油后的速度为 30÷ =60千米 /时,故本选项正确,不符合题意; , OC = 2,则 BC 的长为( )C .2D .4s 与 t 之间的函数关系如图所示.若他早上下列描述中,不正确的是( )8 点从家出发,汽车在途中停车加油一次,则 A .汽车行驶到一半路程时,停车加油用时 10 分钟 B .汽车一共行驶了 60 千米的路程,上午 9点 5分到达植物园D 、汽车加油前的速度为 30÷ =72 千米/时, 60<72,加油后汽车行驶的速度比加油 前汽车行驶的速度慢;故本选项不正确,符合题意.故选: D . 8.张老师将自己 2019 年 10 月至 2020 年 5 月的通话时长(单位:分钟)的有关数据整理 如表:3月 ① 2019 年 10 月至 2020 年 3 月通话时长统计表时间 10 月11 月 12 月 1月 2月 时长(单位:分钟) 520 530550 610 650 660 ② 2020 年 4 月与 2020 年 5 月,这两个月通话时长的总和为 1100 分钟根据以上信息,推断张老师这八个月的通话时长的中位数可能的最大值为( )A . 550B . 580C .610D . 630【分析】由于 2020年 4月与 2020年 5月,这两个月通话时长的总和为 1100分钟,可知 550 分钟一定排在这八个月的通话时长的第 4 位,找到第 5 位的最大值,从而可求张老 师这八个月的通话时长的中位数可能的最大值.解:∵ 2020 年 4 月与 2020 年 5 月,这两个月通话时长的总和为 1100 分钟,∴550 分钟一定排在这八个月的通话时长的第 4位,观察数据可知,第 5位的最大值为 610 分钟,∴张老师这八个月的通话时长的中位数可能的最大值为( 550+610 )÷ 2=580(分钟). 故选: B .二、填空题(本题共 16 分,每小题 2分)9.若分式 在实数范围内有意义,则 x 的取值范围是 x ≠2 .【分析】直接利用分式有意义的条件为分母不为零,进而得出答案.解:∵分式 在实数范围内有意义,∴ x 的取值范围是: x ≠ 2.故答案为: x ≠ 2.10.因式分解: a 3﹣a = a (a+1)( a ﹣ 1) .【分析】原式提取 a ,再利用平方差公式分解即可.解:原式= a (a 2﹣1)=a (a+1)( a ﹣1),故答案为: a (a+1)( a ﹣1)11.如图,D,E分别是△ ABC 的边AB,AC的中点,若△ ADE 的面积为1,则△ ABC 的面积等于 4 .【分析】根据三角形中位线定理得到DE ∥ BC,DE =BC,证明△ ADE ∽△ ABC ,根据相似三角形的性质计算,得到答案.解:∵ D,E分别是△ ABC 的边AB,AC 的中点,∴DE 是△ ABC 的中位线,∴DE ∥BC,DE =BC,∴△ ADE ∽△ ABC,∵△ ADE 的面积为1,∴△ ABC 的面积为4,故答案为:4.12.如图,∠ A=∠ ABC=∠ C=∠D=∠ E,点 F 在AB 的延长线上,则∠ CBF 的度数是72分析】正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以多边形的边数,就得到外角的度数.解:∵∠ A=∠ ABC =∠ C=∠ D=∠ E,∴五边形ABCDE 是正多边形,∵正多边形的外角和是360°,∴∠ CBF =360°÷ 5=72°.故答案为:72°.13.如图,双曲线y=与直线y=mx 交于A, B 两点,若点 A 的坐标为(2,3),则点B【分析】利用正比例函数和反比例函数的性质可判断点 A 与点 B 关于原点对称,然后根据关于原点对称的点的坐标特征写出 B 点坐标.解:∵双曲线y=与直线y=mx 交于A, B 两点,∴点 A 与点 B 关于原点对称,而点 A 的坐标为(2,3),∴点 B 的坐标为(﹣2,﹣3).故答案为(﹣2,﹣3).14.如图,用10 个大小、形状完全相同的小矩形,拼成一个宽为50cm 的大矩形,设每个小矩形的长为xcm ,宽为ycm ,则可以列出的方程组是.【分析】根据矩形的对边相等及大矩形的宽为50cm,即可得出关于x,y 的二元一次方程组,此题得解.解:依题意,得:故答案为:.15.某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员年龄分布统计图和当地90 后从事互联网行业岗位分布统计图:③在当地互联网行业中,从事技术岗位的90 后人数超过总人数的20%④在当地互联网行业中,从事设计岗位的90 后人数比80 前人数少【分析】根据扇形统计图可以得出各个年龄段的人数占调查总人数的百分比,再根据条形统计图可以得出90 后从事互联网行业岗位的百分比,进而求出90 后从事互联网行业岗位占调查总人数的百分比,就可以比较,做出判断.解:对于选项① ,互联网行业从业人员中90 后占调查人数的56% ,占一半以上,所以该选项正确;对于选项② ,在当地互联网行业从业人员中,80 前人数占调查总人数的3% ,所以该选项错误;对于选项③ ,互联网行业中从事技术岗位的人数90 后占总人数的56% ×41% =23% ,所以该选项正确;对于选项④ ,互联网行业中,从事设计岗位的90 后人数占调查人数的56% ×8% =4.48% ,而80 前从事互联网行业的只占1﹣56% ﹣41% =3% ,因此该选项不正确;因此正确的有:①③ ,故答案为:①③ .16.一个袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任意取出两个球,如果先放入甲盒的球是红球,则另一个球放入乙盒;如果先放入甲盒的球是黑球,则另一个球放入丙盒.重复上述过程,直到袋中所有的球都被放入盒② 在当地互联网行业从业人员中,80 前人数占总人数的13%① 在当地互联网行业从业人员中,90 后人数占总人数的一半以上中.(1)某次从袋中任意取出两个球,若取出的球都没有放入丙盒,则先放入甲盒的球的颜色是红色.(2)若乙盒中最终有 5 个红球,则袋中原来最少有30 个球.【分析】(1)根据放球规则,可知若取出的球都没有放入丙盒,则放入了乙盒,由此得出先放入甲盒的球的颜色是红色;(2)由题意可知取两个球共有四种情况:①红+红,② 黑+黑,③红+黑,④ 黑+红.那么,每次乙盒中得一个红球,甲盒可得到 2 个红球,以及红球数=黑球数,即可求解.解:(1)∵某次从袋中任意取出两个球,若取出的球都没有放入丙盒,∴放入了乙盒,∴先放入甲盒的球的颜色是红色.(2)由题意,可知取两个球共有四种情况:① 红+红,则乙盒中红球数加1,② 黑+黑,则丙盒中黑球数加1,③ 红+黑(红球放入甲盒),则乙盒中黑球数加1,④ 黑+红(黑球放入甲盒),则丙盒中红球数加1.那么,每次乙盒中得一个红球,甲盒可得到 2 个红球,∴乙盒中最终有 5 个红球时,甲盒有10 个红球,∵红球数=黑球数,∴袋中原来最少有2(5+10)=30 个球.故答案为:红色;30.三、解答题(本题共68分,第17-22题,每小题5分,第23-26 题,每小题5分,第27,28 题,每小题 5 分)解答应写出文字说明、演算步骤或证明过程.17.计算:+(π﹣2020)0﹣3tan30 °+| ﹣1|.【分析】根据二次根式的性质、零指数幂、特殊角的三角函数值、绝对值的性质计算即可.解:原式= 2 +1﹣3×+ ﹣1= 2 +1 ﹣+ ﹣ 1= 2 .18.解方程:+1=【分析】根据解分式方程的步骤解答即可.解:+1=,方程的两边同乘3(x﹣1)得:3x+3x﹣3=2x,解这个方程得:,经检验,是原方程的解.19.已知关于x 的一元二次方程x2﹣(2k+1)x+2k=0.(1)求证:方程总有两个实数根;(2)若该方程有一个根大于2,求k 的取值范围.【分析】(1)求出方程的判别式△的值,利用配方法得出△>0,根据判别式的意义即可证明;(2)设方程的两个根分别是x1,x2,利用公式法求方程的解,然后根据一元二次方程根与系数的关系求得k 的取值范围.【解答】(1)证明:∵△=[﹣(2k+1)]2﹣4×2k=(2k﹣1)2≥0,∴无论k 为何值,方程总有两个实数根;(2)设方程的两个根分别是x1,x2,解方程得x=,∴ x1=2k,x2=1.由题意可知2k> 2,即k> 1.∴ k 的取值范围为k>1.20.下面是小明设计的“在已知三角形的一边上取一点,使得这点到这个三角形的另外两边的距离相等”的尺规作图过程:已知:△ ABC .求作:点D,使得点 D 在BC 边上,且到AB,AC 边的距离相等.作法:如图,作∠ BAC的平分线,交BC于点D.则点 D 即为所求.根据小明设计的尺规作图过程,1)使用直尺和圆规,补全图形(保留作图痕迹); (2)完成下面的证明.证明:作 DE ⊥AB 于点 E ,作 DF ⊥AC 于点 F , ∵AD 平分∠ BAC ,∴ DE = DF ( 角平分线的性质 )(括号里填推理的依据)分析】( 1)根据题意补全图形即可;2)作 DE ⊥AB 于点 E ,作 DF ⊥AC 于点 F ,根据角平分线的性质即可得到结论. 解:1)补全图形如图所示;2)证明:作 DE ⊥AB 于点E ,作 DF ⊥AC 于点 F , ∵AD 平分∠ BAC ,∴DE =DF (角平分线的性质),1)求证:四边形 ADCE 是菱形;2)连接 DE ,若 AC =2 , BC = 2,求证:△ ADE 是等边三角形.【分析】( 1)先证明四边形 ADCE 是平行四边形,再证出一组邻边相等,即可得出结 论; AE ∥DC ,CE ∥DA .故答案为: DE ,DF ,角平分线的性质.,D 为AB 的中点,2)根据三角函数的定义得到∠ CAB=30°,根据菱形的性质得到∠ EAD =2∠ CAB =60°,AE=AD ,于是得到结论.解答】(1)证明:∵ AE∥ CD,CE∥AB ,∴四边形ADCE 是平行四边形,又∵∠ ACB =90°,D 是AB 的中点,∴平行四边形ADCE 是菱形;2)解:∵在Rt△ABC 中,∠ ACB =90°,AC=2 ,BC=2,∴ tan ∠ CAB =∴∠ CAB=30°,∵四边形ADCE 是菱形,∴∠ EAD =2∠ CAB =60°,AE =AD,∴△ ADE 是等边三角形.22.某医院医生为了研究该院某种疾病的诊断情况,需要调查来院就诊的病人的两个生理指标x,y,于是他分别在这种疾病的患者和非患者中,各随机选取20 人作为调查对象,根据以上信息,回答下列问题:(1)在这40 名被调查者中,① 指标y 低于0.4 的有9 人;,方差记作S12,20 名非患者的指标x 的平均数记作,方差记作S22,则AB∴CD=BD =AD ,绘制统计图如② 将20 名患者的指标x 的平均数记作将收集到的数据整理后< ,S12> S22(填“>”,“=”或“<”);(2)来该院就诊的500名未患这种疾病的人中,估计指标x 低于0.3的大约有100 人;(3)若将“指标x低于0.3,且指标y 低于0.8”作为判断是否患有这种疾病的依据,则发生漏判的概率是.【分析】(1)① 根据图象,数出直线y=0.4 下方的人数即可;② 根据图象,可知20 名患者的指标x 的取值范围是0≤x< 0.5,且有16 名患者的指标x< 0.3;20 名非患者的指标x 的取值范围是0.2≤x<0.6,且位置相对比较集中,因此即可求解;(2)利用样本估计总体,用500乘样本中非患者指标x 低于0.3所占的百分比即可;(3)先求出样本中“指标x 低于0.3,且指标y 低于0.8”的人患病的概率,再用1减去这个概率即可求解.解:(1)① 根据图象,可得指标y 低于0.4的有9 人.故答案为:9;②将20名患者的指标x的平均数记作,方差记作S12,20名非患者的指标x的平均数记作,方差记作S22,则< ,S12> S22.故答案为:<,>;(2)500×=100(人).故答案为:100;(3)根据图象,可知“指标x 低于0.3,且指标y低于0.8”的有15人,而患者有20 人,则发生漏判的概率是:1﹣=.故答案为.23.如图,AB 是⊙O的直径,C,D 是⊙O上两点,且=,连接OC,BD,OD.(1)求证:OC 垂直平分BD ;2)过点 C 作⊙O 的切线交 AB 的延长线于点 E ,连接 AD ,CD .① 依题意补全图形;线合一“性质可得 OD =OB ,从而问题得证;(2)① 依照题意补全图形即可; ② 由切线的性质可得 OC ⊥CE ;由同位角相等可证 DB ∥CE ;由等角的正弦值相等可得 sin ∠ABD =sin ∠AEC = ,从而可求得 BD 、AB 、OA 、 OB 和 OC 的值,由 OC 垂直平分 BD ,可得 BF 及 DF 的值;由三角形的中位线定理可 得 OF 的值,进而求得 CF 的值,最后在 Rt △ CFD 中,由勾股定理可得 CD 的长. 解:( 1)证明:∵= ,∴∠ COD =∠ COB . ∵OD =OB ,∴ OC 垂直平分 BD ;C , ∴ OC ⊥CE 于点 C .记 OC 与 BD 交于点 F ,由( 1)知 OC ⊥BD , ∴∠ OCE =∠ OFB =90° ∴DB ∥CE , ∴∠ AEC =∠ ABD .∵在 Rt △ ABD 中, AD =6,sin ∠ABD =sin ∠AEC = , ∴BD =8,AB =10.② 若 AD = 6, sin ∠ AEC = ,求 CD 的长.分析】( 1)由同弧所对的圆心角相等可得∠ COD =∠ COB ,再由等腰三角形的“三 2) ① 补全图形,如图所示:② ∵ CE 是 ⊙O 的切线,切点为∴ OA =OB=OC=5.由(1)可知OC 平分BD,即DF =BF ,∴BF=DF=4,OF 为△ ABD 的中位线,∴ OF =AD =3,∴CF=2.∴在Rt △ CFD 中,CD==2 .∴ CD 的长为 2 .24.如图,在△ ABC 中,AE 平分∠ BAC 交BC 于点E,D是AB 边上一动点,连接CD 交AE 于点P,连接BP.已知AB =6cm,设B,D 两点间的距离为xcm,B,P 两点间的距离为y1cm,A,P 两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y2,y2随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm0123456y1/cm 2.49 2.64 2.88 3.25 3.80 4.65 6.004.59 4.24 3.80 3.25 2.51 1.350.00y2/cm2)在同平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x,x,y2),并画出函数y1,y2 的图象:(3)结合函数图象,回答下列问题:①当AP=2BD 时,AP 的长度约为 2.88 cm;②当BP平分∠ ABC 时,BD 的长度为 3 cm.【分析】(1)用光滑的曲线连接y2图象现有的点,在图象上,测量出x=5 时,y的值即可;(2)描点连线即可绘出函数图象;(3)① 当AP=2BD 时,即y2=2x,在图象上画出直线y=2x,该图象与y2 的交点即为所求;②从表格数据看,当x=3时,y1=y2=3.25,故当BP平分∠ ABC 时,此时点P是△ABC 的内心,故点 D 在AB 的中点,即可求解.解:(1)用光滑的曲线连接y2图象现有的点,在图象上,测量出x=5时,y=1.35(答案不唯一);故答案为: 1.35,注:y=1.35 是估计的数值,故答案不唯一;2)绘制后y1、y2 图象如下:(3)①当AP=2BD时,即y2=2x,在图象上画出直线y=2x,该图象与y2 的交点即为所求,即图中空心点所示,故答案为 2.88;② 从表格数据看,当x= 3 时,y1=y2= 3.25,即点D在AB中点时,y1=y2,即此时点P在AB的中垂线上,则点C在AB的中垂线上,则△ ABC 为等腰三角形,故当BP 平分∠ ABC 时,此时点P是△ ABC 的内心,故点 D 在AB 的中点,∴BD AB=3,故答案为3.25.在平面直角坐标系xOy 中,函数y=(x>0)的图象G 与直线l:y=kx﹣4k+1 交于点A (4,1),点B (1,n)(n≥4,n 为整数)在直线l 上.(1)求m 的值;(2)横、纵坐标都是整数的点叫做整点.记图象G与直线l 围成的区域(不含边界)为W.①当n=5时,求k的值,并写出区域W 内的整点个数;② 若区域W 内恰有 5 个整点,结合函数图象,求k 的取值范围.【分析】(1)把A(4,1)代入y=(x>0)中可得m 的值;(2)① 当n=5 时,B(1,5),将B(1,5)代入y=kx﹣4k+1,求得k 即可,画图可得整点的个数;② 分两种情况:直线l:y=kx﹣4k+1 过(1,6),直线l:y=kx﹣4k+1 过(1,7),画图根据区域W 内恰有 5 个整点,确定k 的取值范围.解:(1)把A(4,1)代入y=(x>0)得m=4×1=4;(2)① 当n=5时,把B(1,5)代入直线l:y=kx ﹣4k +1得,5=k﹣4k+1,解得k=﹣,如图 1 所示,区域 W 内的整点有( 2,3),( 3,2),有 2 个; ② 如图 2,直线 l :y =kx ﹣4k+1过(1,6)时, k = 直线 l :y =kx ﹣4k+1过(1,7)时, k =﹣ 2,区域 W 内恰有 5个整点, ∴区域 W 内恰有 5个整点, k 的取值范围是﹣ 2≤k <﹣ .26.在平面直角坐标系 xOy 中,抛物线 y =x 2+bx+c 与 x 轴交于点 A ,B (A 在 B 的左侧),抛物线的对称轴与 x 轴交于点 D ,且 OB = 2OD .1)当 b =2 时,① 写出抛物线的对称轴;② 求抛物线的表达式;区域 W 内恰有 4 个整点,,0).∴点 D 的坐标为(﹣ , 0),2)存在垂直于 x 轴的直线分别与直线 l : y = x+ 和拋物线交于点 P ,Q ,且点 P ,Q 均在 x 轴下方,结合函数图象,求 b 的取值范围.分析】( 1) ① 由二次函数的对称轴方程可得出答案;② 根据题意求出 B 点坐标为( 2, 0),代入抛物线解析式 y =x 2+2x+c 可得出答案;2)求出 E (﹣,0),点 D 的坐标为(﹣ ,0).① 当 b >0 时,得出点 A 的坐标为(﹣ 2b , 0),点 B 的坐标为( b , 0),则﹣ 2b <﹣,解不等式即可; ② 当 b< 0 时,点 A 的坐标为( 0, 0),点 B 的坐标为(﹣ b , 0),则 0<﹣ ,解出 b <﹣2.解:( 1)当 b = 2时,抛物线 y =x 2+bx+c 化为 y =x 2+2x+c .==② ∵抛物线的对称轴为直线 x =﹣ 1,∴点 D 的坐标为(﹣ 1,0), OD =1. ∵OB =2OD , ∴OB =2.∵点 A ,点 B 关于直线 x =﹣ 1 对称, ∴点 B 在点 D 的右侧. ∴点 B 的坐标为( 2, 0).∵抛物线 y =x 2+2x+c 与 x 轴交于点 B ( 2,0), ∴4+4+c =0.解得 c =﹣ 8.∴抛物线的表达式为 y =x 2+2x ﹣ 8.2)设直线 y = x+与 x 轴交点为点 E ,∵ y = 0 时, x =﹣ ∵抛物线的对称轴为 x = ﹣,﹣, ﹣ 1.① 抛物线的对称轴 x =﹣∴E (﹣。
2020年北京市东城区中考二模数学试卷含答案解析
2020年北京市东城区中考二模数学试卷一、单选题(共10小题)1.我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为()A.B.C.D.考点:科学记数法和近似数、有效数字答案:A试题解析:科学记数法是把一个数表示成 a×的形式,其中1≤|a|<10,n为整数.所以3500000=3.5 .2.如图,已知数轴上的点A,O,B,C,D分别表示数﹣2,0,1,2,3,则表示数的点P应落在线段()A.AO上B.OB上C.BC上D.CD上考点:实数大小比较答案:B试题解析: , 则表示数的点P应落在线段OB上3.一个不透明的盒子中装有6个除颜色外完全相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A.B.C.D.考点:概率及计算答案:D试题解析:摸到黄球的概率= .4.下列图案中,既是中心对称又是轴对称图形的是()A.B.C.D.考点:轴对称与轴对称图形中心对称与中心对称图形答案:A试题解析:B,是轴对称图形不是中心对称图形,C,D是中心对称图形不是轴对称图形。
而A 即是中心对称图形又是轴对称图形。
5.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()A.B.C.D.考点:几何体的三视图答案:A试题解析:这个几何体的俯视图是,6.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°考点:等腰三角形答案:C试题解析:在等腰△ABC中,AB=AC,所以 ,因为 BD⊥AC,所以 ,所以 ,则。
7.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.8考点:平均数、众数、中位数答案:C试题解析:众数就是在一组数据中,出现次数最多的数据叫做这组数据的众数。
13.代数综合:2020年北京市各区初三数学二模试题分类整理(教师版)
