单相全桥和半桥无源逆变电路

合集下载

单相全桥逆变电路原理

单相全桥逆变电路原理

单相全桥逆变电路原理单相全桥型逆变电路原理电压型全桥逆变电路可瞧成由两个半桥电路组合⽽成,共4个桥臂,桥臂1与4为⼀对,桥臂2与3为另⼀对,成对桥臂同时导通,两对交替各导通180° 电压型全桥逆变电路输出电压uo 的波形与半桥电路的波形uo 形状相同,也就是矩型波,但幅值⾼出⼀倍,Um=Ud输出电流io 波形与半桥电路的io 形状相同,幅值增加⼀倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1与VD4、V1与V4、VD2与VD3、V2与V3相继导通的区间+-VD 3VD 4单相半桥电压型逆变电路⼯作波形全桥逆变电路就是单相逆变电路中应⽤最多的, 对电压波形进⾏定量分析将幅值为Uo 的矩形波 uo 展开成傅⾥叶级数,得其中基波幅值Uo1m 与基波有效值Uo1分别为上述公式对半桥逆变电路也适⽤,将式中的ud 换成Ud /2uo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现ddo1m 27.14U U U ==πdd1o 9.022U U U ==πOONu o U - U m ioVD 1 VD2VD1VD 2+++= t t t U u ωωωπ5sin 513sin 31sin 4d ot 1时刻前V 1与V 4导通,输出电压u o为u dt 1时刻V 3与V 4栅极信号反向,V 4截⽌,因i o 不能突变,V 3不能⽴即导通,VD 3导通续流,因V 1与VD 3同时导通,所以输出电压为零各IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形u u u u u i o o ? 各IGBT 栅极信号为180°正偏,180°反偏,且V 1与V 2栅极信号互补,V 3与V 4栅极信号互补V 3的基极信号不就是⽐V 1落后180°,⽽就是只落后θ ( 0<θ <180°)V 3、V 4的栅极信号分别⽐V 2、V 1采⽤移相⽅式调节逆变电路的输出电压u u u u u i o o t 2时刻V 1与V 2栅极信号反向, V 1截⽌, V 2不能⽴即导通,VD 2导通续流,与VD 3构成电流通道,输出电压为-U d到负载电流过零开始反向, VD 2与VD 3截⽌, V 2与V 3开始导通, u o 仍为- U du u u u u i o o t 3时刻V 3与V 4栅极信号再次反向, V 3截⽌, V 4不能⽴刻导通, VD 4导通续流, u o 再次为零输出电压u o 的正负脉冲宽度各为θ ,改变θ ,可调节输出电压。

单相全桥无源逆变电路

单相全桥无源逆变电路

无源逆变器的应用: 无源逆变器的应用 目前几乎所有的电力电子变换电路都包含有无源逆变电 路,是电力电子技术中的最核心部分。 1. 变频调速(交流电机驱动) 2. 感应加热 3. 隔离型开关电源 4. 高频直流焊机 5. 脉冲电源 6. 节能照明
4.2 无源逆变器的分类
电压型和电流型逆变器 单相和三相 半桥、全桥、推挽式 换流方式: 换流方式:在电力电子变换电路中,电流从一 个支路向另一个支路转移的过程称为换流。 1. 器件换流(全控型器件); 2. 电网换流(有源逆变,晶闸管构成的AC-AC); 3. 负载换流(谐振电路--串联谐振和并联谐振); 4. 强迫换流(半控器件+辅助换流电路)。
调节不方便、谐波含量大,开关器件损耗小。 应用较少。
2. 脉冲移相(单脉冲方波逆变器)
调节方便、谐波含量大,开关器件损耗小。 应用较多。
3. PWM(pulse width modulation)调制
调节方便、谐波含量小,开关器件损耗较大。 应用领域最广泛(整流,逆变,直流变换,APF等)
逆变器输出频率的调节 改变逆变器开关器件的触发频率。
电压型单相全桥无源逆变电路
课件4
4.1 无源逆变电路
无源逆变电路: 无源逆变电路: 将直流电转换为频率、幅值可调的交流电,并直接供 给负载的逆变电路。 有源逆变电路: 有源逆变电路: 将直流电转换为交流电并馈送到交流电网的逆变电路。 区别和联系: 区别和联系:
1. 二者都是DC-AC电路; 2. 有源逆变电路的输出和电网的交流电有直接关系,即逆变器 的输出和电网电压同频同相;无源逆变的输出直接联接负载,和电 网电压无关。
4.3 电压型单相全桥无源逆变电路
电路结构
图1 电压型单相全桥无源逆变电路

igbt单相电压型半桥无源逆变电路设计

igbt单相电压型半桥无源逆变电路设计

igbt单相电压型半桥无源逆变电路设计本文介绍了一种IGBT单相电压型半桥无源逆变电路设计,该电路采用半桥拓扑结构,通过IGBT管控制开关实现正负半周期无源逆变,具有高效、可靠、稳定等优点。

