圆中的基本概念及定理(习题)
《圆》知识点归纳及相关题型整理
第五章中心对称图形(二)——知识点归纳以及相关题目总结一、和圆有关的基本概念1.圆:把线段OP的一个端点O固定,使线段OP绕着点O在平面内旋转1周,另一个端点P运动所形成的图形叫做圆。
其中,定点O叫做圆心,线段OP叫做半径。
以点O为圆心的圆,记作“⊙O”,读作“圆O”。
圆是到定点的距离等于定长的点的集合。
2.圆的内部可以看作是到圆心的距离小于半径的点的集合。
3.圆的外部可以看作是到圆心的距离大于半径的点的集合。
4.弦:连接圆上任意两点的线段。
5.直径:经过圆心的弦。
6.弧:圆上任意两点间的部分。
优弧:大于半圆的弧。
劣弧:小于半圆的弧。
半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
7.同心圆:圆心相同,半径不相等的两个圆叫做同心圆。
8.等圆:能够重合的两个圆叫做等圆。
(圆心不同)9.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
(在大小不等的两个圆中,不存在等弧。
10.圆心角:顶点在圆心的角。
11.圆周角:顶点在圆上,两边与圆相交的角。
12.圆的切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长。
13.正多边形:①定义:各边相等、各角也相等的多边形②对称性:都是轴对称图形;有偶数条边的正多边形既是轴对称图形有是中心对称图形。
14.圆锥:①:母线:连接圆锥的顶点和底面圆上任意一点的线段。
②:高:连接顶点与底面圆的圆心的线段。
15.三角形的外接圆:三角形三个顶点确定一个圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形。
16.三角形的内切圆:与三角形各边都相切的圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。
二、和圆有关的重要定理1.圆是中心对称图形,圆心是它的对称中心。
2.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
3.在同圆或等圆中,如果两个圆心角、两条弦、两条弧中有一组量相等,那么它们所对应的其余各组量都分别相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
第五章 圆(一)
第五章圆(一)一、有关圆的基本概念1、圆的确定:不在同一直线上的三个点,确定一个圆。
2、等圆:半径相等,圆心不同的两个圆。
3、同心圆:圆心相同,半径不等的两个圆。
二、点和圆的位置关系:1、点在圆内。
2、点在圆上。
3、点在圆外。
三、垂径定理(是研究垂直于弦的直径的重要知识点):1、垂直于弦的直径平分弦,并平分这条弦所对的两条弧。
2、一条直线若具有①过圆心②垂直于弦③平分弦④平分弧这四个性质中的任意两个方面,则必须具有另外两个。
3、圆心角、弦、弧、弦心距之间的关系。
①在同圆或等圆中,圆心角、弦、弦所对的弧、弦心距四组量中,任意一组量相等,则其余三组量也对应相等。
②在同圆或等圆中,圆心角大、弦大、弦所对的弧大、弦心距小四组量中,任意一组成立,则其余三组也成立。
例:求证:圆的两平行弦的中点和圆心在一条直线上。
如图已知:在☉o中,AB∥CD,M、N分别是AB、CD的中点求证:M、O、N共线证明:过M 、O作直线MO交CD于N∵AM=MB且AB不过O点∴OM⊥AB又AB∥CD ∴CD⊥ON ∴ON平分CD即N是CD的中点∴M、O、N在一条直线上。
四、圆有关的角1、圆心角和圆周角定理①:圆心角的度数等于它所对的弧的度数。
定理②:圆周角的度数等于它所对的弧的度数的一半。
推论:①在同圆或等圆中,同弧或等弧所对的圆周角相等。
②同圆或等圆中,圆周角相等,则所对的弧相等。
③直径所对的圆周角是直角④90°的圆周角所对的弦是直径。
⑤同圆或等圆中,同弧或等弧所对的圆周角是圆心角的一半。
2、弓形角:弦CD所对的圆周角顶点是A ,A点在圆周上,那么圆周角∠CAD也叫含于⌒CAD内的弓形角。
3、圆内角和圆外角:①顶点在圆内的角,叫圆内角;②顶点在圆外,两边和圆相交的角叫圆外角。
定理①:圆内角的度数等于所对弧的度数和它的对顶角所对弧的度数的和的一半。
定理②:圆外角的度数等于它所夹的两条弧的度数差的一半。
4、弦切角:顶点在圆周上,一边和圆相切,一边和圆相交的角。
241圆中的基本概念及定理(练习题)
24.1圆中的基本概念及定理(练习题)1. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( )A .CM =DMB .CB⌒=BD ⌒ C .∠ACD =∠ADC D .OM =MD2. 如图,⊙O 的弦AB 垂直平分半径OC,若AB =,则⊙O 的半径为( )AB.C.2D3. 工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小圆孔的宽口AB 的长度为__________mm .,桥拱高CD =4m ,则拱桥的直径为__________.第1题图 第2题图第3题图 第4题图 5. 如图,⊙O的两条弦AB ,CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是__________.6. 在圆柱形油槽内装有一些油,截面如图所示,油面宽AB 为6分米.如果再注入一些油后,油面AB 上升1分米,油面宽变为8分米,则圆柱形油槽的直径MN 为( ) A .6分米B .8分米C .10分米D .12分米7. 