202006初三数学二模试题整理:代数综合(教师版)一、直线(或线段)与抛物线的交点问题: (一)定直线+动抛物线 1.(2020密云二模26)(1)定线段(2)动抛物线:①不变:对称轴、顶点;②变:开口大小方向在平面直角坐标系xOy 中,抛物线C 1:y=x 2+bx+c 与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .点B 的坐标为(3,0),将直线y=kx 沿y 轴向上平移3个单位长度后,恰好经过B 、C 两点. (1)求k 的值和点C 的坐标;(2)求抛物线C 1的表达式及顶点D 的坐标; (3)已知点E 是点D 关于原点的对称点,若抛物线 C 2:y=ax 2-2(0a )与线段AE 恰有一个公共 点,结合函数的图象,求a 的取值范围.26.(1)解:∵直线y=kx +3经过点B (3,0) ∴3k+3=0 k=-1 ……1分∴y=-x +3与y 轴的交点,即为点C (0,3) ……2分 (2)解:∵抛物线y=x 2+bx+c 经过点B (3,0)和点C (0,3) ∴ y=x 2+bx+3∴ 9+3b +3=0 b=-4∴抛物线C 1的函数表达式为y = x 2-4x+3 ……3分∴y =(x -2)2-1∴顶点D 的坐标为(2,-1) ……4分(3)解:∵点E 是点D 关于原点的对称点∴点E 的坐标为(-2,1) 当y=ax 2-2经过点E (-2,1)时,a =当y=ax 2-2经过点A (1,0)时,a =2∴a 的取值范围是 ≤a <2 ……………6分4343(1)定线段(2)动抛物线:①不变:过定点②变:开口、对称轴在平面直角坐标系xOy 中,已知抛物线()()231210y mx m x m m =--+-≠. (1)当m =3时,求抛物线的顶点坐标;(2)已知点A (1,2).试说明抛物线总经过点A ;(3)已知点B (0,2),将点B 向右平移3个单位长度,得到点C ,若抛物线与线段BC只有一个公共点,求m 的取值范围.26.解:(1)把m =3代入()23121y mx m x m =--+-中,得223653(1)2y x x x =-+=-+,∴抛物线的顶点坐标是(1,2).…………………………………2分 (2)当x =1时,3(1)2133212y m m m m m m =--+-=-++-=. ∵点A (1,2),∴抛物线总经过点A .………………………………………………3分(3)∵点B (0,2),由平移得C (3,2).① 当抛物线的顶点是点A (1,2)时,抛物线与线段BC 只有一个公共点.由(1)知,此时, m =3.……………………………………4分 ② 当抛物线过点B (0,2)时,将点B (0,2)代入抛物线表达式,得2m -1=2.∴m =32>0.此时抛物线开口向上(如图1). ∴当0<m <32时,抛物线与线段BC 只有一个公共点.………5分③当抛物线过点C (3,2)时,将点C (3,2)代入抛物线表达式,得 9m -9(m -1)+2m -1=2. ∴m =-3<0.此时抛物线开口向下(如图2). ∴当-3<m <0时,抛物线与线段BC只有一个公共点. ………………… 6分 综上,m 的取值范围是m =3或0<m <32或-3<m <0.图2图1(1)定线段(2)动抛物线:①不变:与y 轴交点②变:开口、对称轴,顶点坐标在隐藏函数图象上动在平面直角坐标系xOy 中,抛物线22y ax a x c =++与y 轴交于点(0,2).(1)求c 的值;(2)当a =2时,求抛物线顶点的坐标;(3)已知点A (-2,0),B (1,0),若抛物线22y ax a x c =++与线段AB 有两个公共点,结合函数图象,求a 的取值范围.26.解:(1)∵抛物线22y ax a x c =++与y 轴交于点(0,2),∴c =2.(2)当a =2时,抛物线为2422++=x x y ,∴顶点坐标为(-1,0). (3)当0a >时,①当a =2时,如图1,抛物线与线段AB 只有一个公共点.②当21+=a 时,如图2,抛物线与线段AB 有两个公共点.结合函数图象可得212a <+≤. 当0a <时,抛物线与线段AB 只有一个或没有公共点.综上所述,a 的取值范围是212a <+≤.图1图2(二)含同参的动线段+动抛物线 4.(2020房山二模26)(1)动线段:一个端点定,另一个端点在y 轴动 (2)动抛物线:①不变:对称轴,与x 轴交点 ②变:开口在平面直角坐标系中,已知抛物线22y ax ax c =++与x 轴交于点A 、B ,且4AB =.抛物线与y 轴交于点C ,将点C 向上移动1个单位得到点D . (1)求抛物线对称轴;(2)求点D 纵坐标(用含有a 的代数式表示);(3)已知点()4,4P -,若抛物线与线段PD 只有一个交点,求a 的取值范围. 26.(1)对称轴-1=22-=aax ……………………………………1分(2)∵4AB =A (-3,0),B (1,0) ……………………………………2分 把(1,0)代入表达式:0=c +2a +a 得:a 3-=c ……………3分 ∴C (0,-3a )∴ D (0,-3a+1), 31D y a =-+ …………………………4分 (3)当0a >时将点()4,4P -代入抛物线223y ax ax a =+-得:41683a a a =--, 45a =∴当45a ≥时,抛物线与线段PD 只有一个交点…5分当0a <时抛物线的顶点为()1,4a -- 当44a -=时1a =- …………………6分综上所述,当45a ≥或1a =-时,抛物线与线段PD 只有一个交点.5.(2020燕山二模26)(1)动线段:一个端点定(2)动抛物线:①不变:对称轴,与x 轴交点 ②变:开口在平面直角坐标系xOy 中,抛物线24(0)y ax ax a =-≠与x 轴交于点A ,B (A 在B 的左侧). (1) 求点A ,B 的坐标及抛物线的对称轴;(2) 已知点P (2,2),Q (2+2a ,5a ),若抛物线与线段PQ 有公共点,请结合函数图象,求a的取值范围.26.解:(1) ∵24y ax ax =-=(4)ax x -,∴抛物线与x 轴交于点A (0,0),B (4,0). 抛物线24y ax ax =-的对称轴为直线:422ax a-=-=.………3分 (2) 24y ax ax =-=2(4)a x x -=2(2)4a x a --, 抛物线的顶点坐标为(2,-4a ). 令5y a =,得245ax ax a -=,(5)(1)0a x x -+=,解得1x =-,或5x =,∴当5y a =时,抛物线上两点M (-1,5a ),N (5,5a ).①当0a >时,抛物线开口向上,顶点位于x 轴下方,且Q (2+2a ,5a )位于点P 的右侧,如图1,当点Q 与点N 重合或位于点N 右侧时,抛物线与线段PQ 有公共点, 此时2+2a ≥5,14xyNMQ P图3 14xyNMQP 图214xy NMQP O解得32a≥.②当0a<时,抛物线开口向下,顶点位于x轴上方,点Q(2+2a,5a)位于点P的左侧,(ⅰ)如图2,当顶点与点P重合或位于点P下方时,抛物线与线段PQ有公共点,此时-4a≤2,解得12a≥-.(ⅱ)如图3,当顶点位于点P上方,点Q与点M重合或位于点M左侧时,抛物线与线段PQ有公共点,此时2+2a≤-1,解得32a≤-.综上,a的取值范围是32a≥,或12a<-≤,或32a≤-.…………………6分6.(2020丰台二模26)(1)动线段:一两个端点都动(2)动抛物线:①不变:对称轴,与x 轴交点②变:开口在平面直角坐标系xOy 中,抛物线243=-+y ax ax a 与y 轴交于点A . (1)求点A 的坐标(用含a 的式子表示); (2)求抛物线与x 轴的交点坐标;(3)已知点P (a ,0),Q (0,2-a ),如果抛物线与线段PQ 恰有一个公共点,结合函数 图象,求a 的取值范围.26.解:(1)令x =0,则y =3a.∴点A 的坐标为(0,3a ). ………………………………………………1分(2)令y =0,则ax 2-4ax +3a =0. …………………………………………2分 ∵a ≠0, ∴解得121,3x x ==.∴抛物线与x 轴的交点坐标分别为(1,0), (3,0). …………4分 (3)①当a <0时,可知3a ≥a -2. 解得a ≥-1. ∴ a 的取值范围是-1≤a <0 .② 当a >0时,由①知a ≥-1时,点Q 始终在点A 的下方,所以抛物线与线段PQ 恰有一个公共点时,只要1≤a <3即可.综上所述,a 的取值范围是-1≤a <0或1≤a <3. .......….........….....………7分二、定抛物线(部分图象)与动抛物线的交点问题: 7.(2020海淀二模26)在平面直角坐标系xOy 中,已知二次函数y =mx 2+2mx +3的图象与x 轴交于点(3,0)A -, 与y 轴交于点B ,将其图象在点A ,B 之间的部分(含A , B 两点)记为F . (1)求点B 的坐标及该函数的表达式;(2)若二次函数y =x 2+2x +a 的图象与F 只有一个公共点, 结合函数图象,求a 的取值范围. 26. 解:(1)∵y =mx 2+2mx +3的图象与与y 轴交于点B ,∴点B 的坐标为(0, 3).∵y =mx 2+2mx +3的图象与x 轴交于点(3,0)A -, ∴将(3,0)A -代入y =mx 2+2mx +3可得9630m m -+=.∴ m = -1.∴该函数的表达式为y =-x 2-2x +3.(2)∵将二次函数y =mx 2+2mx +3的图象在点A ,B 之间的部分(含A , B 两点)记为F ,∴F 的端点为A , B ,并经过抛物线y =mx 2+2mx +3的 顶点C (其中C 点坐标为(-1,4)). ∴可画F 如图1所示.∵二次函数y =x 2+2x +a 的图象的对称轴为x =-1,且与F 只有一个公共点,∴可分别把A , B , C 的坐标代入解析式y =x 2+2x +a 中. ∴可得三个a 值分别为-3,3,5. 可画示意图如图2所示.∴结合函数图象可知:二次函数y =x 2+2x +a 的图象与F 只有一个公共点时, a 的取值范围是-3≤a <3或a =5.图 2三、整点问题8.(2020平谷二模26) 含同参的动线段+动抛物线。
2020-2021学年北京市各区中考数学二模《代数》综合考点题汇总含答案
最新北京市各区初三数学二模代数综合题汇总西城27.在平面直角坐标系xOy 中,抛物线1C :2144y ax ax =--的顶点在x 轴上,直线l :25y x =-+与x 轴交于点A .(1)求抛物线1C :2144y ax ax =--的表达式及其顶点坐标;(2)点B 是线段OA 上的一个动点,且点B 的坐标为(t ,0).过点B 作直线BD ⊥x轴交直线l 于点D ,交抛物线2C :2344y ax ax t =--+于点E .设点D 的纵坐标为m ,点E 的纵坐标为n ,求证:m n ≥;(3)在(2)的条件下,若抛物线2C :2344y ax ax t =--+与线段BD 有公共点,结合函数的图象,求t 的取值范围.西城27.(1)解:∵抛物线1C :2144y ax ax =--, ∴它的对称轴为直线422ax a-=-=.∵抛物线1C 的顶点在x 轴上,∴它的顶点为(2,0).……………………………………………………1分∴当2x =时,440y a =--=.∴1a =-.∴抛物线1C 的表达式为2144y x x =-+-.………………………………2分(2)证明:∵点B 的坐标为(t ,0),且直线BD ⊥x 轴交直线l :25y x =-+于点D ,∴点D 的坐标为(t ,5t -+).……………………………………………3分∵直线BD 交抛物线2C :2344y x x t =-+-+于点E ,∴点E 的坐标为(t ,254t t -+-).……………………………………4分 ∵m n -=(5)t -+2(54)t t --+-269t t =-+ 2(3)0t =-≥,∴m n ≥.……………………………………………………………………5分(3)解:∵抛物线2C :2344y x x t =-+-+与线段BD 有公共点,∴点E 应在线段BD 上.∵由(2)可知,点D 要么与点E 重合,要么在点E 的上方, ∴只需0n ≥, 即2540t t -+-≥. ∵当2540t t -+-=时, 解得1t =或4t =.∴结合函数254y t t =-+-的图象可知,符合题意的t 的取值范围是14t ≤≤.海淀27.已知:点(,)P m n 为抛物线24y ax ax b =-+(0a ≠)上一动点.(1) 1P (1,1n ),2P (3,2n )为P 点运动所经过的两个位置,判断1n ,2n 的大小,并说明理由;(2) 当14m ≤≤时,n 的取值范围是14n ≤≤,求抛物线的解析式. 西城 解:(1)12n n =. ……………… 1 分理由如下:由题意可得抛物线的对称轴为2x =.∵1P (1,1n ),2P (3,2n )在抛物线24y ax ax b =-+上, ∴12n n =.………………3分 (2)当0a >时,抛物线的顶点为(2,1),且过点(4,4),∴抛物线的解析式为23344y x x =-+.………………5分 当0a <时,抛物线的顶点为(2,4),且过点(4,1),∴抛物线的解析式为23314y x x =-++. 综上所述,抛物线的解析式为23344y x x =-+或23314y x x =-++.…………7 分房山27.如图,在平面直角坐标系xoy 中,已知点P (-1,0),C()11-2,,D (0,-3),A ,B 在x 轴上,且P 为AB 中点,1=∆CAP S .(1)求经过A 、D 、B 三点的抛物线的表达式.(2)把抛物线在x 轴下方的部分沿x 轴向上翻折,得到一个新的图象G ,点Q 在此新图象G 上,且APC APQ S S ∆∆=,求点Q 坐标.(3)若一个动点M 自点N (0,-1)出发,先到达x 轴上某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点D ,求使点M 运动的总路程最短的点E 、点F 的坐标.房山27.解:(1)∵1=∆CAP S ,C()1,12-,∴1121=⨯AP ,∴AP =2,∵P 为AB 中点,P (-1,0), ∴A (-3,0),B (1,0); -----------1分∴过A 、B 、D 三点的抛物线的表达式为:322-+=x x y ----------------------2分(2)抛物线322-+=x x y 沿x 轴翻折所得的新抛物线关系式为322+--=x x y ,∵1==∆∆APC APQ S S ,∴点Q 到x 轴的距离为1,且Q 点在图象G 上(27题图1)∴点Q 的纵坐标为1 ∴1322=+--x x 或1322=-+x x .----------------------------------3分解得:311+-=x ,312--=x ,513+-=x ,514--=x -----4分∴所求Q 点的坐标为:)1,31(1+-Q ,)1,31(2--Q ,)1,51(3+-Q ,)1,51(4--Q ----5分27题图227题图1 (3)如图(27题图2)∵N (0,-1),∴点N 关于x 轴对称点N ′(0,1), ∵点D (0,-3),∴点D 关于对称轴的对称点D ′(-2,-3),∴直线N ′D ′的关系式为y =2x +1, -----------------------------------6分∴E (-0,21)当x =-1时,y =-1,∴F (-1,-1) ----------------------------------7分直线与抛物线交点:朝阳27.在平面直角坐标系xOy 中,抛物线22(9)6y x m x =-++-的对称轴是2x =.(1)求抛物线表达式和顶点坐标;(2)将该抛物线向右平移1个单位,平移后的抛物线与原抛物线相交于点A ,求点A 的坐标;(3)抛物线22(9)6y x m x =-++-与y 轴交于点C ,点A 关于平移后抛物线的对称轴的对称点为点B ,两条抛物线在点A 、C 和点A 、B 之间的部分(包含点A 、B 、C )记为图象M .将直线22y x =-向下平移b (b >0)个单位,在平移过程中直线与图象M 始终有两个公共点,请你写出b 的取值范围_________.朝阳27.解:(1)∵抛物线()2296y x m x =-++-的对称轴是2x =,∴922(2)m +-=⨯-.∴1m =-. ……………………………………………………………1分∴抛物线的表达式为2286y x x =-+-.…………………………………2分 ∴22(2)2y x =--+.∴顶点坐标为(2,2).………………………………………………3分 (2)由题意得,平移后抛物线表达式为()2232y x =--+……………………4分∵()()222223x x --=--,∴52x =. ∴A (52,32).………………………5分(3)702b <≤.……………………………7分丰台27.在平面直角坐标系xOy 中,抛物线223(0)y mx mx m =--≠与x 轴交于A ,B 两点,且点A 的坐标为(3,0). (1)求点B 的坐标及m 的值;(2)当23x -<<时,结合函数图象直接写出y 的取值范围;(3)将抛物线在x 轴上方的部分沿x 轴翻折,抛物线的其余部分保持不变,得到一个新图象M .若)0(1≠+=k kx y 直线与图象M 在直线21=x 左侧的部分只有一个公共点,结合图象求k 的取值范围.丰台27.(1)将()3,0A 代入,得1m =.-------1分∴抛物线的表达式为223y x x =--.∴B 点的坐标()1,0-.-------2分 (2)y 的取值范围是45y -≤<.-------5分(3)当x =21时,y =415-. 代入1y kx =+得219-=k .当x =-1时,y =0,代入1y kx =+得k =1.结合图象可得,k 的取值范围是1=k 或192k <-. -------7分怀柔27.已知:二次函数y 1=x 2+bx+c 的图象经过A (-1,0),B (0,-3)两点. (1)求y 1的表达式及抛物线的顶点坐标;(2)点C (4,m )在抛物线上,直线y 2=kx+b(k ≠0)经过A , C 两点,当y 1 >y 2时,求自变量x 的取值范围; (3) 将直线AC 沿y 轴上下平移,当平移后的直线与抛物线只有一个公共点时,求平移后直线的表达式.怀柔27.解:(1)把A (-1,0)、B (0,-3)两点带入y 1 得: y 1=x 2-2x-3………………………………1分顶点坐标(1,-4) ………………………………………2分 (2)把C (4,m )代入y 1, m=5,所以C (4,5), ……………………………………3分把A 、C 两点代入y 2 得:y 2 =x+1.………………………………………………4分如图所示:x 的取值范围:x<-1或x>4 . …………………………………………………5分 (3)设直线AC 平移后的表达式为y=x+k得: x 2-2x-3=x+k ………………………………………6分 令Δ=0,k=-421 所以平移后直线的表达式:y=x-421. ………………………7分xyO–5–4–3–2–112345–7–6–5–4–3–2–11234567顺义27.已知关于x 的一元二次方程2(21)20x m x m -++=. (1)求证:不论m 为任何实数时,该方程总有两个实数根; (2)若抛物线2(21)2y x m x m =-++与x 轴交于A 、B 两点(点A 与点B 在y 轴异侧),且4AB =,求此抛物线的表达式;(3)在(2)的条件下,若抛物线2(21)2y x m x m =-++向上平移b 个单位长度后,所得到的图象与直线y x =没有交点,请直接写出b 的取值范围. 顺义27. 解:(1)[]22224(21)42441(21)b ac m m m m m ∆=-=-+-⨯=-+=- -----1分∵不论m 为任何实数时 ,总有2(21)0m ∆=-≥,∴该方程总有两个实数根 . --------------------------------------------------2分(2)24(21)(21)2b b ac m m x -±-+±-==∴12x m =, 21x =………………………………………………….… 4分 不妨设点(1,0)B ,依题意则点(3,0)A - ∴ 32m =-∴ 抛物线的表达式为223y x x =+-…………….…………………5分(3)134b >……………………………………………...………………….…7分 抛物线与抛物线交点东城27.二次函数21:C y x bx c =++的图象过点A (-1,2),B (4,7).(1)求二次函数1C 的解析式;(2)若二次函数2C 与1C 的图象关于x 轴对称,试判断二次函数2C 的顶点是否在直线AB上;(3)若将1C 的图象位于A ,B 两点间的部分(含A ,B 两点)记为G ,则当二次函数221y x x m =-+++与G 有且只有一个交点时,直接写出m 满足的条件.东城27.解:(1)∵21:C y x bx c =++的图象过点A (-1,2),B (4,7),∴217164.b c b c =-+⎧⎨=++⎩,∴21.b c =-⎧⎨=-⎩,∴221y x x =--. …………2分(2)∵二次函数2C 与1C 的图象关于x 轴对称,∴22:21C y x x =-++.∴2C 的顶点为(1,2). ∵A (-1,2),B (4,7),∴过A 、B 两点的直线的解析式:3y x =+. 令x =1,则y =4.∴2C 的顶点不在直线AB 上. …………4分 (3)414m <≤或4m =-. …………7分抛物线与双曲线交点 平谷27.反比例函数()0ky k x=≠过A (3,4),点B 与点A 关于直线y =2对称,抛物线2y x bx c =-++过点B 和C (0,3).(1)求反比例函数的表达式; (2)求抛物线的表达式;(3)若抛物线2y x bx m =-++在2-ky x=无公共点,求m 的取值范围.平谷27.(1)∵反比例函数ky x=过A (3,4), ∴12k =. ∴12y x=.…………………………………………………………………………1 (2)∵点B 与点A 关于直线y =2对称,∴B (3,0). (2)∵抛物线2y x bx c =-++过点B 和C (0,3)∴9303b c c ⎧-++=⎨=⎩.∴23b c ⎧=⎨=⎩.……………………………………………………………………………3 ∴223y x x =-++. (4)(3)12y x=, 令2x =-时,6y =-,即()26,--令2x =时,6y =,即()26, (5)当2y x bx m =-++过()26,--时,2m =. 当2y xbx m =-++过()26,时,6m=. (6)∴26m <≤ (7)两个直接写出结果的问题:昌平27. 在平面直角坐标系xOy 中,直线y=kx +b 的图象经过(1,0),(-2,3)两点,且与y 轴交于点A .(1)求直线y=kx +b 的表达式;(2)将直线y=kx +b 绕点A 沿逆时针方向旋转45º后与抛物线21:1(0)G y ax a =->交于B ,C 两点.若BC ≥4,求a 的取值范围;(3)设直线y=kx +b 与抛物线22:1G y x m =-+交于D ,E直接写出m 的取值范围.昌平27.解:(1)∵直线y=kx +b 的图象经过(1,0),(-2,3)两点,∴0,2 3.k b k b +=⎧⎨-+=⎩………………………………………………………………1分解得:1,1.k b =-⎧⎨=⎩∴直线y=kx +b 的表达式为: 1.y x =-+…………………………………………2分 (2)①将直线1y x =-+绕点A 沿逆时针方向旋转45º后可得直线1y =.…………3分∴直线1y =与抛物线21:1(0)G y ax a =->的交点B ,C 关于y 轴对称.∴当线段BC 的长等于4时,B ,C 两点的坐标分别为(2,1),(-2,1). ∴1.2a =…………………………………………………………………………………4分由抛物线二次项系数的性质及已知a >0可知,当BC ≥4时,10.2a ≤<……………5分②40.m -≤≤………………………………………………………………………………7分石景山27.已知关于x 的方程()021222=-+-+m m x m x .(1)求证:无论m 取何值时,方程总有两个不相等的实数根;(2)抛物线()m m x m x y 21222-+-+=与x 轴交于()0,1x A ,()0,2x B 两点,且210x x <<,抛物线的顶点为C ,求△ABC 的面积;(3)在(2)的条件下,若m 是整数,记抛物线在点B ,C 之间的部分为图象G (包含B ,C 两点),点D 是图象G 上的一个动点,点P 是直线b x y +=2上的一个动点,若线段DP 的最小值是55,请直接写出b 的值. 石景山27.解:(1)∵1=a ,()12-=m b ,m m c 22-= ∴()()0424144222>=---=-=∆m m m ac b∴无论m 取任何实数时,方程总有两个不相等的实数根.……2分(2)令,则()021222=-+-+m m x m x()()02=-++m x m x∴m x -=或2+-=m x ∵210x x <<∴m x -=1,22+-=m x …………………………………………4分 ∴2=AB当1+-=m x 时,1-=y ∴1-=c y∴121=⨯=∆c ABC y AB S .………………………………………5分 (3)0=b 或3-=b .……………………………………………………..7分如何找对称点:通州27. 已知:二次函数c b x -x y ++=2的图象过点A (-1,0)和C (0,2).(1)求二次函数的表达式及对称轴;(2)将二次函数c b x -x y ++=2的图象在直线y =1上方的部分沿直线y =1翻折,图象其余的部分保持不变,得到的新函数图象记为G ,点M (m ,1y )在图象G 上,且0y 1≥,求m 的取值范围。
2020年北京市中考二模数学试题分类汇编:解析