同时,本文还介绍了电路的设计流程和注意事项。

一、电路拓扑结构IGBT单相电压型半桥无源逆变电路采用半桥拓扑结构,如图1所示。

电路中,IGBT1和IGBT2分别代表上管和下管,L1和L2为变压器的两个线圈,C为输出滤波电容。

该拓扑结构有以下优点:1、半桥结构可以避免直流电离子飘移问题,提高电路的可靠性。

2、IGBT管负责开关电流,电压由变压器自行绝缘,可以避免功率管受到高频电磁干扰而损坏的问题。

3、半桥拓扑结构使得电路的效率较高,能够满足高效、小型化的需求。

二、电路设计1、选择IGBT管根据电路的工作电压和电流,选择适合的IGBT管是很重要的。

可以根据功率、电压承受能力、开关速度、漏电流等因素进行选择。

2、选择变压器变压器是半桥无源逆变电路的关键元件之一,变压器的参数需要根据电路需求进行选择。

如果输出功率较大,则需选择大功率变压器;如果需要较小的体积,则可以选择小型化的变压器。

3、选择输出电容电容可以用来过滤输出端的噪声和杂波。

根据输出电压、输出电流等参数选择适合的电容,并确保电容的电压承受能力充足。

4、电路参数计算根据电路的拓扑结构和工作参数,进行电路参数的计算。

需要计算的参数包括变压器的线圈数、电感值、电容容值等。

这些参数的计算需要根据电路需求进行合理设置。

三、注意事项在使用IGBT管时,需要防止温度过高和静电干扰等问题。

建议在使用IGBT管时加装散热器,并采用静电保护措施,以保证管子的正常工作。

总之,IGBT单相电压型半桥无源逆变电路是一种高效、可靠、稳定的电路结构,在工业自动化控制等领域有着广泛的应用。

单相半桥整流和单相全桥整流

单相半桥整流和单相全桥整流

单相半桥整流和单相全桥整流说到整流,咱们先得从最基础的说起。

你想想吧,家里插座里的电是交流电(AC),它不像咱们想象的那样可以直接用。

我们用的电器,像是电视、空调、冰箱啥的,都是需要直流电(DC)的。

所以,必须得把这股交流电“整整齐齐”地变成直流电,才能派上用场。

这里就用到了整流器。

今天,咱们聊聊两种常见的整流器——单相半桥整流和单相全桥整流。

听起来有点儿高大上,其实说白了,就是两种把交流电变成直流电的“套路”。

先说说单相半桥整流吧。

其实它就是将两只二极管摆成一个半桥结构。

怎么理解呢?就像是你开车走弯路,有两个路口,但是你只能选一个进。

这个“半桥”就相当于是一个“单方向”的选择,电流只会在一个方向上流动。

也就是说,在每个交流电的周期里,只有正半周会被“通过”,而负半周就被“拦截”了。

想象一下你坐在过山车上,上升的那一段是电流通过的过程,而下降的部分,过山车就停下来了。

电流就像是过山车,爬升的时候被允许通过,下降时就被“挡住”。

这样,整流后的电流就是一个波动不太剧烈的直流电。

不过,这种方法也有个问题,就是电流的波形比较“崎岖”,电压的平滑度就差了点。

所以,虽然可以满足一些简单的设备,但如果用在一些要求较高的地方,比如说精密电子设备,恐怕就不太够看了。

再说单相全桥整流,这个就更“厉害”了!不再是一个路口,而是四个“闸口”供你选择。

想象你是站在一个十字路口,可以选择从任何一个方向出发,这样电流就能够在每个交流电周期的正负半周都顺畅通过。

也就是,每个周期,无论是正向还是反向,电流都会通过整流器的二极管,给你提供稳定的直流电。

举个例子,就像你坐在过山车上,不仅能爬升,还能下行——一路上都能“过瘾”,不间断!这样,输出的直流电就会更平稳,波动也小多了。

很多高端电器、工业设备都需要这种“全能型”的整流器,保证电压稳定,性能也更加可靠。

说到这里,大家可能会想:两者差距到底有多大?其实最直接的区别就在于输出电流的稳定性。

全桥半桥的异同

全桥半桥的异同

一、工作原理的同异:相同:均是通过一系列电路处理技术将普通交流电(220V、380V)转化成高频直流电流,通过做功线盘产生强烈电涡流,并与相应专用锅具感应产生激烈电磁场,直接促使相应专用锅具材料内部原子极速激荡碰撞,从而使得相应专用锅具自身快速发热产生高温,用于加工烹饪食物!不同:1、对交流电的承接转化处理技术上:全桥:采用双路驱动技术,利用双IGBT逆变模块分别承接转化交流电的上玄波和下玄波电流,产生的高频电流波形完整、清晰、稳定;半桥:采用单路驱动技术,利用单IGBT逆变模块分别承接转化交流电的上玄波,结合相应附加电路配置吸收下玄波电流进行放电补充,产生的高频电流波形相对完整;2、对相应专用锅具的负载感应上:全桥:因电流转化技术配置效率高,可负载较高电感负荷,电转热效率相应较高半桥:因电流转化技术配置效率稍低,可负载较低电感负荷,电转热效率相应较低二、应用表现的同异:据各自的电路原理的差别决定:相同:均可达到使得相应专用锅具自身快速发热产生高温,用于加工烹饪食物的功用不同:1、功率段表现上:全桥:对应档位功率分配清晰、明确,反应迅速半桥:对应档位功率分配较模糊,反应相对合理2、发热面表现上:全桥:因可负载负荷较高,发热面较大、较均匀、层次感能做到循序递减,火焰仿真效果明显半桥:因可负载负荷较低,发热面较小、均匀性稍逊、层次感分明,火焰仿真效果稍逊三、稳定性的异同:相同:在技术设计处理完善的情况下,均可达到较理想的运作稳定性;不同:1、元件损耗上:全桥:各元件负担较合理,损耗比较小,寿命较长半桥:各元件负担较重,损耗比相对较大,寿命相对合理2、故障率上:全桥:保护电路设计较复杂,周全,维修率较低半桥:保护电路设计较简化,维修率(小元件)相对较高四、投资成本与产品配置的异同:相同:在普通用途上,均可全系列配置各种产品不同:1、投资成本上:全桥:因其设计配置较高,无可避免生产成本较高半桥:因其设计配置较低,生产成本较低2、产品配置上:全桥:成本合理和负载耐用上,配置15KW以上产品较宜半桥:成本合理上,配置12KW以下产品较宜如客户朋友还有任何的疑问与需要均可直接与我们联系,竭诚为您服务!深圳科朗电器有限公司,致力于节能产品的研发、生产和销售。

单相全桥逆变电路和单相半桥逆变电路

单相全桥逆变电路和单相半桥逆变电路

单相全桥逆变电路和单相半桥逆变电路在这个科技飞速发展的时代,逆变器就像是电路里的小精灵,把直流电变成交流电,真是让人眼前一亮!你有没有想过,为什么我们家的电器能那么“聪明”?这全靠那些逆变电路啦!今天咱们就来聊聊单相全桥逆变电路和单相半桥逆变电路。

哎呀,名字听上去有点复杂,不过别担心,我会让你轻松搞定这些“名词”。

单相全桥逆变电路,这可真是个“大玩家”!想象一下,它就像一位全能的舞者,四个开关器件在舞台上翩翩起舞。

每一个开关都能开能关,组合起来,就能把直流电源的电流换成漂亮的交流电。

这种电路的好处就像是买了一张VIP通行证,功率大、效率高,真是个小猛兽。

电流的波形美得就像是艺术品,咱们说这是一种“正弦波”。

这种电路还能实现更好的电压控制,哇,简直是电气工程师的梦想啊!你知道吗?这个全桥逆变电路就像是在你的家里举办了一场大型派对,四个开关器件像朋友一样互相配合,搞得热闹非凡。

这样一来,逆变器的性能就像是在喝了红牛,瞬间变得强大。

可是,有好就有坏,使用这个电路的时候,元件的损耗也会比较大。

你想啊,开关频繁地开关,那电流的热量可得要控制得当,不然可就“烧成灰”了,哈哈。

再说说单相半桥逆变电路。

听上去是不是没那么复杂?它其实就像是全桥的“小弟弟”。

这个电路只有两个开关器件,所以运行起来简单很多。

就像是你和好友一起去游乐场,少了几个伙伴,但乐趣依旧不少。

这种电路的好处是它对电源的要求相对简单,适合家庭用电,轻松搞定小家电的需求。

虽然功率没全桥那么大,但在日常生活中,这已经绰绰有余了。

半桥逆变电路的波形虽然没有全桥的那样完美,但也是相当不错。

想想你喝的饮料,虽然不是特别高档,但足够解渴就行,对吧?这个电路在成本上也更亲民,尤其是对于那些不想花大钱但又想体验“逆变生活”的家庭,真是个理想的选择。

别以为电路的运行就只有这些,实际上,它们的工作状态可是能让你大吃一惊!你知道电流在电路中流动的感觉吗?就像是一场音乐会,节奏起伏,气氛热烈。

单相半桥无源逆变电路的设计教材

单相半桥无源逆变电路的设计教材

基于MOSFET的单相半桥无源逆变电路的设计设计目的:1·掌握单相桥式全控桥整流电路和单相半桥无源逆变电路的工作原理,进行结合完成交-直-交电路的设计;2·熟悉两种电路的拓扑,控制方法;3·掌握两种电路的主电路,驱动电路,保护电路的设计方法,元器件参数的计算方法;4·培养一定的电力电子的实验和调试能力;5·培养学生综合运用知识解决问题的能力与实际动手能力;6·加深理解《电力电子技术》课程的基本理论;设计指标:MOSFET电压型单相半桥无源逆变电路设计(纯电阻负载)(1)输入直流电压:Ui=200V(2)输出功率:500W(3)输出电压波形:1KHz方波总体目标及任务:选择整流电路,计算整流变压器额定参数,选择全控器件的额定电压电流,计算平波电抗器感值,设计保护电路,全控器件触发电路的设计,画出主电路原理图和控制电路原理图,进行Matlab的仿真,画出输出电压,电流模拟图。

1·主电路的设计:(1)整流部分主电路设计:单项桥式全控整流电路带电阻性负载电路如图(1):图(1)在单项桥式全控整流电路中,晶闸管VT 1和VT 4组成一对桥臂,VT 2和VT 3 组成另一对桥臂。

在u 2正半周(即a 点电位高于b 点电位),若4个晶闸管均不导通,负载电流i d 为零,u d 也为零,VT 1、VT 4串联承受电压u 2,设VT 1和VT 4的漏电阻相等,则各承受u2的一半。

若在触发角α处给VT1和VT 4加触发脉冲,VT 1、VT 4即导通,电流从a 端经VT 1、R 、VT 4流回电源b 端。

当u 2为零时,流经晶闸管的电流也降到零,VT 1和VT 4关断。

在u2负半周,仍在触发延迟角α处触发VT 2和VT 3(VT 2和VT 3的α=0处为ωt=π),VT 2和VT 3导通,电流从电源的b 端流出,经VT 3、R 、VT 2流回电源a 端。

单相半桥型逆变电路原理

单相半桥型逆变电路原理

+ U.单相半桥型逆变电路原理UV1dVD21io R LduU od2VD2V2-a)在直流侧接有两个相互串联的足够大的电容,两个电容的联结点是直流电源的中点。

半桥逆变电路有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。

负载联结在直流电源中点和两个桥臂联结点之间。

设开关器件 V1 和 V2 栅极信号在一周期内各半周正偏、半周反偏,两者互补。

当负载为感性时,工作波形如图所示.uoUmOt -Umiot tO34t t tt1256V V V V1212VD VD VD VDu1212oUtmOt -Umiot tO34t t tt1256V V V1V122VD VD VD VD1212tt3 时刻 io 降为零时, VD2 截止, V2 开通, io 开始反向并逐渐增大。

t4 时刻给 V2 关断信号,给 V1 开通信号, V2 关断,VD1 先导通续流, t5 时刻V1 才开通。

.uoUmOt -Umiot tO34t t tt1256V V V1V122VD VD VD VD1212tV1 或 V2 通时,负载电流io 和电压 uo 同方向,直流侧向负载提供能量VD1 或 VD2 通时, io 和 uo 反向,负载电感中贮藏的能量向直流侧反馈负载电感将其吸收的无功能量反馈回直流侧,反馈回的能量暂时储存在直流侧电容器中,直流侧电容器起着缓冲这种无功能量的作用。

是负载向直流侧反馈能量的通道反馈二极管使负载电流连续续流二极管.可控器件是不具有门极可关断能力的晶闸管时,须附加强迫换流电路才能正常工作。

半桥逆变电路特点优点:简单,使用器件少缺点:输出交流电压幅值Um 仅为 Ud/2 ,直流侧需两电容器串联,工作时要控制两个电容器电压均衡半桥逆变电路常用于几kW 以下的小功率逆变电源。