1.(西城3).焦点在x 轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是( A) 24x y = ( B) 24y x = ( C) 28x y = ( D) 28y x =答案D2.(西城6)圆224210x y x y ++-+= 截x 轴所得弦的长度等于( A)2 ( B) ( C) ( D)4 答案 B3.(西城14).能说明“若m ( n +2)≠0,则方程2212x y m n +=+表示的曲线为椭圆或双曲线”是错误的一组m , n 的值是 .答案答案不唯一. 如3m =,1n =4.(海淀3)若抛物线212y x =的焦点为F ,点P 在此抛物线上且横坐标为3,则||PF 等于 (A )4 (B )6(C )8(D )10答案 B5(海淀12)已知双曲线E 的一条渐近线方程为y x =,且焦距大于4,则双曲线E 的标准方程可以为_______.(写出一个即可)答案22144x y -=6.(昌平7)已知点P 是双曲线22:14y C x -=的一条渐近线(0)y kx k =>上一点,F 是双曲线C 的右焦点,若△OPF 的面积为5,则点P 的横.坐标为(A ) (B (C )± (D )答案 A7.(昌平13)已知点M 在抛物线24y x =上,若以点M 为圆心的圆与x 轴和其准线l 都相切,则点M 到其顶点O的距离为__ .8.(密云5).已知双曲线221(0)x y a a-=>的一条渐近线方程为20x y +=,则其离心率为答案A9.(密云7)已知圆22:(1)2C x y +-=,若点P 在圆C 上,并且点P 到直线y x =的距离为2,则满足条件的点P 的个数为A .1B .2C .3D .4 答案C10.(东城4)双曲线222:1y C x b-=的渐近线与直线1x =交于,A B 两点,且4AB =,那么双曲线C 的离心率为(A) (B) (C)2 答案B11.(丰台6)已知抛物线M :)0(22>=p py x 的焦点与双曲线13:22=-x y N 的一个焦点重合,则=p(A (B )2(C )(D )4答案D12.(丰台13)双曲线)0,0(1:2222>>=-b a by a x M 的离心率为3,则其渐近线方程为 .答案y =13. (房山4)若双曲线22221x y a b-=(0,0)a b >>的一条渐近线经过点,则该双曲线的离心率为(A (B(C )2 (D 答案C14. (房山12)若直线3x =与圆2220x y x a +--=相切,则a = . 答案 315.(房山13)已知抛物线C:22y x=的焦点为F,点M在抛物线C上,||1MF=,则点M的横坐标是,△MOF(O为坐标原点)的面积为.答案12;1416. (朝阳4)圆心在直线0-=x y上且与y轴相切于点(0,1)的圆的方程是(A)22(1)(1)1-+-=x y(B)22(1)(1)1+++=x y(C)22(1)(1)2-+-=x y(D)22(1)(1)2+++=x y答案A17. (朝阳5)直线l过抛物线22=y x的焦点F,且l与该抛物线交于不同的两点11(,)A x y,22(,)B x y.若123+=x x,则弦AB的长是(A)4(B)5(C)6(D)8答案A18. (朝阳14)已知双曲线C的焦点为1(0,2)F,2(0,2)F-,实轴长为2,则双曲线C的离心率是________;若点Q 是双曲线C的渐近线上一点,且12FQ F Q⊥,则12QF F△的面积为________.答案2;2319.(西城20)答案解:(Ⅰ)由题意,得1b=,3ca=. ………………2分又因为222a b c=+,………………3分所以2a=,3c=.故椭圆E的方程为2214xy+=. ………………5分(Ⅱ)(2,0)A-,(2,0)B.设0000(,)(0)D x y x y≠,则2214xy+=. ………………6分所以直线CD的方程为011yy xx-=+,………………7分令0y =,得点P 的坐标为0(,0)1x y -. ……………… 8分 设(,)Q Q Q x y ,由4OP OQ ⋅=u u u r u u u r ,得004(1)Qy x x -=(显然2Q x ≠). …… 9分 直线AD 的方程为00(2)2y y x x =++, ……………… 10分 将Q x 代入,得00000(442)(2)Q y y x y x x -+=+,即00000004(1)(442)(,)(2)y y y x Q x x x --++. ……………… 11分故直线BQ 的斜率存在,且000000(442)2(2)(442)Q BQ Q y y y x k x x y x -+==-+-- …… 12分200002000022424y y x y x x y y -+=--- 20000200002214242y y x y y x y y -+==---. ………… 13分 又因为直线BC 的斜率12BC k =-,所以BC BQ k k =,即,,C B Q 三点共线. ……………… 14分20.(海淀19)已知椭圆2222:1x y W a b+=(0)a b >>过(0,1),(0,1)A B -.(Ⅰ)求椭圆W 的方程;(Ⅱ)过点A 的直线l 与椭圆W 的另一个交点为C ,直线l 交直线2y =于点M ,记直线BC ,BM 的斜率分别为1k ,2k ,求12k k 的值.答案解:(Ⅰ)由题意,2221.b ca abc =⎧⎪⎪=⎨⎪⎪=+⎩,解得2,1.a b =⎧⎨=⎩所以椭圆W 的方程为2214x y +=.(Ⅱ)由题意,直线l 不与坐标轴垂直.设直线l 的方程为:1y kx =+(0k ≠). 由221,4 4.y kx x y =+⎧⎨+=⎩得22(41)80k x kx ++=. 设11(,)C x y ,因为10x ≠,所以12841kx k -=+. 得21122814114141k k y kx k k k --=+=⋅+=++.即222814(,)4141k k C k k --++. 又因为(0,1)B -,所以22121411418441k k k k k k -++==--+. 由1,2.y kx y =+⎧⎨=⎩得1,2.x k y ⎧=⎪⎨⎪=⎩ 所以点M 的坐标为1(,2)k.所以22131k k k+==. 所以1213344k k k k ⋅=-⋅=-.21.(昌平19)(本小题15分)已知椭圆:M 22221(0)x y a b a b+=>>,椭圆M 与y 轴交于,A B 两点(A 在下方),且||4AB =.过点(0,1)G 的直线l 与椭圆M 交于,C D 两点(不与A 重合). (Ⅰ)求椭圆M 的方程;(Ⅱ)证明:直线AC 的斜率与直线AD 的斜率乘积为定值. 答案解:(Ⅰ)由题意得222524,,c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,1.a b c ⎧=⎪=⎨⎪=⎩ …………….3分即椭圆的方程为22154x y +=. …………….5分 (Ⅱ)法一由题意,直线l 的斜率存在. 当0k =时,直线l 的方程为1y =.代入椭圆方程有2x =±.则(22C D -.所以22AC AD k k ====所以12.5AC AD k k ⋅==- …………….8分当0k ≠时,则直线l 的方程为1y kx =+.由221,154y kx x y =+⎧⎪⎨+=⎪⎩,得22(45)10150k x kx ++-=. …………….9分设11(,)C x y ,22(,)D x y , 则1212221015,4545k x x x x k k+=-=-++. …………10分 又(0,2)A -, 所以112AC y k x +=,222AD y k x +=. …………….11分 因为1212121222(3)(3)AC AD y y kx kx k k x x x x ++++⋅==g 21212123()9k x x k x x x x +++=212123()9k x x k x x ++=+222222103()93036451245.1515545kk k k k k k k-+-+++=+=+=---+ 即直线AC 的斜率与直线AD 的斜率乘积为定值. …………….15分 法二设直线l 的斜率为k ,则直线l 的方程为1y kx =+. …………….6分由221,154y kx x y =+⎧⎪⎨+=⎪⎩,得22(45)10150k x kx ++-=. …………….7分设11(,)C x y ,22(,)D x y , 则1212221015,4545k x x x x k k +=-=-++. …………….9分 又(0,2)A -,所以112AC y k x +=,222AD y k x +=. …………….11分 因为1212121222(3)(3)AC AD y y kx kx k k x x x x ++++⋅==g 21212123()9k x x k x x x x +++=212123()9k x x k x x ++=+222222103()93036451245.1515545kk k k k k k k -+-+++=+=+=---+即直线AC 的斜率与直线AD 的斜率乘积为定值. …………….15分22.(密云19)已知椭圆:过点(1,2P ,设它的左、右焦点分别为,,左顶点为,上顶点为.(Ⅰ)求椭圆C 的标准方程和离心率;(Ⅱ)过点6(,0)5Q -作不与轴垂直的直线交椭圆于,(异于点)两点,试判断的大小是否为定值,并说明理由. 答案(Ⅰ)解:根据题意得22222131,42,.a b c a b c ⎧+=⎪⎪=⎪=+⎪⎩解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为2214x y +=,离心率е=(Ⅱ)解:方法一因为直线不与轴垂直,所以直线的斜率不为设直线的方程为:65x ty =-, 联立方程226,51.4x ty x y ⎧=-⎪⎪⎨⎪+=⎪⎩化简得2212(4)0525t y ty +--=.显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则122125(4)t y y t +=+,1226425(4)y y t =-+. 又因为(2,0)A -,所以11(2,)AM x y =+u u u u r ,22(2,)AN x y =+u u u r.所以1212(2)(2)AM AN x x y y =+++u u u u r u u u rg12122121222266(2)(2)55416(1)()5256441216(1)()25(4)55(4)25ty tx y y t y y t y y t t t t t =-+-++=++++=+⨯-+⨯+++=0 所以AM AN ⊥u u u u r u u u r ,即o90MAN ∠=是定值.方法二(1)当直线垂直于x 轴时 解得M 与N 的坐标为64(,)55-±.由点(2,0)A -,易证o90MAN ∠=. (2)当直线斜率存在时设直线的方程为:6(),0.5y k x k =+≠,联立方程226(),51.4y k x x y ⎧=+⎪⎪⎨⎪+=⎪⎩化简得2222484(3625)(14)0525k k x k x -+++=. 显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则2122485(14)k x x k +=-+,21224(3625)25(14)k x x k -=+.又因为(2,0)A -,所以11(2,)AM x y =+u u u u r ,22(2,)AN x y =+u u u r.所以1212(2)(2)AM AN x x y y =+++u u u u r u u u rg12122221212222222266(2)(2)()()55636(1)(2)()45254(3625)64836(1)(2)425(14)55(14)25x x k x k x k k x x k x x k k k k k k k =+++++=++++++--=+⨯++⨯++++=0所以AM AN ⊥u u u u r u u u r ,即o90MAN ∠=是定值.23.(东城19)已知椭圆2222:1(0)x y C a b a b +=>>的一个顶点坐标为(0,1)A -,离心率为23.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线(1)(0)y k x k =-≠与椭圆C 交于不同的两点P ,Q ,线段PQ 的中点为M ,点(1,0)B ,求证:点M 不在以AB 为直径的圆上. 答案(Ⅰ)解:由题意可知⎪⎪⎩⎪⎪⎨⎧===+,1,23,222b a ca cb 解得⎪⎩⎪⎨⎧===,3,1,2c b a所以椭圆C 的方程为1422=+y x .………………………………4分 (Ⅱ)证明:设11(,)P x y ,22(,)Q x y ,),(00y x M .由221,4(1),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(4+1)8440k x k x k -+-= , 所以22222(8)4(41)(44)4816k k k k ∆=--⨯+-=+. 所以当k 为任何实数时,都有0∆>.所以2122841k x x k +=+,2122444+1k x x k -=. 因为线段PQ 的中点为M ,所以212024241x x k x k +==+,002(1)41-=-=+k y k x k , 因为(1,0)B ,所以00(,1)AM x y =+uuu r ,00(1,)BM x y =-uuu r.所以2200000000(1)(1)=AM BM x x y y x x y y ⋅=-++-++uuu r uuu r 2222222244=()()41414141k k k k k k k k ---++++++322243=41k k k k ---+() 222(431)=41k k k k -+++()22237[4()]816=41k k k -+++().又因为0k ≠,2374()0816k ++>,所以0AM BM ⋅≠uuu r uuu r,所以点M 不在以AB 为直径的圆上.………………………………14分24.(丰台20)已知椭圆2222:1(0)x y C a b a b +=>>经过(10)A ,,(0)B b ,两点.O 为坐标原点,且△AOB 的面积为4. 过点(01)P ,且斜率为(0)k k >的直线l 与椭圆C 有两个不同的交点M N ,,且直线AM ,AN 分别与y 轴交于点S ,T .(Ⅰ)求椭圆C 的方程;(Ⅱ)求直线l 的斜率k 的取值范围;(Ⅲ)设PS PO PT PO λμ==u u r u u u r u u u r u u u r,,求λμ+的取值范围. 答案解:(Ⅰ)因为椭圆2222:1x y C ab+=经过点(10)A ,,所以21a =解得1a =. 由△AOB4可知,124ab =,解得2b =,所以椭圆C 的方程为2221x y +=. ………3分(Ⅱ) 设直线l 的方程为1y kx =+,1122()()M x y N x y ,,,.联立22211x y y kx +==+⎧⎨⎩,消y 整理可得:22(21)410k x kx +++=.因为直线与椭圆有两个不同的交点, 所以22164(21)0k k ∆=-+>,解得212k >.因为0k >,所以k的取值范围是)2+∞. ………7分(Ⅲ)因为(10)(01)A P ,,,1122()()M x y N x y ,,,, 所以直线AM 的方程是:11(1)1y y x x =--.令0x =,解得111y y x -=-.所以点S 的坐标为11(0)1y x --,.同理可得:点T 的坐标为22(0)1y x --,. 所以11(01)1y PS x -=--u u r ,,22(01)1y PT x -=--u u u r ,,(01)PO =-u u u r,. 由,,μλ== 可得:12121111y y x x λμ---=--=---,, 所以111111111y kx x x λ+=+=+--. 同理22111kx x μ+=+-.由(Ⅱ)得121222412121kx x x x k k +=-=++,, 所以 121211211kx kx x x λμ+++=++--()121212122(1)()221kx x k x x x x x x +-+-=+-++22222222142(1)()22121214()121212442(21)21421(1) 2(1)121k k k k k k k k k k k k k k k k k ⋅+---++=+--+++-+-+=++++-+=++=-++g所以λμ+的范围是2). ………14分25. (房山19)已知椭圆C 的两个顶点分别为(2,0)A -,(2,0)B ,焦点在x 轴上,离心率为12. (Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,点P 在椭圆C 上,点Q 和点P 关于x 轴对称,直线AP 与直线BQ 交于点M ,求证: P ,M 两点的横坐标之积等于4,并求OM 的取值范围.答案(Ⅰ)设椭圆C 的方程为22221(0)x y a b a b +=>>.依题意,2a =,12c a =. 得1c =,2223b a c =-=.所以,椭圆C 的方程为22143x y +=. (Ⅱ)依题意,可设(,)P m n (22m -<<且0m ≠),则(,)Q m n -.点P 在椭圆C 上,则22143m n +=, AP 的斜率为12n k m =+,直线AP 方程为(2)2n y x m =++, BQ 的斜率为12n k m -=-,直线BQ 的方程为(2)2n y x m -=--. 设(,)M x y ,由(2)2(2)2n y x m n y x m ⎧=+⎪⎪+⎨-⎪=-⎪-⎩得42x m n y m ⎧=⎪⎪⎨⎪=⎪⎩,所以M 的坐标为42(,)n m m . 所以P ,M 的横坐标之积等于44m m ⋅=. OM ==== 由204m <<, 所以,OM 的取值范围是()2,+∞.26. (朝阳19)已知椭圆C :22221(0)+=>>x y a b a b,且椭圆C经过点. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知过点(4,0)P 的直线l 与椭圆C 交于不同的两点A ,B ,与直线1=x 交于点Q ,设λ=u u u r u u u r AP PB ,μ=u u u r u u u r AQ QB (λ,)μ∈R ,求证:λμ+为定值.答案(19)(本小题14分)解:(Ⅰ)由题意可知222222,121,⎧=+⎪⎪⎪+=⎨⎪⎪=⎪⎩a b c ab c a得22=b ,24=a . 所以椭圆C 的方程为22142+=x y .……………5分 (Ⅱ)由题意可知,直线l 的斜率存在,设直线l 的方程为(4)=-y k x .由(4),10=-⎧⎨-=⎩y k x x 得1,3.=⎧⎨=-⎩x y k 所以(1,3)-Q k . 由22(4),24=-⎧⎨+=⎩y k x x y 得222(4)4+-=x kx k . 整理得2222(12)16(324)0+-+-=k x k x k .由2222(16)4(12)(324)0∆=--+->k k k,得66<<k . 设直线l 与椭圆C 的交点11(,)A x y ,22(,)B x y ,则21221612+=+k x x k ,212232412-=+k x x k . 因为λ=u u u r u u u r AP PB ,μ=u u u r u u u r AQ QB 且11(4,)=--u u u r AP x y ,22(4,)=-u u u r PB x y ,11(1,3)=---u u u r AQ x k y ,22(1,3)=-+u u u r QB x y k , 所以111212222241(4)(1)(1)(4)41(4)(1)λμ----+--+=+=----x x x x x x x x x x 1212225()28(4)(1)+--=--x x x x x x . 因为22121222163245()285281212-+--=⨯-⨯-++k k x x x x k k 22228064881612-+--=+k k k k0=, 所以0λμ+=.……………14分27.(顺义4)抛物线2=4y x 上的点与其焦点的最短距离为(A )4 (B )2 (C )1 (D )12答案 C28. (顺义14)若直线:l y x a =+将圆22:1C x y +=的圆周分成长度之比为1:3的两段弧,则实数a 的所有可能取值是____________.答案 1a =±29. (15)曲线C 是平面内到定点3(0)2F ,和定直线3:2l x =-的距离之和等于5的点的轨迹,给出下列三个结论: ①曲线C 关于y 轴对称;②若点(,)P x y 在曲线C 上,则y 满足4y ≤;③若点(,)P x y 在曲线C 上,则15PF ≤≤;其中,正确结论的序号是_____________.答案 ②③30(顺义20)(本小题14分) 已知椭圆2222:1(0)+=>>x y C a b a b的焦距和长半轴长都为2.过椭圆C 的右焦点F 作斜率为(0)k k ≠的直线l 与椭圆C 相交于,P Q 两点.(I )求椭圆C 的方程;(II )设点A 是椭圆C 的左顶点,直线,AP AQ 分别与直线4x =相交于点,M N .求证:以MN 为直径的圆恒过点F .解:(I )由题意得222222c a a b c =⎧⎪=⎨⎪=+⎩解得2,1a b c === ---------------------3分 故椭圆C 的方程为22143x y +=. -------------------5分 (II )(1,0)F ,(2,0)A -,直线l 的方程为(1)y k x =-. ------------------6分 由22(1)3412y k x x y =-⎧⎨+=⎩ 得2222(34)84120k x k x k +-+-=. 直线l 过椭圆C 的焦点,显然直线l 椭圆C 相交.设11(,)P x y ,22(,)Q x y ,则2122834k x x k +=+,212241234k x x k -⋅=+ --------------8分 直线AP 的方程为11(2)2y y x x =++,令4x =,得1162M y y x =+; 即116(4,)2y M x + 同理:226(4,)2y N x + --------------10分 ∴116(3,)2y FM x =+u u u u r ,226(3,)2y FN x =+u u u r 又1212369(2)(2)y y FM FN x x ⋅=+++u u u u r u u u r -------------------11分 =121236(1)(1)9(2)(2)k x k x x x -⋅-+++=[]21212121236()192()4k x x x x x x x x -++++++ =222222222412836(1)343494121643434k k k k k k k k k --++++-++++ =22229363493634k k k k -⋅+++ =990-=∴以MN 为直径的圆恒过点F . ----------------14分。
2020北京中考数学二模分类汇编《几何综合》含答案解析