IGBT单相电压型半桥无源逆变电路设计

IGBT单相电压型半桥无源逆变电路设计

IGBT单相电压型半桥无源逆变电路设计引言:无源逆变器是一种将直流电源转换为交流电源的电力电子装置。

在工业和家庭中,无源逆变器被广泛应用于交流电源的供应,如电机驱动、照明系统和电力供应等。

本文将介绍IGBT单相电压型半桥无源逆变电路的设计原理和方法。

一、无源逆变器原理:无源逆变器的基本原理是通过DC电源,经过电容滤波以及交流输出变压器等,将直流电源转换为交流电源。

在半桥无源逆变器中,瞬时电流流经其两个输出电容之一,从而实现交流输出。

二、电路设计:1.IGBT选择:由于半桥无源逆变器所需承受较高的电压和电流,因此需要选择耐压能力强的IGBT。

根据要求,选择耐压大于输入电压和输出电压的IGBT装置。

2.控制电路设计:半桥无源逆变器需要一个合适的控制电路来控制IGBT的开关状态。

一种常见的控制方法是采用PWM(脉冲宽度调制)技术。

PWM技术可通过控制转换器的开关时间,来实现输出电压的调节。

3.输出滤波电路设计:在半桥无源逆变器中,输出的交流电压通常需要通过滤波电路进行过滤,以消除输出中的谐波和噪音。

滤波电路通常由电感和电容组成,可根据需求选择适当的参数。

4.保护电路设计:为了确保无源逆变器的安全运行,需要设计相应的保护电路。

保护电路可以包括过压保护、过流保护、温度保护等功能,以防止电路过载、过热等情况发生。

三、实际应用:1.交流电机驱动:无源逆变器常用于交流电机驱动中,通过将直流电源逆变成交流电源,实现电机的控制和调速。

逆变器可以根据需要变换频率和电压,以满足不同负载的要求。

2.照明系统:无源逆变器也可以应用于照明系统中,通过逆变电路将直流电源转换成交流电源,供给照明设备。

逆变器可以实现对照明的调亮调暗和调色调温等功能,提高照明系统的灵活性。

3.电力供应:无源逆变器可以将直流电源转换为交流电源,用于电力供应。

逆变器可以应用于太阳能和风能等可再生能源系统中,将直流电源转换为交流电源,供给家庭和工业用电等。

电压型单相全桥逆变电路

电压型单相全桥逆变电路

电压型单相全桥逆变电路(1) 介绍单相全桥逆变电路,也称为半桥逆变电路,是一种基于一个正弦波源和一种特定的桥接结构,以及装有晶体管或管器的电路,用来将电动机或机器的交流电源驱动至输出。

该电路通过控制其中的电流,可以改变功率、频率、电压这些特征。

(2) 电路原理单相全桥逆变电路具有一个正弦波源和一种特定的桥接结构。

该桥接结构是由4 个MOSFET晶体管或管器组成的,它们可以在30°的激励周期内在正常工作时交替开启,这将会使输出的单相桥路上的电压发生切换,因此可以得到一个正弦波脉冲输出,从而能够驱动负载的电机。

(3) 优点1. 单相全桥逆变电路具有低成本、易于维护以及精度高的优点,能够根据需要快速调节输出电压,可以超调电压使功率达到最高;2. 此类电路可以存储有限的能量,在整个操作中基本没有损失;3. 其具有灵敏控制功能,可以有效控制输入电压频率和电压;4. 它可以允许电压和电流在负载范围内自由切换,可以在有限的时间内进行快速调整;5. 此类电路结构简单,对交叉导体的影响小,能够有效抗干扰。

1. 单相全桥逆变电路的控制精度不是很高,受到电源供应和负载的影响较大;2. 结构复杂,由于其中使用的介质晶体管的开关特性,在工作过程中有时会发生失控现象;3. 高压噪声也会影响电路性能;4. 高压及电压脉宽比较窄,且控制精度不如高压直流调节电路高。