2020北京中考数学二模分类汇编——几何综合1.(2020•海淀区二模)如图1,等边三角形ABC中,D为BC边上一点,满足BD<CD,连接AD,以点A为中心,将射线AD顺时针旋转60°,与△ABC的外角平分线BM交于点E.(1)依题意补全图1;(2)求证:AD=AE;(3)若点B关于直线AD的对称点为F,连接CF.①求证:AE∥CF;②若BE+CF=AB成立,直接写出∠BAD的度数为°.2.(2020•西城区二模)在正方形ABCD中,E是CD边上一点(CE>DE),AE,BD交于点F.(1)如图1,过点F作GH⊥AE,分别交边AD,BC于点G,H.求证:∠EAB=∠GHC;(2)AE的垂直平分线分别与AD,AE,BD交于点P,M,N,连接CN.①依题意补全图形;②用等式表示线段AE与CN之间的数量关系,并证明.3.(2020•东城区二模)在△ABC中,AB=AC,∠BAC=α,点D是△ABC外一点,点D 与点C在直线AB的异侧,且点D,A,C不共线,连接AD,BD,CD.(1)如图1,当α=60°.∠ADB=30°时,画出图形,直接写出AD,BD,CD之间的数量关系;(2)当α=90°,∠ADB=45°时,利用图2,继续探究AD,BD,CD之间的数量关系并证明;(提示:尝试运用图形变换,将要研究的有关线段尽可能转移到一个三角形中)(3)当∠ADB=时,进一步探究AD,BD,CD之间的数量关系,并用含α的等式直接表示出它们之间的关系.4.(2020•朝阳区二模)已知∠AOB=40°,M为射线OB上一定点,OM=1,P为射线OA 上一动点(不与点O重合),OP<1,连接PM,以点P为中心,将线段PM顺时针旋转40°,得到线段PN,连接MN.(1)依题意补全图1;(2)求证:∠APN=∠OMP;(3)H为射线OA上一点,连接NH.写出一个OH的值,使得对于任意的点P总有∠OHN为定值,并求出此定值.5.(2020•丰台区二模)如图,在Rt△ABC中,∠ABC=90°,将CA绕点C顺时针旋转45°,得到CP,点A关于直线CP的对称点为D,连接AD交直线CP于点E,连接CD.(1)根据题意补全图形;(2)判断△ACD的形状,并证明;(3)连接BE,用等式表示线段AB,BC,BE之间的数量关系,并证明.温馨提示:在解决第(3)问的过程中,如果你遇到困难,可以参考下面几种解法的主要思路.解法1的主要思路:延长BC至点F,使CF=AB,连接EF,可证△ABE≌△CFE,再证△BEF是等腰直角三角形.解法2的主要思路:过点A作AM⊥BE于点M,可证△ABM是等腰直角三角形,再证△ABC∽△AME.解法3的主要思路:过点A作AM⊥BE于点M,过点C作CN⊥BE于点N,设BN=a,EN=b,用含a或b 的式子表示AB,BC.…….6.(2020•石景山区二模)在△ABC中,AB=AC,D是边BC上的一点(不与点B重合),边BC上点E在点D的右边且∠DAE=∠BAC,点D关于直线AE的对称点为F,连接CF.(1)如图1,①依题意补全图1;②求证:CF=BD.(2)如图2,∠BAC=90°,用等式表示线段DE,CE,CF之间的数量关系,并证明.7.(2020•房山区二模)点C为线段AB上一点,以AC为斜边作等腰Rt△ADC,连接BD,在△ABD外侧,以BD为斜边作等腰Rt△BED,连接EC.(1)如图1,当∠DBA=30°时:①求证:AC=BD;②判断线段EC与EB的数量关系,并证明;(2)如图2,当0°<∠DBA<45°时,EC与EB的数量关系是否保持不变?对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:想法1:尝试将点D为旋转中心,过点D作线段BD垂线,交BE延长线于点G,连接CG;通过证明△ADB≌△CDG解决以上问题;想法2:尝试将点D为旋转中心,过点D作线段AB垂线,垂足为点G,连接EG.通过证明△ADB∽△GDE解决以上问题;想法3:尝试利用四点共圆,过点D作AB垂线段DF,连接EF,通过证明D、F、B、E 四点共圆,利用圆的相关知识解决以上问题.请你参考上面的想法,证明EC=EB(一种方法即可).8.(2020•平谷区二模)如图,在△ABM中,∠ABC=90°,延长BM使BC=BA,线段CM 绕点C顺时针旋转90°得到线段CD,连接DM,AD.(1)依据题意补全图形;(2)当∠BAM=15°时,∠AMD的度数是;(3)小聪通过画图、测量发现,当∠AMB是一定度数时,AM=MD.小聪把这个猜想和同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:通过观察图形可以发现,如果把梯形ABCD补全成为正方形ABCE,就易证△ABM ≌△AED,因此易得当∠AMD是特殊值时,问题得证;想法2:要证AM=MD,通过第(2)问,可知只需要证明△AMD是等边三角形,通过构造平行四边形CDAF,易证AD=CF,通过△ABM≌△CBF,易证AM=CF,从而解决问题;想法3:通过BC=BA,∠ABC=90°,连接AC,易证△ACM≌△ACD,易得△AMD是等腰三角形,因此当∠AMD是特殊值时,问题得证.请你参考上面的想法,帮助小聪证明当∠AMD是一定度数时,AM=MD.(一种方法即可)9.(2020•密云区二模)已知:MN是经过点A的一条直线,点C是直线MN左侧的一个动点,且满足60°<∠CAN<120°,连接AC,将线段AC绕点C顺时针旋转60°,得到线段CD,在直线MN上取一点B,使∠DBN=60°.(1)若点C位置如图1所示.①依据题意补全图1;②求证:∠CDB=∠MAC;(2)连接BC,写出一个BC的值,使得对于任意一点C,总有AB+BD=3,并证明.10.(2020•昌平区二模)如图,在△ABC中,∠BAC=30°,AB=AC,将线段AC绕点A 逆时针旋转α°(0<α<180),得到线段AD,连接BD,交AC于点P.(1)当α=90°时,①依题意补全图形;②求证:PD=2PB;(2)写出一个α的值,使得PD=PB成立,并证明.11.(2020•顺义区二模)已知:在△ABC中,∠ABC=90°,AB=BC,点D为线段BC上一动点(点D不与点B、C重合),点B关于直线AD的对称点为E,作射线DE,过点C 作BC的垂线,交射线DE于点F,连接AE.(1)依题意补全图形;(2)AE与DF的位置关系是;(3)连接AF,小昊通过观察、实验,提出猜想:发现点D在运动变化的过程中,∠DAF 的度数始终保持不变,小昊把这个猜想与同学们进行了交流,经过测量,小昊猜想∠DAF=°,通过讨论,形成了证明该猜想的两种想法:想法1:过点A作AG⊥CF于点G,构造正方形ABCG,然后可证△AFG≌△AFE…想法2:过点B作BG∥AF,交直线FC于点G,构造▱ABGF,然后可证△AFE≌△BGC…请你参考上面的想法,帮助小昊完成证明(一种方法即可).12.(2020•门头沟区二模)如图,在正方形ABCD中,点E,F分别是AB,BC上的两个动点(不与点A,B,C重合),且AE=CF,延长BC到G,使CG=CF,连接EG,DF.(1)依题意将图形补全;(2)小华通过观察、实验、提出猜想:在点E,F运动过程中,始终有EG=DF.经过与同学们充分讨论,形成了几种证明的想法:想法一:连接DE,DG,证明△DEG是等腰直角三角形;想法二:过点D作DF的垂线,交BA的延长线于H,可得△DFH是等腰直角三角形,证明HF=EG;…请参考以上想法,帮助小华证明EG=DF.(写出一种方法即可)2020北京中考数学二模分类汇编——几何综合参考答案与试题解析1.(2020•海淀区二模)如图1,等边三角形ABC中,D为BC边上一点,满足BD<CD,连接AD,以点A为中心,将射线AD顺时针旋转60°,与△ABC的外角平分线BM交于点E.(1)依题意补全图1;(2)求证:AD=AE;(3)若点B关于直线AD的对称点为F,连接CF.①求证:AE∥CF;②若BE+CF=AB成立,直接写出∠BAD的度数为20°.【分析】(1)由旋转即可补全图形;(2)先判断出∠BAE=∠CAD,再判断出∠ABE=60°=∠C,进而判断出△ABE≌△ACD,即可得出结论;(3)①先判断出AFC=∠ACF,设∠BAD=α,进而表示出∠FAD=α,∠CAF=60°﹣2α,进而得出∠ACF=60°+α再判断出∠CAE=120°﹣α,即可得出结论;②先判断出∠CBG=30°﹣α,进而判断出∠CDF=60°﹣2α,再判断出DF=CF,进而得出∠DCF=∠CDF=60°﹣2α,再判断出∠DCF=α,即可得出结论.【解答】解:(1)补全图形如图1所示;(2)由旋转知,∠DAE=60°,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠C=∠BAC=60°,∴∠DAE=∠BAC,∴∠BAE=∠CAD,∵BE是△ABC的外角的平分线,∴∠ABM=(180°﹣60°)=60°=∠C,在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴AD=AE;(3)①如图2,连接AF,∵点F是点B关于AD的对称点,∴∠BAD=∠FAD,AF=AB,∴AF=AC,∴∠AFC=∠ACF,设∠BAD=α,则∠FAD=α,∴∠CAF=∠BAC﹣∠BAD﹣∠FAD=60°﹣2α,∴∠ACF=(180°﹣∠CAF)=60°+α,由(2)知,∠BAE=∠CAD=60°﹣α,∴∠CAE=∠BAE+∠BAC=60°﹣α+60°=120°﹣α,∴∠ACF+∠CAE=60°+α+120°﹣α=180°,∴AE∥CF;②如图2,连接BF,设∠BAD=α,∵点F是点B关于AD的对称点,∴AD⊥BF,垂足记作点G,则∠AGB=90°,∴∠ABG=90°﹣α,∵∠ABC=60°,∴∠CBG=30°﹣α,连接DF,则BD=DF,∴∠CDF=2∠CBG=60°﹣2α,由(2)知,△ABE≌△ACD,∴BE=CD,∵BE+CF=AB,∴CD+CF=BC=BD+CD,∴BD=CF,∴DF=CF,∴∠DCF=∠CDF=60°﹣2α,由①知,∠ACF=60°+α,∴∠DCF=∠ACF﹣∠ACB=α,∴60°﹣2α=α,∴α=20°,即∠BAD=20°,故答案为:20.【点评】此题是三角形综合题,主要考查了等边三角形的性质,旋转的性质,轴对称的性质,全等三角形的判定和性质,三角形的内角和定理,等腰三角形的性质,判断出∠CDF=60°﹣2α是解本题的关键.2.(2020•西城区二模)在正方形ABCD中,E是CD边上一点(CE>DE),AE,BD交于点F.(1)如图1,过点F作GH⊥AE,分别交边AD,BC于点G,H.求证:∠EAB=∠GHC;(2)AE的垂直平分线分别与AD,AE,BD交于点P,M,N,连接CN.①依题意补全图形;②用等式表示线段AE与CN之间的数量关系,并证明.【分析】(1)由平行线的性质可得出∠AGH=∠GHC.证得∠EAB=∠AGH.则结论得证;(2)①依题意补全图形即可;②连接AN,连接EN并延长,交AB边于点Q.证得NA=NE.得出∠ANE=∠ANQ=90°.则可得出AE=NE=CN.【解答】(1)证明:在正方形ABCD中,AD∥BC,∠BAD=90°,∴∠AGH=∠GHC.∵GH⊥AE,∴∠EAB=∠AGH.∴∠EAB=∠GHC.(2)①补全图形,如图所示.②证明:连接AN,连接EN并延长,交AB边于点Q.∵四边形ABCD是正方形,∴点A,点C关于BD对称.∴NA=NC,∠BAN=∠BCN.∵PN垂直平分AE,∴NA=NE.∴NC=NE.∴∠NEC=∠NCE.在正方形ABCD中,BA∥CE,∠BCD=90°,∴∠AQE=∠NEC.∴∠BAN+∠AQE=∠BCN+∠NCE=90°.∴∠ANE=∠ANQ=90°.在等腰Rt△ANE中,∴AE=NE=CN.【点评】本题考查了正方形的性质,平行线的性质,轴对称的性质,中垂线的性质,等腰直角三角形的判定与性质,熟练掌握正方形的性质是解题的关键.3.(2020•东城区二模)在△ABC中,AB=AC,∠BAC=α,点D是△ABC外一点,点D 与点C在直线AB的异侧,且点D,A,C不共线,连接AD,BD,CD.(1)如图1,当α=60°.∠ADB=30°时,画出图形,直接写出AD,BD,CD之间的数量关系;(2)当α=90°,∠ADB=45°时,利用图2,继续探究AD,BD,CD之间的数量关系并证明;(提示:尝试运用图形变换,将要研究的有关线段尽可能转移到一个三角形中)(3)当∠ADB=时,进一步探究AD,BD,CD之间的数量关系,并用含α的等式直接表示出它们之间的关系.【分析】(1)先判断出∠BDE=90°,再根据勾股定理得出BD2+DE2=BE2,即BD2+AD2=BE2,再判断出△ABE≌△ACD(SAS),得出BE=CD,即可得出结论;(2)同(1)方法得出DE2+BD2=BE2,进而得出2AD2+BD2=BE2,同(1)的方法判断出BE=CD,即可得出结论;(3)同(1)的方法得出DE2+BD2=BE2,再判断出DF=2AD•sin,即可得出结论.【解答】解:(1)AD2+BD2=CD2,理由:如图1,过AD为边在AD上侧作等边三角形ADE,连接BE,则AD=DE=AE,∠DAE=∠ADE=60°,∵∠ADB=30°,∴∠BDE=∠DBA+∠ADE=90°,在Rt△BDE中,根据勾股定理得,BD2+DE2=BE2,∴BD2+AD2=BE2,∵∠DAE=∠BAC=60°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴AD2+BD2=CD2;(2)如图2,过点A作AE⊥AD,且AE=AD,连接BE,DE,∴∠ADE=45°,∵∠BDA=45°,∴∠BDE=90°,根据勾股定理得,DE2+BD2=BE2,∵DE2=2AD2,∴2AD2+BD2=BE2,∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴2AD2+BD2=CD2;(3)如图3,将线段AD绕点A顺时针旋转α得到AE,连接DE,BE,∴∠ADE=(180°﹣∠DAE)=90°﹣α,∵∠ADB=α,∴∠BDE=90°,根据勾股定理得,DE2+BD2=BE2,∵∠DAE=∠BAC=α,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴DE2+BD2=CD2,过点A作AF⊥DE于F,则DE=2DF,∴∠DAF=90°﹣∠ADE=α,在Rt△ADF中,sin∠DAF=,∴DF=AD•sin∠DAF=AD•sin,∴DE=2DF=2AD•sin,即:(2AD•sin)2+BD2=CD2.【点评】此题是三角形综合题,主要考查了等边三角形的判定和性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.4.(2020•朝阳区二模)已知∠AOB=40°,M为射线OB上一定点,OM=1,P为射线OA 上一动点(不与点O重合),OP<1,连接PM,以点P为中心,将线段PM顺时针旋转40°,得到线段PN,连接MN.(1)依题意补全图1;(2)求证:∠APN=∠OMP;(3)H为射线OA上一点,连接NH.写出一个OH的值,使得对于任意的点P总有∠OHN为定值,并求出此定值.【分析】(1)根据要求画出图形即可.(2)利用三角形的外角的性质解决问题即可.(3)结论:OH=1时,∠OHN的值为定值.证明△OMP≌△GPN(SAS),推出OP=NG,∠AOB=∠NGP=40°,由OM=OH=PG=1,推出OP=HG,推出GH=GN,推出∠GNH=∠GHN=(180°﹣40°)=70°可得结论.【解答】(1)解:图形如图所示:(2)证明:如图1中,∵∠MPN=∠AOB=40°,∠APM=∠APN+∠MPN=∠AOB+∠OMP,∴∠APN=∠OMP.(3)解:结论:OH=1时,∠OHN的值为定值.理由:在射线PA设取一点G,使得PG=OM,连接NG.∵PN=PM,∠GPN=∠OMP,∴△OMP≌△GPN(SAS),∴OP=NG,∠AOB=∠NGP=40°,∵OM=OH=PG=1,∴OP=HG,∴GH=GN,∴∠GNH=∠GHN=(180°﹣40°)=70°,∴∠OHN=180°﹣70°=110°.【点评】本题属于几何变换综合题,考查了三角形的外角的性质,全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.5.(2020•丰台区二模)如图,在Rt△ABC中,∠ABC=90°,将CA绕点C顺时针旋转45°,得到CP,点A关于直线CP的对称点为D,连接AD交直线CP于点E,连接CD.(1)根据题意补全图形;(2)判断△ACD的形状,并证明;(3)连接BE,用等式表示线段AB,BC,BE之间的数量关系,并证明.温馨提示:在解决第(3)问的过程中,如果你遇到困难,可以参考下面几种解法的主要思路.解法1的主要思路:延长BC至点F,使CF=AB,连接EF,可证△ABE≌△CFE,再证△BEF是等腰直角三角形.解法2的主要思路:过点A作AM⊥BE于点M,可证△ABM是等腰直角三角形,再证△ABC∽△AME.解法3的主要思路:过点A作AM⊥BE于点M,过点C作CN⊥BE于点N,设BN=a,EN=b,用含a或b 的式子表示AB,BC.…….【分析】(1)根据要求画出图形即可.(2)结论:△ACD是等腰直角三角形.根据等腰直角三角形的定义判断即可.(3)结论:BC+BA=BE.延长BC至点F,使CF=AB,连接EF.证明△EAB≌△ECF(SAS),推出BE=EF,∠AEB=∠CEF可得结论.【解答】解:(1)图形如图所示:(2)结论:△ACD是等腰直角三角形.理由:∵A,D关于CP对称,∴AD⊥CP,∠ACP=∠PCD=45°,CA=CD,∴∠ACD=90°,∴△ACD是等腰直角三角形.(3)结论:BC+BA=BE.理由:延长BC至点F,使CF=AB,连接EF.∵∠ABC=∠AEC=90°,∴∠BAE+∠BCE=180°,∵∠BCE+∠ECF=180°,∴∠BAE=∠ECF,∵△ACD是等腰直角三角形,CE⊥AD,∴AE=DE,∴CE=AE=ED,∵AB=CF,∴△EAB≌△ECF(SAS),∴BE=EF,∠AEB=∠CEF,∴∠BEF=∠AEC=90°,∴△BEF是等腰直角三角形,∴BF=BE,∵BF=BC+CF=BC+BA,∴BC+BA=BE.【点评】本题考查作图﹣复杂作图,等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是理解题意,学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型.6.(2020•石景山区二模)在△ABC中,AB=AC,D是边BC上的一点(不与点B重合),边BC上点E在点D的右边且∠DAE=∠BAC,点D关于直线AE的对称点为F,连接CF.(1)如图1,①依题意补全图1;②求证:CF=BD.(2)如图2,∠BAC=90°,用等式表示线段DE,CE,CF之间的数量关系,并证明.【分析】(1)①根据题意补全图形即可;②连接AF,如图1,根据已知条件得到∠3=∠1+∠2.根据轴对称的性质得到AF=AD,∠FAE=∠3=∠1+∠2.根据全等三角形的性质得到结论;(2)连接FA,FE,如图2,根据等腰三角形的性质得到∠1=∠2=45°,求得∠FCE =90°,根据勾股定理即可得到结论.【解答】解:(1)①依题意补全图形,如图1;②证明:连接AF,如图1,∵,∴∠3=∠1+∠2.∵点F与点D关于直线AE对称,∴AF=AD,∠FAE=∠3=∠1+∠2.∴∠4=∠FAE﹣∠2=(∠1+∠2)﹣∠2=∠1.又∵AC=AB,∴△ACF≌△ABD(SAS),∴CF=BD;(2)线段DE,CE,CF之间的数量关系是DE2=CE2+CF2.证明:连接FA,FE,如图2,∵AB=AC,∠BAC=90°,∴∠1=∠2=45°,由(1)②,可得FE=DE,∠3=∠2=45°,∴∠FCE=90°,在Rt△FCE中,由勾股定理,得FE2=CE2+CF2,∴DE2=CE2+CF2.【点评】本题考查了几何变换的综合题,全等三角形的性质,轴对称的性质,勾股定理,正确的作出图形是解题的关键.7.(2020•房山区二模)点C为线段AB上一点,以AC为斜边作等腰Rt△ADC,连接BD,在△ABD外侧,以BD为斜边作等腰Rt△BED,连接EC.(1)如图1,当∠DBA=30°时:①求证:AC=BD;②判断线段EC与EB的数量关系,并证明;(2)如图2,当0°<∠DBA<45°时,EC与EB的数量关系是否保持不变?对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:想法1:尝试将点D为旋转中心,过点D作线段BD垂线,交BE延长线于点G,连接CG;通过证明△ADB≌△CDG解决以上问题;想法2:尝试将点D为旋转中心,过点D作线段AB垂线,垂足为点G,连接EG.通过证明△ADB∽△GDE解决以上问题;想法3:尝试利用四点共圆,过点D作AB垂线段DF,连接EF,通过证明D、F、B、E 四点共圆,利用圆的相关知识解决以上问题.请你参考上面的想法,证明EC=EB(一种方法即可).【分析】(1)①先利用直角三角形斜边的中线得出AC=2DF,再用含30°的直角三角形的性质得出BD=2DF,即可得出结论;②先求出∠BDC=15°,进而得出∠CDE=60°,即可判断出△CDE是等边三角形,即可得出结论;(2)先判断出BD=GD,进而判断出△ADB≌△CDG(SAS),得出∠DCG=∠DAB,判断出△BCG是直角三角形,再判断出EG=EB,即可得出结论.【解答】解:(1)①如图1,过点D作DF⊥AC于F,则∠DFC=90°,∵△ADC是AC为斜边作等腰Rt△ADC,∴AC=2DF,在Rt△DFB中,∠DBA=30°,∴BD=2DF,∴AC=BD;②∵△ADC是等腰直角三角形,∴∠ACD=45°,∵∠DBA=30°,∴∠CDB=∠ACD﹣∠DBA=15°,∵△BDE是等腰直角三角形,∴∠BDE=45°,∴∠CDE=∠CDB+∠BDE=60°,在Rt△ADC中,AC=DC,在Rt△BDE中,BD=BE=DE,由①知,AC=BD,∴BE=CD=ED,∴△CDE是等边三角形,∴DE=CE,∴EC=EB;(2)如图2,过点D作DG⊥BD交BE的延长线于G,连接CG,∴∠BDG=90°=∠ADC,∴∠ADB=∠CDG,∵△BED是以BD为斜边作等腰Rt△BED,∴∠BED=90°,∠DBE=45°,∴∠DGE=90°﹣∠DBE=45°=∠DBE,∴BD=GD,∵AD=CD,∴△ADB≌△CDG(SAS),∴∠DCG=∠DAB,∵∠ACD=45°,∴∠BCG=∠ACG=90°,在Rt△BDG中,DB=DG,∠BED=90°,∴EG=EB,∴BE=CE(直角三角形斜边的中线等于斜边的一半).【点评】此题是三角形综合题,主要考查了等腰直角三角形的判定和性质,含30度角的直角三角形的性质,全等三角形的判定和性质,三角形外角的性质,判断出∠BCG=90°是解本题的关键.8.(2020•平谷区二模)如图,在△ABM中,∠ABC=90°,延长BM使BC=BA,线段CM 绕点C顺时针旋转90°得到线段CD,连接DM,AD.(1)依据题意补全图形;(2)当∠BAM=15°时,∠AMD的度数是60°;(3)小聪通过画图、测量发现,当∠AMB是一定度数时,AM=MD.小聪把这个猜想和同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:通过观察图形可以发现,如果把梯形ABCD补全成为正方形ABCE,就易证△ABM ≌△AED,因此易得当∠AMD是特殊值时,问题得证;想法2:要证AM=MD,通过第(2)问,可知只需要证明△AMD是等边三角形,通过构造平行四边形CDAF,易证AD=CF,通过△ABM≌△CBF,易证AM=CF,从而解决问题;想法3:通过BC=BA,∠ABC=90°,连接AC,易证△ACM≌△ACD,易得△AMD是等腰三角形,因此当∠AMD是特殊值时,问题得证.请你参考上面的想法,帮助小聪证明当∠AMD是一定度数时,AM=MD.(一种方法即可)【分析】(1)由题意画出,图形;(2)由旋转的性质可得出△DCM为等腰直角三角形,则∠DMC=45°,∠AMB=75°,可求出答案;(3)根据三种想法证明△AMD为等边三角形即可得出结论.【解答】解:(1)由题意画出图形如图1,(2)如图1,∵∠BAM=15°,∠ABC=90°,∴∠AMB=90°﹣15°=75°,∵线段CM绕点C顺时针旋转90°得到线段CD,∴CM=CD,∠MCD=90°,∴∠CMD=∠MDC=45°,∴∠AMD=180°﹣∠AMB﹣∠DMC=180°﹣75°﹣45°=60°.故答案为:60°.(3)当∠AMB=75°时,AM=DM.想法1证明:如图2,过点A作AE⊥CD交CD的延长线于点E,∵∠AEC=∠C=∠ABC=90°,AB=BC,∴四边形ABCE正方形,∴AB=AE,BC=CE,由(2)可知CM=CD,∴BM=DE,∴△ABM≌△AED(SAS),∴AM=AD,由(2)可知∠AMD=60°,∴△AMD为等边三角形,∴AM=DM.想法2证明:如图3,过点C作CF∥AD交AB于点F,∵AF∥CD,∴四边形AFCD为平行四边形,∴AD=CF,AF=CD,∵AB=AF+BF,BC=BM+CM,AB=BC,∴CD+BF=BM+CM,∵CD=CM,∴BF=BM,又∵AB=BC,∠FBC=∠MBC=90°,∴△ABM≌△CBF(SAS),∴AM=CF,∴AM=AD,又∵∠AMD=60°,∴△AMD为等边三角形,∴AM=DM.想法3证明:如图4,连接AC,∵BC=AB,∠ABC=90°,∴∠ACB=45°,∴∠ACD=45°,又∵CM=CD,AC=AC,∴△ACM≌△ACD(SAS),∴AM=AD,∵∠AMD=60°,∴△AMD为等边三角形,∴AM=DM.【点评】本题是四边形综合题,考查了旋转的性质,等边三角形的判定与性质,等腰直角三角形的性质,平行四边形的判定与性质,全等三角形的判定与性质,正方形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.9.(2020•密云区二模)已知:MN是经过点A的一条直线,点C是直线MN左侧的一个动点,且满足60°<∠CAN<120°,连接AC,将线段AC绕点C顺时针旋转60°,得到线段CD,在直线MN上取一点B,使∠DBN=60°.(1)若点C位置如图1所示.①依据题意补全图1;②求证:∠CDB=∠MAC;(2)连接BC,写出一个BC的值,使得对于任意一点C,总有AB+BD=3,并证明.【分析】(1)①根据题意作出图形即可求解;②根据等量关系可证∠CDB=∠MAC;(2)如图2,连接BC,在直线MN上截取AH=BD,连接CH,根据SAS可证△ACH≌△DCB,再根据全等三角形的性质和等边三角形的判定与性质即可求解.【解答】解:(1)①如图1所示:②证明:∵∠C=60°,∠DBN=60°,∴∠C=∠DBN,∵∠DBN+∠ABD=180°,∴∠C+∠ABD=180°,在四边形ACDB中,∠CDB+∠BAC=180°,∵∠BAC+∠MAC=180°,∴∠CDB=∠MAC;(2)BC=3时,对于任意一点C,总有AB+BD=3.证明:如图2,连接BC,在直线MN上截取AH=BD,连接CH,∵∠MAC=∠CDB,AC=CD,∴△ACH≌△DCB(SAS),∴∠ACH=∠DCB,CH=CB,∵∠DCB+∠ACB=∠ACD=60°,∴∠HCB=∠ACH+∠ACB=60°,∴△HCB是等边三角形,∴BC=BH=BA+BD=3.【点评】考查了全等三角形的判定与性质,等边三角形的判定与性质,关键是根据题意作出辅助线,得到△HCB是等边三角形.10.(2020•昌平区二模)如图,在△ABC中,∠BAC=30°,AB=AC,将线段AC绕点A 逆时针旋转α°(0<α<180),得到线段AD,连接BD,交AC于点P.(1)当α=90°时,①依题意补全图形;②求证:PD=2PB;(2)写出一个α的值,使得PD=PB成立,并证明.