(5) 结论单相全桥逆变电路相对于传统单相变换电路,友好的结构,低成本,易于维护以及高能量转换效率的优点在很多应用中备受青睐。

但其较窄的脉冲宽度和较低的控制精度也被忽视不计。

因此,对于不同的应用,要充分考虑单相全桥逆变电路的优点和缺点,以便选择最合适的解决方案。

单相半桥无源逆变电路的设计

单相半桥无源逆变电路的设计

单相半桥无源逆变电路的设计单相半桥无源逆变电路的基本原理是通过两个开关管交替导通和关断,实现直流电压到交流电压的转换。

在导通状态下,直流电源的正极连接到负载,并通过开关管将电流传递给负载。

在关断状态下,通过电感和电容等元件,将磁能和电能转换为交流电压输出。

通过两个开关管交替导通和关断,实现正负半周的交流电压输出。

单相半桥无源逆变电路主要由两个开关管、两个磁元件(电感、变压器等)和两个电容组成。

开关管的导通和关断通过控制电路实现,可以使用晶闸管、MOSFET或IGBT等开关元件。

磁元件用于储存磁能,将直流电能转换为交流电能。

电容则用于储存电能,平滑输出的交流电压波形。

接下来,我们将详细介绍单相半桥无源逆变电路的设计步骤。

1.确定电源和负载要求:根据具体应用需求,确定输入直流电压和输出交流电压的额定值。

2.选择开关管和控制电路:根据负载要求和工作条件,选择合适的开关管和控制电路。

考虑开关管的导通电流和耐受电压,以及控制电路的驱动能力和稳定性。

3.选择磁元件:根据负载要求和电源容量,选择合适的磁元件。

磁元件的参数包括电感值、饱和电流和损耗等。

4.选择电容:根据负载要求和输出电压纹波范围,选择合适的电容。

电容的参数包括容值、工作电压和损耗等。

5.设计控制电路:根据开关管的驱动方式,设计合适的控制电路。

常见的控制方式包括触发电路、斩波电路和保护电路等。

6.进行电路仿真:使用电路仿真软件,验证和优化设计的单相半桥无源逆变电路。

通过仿真结果,可以评估电路的性能和稳定性。

7.制作原型电路:根据设计结果,制作原型电路进行实际测试。

根据测试结果,对电路进行调整和优化。

8.优化电路参数:根据原型电路的测试结果,对电路参数进行调整和优化。

可以通过更换元件、调整电路连接方式等方法,改善电路性能。

9.进行电路性能测试:对优化后的单相半桥无源逆变电路进行性能测试。

测试项目包括输出波形、效率、稳定性和保护性能等。

10.进行传感器的选型与设计:根据实际要求,选择合适的传感器,并设计传感器的接口和驱动电路。

单相逆变电路工作原理

单相逆变电路工作原理

单相逆变电路工作原理单相逆变电路指的是将直流电转换为交流电的电路。

这种电路通常由逆变器、控制电路和滤波电路等部分组成。

在工业控制、交流电源、太阳能逆变器等领域中,单相逆变电路起着至关重要的作用。

下面将详细介绍单相逆变电路的工作原理,以及其在各个领域中的应用。

一、单相逆变电路的工作原理单相逆变电路是指将直流电能转换为交流电能的电路。

其工作原理主要基于开关管的导通和截止来实现。

在单相逆变电路中,最常用的开关器件是双极型晶体管(BJT)和场效应晶体管(FET)。

逆变电路可以分为两种基本结构:全桥逆变和半桥逆变。

(一)全桥逆变电路全桥逆变电路由四个开关管组成,可以将直流电源转换为交流电源。

在正半周,开关管1和开关管4导通,而开关管2和开关管3截止,将电压施加在电容上,电容充电并为负载提供电源。

在负半周,开关管2和开关管3导通,而开关管1和开关管4截止,电容放电并为负载提供电源。

通过这种方式,全桥逆变电路可以实现直流电到交流电的转换。

(二)半桥逆变电路半桥逆变电路由两个开关管组成,可以将直流电源转换为交流电源。

在正半周,开关管1导通,开关管2截止,电容通过开关管1充电并为负载提供电源。

在负半周,开关管2导通,开关管1截止,电容通过开关管2放电并为负载提供电源。

半桥逆变电路通常用于小功率应用,成本更低,效率更高。

在实际应用中,单相逆变电路通常配备PWM控制电路,以实现对输出波形的精确控制。

PWM控制电路可以通过控制开关管的工作周期和占空比来调整输出交流电的频率和幅值,从而满足不同的应用需求。

二、单相逆变电路在各领域的应用1. 工业控制领域单相逆变电路广泛应用于各种工业控制设备中。

如变频调速器、UPS电源、电动机驱动器等。

工业控制领域对电能质量和稳定性要求非常高,单相逆变电路通过PWM控制技术可以提供高质量的交流电能,满足工业生产对电能的各种需求。

2. 交流电源领域在交流电源领域,单相逆变电路常用于电网并网逆变器、光伏逆变器等设备中。

UPS中的直流变换器和半桥逆变器及单相全桥逆变器的详细介绍

UPS中的直流变换器和半桥逆变器及单相全桥逆变器的详细介绍

UPS中的直流变换器和半桥逆变器及单相全桥逆变器的详细介绍逆变器在电路中常被使用,本文中,小编将对UPS中的逆变器予以介绍。

本文介绍内容包括直流变换器、半桥逆变器、单相全桥逆变器以及三相全桥逆变器等知识,如果你对逆变器相关内容具有兴趣,不妨在本文下述内容中进行探索哦。

一、直流变换器直流变换器是一种最简单最基本的逆变器电路,主要应用于后备式UPS 中,它分为自激式和它激式两种。

1、自激式推挽变换器图1 自激式直流推挽变换器图1(a)所示是自激式直流推挽变换器电路,所谓自激就是不用外来的触发信号,UPS就可以利用自激振荡的方式输出交流电压,其交流电压的波形为方波,如图1(b)所示的波形UN。

UN是当电源电压E为额定值时的输出情况(其中阴影部分除外)。

自激直流变换器电路主要用于对电压稳定度要求不高但不能断电的地方,如电冰箱、紧要照明用的白炽灯、高压钠灯和金属卤素灯等,供电条件差的农村居民也有不少采用了这种电路作不间断电源。

由于它的电路简单、价格便宜、可靠性高,故也很受欢迎。

该电路的工作原理如下:在时间t=t0加直流电压E,这时由于晶体管V1和V2的基极电压Ub1=Ub2=0,(1)所示二者不具备开启条件,但在它们的集电极和发射极之间却都有漏电流,如图中的I1和I2所示,且二电流在变压器绕组中的流动方向相反,由于器件的分散性,使得I1-I2=ΔI≠0,(2)这个差值电流ΔI就在绕组中产生一个磁通量,于是就在基极绕组中感应出电压Ub1和Ub2,由同名端的标志可以看出,这两个电压的极性是相反的,即一个Ub给晶体管基极加正电压,使其开通,另一个Ub给另一个晶体管基极加负压,使其进一步截止。

电路的设计正好是漏电流大的那一个晶体管基极所感应出的Ub给自己基极加正压,而漏电流小的那一个晶体管基极所加的是负压,基极加正压管子的集电极电流进一步增加,又进一步使它的基极电压增大,这样一个雪崩式的过程很快使该管(设为V1)电流达到饱和值,即V1集电极-发射极之间的压降UCE1=0,绕组N1和N2上的电压也达到了最大值UN1=UN2=E,此后由于磁芯进入饱和阶段,磁芯中磁通的变化量减小,各绕组感应的电压也相应减小,原来导通的管子由于集电极电流增大(磁芯饱和所致)和基极电流减小而脱离饱和区,使绕组感应的电压进一步减小,这样一个反变化过程使得V1雪崩式地截止而V2达到饱和,如图1(b)t1所示。

IGBT单相电压型全桥无源逆变电路设计

IGBT单相电压型全桥无源逆变电路设计

IGBT单相电压型全桥无源逆变电路设计无源逆变器是一种将直流电能转换为交流电能的装置。

在无源逆变器中,使用单相电压型全桥拓扑结构,其中IGBT是指绝缘栅双极型晶体管,具有高电压和高电流开关特性。

本文将详细设计IGBT单相电压型全桥无源逆变电路。

设计要求:1. 输入电压:直流电压为Vin。

2. 输出电压:交流电压为Vout,频率为f。

3.负载:纯电阻性负载。

电路原理:1. 在每个IGBT导通期间的2/3时间内,两个IGBT之一导通,直流电压Vin流过负载。

2.在导通的另外1/3时间内,两个IGBT同时导通,负载两端电压降为零。

电路结构:1.两个开关电路串联:IGBT1和IGBT4、IGBT3和IGBT22.两个共享电压元件:一个直流电源和一个电感。

电路设计:1.选择IGBT:根据输入电压和负载电流选择IGBT,确保IGBT的电流和电压额定值工作在安全范围内。

2.选择电感:根据电压和电流需求选取合适的电感,它能平滑电路的工作并提供稳定的电流输出。

3.选择电容:选取合适的电容来平滑输出电压。

4.选择二极管:选择合适的二极管防止反向电流损坏电路。

参数计算:1. 选择输入电压Vin。

2. 根据输出电压Vout和负载电流计算负载电阻Rload。

3. 根据输出电压Vout和负载电流计算功率P。

4.根据频率f和功率P计算电感L和电容C的值。

原理图设计:根据电路设计和参数计算结果,绘制原理图。

确保各个组件的连接正确并保证整个电路的工作稳定。

电路实现:将电路原理图转换为实际的电路板。

在实际实施中,要注意电路的布局合理性、组件之间的联接可靠性,以确保电路能够正常工作。

性能测试:测试电路的性能,包括输出电压和电流的波形、频率和效率。

如果有必要,可以进行调整和改进。

总结:。

全桥逆变与半桥逆变的区别

全桥逆变与半桥逆变的区别
半桥逆变的原理图和半桥整流的是基本一致的,晶闸管(gto或igbt)采用共阴极接法,或者共阳极接法,
它逆变产生的电压,是间断但都同正,或同负的,,而整流负载端改逆变直流电源,源输入端外接电网
全桥逆变则在半桥逆变基础上将共阴极接法,和者共阳极接法合并在一起,A B C,每相对称接晶闸管器件
逆变可得到正负Байду номын сангаас替的方波,正弦波等
逆变器是一种把直流变交流的电路结构设备,全桥和半桥是内部驱动电路的结构形式,通俗的说,
全桥是由4个驱动管轮流工作于正弦波的各个波段,半桥是2个驱动管轮流工作于正弦波的各个波段,
参照整流电路比较好理解.
相对半桥逆变器而言,全桥逆变器的开关电流减小了一半,因而在大功率场合得到了广泛应用。
在全桥逆变器中,为实现输入输出之间的电气隔离和得到合适的输出电压幅值,一般在输出端接有交流变压器。

单相全桥和半桥无源逆变电路

单相全桥和半桥无源逆变电路

单相全桥和半桥无源逆变电路学生姓名: 学号: 学院: 信息与通信工程学院专业: 自动化题目: MOSFET单相桥式无源逆变电路设计(纯电阻负载)指导教师: 职称:2011年12月31日中北大学课程设计任务书11/12 学年第一学期学院: 信息与通信工程学院专业: 自动化学生姓名: 学号: 课程设计题目: MOSFET单相桥式无源逆变电路设计(纯电阻负载) 起迄日期: 12月25日, 12月31日课程设计地点: 电气工程系实验中心指导教师:系主任:下达任务书日期: 2011年 12月 25 日课程设计任务书1(设计目的:1)培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。

2)培养学生综合分析问题、发现问题和解决问题的能力。

3)培养学生运用知识的能力和工程设计的能力。

4)提高学生课程设计报告撰写水平。

2(设计内容和要求(包括原始数据、技术参数、条件、设计要求等): 设计内容:1、设计一个MOSFET单相桥式无源逆变电路(纯电阻负载)设计要求:1)输入直流电压:U=100V; d2)输出功率:300W;3)输出电压波形:1KHz方波。

2、设计MOSFET单相半桥无源逆变电路(纯电阻负载)设计要求:1)输入直流电压:U=100V; d2)输出功率:300W;3)输出电压波形:1KHz方波。

3(设计工作任务及工作量的要求〔包括课程设计说明书、图纸、实物样品等〕:设计工作任务及工作量的要求:1)根据课程设计题目,收集相关资料、设计主电路和触发电路;2)用Multisim等软件制作主电路和控制电路原理图;3)撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理,完成元器件参数计算,元器件选型,说明控制电路的工作原理,用Multisim 或EWB等软件绘出主电路典型的输出波形(比较实际波形与理论波形),绘出触发信号(驱动信号)波形,说明设计过程中遇到的问题和解决问题的方法,附参考资料。

(完整word版)电力电子课程设计_IGBT单相电压型全桥无源逆变电路(阻感负载)

(完整word版)电力电子课程设计_IGBT单相电压型全桥无源逆变电路(阻感负载)

1 引言本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计(阻感负载),根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。

当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。

2 工作原理概论2. 1 IGBT的简述绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。

它是一种典型的全控器件。

它综合了GTR和MOSFET的优点,因而具有良好的特性。

现已成为中、大功率电力电子设备的主导器件。

IGBT是三端器件,具有栅极G、集电极C和发射极E。

它可以看成是一个晶体管的基极通过电阻与MOSFET相连接所构成的一种器件。

其等效电路和电气符号如下:图2-1 IGBT等效电路和电气图形符号它的开通和关断是由栅极和发射极间的电压所决定的。

当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。

由于前面提到的电导调制效应,使得电阻减小,这样高耐压的IGBT也具有很小的通态压降。

当山脊与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的积极电流被切断,使得IGBT关断。

2.2电压型逆变电路的特点及主要类型根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。

电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。

直流侧电压基本无脉动,直流回路呈现低阻抗。

由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。

而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。

当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。

为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。

单相推挽、单相半桥式、全桥式逆变器电路原理图文说明

单相推挽、单相半桥式、全桥式逆变器电路原理图文说明

单相推挽、单相半桥式、全桥式逆变器电路原理图文说明一、单相推挽逆变器电路原理单相推挽逆变器电路工作原理如图6-6所示,该电路由2只共负极功率开关和1个带有中心抽头的升压变压器组成。

若输出端接阻性负载时,当t1≤t≤t2时,VT1功率管加上栅极驱动信号U1,VT1导通,VT2截止,变压器输出端端输出正电压;当t3≤t ≤t4时,VT2功率管加上栅极驱动信号U2时,VT2导通,VT1截止,变压器输出端端输出负电压。

因此变压输出电压Uo 为方波,如图6-7所示;若输出端接感性负载,则变压器内的电流波形连续,输出电压、电流波形如图6-7所示,读者可自行分析此波形的形成原理。

二、单相半桥式逆变电路原理单相半桥式逆变电路结构图所6-9所,示该电路由两只功率开关管、两只储能电容器等组成。

当功率开关管VT1导通时,电容C1上的能量释放到负载RL 上;当VT2导通时,电容C2的能量通过变压器释放到负载RL 上;VT1、VT2轮流导通时,在负载两端获得了交流电源。