【分析】(1)当α=90°时,①依题意即可补全图形;②根据30度角所对直角边等于斜边一半即可证明PD=2PB;(2)当α的值为60或120度时,根据等腰三角形的性质即可证明PD=PB成立.【解答】解:(1)当α=90°时,①如图即为补全的图形;②证明:∵∠BAC=30°,AB=AC,根据题意可知:AC=AD,∴AD=AB,∴∠ABD=∠ADB,∵∠CAD=90°,∴∠DAB=120°,∴∠ABD=∠D=∠BAC=30°,∴AP=BP,在Rt△APD中,∠ADB=30°,∴PD=2AP,∴PD=2PB;(2)当α=60(或120°)时,PD=PB成立,情况1,如图所示:当α=60°时,过点D作DF⊥AC于点F,过点B作BE⊥AC于点E,∴DF∥BE,∴△DFP∽△BEP,∴=,在Rt△ABE中,∠BAC=30°,∴AC=AB=2BE,在Rt△ADF中,∠CAD=60°,∴AD=DF,∵AD=AC=AB,∴2BE=DF,∴BE=DF,∴PD=PB.情况2,如图所示:当α=120°时,过点D作DF⊥AC于点F,过点B作BE⊥AC于点E,∴DF∥BE,∴△DFP∽△BEP,∴=,在Rt△ABE中,∠BAC=30°,∴AC=AB=2BE,在Rt△ADF中,∠FAD=60°,∴AD=DF,∵AD=AC=AB,∴2BE=DF,∴BE=DF,∴PD=PB.【点评】本题考查了作图﹣旋转变换、等腰三角形的性质、含30度角的直角三角形,解决本题的关键是掌握旋转的性质.11.(2020•顺义区二模)已知:在△ABC中,∠ABC=90°,AB=BC,点D为线段BC上一动点(点D不与点B、C重合),点B关于直线AD的对称点为E,作射线DE,过点C 作BC的垂线,交射线DE于点F,连接AE.(1)依题意补全图形;(2)AE与DF的位置关系是AE⊥DF;(3)连接AF,小昊通过观察、实验,提出猜想:发现点D在运动变化的过程中,∠DAF 的度数始终保持不变,小昊把这个猜想与同学们进行了交流,经过测量,小昊猜想∠DAF=45°,通过讨论,形成了证明该猜想的两种想法:想法1:过点A作AG⊥CF于点G,构造正方形ABCG,然后可证△AFG≌△AFE…想法2:过点B作BG∥AF,交直线FC于点G,构造▱ABGF,然后可证△AFE≌△BGC…请你参考上面的想法,帮助小昊完成证明(一种方法即可).【分析】(1)根据题意正确画图;(2)证明△ABD≌△AED(SSS),可得∠AED=∠B=90°,从而得结论;(3)想法1:如图2,过点A做AG⊥CF于点G,先证明四边形ABCG是正方形,得AG =AB,∠BAG=90°,再证明Rt△AFG≌Rt△AFE(HL),得∠GAF=∠EAF,根据∠BAG =90°及角的和可得结论;想法2:如图3,过点B作BG∥AF,交直线FC于点G,证明四边形ABGF是平行四边形,得AF=BG,∠BGC=∠BAF,再证明Rt△AEF≌Rt△BCG(HL),同理根据∠BCG =90°及等量代换,角的和可得结论.【解答】解:(1)补全图形如图1:(2)AE与DF的位置关系是:AE⊥DF,理由是:∵点B关于直线AD的对称点为E,∴AB=AE,BD=DE,∵AD=AD,∴△ABD≌△AED(SSS),∴∠AED=∠B=90°,∴AE⊥DF;故答案为:AE⊥DF;(3)猜想∠DAF=45°;想法1:证明如下:如图2,过点A做AG⊥CF于点G,依题意可知:∠B=∠BCG=∠CGA=90°,∵AB=BC,∴四边形ABCG是正方形,∴AG=AB,∠BAG=90°,∵点B关于直线AD的对称点为E,∴AB=AE,∠B=∠AED=∠AEF=90°,∠BAD=∠EAD,∴AG=AE,∵AF=AF,∴Rt△AFG≌Rt△AFE(HL),∴∠GAF=∠EAF,∵∠BAG=90°,∴∠BAD+∠EAD+∠EAF+∠GAF=90°,∴∠EAD+∠EAF=45°.即∠DAF=45°.想法2:证明如下:如图3,过点B作BG∥AF,交直线FC于点G,依题意可知:∠ABC=∠BCF=90°,∴AB∥FG,∵AF∥BG,∴四边形ABGF是平行四边形,∴AF=BG,∠BGC=∠BAF,∵点B关于直线AD的对称点为E,∴AB=AE,∠ABC=∠AED=90°,∠BAD=∠EAD,∵AB=BC,∴AE=BC,∴Rt△AEF≌Rt△BCG(HL),∴∠EAF=∠CBG,∵∠BCG=90°,∴∠BGC+∠CBG=90°,∴∠BAF+∠EAF=90°,∴∠BAD+∠EAD+∠EAF+∠EAF=90°,∵∠BAD=∠EAD,∴∠EAD+∠EAF=45°,即∠DAF=45°.故答案为:45.【点评】本题是三角形的综合题,考查了三角形全等的性质和判定,正方形和平行四边形的判定和性质,对称的性质,角的平分线,画图的能力,垂直的判定等知识,正确作辅助线,构建三角形全等是关键.12.(2020•门头沟区二模)如图,在正方形ABCD中,点E,F分别是AB,BC上的两个动点(不与点A,B,C重合),且AE=CF,延长BC到G,使CG=CF,连接EG,DF.(1)依题意将图形补全;(2)小华通过观察、实验、提出猜想:在点E,F运动过程中,始终有EG=DF.经过与同学们充分讨论,形成了几种证明的想法:想法一:连接DE,DG,证明△DEG是等腰直角三角形;想法二:过点D作DF的垂线,交BA的延长线于H,可得△DFH是等腰直角三角形,证明HF=EG;…请参考以上想法,帮助小华证明EG=DF.(写出一种方法即可)【分析】(1)根据题意画出图形即可;(2)如图,连接DE,DG,根据正方形的性质得到AD=CD,∠A=∠DCF=90°,根据全等三角形的性质得到DE=DF,∠ADE=∠CDF,求得DF=DG,由等腰三角形的性质得到∠CDF=∠CDG,推出△EDG是等腰直角三角形,于是得到结论.【解答】解:(1)依题意补全图形如图所示;(2)如图,连接DE,DG,∵在正方形ABCD中,AD=CD,∠A=∠DCF=90°,∵AE=CF,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF,∵∠DCF=90°,∴DC⊥FG,∵CF=CG,∴DF=DG,∴∠CDF=∠CDG,∴DE=DG,∠ADE=∠CDG,∵∠ADC=90°,∴∠EDG=90°,∴△EDG是等腰直角三角形,∴EG=DG=DF.【点评】本题考查了等腰直角三角形,作图﹣基本作图,正方形的性质,全等三角形的判定和性质,线段垂直平分线的性质,等腰三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.。
2020年北京市海淀区部分学校中考数学二模试卷(有答案解析)
2020年北京市海淀区部分学校中考数学二模试卷一、选择题(本大题共8小题,共16.0分)1.数轴上的点A表示的数是a,当点A在数轴上向右平移了6个单位长度后得到点B,若点A和点B表示的数恰好互为相反数,则数a是A. 6B.C. 3D.2.如图,在中,BC边上的高是A. AFB. BHC. CDD. EC3.如图是某个几何体的侧面展开图,则该几何体是A. 三棱锥B. 四棱锥C. 三棱柱D. 四棱柱4.任意掷一枚骰子,下列情况出现的可能性比较大的是A. 面朝上的点数是6B. 面朝上的点数是偶数C. 面朝上的点数大于2D. 面朝上的点数小于25.下列是一组l o go设计的图片不考虑颜色,其中不是中心对称图形的是A. B. C. D.6.一个正方形的面积是12,估计它的边长大小在A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间7.月份月123456789101112销售额万元8710则这组数据的众数和中位数分别是A. 10,8B. ,C. ,D. ,8.甲、乙两位同学进行长跑训练,甲和乙所跑的路程单位:米与所用时间单位:秒之间的函数图象分别为线段OA和折线则下列说法正确的是A. 两人从起跑线同时出发,同时到达终点B. 跑步过程中,两人相遇一次C. 起跑后160秒时,甲、乙两人相距最远D. 乙在跑前300米时,速度最慢二、填空题(本大题共8小题,共16.0分)9.分解因式:______.10.若分式的值为0,则______.11.已知,一次函数的图象经过点,且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:______.12.某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少30人,若设到植物园的人数为x人,依题意,可列方程为______.13.若,则代数式的值为______.14.如图,在平面直角坐标系xOy中,点A、B的坐标分别为、,在经过两次变化平移、轴对称、旋转得到对应点、的坐标分别为、,则由线段AB得到线段的过程是:______,由线段得到线段的过程是:______.15.如图,的半径为2,切线AB的长为,点P是上的动点,则AP的长的取值范围是______.16.在平面直角坐标系xOy中,点绕坐标原点O顺时针旋转后,恰好落在图中阴影区域包括边界内,则m的取值范围是______.三、计算题(本大题共1小题,共8.0分)17.解不等式,并把它的解集在数轴上表示出来.四、解答题(本大题共7小题,共60.0分)18.计算:.19.已知关于x的一元二次方程.当m为何非负整数时,方程有两个不相等的实数根;在的条件下,求方程的根.20.在平面直角坐标系xOy中,直线:与x轴,y轴分别交于点,B,与反比例函数图象的一个交点为.求反比例函数的表达式;设直线:与x轴,y轴分别交于点C,D,且,直接写出m的值______.21.如图,在中,,点D是AB边上一点,以BD为直径的与边AC相切于点E,与边BC交于点F,过点E作于点H,连接BE.求证:;若,,求AD的长.22.在平面直角坐标系xOy中,抛物线经过点和.求抛物线的表达式和顶点坐标;将抛物线在A、B之间的部分记为图象含A、B两点将图象M沿直线翻折,得到图象若过点的直线与图象M、图象N都相交,且只有两个交点,求b 的取值范围.23.在中,,,点M是线段BC的中点,点N在射线MB上,连接AN,平移,使点N移动到点M,得到点D与点A对应,点E与点B对应,DM交AC于点P.若点N是线段MB的中点,如图1.依题意补全图1;求DP的长;若点N在线段MB的延长线上,射线DM与射线AB交于点Q,若,求CE的长.24.对某一个函数给出如下定义:若存在实数k,对于函数图象上横坐标之差为1的任意两点,,都成立,则称这个函数是限减函数,在所有满足条件的k中,其最大值称为这个函数的限减系数.例如,函数,当x取值a和时,函数值分别为,,故,因此函数是限减函数,它的限减系数为.写出函数的限减系数;,已知是限减函数,且限减系数,求m的取值范围.已知函数的图象上一点P,过点P作直线l垂直于y轴,将函数的图象在点P右侧的部分关于直线l翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数,直接写出P点横坐标n的取值范围.-------- 答案与解析 --------1.答案:D解析:解:由题意可得:B点对应的数是:,点A和点B表示的数恰好互为相反数,,解得:.故选:D.根据题意表示出B点对应的数,再利用互为相反数的性质分析得出答案.此题主要考查了数轴以及相反数,正确表示出B点对应的数是解题关键.2.答案:A解析:解:根据高的定义,AF为中BC边上的高.故选:A.根据三角形的高线的定义解答.本题主要考查了三角形的高的定义,熟记概念是解题的关键.3.答案:B解析:解:观察图形可知,这个几何体是四棱锥.故选:B.侧面为4个三角形,底边为正方形,故原几何体为四棱锥.本题考查的是四棱锥的展开图,考法较新颖,需要对四棱锥有充分的理解.4.答案:C解析:解:抛掷一枚骰子共有1、2、3、4、5、6这6种等可能结果,面朝上的点数是6的概率为;B.面朝上的点数是偶数的概率为;C.面朝上的点数大于2的概率为;D.面朝上的点数小于2的概率为.故选C.根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率.5.答案:A解析:解:A、不是中心对称图形,故此选项正确;B、是中心对称图形,故此选项错误;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选:A.根据把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.6.答案:B解析:解:设正方形的边长等于a,正方形的面积是12,,,,即.故选:B.先设正方形的边长等于a,再根据其面积公式求出a的值,估算出a的取值范围即可.本题考查的是估算无理数的大小及算术平方根,估算无理数的大小时要用有理数逼近无理数,求无理数的近似值.7.答案:C解析:解:从小到大排列此数据为:、、7、、、、8、、、、、10,数据出现了4次最多为众数,处在第6、7位的是、8,中位数为.故选:C.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.答案:C解析:解:A、两人从起跑线同时出发,甲先到达终点,错误;B、跑步过程中,两人相遇两次,错误;C、起跑后160秒时,甲、乙两人相距最远,正确;D、乙在跑后200米时,速度最慢,错误;故选:C.根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.9.答案:解析:解:.故答案为:.首先提取公因式x,进而利用完全平方公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.10.答案:2解析:解:,,当时,,当时,.当时,分式的值是0.故答案为:2.分式的值是0的条件是,分子为0,分母不为0.分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.11.答案:答案不唯一如:解析:解:随x的增大而减小可选取,那么一次函数的解析式可表示为:把点代入得:要求的函数解析式为:.根据题意可知,这时可任设一个满足条件的k,则得到含x、y、b三求知数的函数式,将代入函数式,求得b,那么符合条件的函数式也就求出.本题需注意应先确定x的系数,然后把适合的点代入求得常数项.12.答案:解析:解:设到植物园的人数为x人,则到野生动物园的人数为人,根据题意得:.故答案为:.设到植物园的人数为x人,则到野生动物园的人数为人,根据到野生动物园和植物园开展社会实践活动的总人数为600人,即可得出关于x的一元一次方程.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.13.答案:13解析:解:,,把代入,故答案为:13由代数式,得出,整体代入代数式求得数值即可.此题考查代数式求值,注意整体代入,渗透整体思想.14.答案:向右平移4个单位长度绕原点顺时针旋转解析:解:如图所示,点A、B的坐标分别为、,点、的坐标分别为、,由线段AB得到线段的过程是向右平移4个单位长度;连接“,“,作这两条线段的垂直平分线,交于点O,“,则由线段得到线段的过程是:绕原点O顺时针旋转;故答案为:向右平移4个单位长度;绕原点顺时针旋转.依据对应点的坐标,即可得到平移的方向和距离;依据对应点的位置,即可得到旋转中心和旋转角度.本题主要考查了坐标与图形变换,在平移变换下,对应线段平行且相等.两对应点连线段与给定的有向线段平行共线且相等.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.15.答案:解析:解:连接OB,是的切线,,,当点P在线段AO上时,AP最小为2,当点P在线段AO的延长线上时,AP最大为6,的长的取值范围是,故答案为:.连接OB,根据切线的性质得到,根据勾股定理求出OA,根据题意计算即可.本题考查的是切线的性质、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.16.答案:解析:解:如图,将阴影区域绕着点O逆时针旋转,与直线交于C,D两点,则点在线段CD上,又点D的纵坐标为,点C的纵坐标为3,的取值范围是,故答案为:.将阴影区域绕着点O逆时针旋转,与直线交于C,D两点,则点A在线段CD上,据此可得m的取值范围.本题主要考查了旋转的性质,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.17.答案:解:去分母,得,去括号,得,移项,合并同类项:,系数化为1:,把解集表示在数轴上:解析:先去分母、去括号,再移项、合并同类项,最后系数化为1即可.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.答案:解:原式.解析:直接利用特殊角的三角函数值以及负指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.答案:解:方程有两个不相等的实数根,,解得又m为非负整数,;当时,方程变形为,解得,.解析:判别式的意义得到,再解不等式得到m的范围,然后在此范围内找出非负整数即可;利用中m的值得到,然后利用因式分解法解方程.本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的两个实数根;当时,方程有两个相等的两个实数根;当时,方程无实数根.20.答案:解:一次函数的图象过点,.解得,.一次函数的表达式为.一次函数的图象与反比例函数图象交于点,,解得,.由反比例函数图象过点,得,反比例函数的表达式为..解析:解答:见答案;由一次函数的表达式为,可得,即,直线:与直线:互相平行,∽,又,,即,又,,的值为.故答案为:.【分析】依据一次函数的图象过点,即可得到一次函数的表达式为再根据一次函数的图象与反比例函数图象交于点,即可得出a的值,由反比例函数图象过点,可得反比例函数的表达式为.由一次函数的表达式为,可得,依据直线:与直线:互相平行,即可得出∽,依据,即可得到,进而得出m的值为.本题主要考查一次函数与反比例函数的交点问题,解题的关键是利用待定系数法求函数解析式,利用相似三角形的性质建立方程.21.答案:证明:连接OE,与边AC相切,,,,,,,又,,;解:在中,,,,,,即,解得,,.解析:连接OE,根据切线的性质得到,根据平行线的性质、角平分线的性质证明结论;根据正弦的定义求出AB,根据相似三角形的性质求出OB,计算即可.本题考查的是切线的性质、解直角三角形、圆周角定理,掌握相关的判定定理和性质定理是解题的关键.22.答案:解:抛物线经过点和,可得:解得:抛物线的表达式为.,顶点坐标为;设点关于的对称点为,则点.若直线经过点和,可得.若直线经过点和,可得.直线平行x轴时,.综上,或.解析:把点A、B的坐标代入抛物线解析式,列出关于a、c的方程组,通过解该方程可以求得它们的值.由函数解析式求得顶点坐标;根据题意作出函数图象,由图象直接回答问题.本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式.解题时,注意数形结合,使抽象的问题变得具体化,降低了解题的难度.23.答案:解:如图1,补全图形连接AD,如图1.在中,,,,线段AN平移得到线段DM,,,,∽.连接NQ,由平移知:,且.,.,且.四边形ANQP是平行四边形...又,.,.又是BC的中点,且,.负数舍去..解析:利用平移的性质画出图形,再利用相似得出比例,即可求出线段DP的长.根据条件,利用平行四边形的性质和相似三角形的性质,求出BN的长即可解决.本题考察的是等腰三角形的性质与相似三角形的综合应用,利用相似比求线段长是重难点,按题意画出图形是解决本题的关键.24.答案:解:当x取值a和时,函数值分别为,,故,因此函数是限减函数,它的限减系数为2.若,则,和是函数图象上两点,,与函数的限减系数不符,.若,和是函数图象上横坐标之差为1的任意两点,则,,,且,,与函数的限减系数不符..若,和是函数图象上横坐标之差为1的任意两点,则,,,且,,当时,等号成立,故函数的限减系数.的取值范围是.设,则翻折后的抛物线的解析式为,对于抛物线,,是抛物线图象上两点,由题意:,解得,对于抛物线,,是抛物线图象上两点,由题意:解得,满足条件的P点横坐标n的取值范围:.解析:根据限减函数的定义即可判断;根据限减函数分,,,分别构建不等式即可解决问题;设,则翻折后的抛物线的解析式为,对于抛物线,,是抛物线图象上两点,由题意:,解得,对于抛物线,,是抛物线图象上两点,由题意:解得,由此即可解决问题;本题考查二次函数综合题、限减函数的定义、不等式等知识,解题的关键是理解题意,学会用转化的思想思考问题,学会利用参数解决问题,学会用分类讨论的思想解决问题,属于中考压轴题.。
2020年北京市东城区中考数学二模试卷 (解析版)
2020年北京市东城区中考数学二模试卷一、选择题(共8小题).1.在实数|﹣3.14|,﹣3,﹣,π中,最小的数是()A.﹣B.﹣3C.|﹣3.14|D.π2.如图,在平面直角坐标系xOy中,已知点A(2,1),点B(3,﹣1).平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(﹣1,0)C.(1,0)D.(3,0)3.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2B.﹣C.0D.4.若点A(1,y1),B(2,y2)在抛物线y=a(x+1)2+2(a<0)上,则下列结论正确的是()A.2>y1>y2B.2>y2>y1C.y1>y2>2D.y2>y1>25.如图,小明从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东70°方向行走至C处.则∠ABC等于()A.130°B.120°C.110°D.100°6.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.7.如图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A.60°B.70°C.72°D.144°8.五名学生投篮球,每人投10次,统计他们每人投中的次数.得到五个数据,并对数据进行整理和分析,给出如表信息:平均数中位数众数m67则下列选项正确的是()A.可能会有学生投中了8次B.五个数据之和的最大值可能为30C.五个数据之和的最小值可能为20D.平均数m一定满足4.2≤m≤5.8二、填空题(本题共16分,每小题2分)9.分解因式:3a3﹣6a2+3a=.10.在“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲同学成绩的方差是15,乙同学成绩的方差是3,由此推断甲、乙两人中成绩稳定的是.11.若点(a,10)在直线y=3x+1上.则a的值等于.12.在平面直角坐标系中,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O (0,0).以原点O为位似中心,把这个三角形缩小为原来的,得到△CDO,则点A 的对应点C的坐标是.13.已知圆锥的母线长为5cm,侧面积为15πcm2,则这个圆锥的底面圆半径为cm.14.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6cm,AC =5cm,则△ACE的周长为cm.15.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为.16.某快餐店外卖促销,佳佳和点点想点外卖,每单需支付送餐费5元,每种餐食外卖价格如表:餐食种类价格(单位:元)汉堡套餐40鸡翅16鸡块15冰激凌14蔬菜沙拉9促销活动:(1)汉堡套餐5折优惠,每单仅限一套;(2)全部商品(包括打折套餐)满20元减4元.满40元减10元,满60元减15元,满80元减20元.佳佳想要汉堡套餐、鸡翅、冰激凌、蔬菜沙拉各一份;点点想要汉堡套餐、鸡块、冰激凌各一份,若他们把想要的都买全,最少要花元(含送餐费).三、解答题(本题共68分,第17一22题,每小题5分,第23-26题,每小题5分,第27一28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.下面是“作一个45°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=45°.作法:如图,①作射线AB;②在射线AB上取一点O,以O为圆心,OA长为半径作圆,与射线AB相交于点C;③分别以A,C为圆心,大于AC长为半径作弧,两弧交于点D,作射线OD交⊙O于点E;④作射线AE.则∠EAB即为所求作的角.(1)使用直尺和圆规.补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AD=CD,AO=CO,∴∠AOE=∠=°.∴∠EAB=°.()(填推理的依据)18.解不等式﹣>﹣3,并把它的解集在数轴上表示出来.19.已知a﹣2b=0.求代数式1﹣(+)÷的值.20.如图,在△ABC中.以点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,求∠DAC的度数.21.在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,连接OE并延长到点F,使EF=EO,连接AF,BF.(1)求证:四边形AOBF是矩形;(2)若AD=5,sin∠AFO=,求AC的长.22.在平面直角坐标系xOy中,反比例函数y=(k≠0,x>0)的图象经过点A(1,﹣4),直线y=﹣2x+m与x轴交于点B(1,0).(1)求k,m的值;(2)已知点P(n,﹣2n)(n>0),过点P作平行于x轴的直线,交直线y=﹣2x+m 于点C,过点P作平行于y轴的直线交反比例函数y=(k≠0.x>0)的图象于点D,当PD=2PC时,结合函数的图象,求出n的值.23.教育未来指数是为了评估教育系统在培养学生如何应对快速多变的未来社会方面所呈现的效果.现对教育未来指数得分前35名的国家和地区的有关数据进行收集、整理、描述和分析后,给出了部分信息.a.教育未来指数得分的频数分布直方图(数据分成7组:20≤x<30,30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤t≤90);b.教育未来指数得分在60≤x<70这一组的是:61.2 62.8 64.6 65.2 67.2 67.3 67.5 68.5c.35个国家和地区的人均国内生产总值和教育未来指数得分情况统计图如图:d.中国和中国香港的教育未来指数得分分别为32.9和68.5.(以上数据来源于《国际统计年鉴(2018)》和国际在线网)根据以上信息,回答下列问题:(1)中国香港的教育未来指数得分排名世界第;(2)在35个国家和地区的人均国内生产总值和教育未来指数得分情况统计图中,包括中国香港在内的少数几个国家和地区所对应的点位于虚线l的上方,请在图中用“〇”画出代表中国香港的点;(3)在教育未来指数得分比中国高的国家和地区中,人均国内生产总值的最大值约为万美元;(结果保留一位小数)(4)下列推断合理的是.(只填序号即可)①相较于点A,C所代表的国家和地区,中国的教育未来指数得分还有一定差距,“十三五”规划提出“教育优先发展,教育强则国家强”的任务,进一步提高国家教育水平;②相较于点B,C所代表的国家和地区,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.24.如图,在△ABC中,AB=6cm,P是AB上的动点,D是BC延长线上的定点,连接DP交AC于点Q.小明根据学习丽数的经验.对线段AP,DP,DQ的长度之间的关系进行了探究.下面是小明的探究过程,请补充完整:(1)对于点P在AB上的不同位置,画图、测量,得到了线段AP,DP,DQ的长度(单位:cm)的几组值,如表:位置1位置2位置3位置4位置5位置6位置7 AP0.00 1.00 2.00 3.00 4.00 5.00 6.00DP 4.99 4.56 4.33 4.32 4.53 4.95 5.51DQ 4.99 3.95 3.31 2.95 2.80 2.79 2.86在AP,DP,DQ的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当AP=(DP+DQ)时,AP的长度约为cm.25.如图,△ABC内接于⊙O,AB为直径,作OD⊥AB交AC于点D,延长BC,OD交于点F,过点C作⊙O的切线CE,交OF于点E.(1)求证:EC=ED;(2)如果OA=4,EF=3,求弦AC的长.26.在平面直角坐标系xOy中,点A的坐标为(0,4),点B的坐标为(6,4).抛物线y=x2﹣5x+a﹣2的顶点为C.(1)若抛物线经过点B时,求顶点C的坐标;(2)若抛物线与线段AB恰有一个公共点,结合函数图象,求a的取值范围;(3)若满足不等式x2﹣5x+a﹣2≤0的x的最大值为3.直接写出实数a的值.27.在△ABC中,AB=AC,∠BAC=α,点D是△ABC外一点,点D与点C在直线AB 的异侧,且点D,A,C不共线,连接AD,BD,CD.(1)如图1,当α=60°.∠ADB=30°时,画出图形,直接写出AD,BD,CD之间的数量关系;(2)当α=90°,∠ADB=45°时,利用图2,继续探究AD,BD,CD之间的数量关系并证明;(提示:尝试运用图形变换,将要研究的有关线段尽可能转移到一个三角形中)(3)当∠ADB=时,进一步探究AD,BD,CD之间的数量关系,并用含α的等式直接表示出它们之间的关系.28.对于平面直角坐标系:xOy内任意一点P.过P点作PM⊥x轴于点M,PN⊥y轴于点N,连接MN,则称MN的长度为点P的垂点距离,记为h.特别地,点P与原点重合时,垂点距离为0.(1)点A(2,0),B(4,4),C(﹣2,)的垂点距离分别为,,.(2)点P在以Q(,1)为圆心,半径为3的⊙Q上运动,求出点P的垂点距离h的取值范围;(3)点T为直线l:y=x+6位于第二象限内的一点,对于点T的垂点距离h的每个值有且仅有一个点T与之对应,求点T的横坐标t的取值范围.参考答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.在实数|﹣3.14|,﹣3,﹣,π中,最小的数是()A.﹣B.﹣3C.|﹣3.14|D.π【分析】根据绝对值的大小进行比较即可,两负数比较大小,绝对值大的反而小.解:∵||=<|﹣3|=3∴﹣>(﹣3)C、D项为正数,A、B项为负数,正数大于负数,故选:B.2.如图,在平面直角坐标系xOy中,已知点A(2,1),点B(3,﹣1).平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(﹣1,0)C.(1,0)D.(3,0)【分析】利用平移变换的性质画出图形解决问题即可.解:如图,B1(﹣1,0),故选:B.3.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2B.﹣C.0D.【分析】反例中的n满足n<1,使n2﹣1≥0,从而对各选项进行判断.解:当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选:A.4.若点A(1,y1),B(2,y2)在抛物线y=a(x+1)2+2(a<0)上,则下列结论正确的是()A.2>y1>y2B.2>y2>y1C.y1>y2>2D.y2>y1>2【分析】先求出抛物线的对称轴方程,然后根据二次函数的性质,通过比较A、B点到对称轴的距离大小可得到y1,y2的大小关系.解:抛物线y=a(x+1)2+2(a<0)的对称轴为直线x=﹣1,而A(1,y1)到直线x=﹣1的距离比点B(2,y2)到直线x=﹣1的距离小,所以2>y1>y2.故选:A.5.如图,小明从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东70°方向行走至C处.则∠ABC等于()A.130°B.120°C.110°D.100°【分析】根据方向角的定义求出∠EBC,再根据平行线的性质求出∠ABE即可得出答案.解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东70°方向行走至点C处,∴∠DAB=40°,∠CBE=70°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+70°=110°.故选:C.6.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.【分析】如图,易证△ABC∽△FEC,可设BC=x,只需求出BC即可.解:如图,设BC=x,则CE=1﹣x,∵两个正方形,∴AB∥EF,∴△ABC∽△FEC,∴,即,解得x=,∴阴影部分面积为:S△ABC=×1=,故选:D.7.如图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A.60°B.70°C.72°D.144°【分析】根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.解:∵五边形ABCDE为正五边形,∴∠ABC=∠C==108°,∵CD=CB,∴∠CBD==36°,∴∠ABD=∠ABC﹣∠CBD=72°,故选:C.8.五名学生投篮球,每人投10次,统计他们每人投中的次数.得到五个数据,并对数据进行整理和分析,给出如表信息:平均数中位数众数m67则下列选项正确的是()A.可能会有学生投中了8次B.五个数据之和的最大值可能为30C.五个数据之和的最小值可能为20D.平均数m一定满足4.2≤m≤5.8【分析】根据题意可得最大的三个数的和是6+7+7=20,再根据这五个数据的平均数是m,求出另外2个数的和为5m﹣20,据此即可求解.解:∵中位数是6,唯一众数是7,∴最大的三个数的和是:6+7+7=20,∵这五个数据的平均数是m,∴另外2个数的和是5m﹣20,∴不可能会有学生投中了8次;五个数据之和的最大值可能为20+5+4=29,不可能为30;五个数据之和的最小值可能为20+0+1=21,不可能为20;∵29÷5=5.8,21÷5=4.2,∴平均数m一定满足4.2≤m≤5.8.故选:D.二、填空题(本题共16分,每小题2分)9.分解因式:3a3﹣6a2+3a=3a(a﹣1)2.【分析】先提取公因式3a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.解:3a3﹣6a2+3a=3a(a2﹣2a+1)=3a(a﹣1)2.故答案为:3a(a﹣1)2.10.在“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲同学成绩的方差是15,乙同学成绩的方差是3,由此推断甲、乙两人中成绩稳定的是乙.【分析】直接利用方差的意义进行判断.解:∵甲、乙两位同学的平均分都是90分,甲同学成绩的方差是15,乙同学成绩的方差是3,∴同学成绩的方差大于乙同学成绩的方差,∴乙的成绩稳定.故答案为乙.11.若点(a,10)在直线y=3x+1上.则a的值等于3.【分析】因为点(a,10)在直线y=3x+1上,所以把x=a,y=10分别代入直线y=3x+1里即可求得a的值.解:∵点(a,10)在直线y=3x+1上,∴x=a,y=10满足方程y=3x+1,∴10=3a+1,解得,a=3,故答案为:3.12.在平面直角坐标系中,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0).以原点O为位似中心,把这个三角形缩小为原来的,得到△CDO,则点A 的对应点C的坐标是(﹣1,2)或(1,﹣2).【分析】根据位似变换的性质、坐标与图形性质计算.解:以原点O为位似中心,把这个三角形缩小为原来的,点A的坐标为(﹣2,4),∴点C的坐标为(﹣2×,4×)或(2×,﹣4×),即(﹣1,2)或(1,﹣2),故答案为:(﹣1,2)或(1,﹣2).13.已知圆锥的母线长为5cm,侧面积为15πcm2,则这个圆锥的底面圆半径为3cm.【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.解:∵圆锥的母线长是5cm,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:l===6π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r===3cm,故答案为:3.14.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6cm,AC =5cm,则△ACE的周长为11cm.【分析】根据ED垂直平分AB,可以得到EA=EC,然后即可得到EA+EC的长等于BC 的长,从而可以求得△AEC的周长.解:∵ED垂直平分AB,∴EA=EB,∵BC=6cm,AC=5cm,∴EB+EC=6cm,∴EA+EC=6cm,∴EA+EC+AC=6+5=11cm,即△ACE的周长是11cm,故答案为:11.15.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为.【分析】过点C作CD⊥AB于点D,则在Rt△ADC中,先由勾股定理得出AC的长,再按照正弦函数的定义计算即可.解:如图,过点C作CD⊥AB于点D,则∠ADC=90°,由勾股定理得:AC==5,∴sin∠BAC==.故答案为:.16.某快餐店外卖促销,佳佳和点点想点外卖,每单需支付送餐费5元,每种餐食外卖价格如表:餐食种类价格(单位:元)汉堡套餐40鸡翅16鸡块15冰激凌14蔬菜沙拉9促销活动:(1)汉堡套餐5折优惠,每单仅限一套;(2)全部商品(包括打折套餐)满20元减4元.满40元减10元,满60元减15元,满80元减20元.佳佳想要汉堡套餐、鸡翅、冰激凌、蔬菜沙拉各一份;点点想要汉堡套餐、鸡块、冰激凌各一份,若他们把想要的都买全,最少要花98元(含送餐费).【分析】根据题意和表格中的数据,可以计算出佳佳和点点的最少花费情况,然后相加,即可得到他们把想要的都买全,最少要花多少.解:由题意可得,佳佳买全需要的物品需要花费:40×0.5+16+14+9=59(元),佳佳参加促狭活动的花费为:59﹣10+5=54(元),点点买全需要的物品需要花费:40×0.5+15+14=49(元),点点参加促销活动的花费为:49﹣10+5=44(元),若他们把想要的都买全,最少要花54+44=98(元),故答案为:98.三、解答题(本题共68分,第17一22题,每小题5分,第23-26题,每小题5分,第27一28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.下面是“作一个45°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=45°.作法:如图,①作射线AB;②在射线AB上取一点O,以O为圆心,OA长为半径作圆,与射线AB相交于点C;③分别以A,C为圆心,大于AC长为半径作弧,两弧交于点D,作射线OD交⊙O于点E;④作射线AE.则∠EAB即为所求作的角.(1)使用直尺和圆规.补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AD=CD,AO=CO,∴∠AOE=∠COE=90°.∴∠EAB=45°.(一条弧所对的圆周角是它所对圆心角的一半)(填推理的依据)【分析】(1)在射线AB上取一点O,以O为圆心,OA长为半径作圆,与射线AB相交于点C;分别以A,C为圆心,大于AC长为半径作弧,两弧交于点D,作射线OD 交⊙O于点E;作射线AE,则∠EAB即为所求作的角.(2)依据AD=CD,AO=CO,即可得到∠AOE=∠COE=90°,再根据一条弧所对的圆周角是它所对圆心角的一半,即可得到∠EAB=45°.解:(1)如图所示,(2)证明:∵AD=CD,AO=CO,∴∠AOE=∠COE=90°,∴∠EAB=45°(一条弧所对的圆周角是它所对圆心角的一半).故答案为:COE;90;45;一条弧所对的圆周角是它所对圆心角的一半.18.解不等式﹣>﹣3,并把它的解集在数轴上表示出来.【分析】不等式去分母,去括号,移项合并,把x系数化为1,求出解集,表示在数轴上即可.解:去分母得:2x﹣4﹣5x﹣20>﹣30,移项合并得:﹣3x>﹣6,解得:x<2,19.已知a﹣2b=0.求代数式1﹣(+)÷的值.【分析】直接将括号里面通分运算进而利用分式的混合运算法则计算,再把a=2b代入求出答案.解:原式=1﹣[+]•=1﹣•=1﹣=,当a﹣2b=0时,即a=2b,原式==.20.如图,在△ABC中.以点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,求∠DAC的度数.【分析】根据题意和等腰三角形的性质,可以求得∠BAD和∠BDA的度数,再根据三角形外角和内角的关系,即可求得∠DAC的度数.解:如图,∵∠B=40°,∠C=36°,∴∠BAC=180°﹣∠B﹣∠C=104°,由作图可知:BA=BD,∴∠BAD=∠BDA=(180°﹣∠B)÷2=70°,∴∠DAC=∠BAC﹣∠BAD=34°.21.在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,连接OE并延长到点F,使EF=EO,连接AF,BF.(1)求证:四边形AOBF是矩形;(2)若AD=5,sin∠AFO=,求AC的长.【分析】(1)根据有一个角是90度的平行四边形是矩形即可证明四边形AOBF是矩形;(2)根据矩形和菱形的性质可得OF=5,∠FAO=90°,再根据锐角三角函数即可求出AC的长.解:(1)证明:∵点E为AB的中点,EF=EO,∴四边形AOBF是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,∴四边形AOBF是矩形;(2)∵四边形AOBF是矩形,∴AB=OF,∠FAO=90°,又∵四边形ABCD是菱形,∴AB=AD=5,∴OF=5,在Rt△AFO中,OF=5,∵sin∠AFO=,∴OA=3,∴AC=6.22.在平面直角坐标系xOy中,反比例函数y=(k≠0,x>0)的图象经过点A(1,﹣4),直线y=﹣2x+m与x轴交于点B(1,0).(1)求k,m的值;(2)已知点P(n,﹣2n)(n>0),过点P作平行于x轴的直线,交直线y=﹣2x+m 于点C,过点P作平行于y轴的直线交反比例函数y=(k≠0.x>0)的图象于点D,当PD=2PC时,结合函数的图象,求出n的值.【分析】(1)先把A点坐标代入y=中可得到k的值,然后把B点坐标代入y=﹣2x+m 中可求出m的值;(2)反比例函数解析式为y=﹣(x>0),一次函数解析式为y=﹣2x+2,如图,先利用n表示出C(n+1,﹣2n),D(n,﹣),则PC=1,PD=|﹣2n+|,从而得到|﹣2n+|=2,然后解绝对值方程求出n即可.解:(1)把A(1,﹣4)代入y=得k=1×(﹣4)=﹣4;把B(1,0)代入y=﹣2x+m得﹣2+m=0,解得m=2;(2)反比例函数解析式为y=﹣(x>0),一次函数解析式为y=﹣2x+2,如图,当y=﹣2n时,﹣2x+2=﹣2n,解得x=n+1,则C(n+1,﹣2n),∴PC=n+1﹣n=1,当y=﹣2n时,y=﹣=,∴D(n,﹣),∴PD=|﹣2n+|,∵PD=2PC,∴|﹣2n+|=2,当﹣2n+=2时,解得n1=﹣2(舍去),n2=1,当﹣2n+=﹣2时,解得n1=﹣1(舍去),n2=2,综上所述,当PD=2PC时,n=1或n=2.23.教育未来指数是为了评估教育系统在培养学生如何应对快速多变的未来社会方面所呈现的效果.现对教育未来指数得分前35名的国家和地区的有关数据进行收集、整理、描述和分析后,给出了部分信息.a.教育未来指数得分的频数分布直方图(数据分成7组:20≤x<30,30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤t≤90);b.教育未来指数得分在60≤x<70这一组的是:61.2 62.8 64.6 65.2 67.2 67.3 67.5 68.5c.35个国家和地区的人均国内生产总值和教育未来指数得分情况统计图如图:d.中国和中国香港的教育未来指数得分分别为32.9和68.5.(以上数据来源于《国际统计年鉴(2018)》和国际在线网)根据以上信息,回答下列问题:(1)中国香港的教育未来指数得分排名世界第14;(2)在35个国家和地区的人均国内生产总值和教育未来指数得分情况统计图中,包括中国香港在内的少数几个国家和地区所对应的点位于虚线l的上方,请在图中用“〇”画出代表中国香港的点;(3)在教育未来指数得分比中国高的国家和地区中,人均国内生产总值的最大值约为6.3万美元;(结果保留一位小数)(4)下列推断合理的是①②.(只填序号即可)①相较于点A,C所代表的国家和地区,中国的教育未来指数得分还有一定差距,“十三五”规划提出“教育优先发展,教育强则国家强”的任务,进一步提高国家教育水平;②相较于点B,C所代表的国家和地区,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.【分析】(1)根据教育未来指数得分的频数分布直方图在70≤x<80,80≤t≤90的频数分别是8和5,再根据中国香港的教育未来指数得分是68.5.可得排名是第14;(2)根据中国香港的教育未来指数得分是68.5,即可在35个国家和地区的人均国内生产总值和教育未来指数得分情况统计图中,用“〇”画出代表中国香港的点;(3)观察35个国家和地区的人均国内生产总值和教育未来指数得分情况统计图可得,人均国内生产总值的最大值;(4)根据题意可得下列推断都合理.解:(1)根据分析可知:因为5+8=13,13+1=14.所以中国香港的教育未来指数得分排名世界第14;故答案为:14;(2)如图,用“〇”画出了代表中国香港的点,(3)观察35个国家和地区的人均国内生产总值和教育未来指数得分情况可知:在教育未来指数得分比中国高的国家和地区中,人均国内生产总值的最大值约为6.3万美元;故答案为:6.3;(4)下列推断合理的是①②.故答案为:①②.24.如图,在△ABC中,AB=6cm,P是AB上的动点,D是BC延长线上的定点,连接DP交AC于点Q.小明根据学习丽数的经验.对线段AP,DP,DQ的长度之间的关系进行了探究.下面是小明的探究过程,请补充完整:(1)对于点P在AB上的不同位置,画图、测量,得到了线段AP,DP,DQ的长度(单位:cm)的几组值,如表:位置1位置2位置3位置4位置5位置6位置7 AP0.00 1.00 2.00 3.00 4.00 5.00 6.00DP 4.99 4.56 4.33 4.32 4.53 4.95 5.51DQ 4.99 3.95 3.31 2.95 2.80 2.79 2.86在AP,DP,DQ的长度这三个量中,确定AP的长度是自变量,DP的长度和DQ 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当AP=(DP+DQ)时,AP的长度约为 3.63cm.【分析】(1)根据变量的定义即可求解;(2)依据表格中的数据描点、连线即可得;(3)代入计算画图象可得结论.解:(1)在AP,DP,DQ的长度这三个量中,确定AP的长度是自变量,DP的长度和DQ的长度都是这个自变量的函数;故答案为:AP,DP,DQ;(2)如图1,依据表格中的数据描点、连线,(3)设y1=(DP+DQ),y2=AP,根据(2)中表的数据得:如图2所示:由图象得:y1=y2时,AP的长度约为3.63cm.(答案不唯一);故答案为:3.63.25.如图,△ABC内接于⊙O,AB为直径,作OD⊥AB交AC于点D,延长BC,OD交于点F,过点C作⊙O的切线CE,交OF于点E.(1)求证:EC=ED;(2)如果OA=4,EF=3,求弦AC的长.【分析】(1)连接OC,由切线的性质可证得∠ACE+∠A=90°,又∠CDE+∠A=90°,可得∠CDE=∠ACE,则结论得证;(2)先根据勾股定理求出OE,OD,AD的长,证明Rt△AOD∽Rt△ACB,得出比例线段即可求出AC的长.【解答】(1)证明:连接OC,∵CE与⊙O相切,为C是⊙O的半径,∴OC⊥CE,∴∠OCA+∠ACE=90°,∵OA=OC,∴∠A=∠OCA,∴∠ACE+∠A=90°,∵OD⊥AB,∴∠ODA+∠A=90°,∵∠ODA=∠CDE,∴∠CDE+∠A=90°,∴∠CDE=∠ACE,∴EC=ED;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,在Rt△DCF中,∠DCE+∠ECF=90°,∠DCE=∠CDE,∴∠CDE+∠ECF=90°,∵∠CDE+∠F=90°,∴∠ECF=∠F,∴EC=EF,∵EF=3,∴EC=DE=3,∴OE==5,∴OD=OE﹣DE=2,在Rt△OAD中,AD==2,在Rt△AOD和Rt△ACB中,∵∠A=∠A,∠ACB=∠AOD,∴Rt△AOD∽Rt△ACB,∴,即,∴AC=.26.在平面直角坐标系xOy中,点A的坐标为(0,4),点B的坐标为(6,4).抛物线y=x2﹣5x+a﹣2的顶点为C.(1)若抛物线经过点B时,求顶点C的坐标;(2)若抛物线与线段AB恰有一个公共点,结合函数图象,求a的取值范围;(3)若满足不等式x2﹣5x+a﹣2≤0的x的最大值为3.直接写出实数a的值.【分析】(1)将点B坐标代入解析式可求a的值,由顶点坐标可求点C坐标;(2)分顶点C在线段AB下方和线段AB上两种情况讨论,由图象列出不等式组可求解;(3)由题意可得当x=3时,y=0,即可求解.