三、全桥式逆变电路 全桥式逆变电路结构如图6-10所示。

该电路由两个半桥电路组成,开关功率管VT1和C1 C2 VT2VT1 VD1VD2 图6-9 单相半桥式逆变电路原理 图6-8推挽逆变电路输出电流U0I0 R L+ -VT1 VT2VD2VD1 U2Uo U1AC 输出图6-6 单相推挽逆变器电路 图6-7推挽逆变电路输入输出电压 + - t1t2 t3 t4VT2互补,VT3和VT4互补,当VT1与VT3同时导通时,负载电压U0=Ud;当VT2与VT4同时导通时,负载两端UO=Ud;VT1、VT3和VT2、VT4轮流导通,负载两端得到交流电能,若负载具有一定电感,即负载电流落后于电压角度,在VT1、VT3功率管加上驱动信号,由于电流的滞后,此时VT1、VT3仍处于导通续流阶段,当经过φ电角度时,电流仍过零,电源向负载输送有功功率,同样当VT2、VT4加上栅极驱动信号时VT2、VT4仍处于续流状态,此时能量从负载馈送回直流侧,现经过φ角度后,VT2、VT4才真正流过电流。

电力电子课程设计IGBT单相电压型全桥无源逆变电路

电力电子课程设计IGBT单相电压型全桥无源逆变电路

引言本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计,根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。

当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。

2 工作原理概论2. 1 IGBT 的简述绝缘栅双极晶体管(Insulated-gate Bipolar Transistor ),英文简写为IGBT。

它是一种典型的全控器件。

它综合了GTF和MOSFE的优点,因而具有良好的特性。

现已成为中、大功率电力电子设备的主导器件。

IGBT是三端器件,具有栅极G集电极C 和发射极E。

它可以看成是一个晶体管的基极通过电阻与MOSFE相连接所构成的一种器件。

其等效电路和电气符号如下:图1 IGBT等效电路和电气图形符号它的开通和关断是由栅极和发射极间的电压•;:三所决定的。

当UGE为正且大于开启电压UGE寸,MOSFE内形成沟道,并为晶体管提供基极电流进而是IGBT导通。

由于前面提到的电导调制效应,使得电阻….•减小,这样高耐压的IGBT也具有很小的通态压降。

当山脊与发射极间施加反向电压或不加信号时,MOSFE内的沟道消失,晶体管的积极电流被切断,使得IGBT关断。

2.2 电压型逆变电路的特点及主要类型根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。

电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。

直流侧电压基本无脉动,直流回路呈现低阻抗。

由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。

而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。

当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。

为了给交流侧想直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单相全桥和半桥无源逆变电路学生姓名: 学号: 学院: 信息与通信工程学院专业: 自动化题目: MOSFET单相桥式无源逆变电路设计(纯电阻负载)指导教师: 职称:2011年12月31日中北大学课程设计任务书11/12 学年第一学期学院: 信息与通信工程学院专业: 自动化学生姓名: 学号: 课程设计题目: MOSFET单相桥式无源逆变电路设计(纯电阻负载) 起迄日期: 12月25日, 12月31日课程设计地点: 电气工程系实验中心指导教师:系主任:下达任务书日期: 2011年 12月 25 日课程设计任务书1(设计目的:1)培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。

2)培养学生综合分析问题、发现问题和解决问题的能力。

3)培养学生运用知识的能力和工程设计的能力。

4)提高学生课程设计报告撰写水平。

2(设计内容和要求(包括原始数据、技术参数、条件、设计要求等): 设计内容:1、设计一个MOSFET单相桥式无源逆变电路(纯电阻负载)设计要求:1)输入直流电压:U=100V; d2)输出功率:300W;3)输出电压波形:1KHz方波。

2、设计MOSFET单相半桥无源逆变电路(纯电阻负载)设计要求:1)输入直流电压:U=100V; d2)输出功率:300W;3)输出电压波形:1KHz方波。

3(设计工作任务及工作量的要求〔包括课程设计说明书、图纸、实物样品等〕:设计工作任务及工作量的要求:1)根据课程设计题目,收集相关资料、设计主电路和触发电路;2)用Multisim等软件制作主电路和控制电路原理图;3)撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理,完成元器件参数计算,元器件选型,说明控制电路的工作原理,用Multisim 或EWB等软件绘出主电路典型的输出波形(比较实际波形与理论波形),绘出触发信号(驱动信号)波形,说明设计过程中遇到的问题和解决问题的方法,附参考资料。

课程设计任务书 4(主要参考文献:1、樊立萍,王忠庆.电力电子技术.北京:北京大学出版社,20062、徐以荣,冷增祥.电力电子技术基础.南京:东南大学出版社,19993、王兆安,黄俊.电力电子技术.北京:机械工业出版社,20054、童诗白.模拟电子技术.北京:清华大学出版社, 20015、阎石.数字电子技术.北京:清华大学出版社, 19986、邱关源.电路.北京:高等教育出版社,19995(设计成果形式及要求:1)撰写课程设计报告;2)用PROTEL或其它软件画出主电路和触发电路原理图;3)用EWB或其它软件绘出主电路典型波形,触发信号(驱动信号)波形。

6(工作计划及进度:2011年 12月25日 ~ 12月27日收集资料,计算所需参数并选定元器件;12月28日 ~ 12月29日完成主电路、控制电路设计;绘出波形图;12月30日 ~ 12月31日完成课程设计报告,下午答辩。

系主任审查意见: 签字:2011年12月25日一、功率场效应晶体管MOSFET1概述MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。

功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。

结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor--SIT)。

其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。

2.功率MOSFET的结构和工作原理功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。

按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET主要是N沟道增强型。

2.1.功率MOSFET的结构功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。

导电机理与小功率MOS管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET,(Vertical MOSFET),大大提高了MOSFET器件的耐压和耐电流能力。

按垂直导电结构的差异,又分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(Vertical Double-diffused MOSFET),本文主要以VDMOS器件为例进行讨论。