解:(1)由题意可得:4=36﹣5×6+a﹣2,∴a=0,∴抛物线的解析式为:y=x2﹣5x﹣2,∴顶点C坐标为(,﹣),(2)如图,当顶点C在线段AB下方时,由题意可得:,解得:0≤a<6;当顶点C在AB时,当x=时,y=4,∴,∴a=,综上所述:当0≤a<6或时,抛物线与线段AB恰有一个公共点;(3)由题意可得当x=3时,y=0,即9﹣15+a﹣2=0,∴a=8.27.在△ABC中,AB=AC,∠BAC=α,点D是△ABC外一点,点D与点C在直线AB 的异侧,且点D,A,C不共线,连接AD,BD,CD.(1)如图1,当α=60°.∠ADB=30°时,画出图形,直接写出AD,BD,CD之间的数量关系;(2)当α=90°,∠ADB=45°时,利用图2,继续探究AD,BD,CD之间的数量关系并证明;(提示:尝试运用图形变换,将要研究的有关线段尽可能转移到一个三角形中)(3)当∠ADB=时,进一步探究AD,BD,CD之间的数量关系,并用含α的等式直接表示出它们之间的关系.【分析】(1)先判断出∠BDE=90°,再根据勾股定理得出BD2+DE2=BE2,即BD2+AD2=BE2,再判断出△ABE≌△ACD(SAS),得出BE=CD,即可得出结论;(2)同(1)方法得出DE2+BD2=BE2,进而得出2AD2+BD2=BE2,同(1)的方法判断出BE=CD,即可得出结论;(3)同(1)的方法得出DE2+BD2=BE2,再判断出DF=2AD•sin,即可得出结论.解:(1)AD2+BD2=CD2,理由:如图1,过AD为边在AD上侧作等边三角形ADE,连接BE,则AD=DE=AE,∠DAE=∠ADE=60°,∵∠ADB=30°,∴∠BDE=∠DBA+∠ADE=90°,在Rt△BDE中,根据勾股定理得,BD2+DE2=BE2,∴BD2+AD2=BE2,∵∠DAE=∠BAC=60°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴AD2+BD2=CD2;(2)如图2,过点A作AE⊥AD,且AE=AD,连接BE,DE,∴∠ADE=45°,∵∠BDA=45°,∴∠BDE=90°,根据勾股定理得,DE2+BD2=BE2,∵DE2=2AD2,∴2AD2+BD2=BE2,∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴2AD2+BD2=CD2;(3)如图3,将线段AD绕点A顺时针旋转α得到AE,连接DE,BE,∴∠ADE=(180°﹣∠DAE)=90°﹣α,∵∠ADB=α,∴∠BDE=90°,根据勾股定理得,DE2+BD2=BE2,∵∠DAE=∠BAC=α,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴DE2+BD2=CD2,过点A作AF⊥DE于F,则DE=2DF,∴∠DAF=90°﹣∠ADE=α,在Rt△ADF中,sin∠DAF=,∴DF=AD•sin∠DAF=AD•sin,∴DE=2DF=2AD•sin,即:(2AD•sin)2+BD2=CD2.28.对于平面直角坐标系:xOy内任意一点P.过P点作PM⊥x轴于点M,PN⊥y轴于点N,连接MN,则称MN的长度为点P的垂点距离,记为h.特别地,点P与原点重合时,垂点距离为0.(1)点A(2,0),B(4,4),C(﹣2,)的垂点距离分别为2,4,.(2)点P在以Q(,1)为圆心,半径为3的⊙Q上运动,求出点P的垂点距离h 的取值范围;(3)点T为直线l:y=x+6位于第二象限内的一点,对于点T的垂点距离h的每个值有且仅有一个点T与之对应,求点T的横坐标t的取值范围.【分析】(1)先判断出MN=OB,即可用两点间的距离公式求解;(2)先判断出h=OP,再判断出OQ+PQ≤OP≤OQ+PQ,即可得出结论;(3)先求出点A,B坐标,进而求出OA=OB,再找出分界点,利用锐角三角函数求解即可得出结论.解:(1)如图1,点A(2,0)的垂点距离为OA=2,连接OB,过点B作BN⊥x轴于M,作BN⊥y轴于N,∴∠BNO=∠BMO=90°,∵∠MON=90°,∴∠MON=∠BMN=∠BNO=90°,∴四边形OMNB是矩形,∴MN=OB,∴点B(4,4)的垂点距离为MN=OB==4,同理:点C的垂点距离为=,故答案为:2,4,;(2)如图2,过点P作PM⊥x轴于M,PN⊥y轴于N,连接OP,由(1)知,点P的垂点距离h=OP,∵点Q的坐标为(,1),∴OQ=2,∵PQ﹣OQ≤OP≤OQ+PQ,∴3﹣2≤OP≤3+2,∴1≤OP≤5,∴1≤h≤5;(3)如图3,设直线l与x轴,y轴的交点为A,B,针对于直线y=x+6,令x=0,则y=6,∴B(0,6),∴OB=6,令y=0,则x+6=0,∴x=﹣2,∴A(﹣2,0),∴OA=2,在Rt△AOB中,tan∠OAB==,∴∠OAB=60°,过点O作OM⊥l于M,∴AM=OA•sin∠OAB=2•sin60°=,过点M,N分别作x轴的垂线,垂足分别为C,D,同理:AC=,即OC=,∵OA=ON,∠BAO=60°,∴△AON是等边三角形,∴OD=OA=,∴t=﹣或﹣≤t<0.。
15.代几综合:2020年北京市各区初三数学二模试题分类整理(学生版)
202006初三数学二模试题整理:代几综合(新定义)(学生版)一、以圆(弧)为背景的新定义压轴题1.(2020海淀二模28)在平面内,对于给定的△ABC,如果存在一个半圆或优弧与△ABC 的两边相切,且该弧上的所有点都在△ABC的内部或边上,则称这样的弧为△ABC的内切弧.当内切弧的半径为最大时,称该内切弧为△ABC的完美内切弧.(注:弧的半径指该弧所在圆的半径)在平面直角坐标系xOy中,A(8,0),B(0,6).(1)如图1,在弧G1,弧G2,弧G3中,是△OAB的内切弧的是;(2)如图2,若弧G为△OAB的内切弧,且弧G与边AB,OB相切,求弧G的半径的最大值;(3)如图3,动点M(m,3),连接OM,AM.①直接写出△OAM的完美内切弧半径的最大值;②记①中得到的半径最大时的完美内切弧为弧T.点P为弧T上的一个动点,过点P作x轴的垂线,分别交x轴和直线AB于点D,E,点F为线段PE的中点,直接写出线段DF长度的取值范围.图 2图 3备用图图 12.(2020房山二模28)过三角形的任意两个顶点画一条弧,若弧上的所有点都在该三角形 的内部或边上,则称该弧为三角形的“形内弧”.(1)如图,在等腰Rt ABC △中,90A =︒∠,2AB AC ==.①在下图中画出一条Rt ABC △的形内弧;②在Rt ABC △中,其形内弧的长度最长为____________.(2)在平面直角坐标系中,点()2,0D -,()2,0E ,()0,1F ,点M 为DEF △形内 弧所在圆的圆心. 求点M 纵坐标M y 的取值范围;(3)在平面直角坐标系中,点(2,M ,点G 为x 轴上一点. 点P 为OMG △最长 形内弧所在圆的圆心,求点P 纵坐标P y 的取值范围.ABC3.(2020丰台一模28)过直线外一点且与这条直线相切的圆称为这个点和这条直线的点线圆,特别地,半径最小..的点线圆称为这个点和这条直线的最小点线圆.在平面直角坐标系xOy中,点P(0,2).(1)已知点A(0,1),B(1,1),C(2,2),分别以A,B为圆心,1为半径作⊙A,⊙B,以C为圆心,2为半径作⊙C,其中是点P与x轴的点线圆的是;(2)记点P和x轴的点线圆为⊙D,如果⊙D与直线y3无公共点,求⊙D的半径的r取值范围;(3)直接写出点P和直线y=kx(k≠0)的最小点线圆的圆心的横坐标t的取值范围.二、与“点”有关的新定义4.(2020西城一模28)对于平面直角坐标系xOy 中的定点P 和图形F ,给出如下定义:若在图形F 上存在一点N ,使得点Q ,点P 关于直线ON 对称,则称点Q 是点P 关于图形F 的定向对称点. (1)如图,(10),A ,(11),B ,(02),P ,① 点P 关于点B 的定向对称点的坐标是 ;② 在点(02)C -,,(1D -,,(21)E -,中, 是点P 关于线段AB 的定向对称点.(2)直线3l y x b =+:分别与x 轴,y 轴交于点G ,H ,⊙M 是以点(20),M 为圆心,(0)>r r 为半径的圆.① 当1=r 时,若⊙M 上存在点K ,使得它关于线段GH 的定向对称点在线段GH 上,求b 的取值范围;② 对于0>b ,当3=r 时,若线段GH 上存在点J ,使得它关于⊙M 的定向对称点 在⊙M 上,直接写出b 的取值范围.5.(2020顺义二模28)已知:如图,⊙O的半径为r,在射线OM上任取一点P(不与点O重合),如果射线OM上的点P',满足OP·OP'=r2,则称点P'为点P关于⊙O的反演点.在平面直角坐标系xOy中,已知⊙O的半径为2.(1)已知点A (4,0),求点A关于⊙O的反演点A'的坐标;(2)若点B关于⊙O的反演点B'恰好为直线y=与直线x=4的交点,求点B的坐标;(3)若点C为直线y=上一动点,且点C关于⊙O的反演点C'在⊙O的内部,求点C的横坐标m的范围;(4)若点D为直线x=4上一动点,直接写出点D关于⊙O的反演点D'的横坐标t的范围.6.(2020燕山二模28)对于平面直角坐标系xOy 中的点P 和图形G ,给出如下定义:若图形G 上存在两个 点A ,B ,使得△PAB 是边长为2的等边三角形,则称点P 是图形G 的一个“和谐点”. 已知直线l:0)y n n =+≥(与x 轴交于点M ,与y 轴交于点N ,⊙O 的半径为r .(1) 若n =0,在点1P (2,0),2P (0,,3P (4,1)中,直线l 的和谐点是 ;(2) 若r =2,⊙O 上恰好存在2个直线l 的和谐点,求n 的取值范围; (3) 若n =MN 上存在⊙O 的和谐点,直接写出r 的取值范围.7.(2020密云二模28)在平面直角坐标系xOy 中,点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2),且x 1x 2,y 1=y 2. 给出如下定义:若平面上存在一点P ,使△APB 是以线段AB 为斜边的直角三角形,则称点P 为点A 、点B 的“直角点”. (1)已知点A 的坐标为(1,0).① 若点B 的坐标为(5,0),在点P 1(4,3)、P 2(3,-2)和P 3(2)中, 是点A 、点B 的“直角点”的是 ;② 点B 在x轴的正半轴上,且AB = ,当直线y=-x+b 上存在点A 、点B 的“直 角点”时,求b 的取值范围;(2)⊙O 的半径为r ,点D (1,4)为点E (0,2)、点F (m ,n )的“直角点”,若使得 △DEF 与⊙O 有交点,直接写出半径r 的取值范围.228.(2020平谷二模28)如图1,点P是平面内任意一点,点A,B是⊙C上不重合的两个点,连结P A,PB.当∠APB=60°时,我们称点P为⊙C的“关于AB的关联点”.(1)如图2C上时,点P是⊙C的“”时,画出一个满足条件的∠APB,并直接写出∠ACB的度数;(2)在平面直角坐标系中,点()1,3M,点M关于y轴的对称点为点N.①以点O为圆心,OM为半径画⊙O,在y轴上存在一点P,使点P为⊙O“关于MN的关联点”,直接写出点P的坐标;②点D(m,0)是x轴上一动点,当⊙D的半径为1时,线段MN上至少存在一个点是⊙D的“关于某两个点的关联点”,求m的取值范围.图1 图2三、与“距离”有关的新定义9.(2020东城二模28)对于平面直角坐标系xOy内任意一点P,过P点作PM⊥x轴于点M,PN⊥y轴于点N,连接MN,则称MN的长度为点P的垂点距离,记为h.特别地,点P与原点重合时,垂点距离为0.(1)点A(2,0),B(4,4),C(-2,√2)的垂点距离分别为_______,________,________;(2)点P在以Q(√3,1)为圆心,半径为3的⊙M上运动,直接写出点P的垂点距离h的取值范围;(3)点T为直线l:y=√3x+6位于第二象限内的一点,对于点T的垂点距离h的每个值有且仅有一个点T与之对应,求点T的横坐标t的取值范围.10.(2020朝阳二模28)对于平面直角坐标系xOy中的点P和图形M,给出如下定义:Q为图形M上任意一点,如果P,Q两点间的距离有最大值,那么称这个最大值为点P与图形M间的开距离,记作d(P,M).+(b≠0)与x轴交于点A,与y轴交于点B,⊙O的半径为1.已知直线y x b(1)若b=2,①求d(B,⊙O)的值;②若点C在直线AB上,求d(C,⊙O)的最小值;(2)以点A为中心,将线段AB顺时针旋转120°得到AD,点E在线段AB,AD组成的图形上,若对于任意点E,总有2≤d(E,⊙O)<6,直接写出b的取值范围.。
【2020精品中考数学提分卷】北京—第15讲代数压轴题27题+答案
代数压轴题1.(2020北京朝阳初三二模)在平面直角坐标系xOy 中,抛物线22(9)6y x m x =-++-的对称轴是2x =.(1)求抛物线表达式和顶点坐标;(2)将该抛物线向右平移1个单位,平移后的抛物线与原抛物线相交于点A ,求点A 的坐标;(3)抛物线22(9)6y x m x =-++-与y 轴交于点C ,点A 关于平移后抛物线的对称轴的对称点为点B ,两条抛物线在点A 、C 和点A 、B 之间的部分(包含点A 、B 、C ) 记 为图象M .将直线22y x =-向下平移b (b >0)个单位,在平移过程中直线与图象M 始终有两个公共点,请你写出b 的取值范围_________.2.(2020北京朝阳初三一模)在平面直角坐标系xOy 中,抛物线c bx x y ++=2经过点(0,–3),(2,–3).(1)求抛物线的表达式;(2)求抛物线的顶点坐标及与x 轴交点的坐标;(3)将c bx x y ++=2(y ≤0)的函数图象记为图象A ,图象A 关于x 轴对称的图象记为图象B .已知一次函数y=mx +n ,设点H 是x 轴上一动点,其横坐标为a ,过点H 作x 轴的垂线,交图象A 于点P ,交图象B 于点Q ,交一次函数图象于点 N .若只有当1<a<3时,点Q 在点N 上方,点N 在点P 上方,直接写出n 的值.3.(2020北京东城中考二模)二次函数21:C y x bx c =++的图象过点A (-1,2),B (4,7).(1)求二次函数1C 的解析式;(2)若二次函数2C 与1C 的图象关于x 轴对称,试判断二次函数2C 的顶点是否在直线AB上;(3)若将1C 的图象位于A ,B 两点间的部分(含A ,B 两点)记为G ,则当二次函数221y x x m =-+++与G 有且只有一个交点时,直接写出m 满足的条件.4.(2020北京房山初三二模)如图,在平面直角坐标系xoy 中,已知点P (-1,0),C ()11-2,,D (0,-3),A ,B 在x 轴上,且P 为AB 中点,1=∆CAP S .(1)求经过A 、D 、B 三点的抛物线的表达式.(2)把抛物线在x 轴下方的部分沿x 轴向上翻折,得到一个新的图象G ,点Q 在此新图象G 上,且APC APQ S S ∆∆=,求点Q 坐标.(3)若一个动点M 自点N (0,-1)出发,先到达x 轴上某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点D ,求使点M 运动的总路程最短的点E 、点F 的坐标.5.(2020北京房山初三一模)如图,二次函数c=2y的图象(抛物线)与x-+x+bx轴交于A(1,0),且当0x=和2x-=时所对应的函数值相等.(1)求此二次函数的表达式;(2)设抛物线与x轴的另一交点为点B,与y轴交于点C,在这条抛物线的对称轴上是否存在点D,使得△DAC的周长最小?如果存在,求出D点的坐标;如果不存在,请说明理由.(3)设点M在第二象限,且在抛物线上,如果△MBC的面积最大,求此时点M的坐标及△MBC的面积.6.(2020北京丰台初三一模) 已知抛物线21(2)262y x m x m =+-+-的对称轴为直线x =1,与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求m 的值;(2)求A ,B ,C 三点的坐标;(3)过点C 作直线l ∥x 轴,将该抛物线在y 轴左侧的部分沿直线l 翻折,抛物线的其余部分保持不变,得到一个新的图象,记为G .请你结合图象回答: 当直线b x y +21=与图象G 只有一个公共点时,求b 的取值范围.xOy中,抛物线223(0)y mx mx m =--≠3,0).y 的取值范围;x 轴翻折,抛物线的其余部分保持不变,得到一个新图M 在直线21=x 左侧的部分只有一个公共点,结合图象求k 的取值范围.8.(2020北京海淀中考二模)已知:点(,)P m n 为抛物线24y ax ax b =-+(0a ≠)上一动点.(1) 1P (1,1n ),2P (3,2n )为P 点运动所经过的两个位置,判断1n ,2n 的大小,并说明理由;(2) 当14m ≤≤时,n 的取值范围是14n ≤≤,求抛物线的解析式.9.(2020北京怀柔初三二模)已知:二次函数y 1=x 2+bx+c 的图象经过A (-1,0),B (0,-3)两点.(1)求y 1的表达式及抛物线的顶点坐标;(2)点C (4,m )在抛物线上,直线y 2=kx+b(k≠0)经过 A , C 两点,当y 1 >y 2时,求自变量x 的取值范围;(3) 将直线AC 沿y 轴上下平移,当平移后的直线与抛物线只有一个公共点时,求平移后直线的表达式.10.(2020北京怀柔初三一模)在平面直角坐标系中,二次函数y=x2+mx+2m-7的图象经过点(1,0).(1)求抛物线的表达式;(2)把-4<x<1时的函数图象记为H,求此时函数y的取值范围;(3)在(2)的条件下,将图象H在x轴下方的部分沿x轴翻折,图象H的其余部分保持不变,得到一个新图象M.若直线y=x+b与图象M有三个公共点,求b的取值范围.11.(2020北京平谷初三一模)已知:直线l :2y x =+与过点(0,﹣2),且与平行于x 轴的直线交于点A ,点A 关于直线1x =-的对称点为点B .(1)求,A B 两点的坐标;(2)若抛物线2y x bx c =-++经过A ,B 两点,求抛物线解析式;(3)若抛物线2y x bx c =-++的顶点在直线l 上移动,当抛物线与线段AB 有一个公共点时,求抛物线顶点横坐标t 的取值范围.12.(2020北京石景山初三一模)在平面直角坐标系xOy 中,抛物线C :142++=x mx y . (1)当抛物线C 经过点()5,6-A 时,求抛物线的表达式及顶点坐标; (2)当直线1+-=x y 与直线3+=x y 关于抛物线C 的对称轴对称时,求m 的值;(3)若抛物线C :142++=x mx y )0(>m 与x 轴的交点的横坐标都在1-和0之间(不包括1-和0),结合函数的图象,求m 的取值范围.13.(2020北京顺义初三一模)在平面直角坐标系xOy 中,抛物线22y ax x =-的对称轴为1x =-.(1)求a 的值及抛物线22y ax x =-与x 轴的交点坐标;(2)若抛物线22y ax x m =-+与x 轴有交点,且交点都在点A (-4,0),B (1,0)之间,求m 的取值范围.14.(2020北京通州初三一模)已知二次函数2y x mx n =++的图象经过点A (1,0)和D (4,3),与x 轴的另一个交点为B ,与y 轴交于点C . (1)求二次函数的表达式及顶点坐标;(2)将二次函数2y x mx n =++的图象在点B ,C 之间的部分(包含点B ,C )记为图象G . 已知直线l :y kx b =+经过点M (2,3),且直线l 总位于图象G 的上方,请直接写出b 的取值范围;(3)如果点()1,P x c 和点()2,Q x c 在函数2y x mx n =++的图象上,且12x x <,2PQ a =. 求21261x ax a -++的值;15. (2020北京通州中考二模)已知:二次函数c bx -x y ++=2的图象过点A (-1,0)和C (0,2).(1)求二次函数的表达式及对称轴;(2)将二次函数c bx -x y ++=2的图象在直线y =1上方的部分沿直线y =1翻折,图象其余的部分保持不变,得到的新函数图象记为G ,点M(m ,1y )在图象G 上,且0y 1≥,求m 的取值范围。
2020年26.北京市各区二模考试试题分类——代数综合题
北京市各区二模考试试题分类——代数综合题(房山)26.在平面直角坐标系xOy 中,已知点A (0,2),B (2,2),抛物线F :2222y x mx m =-+-. (1)求抛物线F 的顶点坐标(用含m 的式子表示);(2)当抛物线F 与线段AB 有公共点时,直接写出m 的取值范围.x y –6–5–4–3–2–1123456–4–3–2–11234O(昌平)26.在平面直角坐标系xOy 中,直线+1y x =与抛物线2+3y ax bx a =+交于点A 和点B ,点A 在x 轴上.(1)点A 的坐标为________.(2)①用等式表示a 与b 之间的数量关系,并求抛物线的对称轴;②当32AB ≤52a 的取值范围.(石景山)26.在平面直角坐标系xOy 中,已知抛物线2221y x mx m =-+-.(1)求抛物线的对称轴(用含m 的式子去表示); (2)若点(m -2, y 1),(m , y 2),(m +3,y 3)都在抛物线2221y x mx m =-+-上,则y 1, y 2 ,y 3的大小关系为 ; (3)直线y x b =-+与x 轴交于点A (3,0),与y 轴交于点B ,过点B 作垂直于y轴的直线l 与抛物线2221y x mx m =-+-有两个交点,在抛物线对称轴右侧的点记为P ,当△OAP 为钝角三角形时,求m 的取值范围.(西城)26. 在平面直角坐标系xOy 中. 已知抛物线22y ax bx a =++-的对称轴是直线x =1. (1)用含a 的式子表示b ,并求抛物线的顶点坐标;(2)已知点()0,4A -,()2,3B -,若抛物线与线段AB 没有公共点,结合函数图象, 求a 的取值范围;(3)若抛物线与x 轴的一个交点为C (3,0),且当m ≤x ≤n 时,y 的取值范围是m ≤y ≤6,结合函数图象,直接写出满足条件的m ,n 的值.-5-4-3-2-1-1-2-3-4-51234554321Oy x-5-4-3-2-1-1-2-3-4-51234554321Oy x(门头沟)26.在平面直角坐标系xOy 中,抛物线223y ax ax a =--(0a )顶点为P ,且该抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧).我们规定:抛物线与x 轴围成的封闭区域称为“G 区域”(不包含边界);横、纵坐标都是整数的点称为整点.(1)求抛物线223y ax ax a =--顶点P 的坐标(用含a 的代数式表示); (2)如果抛物线223y ax ax a =--经过(1, 3).① 求a 的值;② 在①的条件下,直接写出“G 区域”内整点的个数.(3)如果抛物线223y ax ax a =--在“G 区域”内有4个整点,直接写出a 的取值范围.y x–1–2–3–41234–1–2–312345O(东城)26.在平面直角坐标系xoy中,抛物线22y x mx m=-+-与y轴交于点C.21(1)试用含m的代数式表示抛物线的顶点坐标;y=-翻折,得到的新抛物线与y轴交于点D.(2)将抛物线22=-+-沿直线1y x mx m21m>,CD=8,求m的值;若0(3)已知A(2k,0),B(0,k),在(2)的条件下,当线段AB与抛物线22=-+-只有一个y x mx m21公共点时,直接写出k的取值范围.(平谷)26.已知:二次函数C 1:()21210y ax ax a a =++-≠.(1)把二次函数C 1的表达式化成()()20y a x h b a =-+≠ 的形式,并写出顶点坐标; (2)已知二次函数C 1的图象经过点A (-3,1). ①求a 的值;②点B 在二次函数C 1的图象上,点A ,B 关于对称轴对称,连接AB .二次函数C 2:()220y kx kx k =+≠的图象,与线段AB 只有一个交点,求k 的取值范围.(海淀)26.在平面直角坐标系xOy 中,抛物线C :223y ax ax =-+与直线l :y kx b =+交于A ,B 两点,且点A 在y 轴上,点B 在x 轴的正半轴上. (1)求点A 的坐标;(2)若1a =-,求直线l 的解析式; (3)若31k -<<-,求a 的取值范围. yx–1–2–3–41234–1–2–3–41234O(朝阳)26.在平面直角坐标系xOy中,抛物线222(0)y ax a x a=-≠的对称轴与x轴交于点P.(1)求点P的坐标(用含a的代数式表示);(2)记函数3944y x=-+(-1≤x≤3)的图象为图形M,若抛物线与图形M恰有一个公共点,结合函数的图象,求a的取值范围.(怀柔)26. 在平面直角坐标系xOy 中,直线x y =与抛物线0)3()(32≠++-=a x a ax y 交于A ,B 两点,并且OA <OB .(1)当a =1时,求抛物线与x 轴的交点坐标; (2)当2422≤≤OB 时,求a 的取值范围.(顺义)26. 在平面直角坐标系xOy 中,抛物线 223=+-y mx mx (0m >)与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,该抛物线的顶点D 的纵坐标是4-.(1)求点A 、B 的坐标;(2)设直线l 与直线AC 关于该抛物线的对称轴对称,求直线l 的表达式;(3)平行于x 轴的直线b 与抛物线交于点11(,)M x y 、22(,)N x y ,与直线l 交于点33(,)P x y .若132<<x x x ,结合函数图象,求123++x x x 的取值范围.y x 5-5-4-3-2-1123412345-5-4-3-2-1O(丰台)26.在平面直角坐标系xOy 中,抛物线C 1:()2230y ax ax a a =--≠和点A (0,-3) .将点A 先向右平移2个单位,再向上平移5个单位,得到点B .(1)求点B 的坐标;(2)求抛物线C 1的对称轴;(3)把抛物线C 1沿x 轴翻折,得到一条新抛物线C 2,抛物线C 2与抛物线C 1组成的图象记为G .若图象G 与线段AB 恰有一个交点时,结合图象,求a 的取值范围.。
15.代几综合:2020年北京市各区初三数学二模试题分类整理(教师版)
202006初三数学二模试题整理:代几综合(新定义)(教师版) 一、以圆(弧)为背景的新定义压轴题1.(2020海淀二模28)在平面内,对于给定的△ABC ,如果存在一个半圆或优弧与△ABC 的两边相切,且该弧上的所有点都在△ABC 的内部或边上,则称这样的弧为△ABC 的内切弧.当内切弧的半径为最大时,称该内切弧为△ABC 的完美内切弧.(注:弧的半径指该弧所在圆的半径)在平面直角坐标系xOy 中,A (8,0),B (0,6).(1)如图1,在弧G 1,弧G 2,弧G 3中,是△OAB 的内切弧的是 ; (2)如图2,若弧G 为△OAB 的内切弧,且弧G 与边AB ,OB 相切, 求弧G 的半径的最大值;(3)如图3,动点M (m ,3),连接OM ,AM .①直接写出△OAM 的完美内切弧半径的最大值;②记①中得到的半径最大时的完美内切弧为弧T .点P 为弧T 上的一个动点,过点P 作x 轴的垂线,分别交x 轴和直线AB 于点D ,E ,点F 为线段PE 的中点,直接 写出线段DF 长度的取值范围.图 3备用图(2020海淀二模28)答案 28. 解:(1)弧G 2,弧G 3.(2)∵ 弧G 为△OAB 的内切弧,且弧G 与边AB ,OB 相切,∴ 弧G 所在圆的圆心在∠OBA 的角平分线BI 上. 易知若弧G 的半径最大,则弧G 所在圆的圆心I 在 △OAB 的边OA 上. 设弧G 与边AB ,OB 相切分别 切于点O ,H. ∴ IH ⊥AB . ∵ A (8,0),B (0,6),∴ BO =6,AO =8 ,AB=10. ∵ ∠IOB =∠ IHB =90°,OI =IH ,BI =BI , ∴ △IOB ≌△IHB .∴ BH =BO =6.∴ AH =AB -BH =4,AI =AO -OI =8-OI ,OI =HI . 在Rt △AIH 中, AI 2=AH 2+HI 2, 即222(8)4OI OI -=+. 解得OI =3.(3)①△OAM 的完美内切弧半径的最大值为125.②线段DF 长度的取值范围是335DF ≤≤且4825DF ≠.2.(2020房山二模28)过三角形的任意两个顶点画一条弧,若弧上的所有点都在该三角形 的内部或边上,则称该弧为三角形的“形内弧”.(1)如图,在等腰Rt ABC △中,90A =︒∠,2AB AC ==.①在下图中画出一条Rt ABC △的形内弧;②在Rt ABC △中,其形内弧的长度最长为____________.(2)在平面直角坐标系中,点()2,0D -,()2,0E ,()0,1F ,点M 为DEF △形内 弧所在圆的圆心. 求点M 纵坐标M y 的取值范围;(3)在平面直角坐标系中,点(2,M ,点G 为x 轴上一点. 点P 为OMG △最长 形内弧所在圆的圆心,求点P 纵坐标P y 的取值范围.(2020房山二模28)答案 28.(1)①类似以上作答,只要弧上所有点都出现在三角形内部,均给分. ……2分②当2OB =时,Rt ABC △的形内弧最长,此时弧长=π=.(学生不必画出图象) ………………………………3分ABC(2)当圆心在x 轴下方时,此时最长形内弧与线段DF ,EF 相切∵1DOF DOM △∽△∴21OF OM OD ⋅=∴14OM = ∴4M y ≤- ………………………………4分当圆心在x 轴上方时,此时最长形内弧与x 轴相切∵2EGM HEG △∽△∴22HG HM HE ⋅=∴EH =∴252EM =∴52M y ≥………………………………5分综上所述,4M y ≤-或52M y ≥(3)当4G x ≤-时,此时最长形内弧与x 轴相切∵1GOP GHO △∽△∴1GP =∴1P y ≥当40G x -<<时,此时最长形内弧与线段OM 相切解得2P y ≥当04G x <<时,此时最长形内弧与线段MG 相切解得3P y ≥………………………………6分当4G x ≥时,此时最长形内弧与线段MG 相切解得43P y ≤-………………………………7分综上所述,P y ≥或P y ≤3.(2020丰台一模28)过直线外一点且与这条直线相切的圆称为这个点和这条直线的点线圆,特别地,半径最小..的点线圆称为这个点和这条直线的最小点线圆. 在平面直角坐标系xOy 中,点P (0,2).(1)已知点A (0,1),B (1,1),C (2,2),分别以A ,B 为圆心,1为半径作⊙A , ⊙B ,以C 为圆心,2为半径作⊙C ,其中是点P 与x 轴的点线圆的是 ; (2)记点P 和x 轴的点线圆为⊙D ,如果⊙D 与直线y 3+无公共点, 求⊙D 的半径的r 取值范围;(3)直接写出点P 和直线y =kx (k ≠0)的最小点线圆的圆心的横坐标t 的取值范围.(2020丰台二模28)答案28.解:(1)⊙A ,⊙C ; ……2分(2)如图1,⊙D 1过点P ,且与x 轴和直线y 3+都相切. 此时⊙D 1的半径r =1.如图2,⊙D 2过点P ,且与x 轴和直线y 3+都相切.切点分别为M , N ,连接D 2M ,D 2N ,D 2P ,过点D 2作D 2Q ⊥y 轴于点Q .设D2M =r,∴D2P=D2M =r.易证OQ= D2M= r.∴PQ = r2-.∵∠MEN=60°,∴∠D2EM =30°.∴EM.∴OM = D2Q根据勾股定理可以得到:D2P2= D2Q2+ PQ 2,即2r=2-+()22-r.解得r1=1(舍),r2=7 3 .∴1< r <73. ………………………………………………………5分(3)12-≤x<0或0<x≤12. ………………………………………………………7分二、与“点”有关的新定义4.(2020西城一模28)对于平面直角坐标系xOy 中的定点P 和图形F ,给出如下定义:若在图形F 上存在一点N ,使得点Q ,点P 关于直线ON 对称,则称点Q 是点P 关于图形F 的定向对称点. (1)如图,(10),A ,(11),B ,(02),P ,① 点P 关于点B 的定向对称点的坐标是 ;② 在点(02)C -,,(1D -,,(21)E -,中, 是点P 关于线段AB 的定向对称点.(2)直线3l y x b =+:分别与x 轴,y 轴交于点G ,H ,⊙M 是以点(20),M 为圆心,(0)>r r 为半径的圆.① 当1=r 时,若⊙M 上存在点K ,使得它关于线段GH 的定向对称点在线段GH 上, 求b 的取值范围;② 对于0>b ,当3=r 时,若线段GH 上存在点J ,使得它关于⊙M 的定向对称点 在⊙M 上,直接写出b 的取值范围.(2020西城二模28)答案解:(1) ①()2,0; ② C ,D .(2) ① 由题意,0b ≠,若0>b ,当直线l 与以点()2,0-为圆心,1为半径的圆相切时,=b当直线l 经过点()1,0-时,=b .∴3≤b ≤3. 若0<b ,当直线l 经过点()1,0时,=b当直线l 与以点()0,0为圆心,3为半径的圆相切时,=-b .∴-b ≤-综上,b 的取值范围是-b≤3-或3≤b ≤3.②33b ≤. ·················································································· 7分5.(2020顺义二模28)已知:如图,⊙O 的半径为r ,在射线OM 上任取一点P (不与点O 重合),如果射线OM 上 的点P',满足OP ·OP'=r 2,则称点P'为点P 关 于⊙O 的反演点.在平面直角坐标系xOy 中,已知⊙O 的半径为2. (1)已知点A (4,0),求点A 关于⊙O 的反演 点A'的坐标;(2)若点B关于⊙O 的反演点B'恰好为直线y =与直线x =4的交点,求点B 的坐标;(3)若点C 为直线y =上一动点,且点C 关于⊙O 的反演点C'在⊙O 的内部,求点C 的 横坐标m 的范围;(4)若点D 为直线x =4上一动点,直接写出点D 关于⊙O 的反演点D'的横坐标t 的范围.28.解:(1)依题意得:OA =4,∵OA ·OA ’=22=4, ∴ OA ’=1. …………………………………1分 则A ’(1,0) . …………………………………………………… 2分 (2)∵B ’恰好为直线y =与直线x =4的交点,y =与x 轴夹角为60°,∴ B ’点坐标为(4,. …………………………………………… 3分∴ OB ’=8.∵OB ·OB ’=22=4, ∴OB =12.∴ B (14). ……………………………………………………… 4分(3)∵点C为直线y =上一动点,且点C 关于⊙O 的反演点C'在⊙O 的内部,∴点C 在⊙O的外部,直线y =与⊙O 的两个交点坐标的横坐标为1±, ∴ m 的取值范围是 m >1或 m <-1. ………………………………… 6分(4)t 的取值范围是: 0<t ≤1. …………………………………………… 7分6.(2020燕山二模28)对于平面直角坐标系xOy 中的点P 和图形G ,给出如下定义:若图形G 上存在两个 点A ,B ,使得△PAB 是边长为2的等边三角形,则称点P 是图形G 的一个“和谐点”. 已知直线l:0)y n n =+≥(与x 轴交于点M ,与y 轴交于点N ,⊙O 的半径为r .(1) 若n =0,在点1P (2,0),2P (0,,3P (4,1)中,直线l 的和谐点是 ; (2) 若r =2,⊙O 上恰好存在2个直线l 的和谐点,求n 的取值范围; (3) 若n =MN 上存在⊙O 的和谐点,直接写出r 的取值范围.28.解:(1)直线l 的和谐点是 1P ,2P ; ……2分(2) 如图,设A ,B 在直线l 上,点C 在⊙O 上,△ABC 是边长为2的等边三角形, ∵0n ≥,∴当直线l 位于l 1时,⊙O 上只有1个点C 是直线l 的和谐点, 当直线l 位于l 2时,⊙O 上有3个点C ,C 2,C 3都是直线l 的和谐点, ∴满足条件的直线l 应位于直线l 1和l 2之间.设过点C 且与⊙O 相切的直线为l',直线l 1,l 2,l'分别与x 轴,y 轴交于点M 1,N 1,M 2,N 2,M',N'.连接OC ,则OC ⊥l',OC =2.取AB 中点D ,连接CD ,则CDO ,C ,D 三点共线,∴OD =2.∵直线l:=+y n 与x 轴交于点M ,与y 轴交于点N ,∴M (-3n ,0),N (0,n ),∴tan ∠MNO =OM ON=3,∴∠MNO =30°.∴在Rt △OCN'和Rt △ODN 1中,ON'=2OC =4, ON 1=2OD =4+∴N'N 1=ON 1-ON'=由对称性得N'N 2=,即N 2(0,4-,∴n的取值范围是44-<+ ………………………………5分(3) r的取值范围是72r ≤≤. ………………………………7分7.(2020密云二模28)在平面直角坐标系xOy 中,点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2),且x 1x 2,y 1=y 2. 给出如下定义:若平面上存在一点P ,使△APB 是以线段AB 为斜边的直角三角形,则称点P 为点A 、点B 的“直角点”. (1)已知点A 的坐标为(1,0).① 若点B 的坐标为(5,0),在点P 1(4,3)、P 2(3,-2)和P 3(2)中, 是点A 、点B 的“直角点”的是 ;② 点B 在x 轴的正半轴上,且AB = ,当直线y=-x+b 上存在点A 、点B 的“直 角点”时,求b 的取值范围;(2)⊙O 的半径为r,点D (1,4)为点E (0,2)、点F (m ,n )的“直角点”,若使得 △DEF 与⊙O 有交点,直接写出半径r 的取值范围.(2020密云二模28)答案28.(1)① P 2 P 3 …………2分 ② ∵A (1,0), AB = ∴线段AB 的中点C ,0)∴点A 、B 的“直角点”在以点C 的长为半径的⊙C 上≠12222∴当直线y=-x+b 与⊙C 相切于点D ,与两坐标轴相交于点M 、N 时, ∵∠M=45°,CD =∴CM=2 ………3分 ∴OM=OC+CM= 1+2= 3,∴ON=OM= +3即b= 3 ……4分同理:当直线y=-x+b 与⊙C 相切于点E 时, CH=2∴OH=OC - CH= -1即b= -1 综上所述:……………5分(2) ……………7分2123b -≤≤+229r ≤≤22222228.(2020平谷二模28)如图1,点P是平面内任意一点,点A,B是⊙C上不重合的两个点,连结P A,PB.当∠APB=60°时,我们称点P为⊙C的“关于AB的关联点”.(1)如图2C上时,点P是⊙C的“”时,画出一个满足条件的∠APB,并直接写出∠ACB的度数;(2)在平面直角坐标系中,点()1,3M,点M关于y轴的对称点为点N.①以点O为圆心,OM为半径画⊙O,在y轴上存在一点P,使点P为⊙O“关于MN的关联点”,直接写出点P的坐标;②点D(m,0)是x轴上一动点,当⊙D的半径为1时,线段MN上至少存在一个点是⊙D的“关于某两个点的关联点”,求m的取值范围.28.(1)补全图形 (1)120° (1)(2)①)0,0()32,0(或P (4)图1 图2②2m 2≤≤- …..7三、与“距离”有关的新定义9.(2020东城二模28)对于平面直角坐标系xOy 内任意一点P ,过P 点作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,连接MN ,则称MN 的长度为点P 的垂点距离,记为h .特别地,点P 与原点重合时,垂点距离为0.(1)点A (2,0),B (4,4),C (-2,√2)的垂点距离分别为_______,________,________;(2)点P 在以Q (√3,1)为圆心,半径为3的⊙M 上运动,直接写出点P 的垂点距离h 的取值范围;(3)点T 为直线l :y =√3x +6位于第二象限内的一点,对于点T 的垂点距离h 的每个值有且仅有一个点T 与之对应,求点T 的横坐标t 的取值范围.(2020东城二模28)答案10.(2020朝阳二模28)对于平面直角坐标系xOy中的点P和图形M,给出如下定义:Q为图形M上任意一点,如果P,Q两点间的距离有最大值,那么称这个最大值为点P与图形M间的开距离,记作d(P,M).(1)若b=2,①求d(B,⊙O)的值;②若点C在直线AB上,求d(C,⊙O)的最小值;(2)以点A为中心,将线段AB顺时针旋转120°得到AD,点E在线段AB,AD组成的图形上,若对于任意点E,总有2≤d(E,⊙O)<6,直接写出b的取值范围.答案解:(1)①根据题意可知B(0,2).∴d(B,⊙O)=3.②如图,过点O作OC⊥AB于点C,此时d(C,⊙O)取得最小值.∵直线323y x=+与x轴交于点A,∴A(23,0).∴OA=23,OB=2.∴∠OAB=30°.∴3OC=.∴d(C,⊙O)的最小值为31+.(2)57232357b b--<≤或≤<.。
2020人教版 初中数学中考二轮复习讲练---代数综合题(含解析)
代数综合题知识梳理教学重、难点作业完成情况典题探究例1 已知抛物线c bx ax y ++=2与y 轴交于点A (0,3),与x 轴分别交于B (1,0)、C (5,0)两点.(1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点, 求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A ,求使点P 运动的总路径最短的点E 、点F 的坐标,并求出这个最短总路径的长.例2 在平面直角坐标系xOy 中,抛物线223y mx mx n =++经过(35)(02)P A ,,,两点. (1)求此抛物线的解析式;(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线,直线与抛物线的对称轴交于C 点,求直线的解析式;(3)在(2)的条件下,求到直线OB OC BC ,,距离相等的点的坐标.例3在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B的左侧..),与y 轴交于点C ,点B 的坐标为(3,0),将直线y kx =沿y 轴向上平移 3个单位长度后恰好经过B 、C 两点. (1) 求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P的坐标;(3)连结CD ,求∠OCA 与∠OCD 两角和的度数.例4在平面直角坐标系xOy 中,抛物线23454122+-++--=m m x m x m y 与x 轴的交点分别为原点O 和点A ,点B(2,n)在这条抛物线上.(1) 求点B 的坐标;(2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的垂线,与直线OB 交于点E 。
延长PE 到点D 。
使得ED=PE. 以PD 为斜边在PD 右侧作等腰直角三角形PCD(当P 点运动时,C 点、D 点也随之运动)当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018北京市中考数学二模分类26题代数综合题
2018东城二模
26.在平面直角坐标系xOy 中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,.
(1)求该抛物线的表达式;
(2)求直线AB 关于x 轴的对称直线的表达式;
(3)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点
M ,与直线AB 交于点N .当PM PN <时,求点P 的横坐标P x 的取值范围.
2018西城二模
26. 抛物线M :241y ax ax a =-+- (a ≠0)与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .
(1)抛物线M 的对称轴是直线____________; (2)当AB =2时,求抛物线M 的函数表达式;
(3)在(2)的条件下,直线l :y kx b =+(k ≠0)经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为3x (30x >),若当2-≤n ≤1-时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围. 2018海淀二模
26.在平面直角坐标系xOy 中,已知点(3,1)A -,(1,1)B -,(,)C m n ,其中1n >,以点
,,A B C 为顶点的平行四边形有三个,记第四个顶点分别为123,,D D D ,如图所示.
(1)若1,3m n =-=,则点123,,D D D 的坐标分别是( ),( ),( );
(2)是否存在点C ,使得点123,,,,A B D D D 在同一条抛物线上?若存在,求出点C 的坐标;若不存在,说明理由.
2018朝阳二模
26.已知二次函数)0(222≠--=a ax ax y . (1)该二次函数图象的对称轴是直线 ;
(2)若该二次函数的图象开口向上,当-1≤x ≤5时,函数图象的最高点为M ,最低点为N ,
点M 的纵坐标为2
11,求点M 和点N 的坐标;
(3)对于该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2),设t ≤ x 1 ≤ t +1,当x 2≥3时,
均有y 1 ≥ y 2,请结合图象,直接写出t 的取值范围. 2018丰台二模
26.在平面直角坐标系xOy 中,二次函数
22y x hx h =-+的图象的顶点为点D .
(1)当1h =-时,求点D 的坐标; (2)当1x -≤≤≤1≤1时,求函数的最小值m .
(用含h 的代数式表示m )
2018石景山二
26.在平面直角坐标系xOy 中,抛物线()240y ax x c a =++≠经过点()
34,A -和
()02,B .
(1)求抛物线的表达式和顶点坐标;
(2)将抛物线在A 、B 之间的部分记为图象M (含A 、B 两点).将图象M 沿直线3x =翻折,得到图象N .若过点()
94,C 的直线y kx b =+与图象M 、图象N 都相交,且只有两个交点,求b 的取值范围. 2018门头沟二模
26.在平面直角坐标系xOy 中,有一抛物线其表达式为222y x mx m =-+. (1)当该抛物线过原点时,求m 的值;
(2)坐标系内有一矩形OABC ,其中(4,0)A 、(4,2)B .
①直接写出C 点坐标;
②如果抛物线222y x mx m =-+与该矩形有2个交点,求m 的取值范围.
2018顺义二模
26.在平面直角坐标系中,二次函数
y =. (1)求二次函数的表达式;
(2)若一次函数(0)y kx b k =+≠x 轴上
同一点,探究实数k ,b 满足的关系式;
(3)将二次函数
221y x ax a =+++的图象向右平移2个单位,若点P (x 0,m )和Q (2,n )
在平移后的图象上,且m >n ,结合图象求x 0的取值范围.
2018房山二模
26. 在平面直角坐标系x O y 中,二次函数2
y ax bx c =++(0a ≠)的图象经过A (0,4),B (2,0),C (-2,0)三点. (1)求二次函数的表达式;
(2)在x 轴上有一点D (-4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点B .
①求平移后图象顶点E 的坐标;
②直接写出此二次函数的图象在A ,B 两点之间(含A ,B 两点)的曲线部分在平移过程中所扫过的面积. 2018怀柔二模
26.在平面直角坐标系xOy 中,二次函数C 1:
()332--+=x m mx y (m >0)的图象与x
轴交于A 、B 两点(点A 在点B 的左侧),与y 轴
交
x
于点C .
(1)求点A 和点C 的坐标; (2)当AB =4时,
①求二次函数C 1的表达式;
②在抛物线的对称轴上是否存在点D ,使△DAC 的周长最小,若存在,求出点D 的坐标,若不存在,请说明理由;
(3)将(2)中抛物线C 1向上平移n 个单位,得到抛物线C 2,若当0≤x ≤
2
5
时,抛物线C 2与x 轴只有一个公共点,结合函数图象,求出n 的取值范围. 2018平谷二模
26.在平面直角坐标系中,点D 是抛物线2
23y ax ax a =--()0a >的顶点,抛物线与x
轴交于点A ,B (点A 在点B 的左侧). (1)求点A ,B 的坐标;
(2)若M 为对称轴与x 轴交点,且DM =2AM ,求抛物线表达式; (3)当30°<∠ADM <45°时,求a 的取值范围. 2018昌平二模
26.在平面直角坐标系xOy 中,抛物线2
23(0)y ax ax a a =--≠,与x 轴交于A 、B 两
点(点A 在点B 的左侧). (1)求点A 和点B 的坐标;
(2)若点P (m ,n )是抛物线上的一点,过点P 作x 轴的垂线,垂足为点D .
①在0a >的条件下,当22m -≤≤时,n 的取值范围是45n -≤≤,求抛物线的表达式; ②若D 点坐标(4,0),当PD AD >时,求a 的取值范围.。