功率MOSFET为多元集成结构,如国际整流器公司(International Rectifier)的HEXFET采用了六边形单元;西门子公司(Siemens)的SIPMOSFET采用了正方形单元;摩托罗拉公司(Motorola)的TMOS采用了矩形单元按“品”字形排列。

2.2.功率MOSFET的工作原理截止:漏源极间加正电源,栅源极间电压为零。

P基区与N漂移区之间形成的PN结J反偏,漏源极之间无电流流过。

1导电:在栅源极间加正电压U,栅极是绝缘的,所以不会有栅极电流流过。

GS 但栅极的正电压会将其下面P区中的空穴推开,而将P区中的少子-电子吸引到栅极下面的P区表面当U大于U(开启电压或阈值电压)时,栅极下P区表面的电子浓度将超GST 过空穴浓度,使P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J消失,漏极和源极导电。

12.3.功率MOSFET的基本特性2.3.1静态特性;其转移特性和输出特性如图2所示。

漏极电流I和栅源间电压U的关系称为MOSFET的转移特性,I较大时,DGSDI 与U的关系近似线性,曲线的斜率定义为跨导G DGSfsMOSFET的漏极伏安特性(输出特性):截止区(对应于GTR的截止区);饱和区(对应于GTR的放大区);非饱和区(对应于GTR的饱和区)。

电力MOSFET工作在开关状态,即在截止区和非饱和区之间来回转换。

电力MOSFET漏源极之间有寄生二极管,漏源极间加反向电压时器件导通。

电力MOSFET的通态电阻具有正温度系数,对器件并联时的均流有利。

2.3.2动态特性;其测试电路和开关过程波形如图3所示。

开通过程;开通延迟时间t -U前沿时刻到U=U并开始出现i的时刻间d(on)pGSTD的时间段;上升时间t- U从U上升到MOSFET进入非饱和区的栅压U的时间段; rGSTGSP i稳态值由漏极电源电压U和漏极负载电阻决定。

U的大小和i的稳态值DEGSPD有关,U达到U后,在u作用下继续升高直至达到稳态,但i已不变。

GSGSPpD开通时间t-开通延迟时间与上升时间之和。

on关断延迟时间t -U下降到零起,C通过R和R放电,U按指数曲线下d(off)pinSGGS降到U时,i开始减小为零的时间段。

GSPD下降时间t- U从U继续下降起,i减小,到U< U时沟道消失,i下降fGSGSPDGSTD到零为止的时间段。

关断时间t-关断延迟时间和下降时间之和。

off3.功率MOSFET驱动电路功率MOSFET是电压型驱动器件,没有少数载流子的存贮效应,输入阻抗高,因而开关速度可以很高,驱动功率小,电路简单。

驱动通常要求:触发脉冲要具有足够快的上升和下降速度;?开通时以低电阻力栅极电容充电,关断时为栅极提供低电阻放电回路,以提高功率MOSFET的开关速度;?为了使功率MOSFET可靠触发导通,触发脉冲电压应高于管子的开启电压,为了防止误导通,在其截止时应提供负的栅源电压;?功率开关管开关时所需驱动电流为栅极电容的充放电电流,功率管极间电容越大,所需电流越大,即带负载能力越大。

二、单相桥式无源逆变电路1(无源逆变电路的基本定义及应用无源逆变是指逆变器的交流侧不与电网连接,而是直接接到负载,即将直流电逆变为某一频率或可变频率的交流电供给负载。

它在交流电机变频调速、感应加热、不停电电源等方面应用十分广泛,是构成电力电子技术的重要内容。

2(无源逆变电路的主要功能及工作原理主要功能是将直流电逆变成某一频率或可变频率的交流电供给负载。

2.1单相全桥无源逆变电路的工作原理如图1所示,图中Ud为直流电压电源,R为逆变器输出负载,T1,T1为四个高速开关。

该电路有两种工作状态(1)当开关T1、T4闭合,T2、T3断开时,逆变器输出电压Uo=Ud;(2)当开关T1、T4断开,T2、T3闭合时,逆变器输出电压Uo=-Ud;当以频率fs交替切换开关T1、T4 和T2、T3 时,则在电阻R 上获得如图所示的交变电压波形,其周期Ts=1/ fs,这样,就将直流电压E 变成了交流电压uo, uo含有各次谐波,如果想得到正弦波电压,则可通过滤波器滤波获得。

图1-1 中主电路开关T1~T4,它实际是各种半导体开关器件的一种理想模型。

逆变电路中常用的开关器件有快速晶闸管、可关断晶闸管(GTO)、功率晶体管(GTR)、功率场效应晶体管(MOSFET)、绝缘栅晶体管(IGBT)图1-1 单相全桥无源逆变电路的工作原理2.2单相半桥无源逆变电路的工作原理如图2所示T1导通,T2截止 T1截止,T2导通UU,2UU,,2ddmm1) T1,T2轮流导通,使直流变交流;2) 改变T1,T2的切换频率,便可改变输出交流的频率,即变频;3) T1,T2不能同时导通,否则将出现直流电源短路—贯穿通路。

因此电压型逆变器同一桥臂上、下两管的控制必须遵循“先断后开”原则。

图1-2单相全桥无源逆变电路的工作原理三、参数计算及元器件选取1)输入直流电压:U=100V; d2)输出功率:300W;3)输出电压波形:1KHz方波。

3.1全桥无源逆变电路:电压控制电压源VCVS1,VCVS4脉冲电压源V1,V4输出电压Uo=Ud=100V。

2RUP,,,33.3oMOSFET选取ZVN3310F品牌 ZETEX 型号 ZVN3310F 应用范围功率功率特性大功率频率特性超高频极性 NPN型结构点接触型材料硅(Si) 封装形式贴片型封装材料陶瓷封装截止频率fT 1(MHz) 集电极最大允许电流ICM 1(A) 集电极最大耗散功率PCM 1(W) 营销方式厂家直销3.2半桥无源逆变电路:输出电压Uo=Ud/2=50V2RUP,,,8.33o直流侧两个相互串联足够大的电容C1=C2=820uF四、单相全桥无源逆变主电路的设计采用全控型器件——功率场效应晶体管(MOSFET)取代上图的T1,T2,T3,T4。

相关文档
最新文档