已知:O ⊙的半径为13cm ,弦∥,=AB CD AB 24cm ,=CD 10cm ,则,AB CD 之间的距离为( ) A .17cm B .7cm 或12cm C .12cm D .17cm 或7cm 8. 如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的度数为( )A .60°B .50°C .40°D .30° 9. 如图,∠AOB =100°,点C 在⊙O 上,且点C 不与A ,B 重合,则∠ACB 的度数为( )A .50°B .80°或50°C .130°D .50°或130°第5题图 第6题图 第8题图 第9题图10. 如图,在⊙O 中,直径CD 垂直于弦AB ,垂足为E ,连接OB ,CB .已知⊙O 的半径为2,AB =BCD =________.11. 如图,⊙O 的弦CD 与直径AB 相交,若∠BAD =50°,则∠ACD =________.12. 一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角∠ACB =45°,则这个人工湖的直径AD 为( )A BC D R MOCBA BOAA.B.C.D.13.如图,点D为边AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作半圆,交AC于另一点E,交AB于F,G两点,连接EF.若∠BAC=22°,则∠EFG=__________.第10题图第11题图第12题图第13题图14.如图,已知四边形A B C D内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD的度数为__________.15.如图,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M16.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块第14题图第15题图第16题图第17题图17.如图,一条公路的转弯处是一段圆弧(图中的AB⌒),点O是这段弧的圆心,C是AB⌒上一点,OC⊥AB,垂足为D,若AB=300m,CD=50m,则这段弯路的半径是___________m.18.如图,⊙O是△ABC的外接圆,CD是直径,若∠B=40°,则∠ACD=____________.19.如图,⊙O的直径AB与弦CD相交于点E,若AE=5,BE=1,CD=则∠AED=___________.20.如图,BC为⊙O的直径,AD⊥BC,垂足为D.弧AB等于弧AF,BF和AD相交于E.证明:AE=BE.A BAADBOECADE COECODBABDCOA。
高中圆的基本性质与点圆关系 知识点及试题答案
高中圆的基本概念与点圆关系 知识点与答案解析第一节 圆的基本概念1.圆的标准方程:222()()x a y b r (圆心(,)a b ,半径为r )例1 写出下列方程表示的圆的圆心和半径(1)x 2 + (y + 3)2 = 2; (2)(x + 2)2 + (y – 1)2 = a 2 (a ≠0)例2 圆心在直线x – 2y – 3 = 0上,且过A (2,–3),B (–2,–5),求圆的方程.例3 已知三点A (3,2),B (5,–3),C (–1,3),以P (2,–1)为圆心作一个圆,使A 、B 、C 三点中一点在圆外,一点在圆上,一点在圆内,求这个圆的方程.2.圆的一般方程:220x y Dx Ey F (其中2240D E F ),圆心为点)2,2(E D ——,半径2422F E D r —(Ⅰ)当2240D E F 时,方程表示一个点,这个点的坐标为(,)22D E (Ⅱ)当2240D E F 时,方程不表示任何图形。
例1:已知方程x 2+y 2+2kx+4y+3k+8=0表示一个圆,求k 的取值范围。
解: 方程x 2+y 2+2kx+4y+3k+8=0表示一个圆,∴0)83(44)2(22>+-+k k ,解得14-<>k k 或∴当14-<>k k 或时,方程x 2+y 2+2kx+4y+3k+8=0表示一个圆。
例2:若(2m2+m-1)x2+(m2-m+2)y2+m+2=0的图形表示一个圆,则m 的值是___。
答案:-3例3:求经过三点A (1,-1)、B (1,4)、C (4,-2)的圆的方程。
解:设所求圆的方程为022=++++F Ey Dx y x ,A (1,-1)、B (1,4)、C (4,-2)三点在圆上,代入圆的方程并化简,得⎪⎩⎪⎨⎧-=+--=++-=+-20241742F E D F E D F E D ,解得D =-7,E =-3,F =2∴所求圆的方程为023722=+--+y x y x 。
(一) 圆的相关概念及垂径定理
AODBCAO(一) 圆的相关概念及垂径定理一、知识梳理(一)圆的有关概念1.圆的基本概念:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。
固定点O 叫做圆心;线段OA 叫做半径;圆上各点到定点(圆心O )的距离都等于定长(半径r);反之,到定点的距离等于定长的点都在同一个圆上(另一定义); 以O 为圆心的圆,记作“⊙O ”,读作“圆O ”2.圆的对称性及特性:(1)圆是轴对称图形,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴; (2)圆也是中心对称图形,它的对称中心就是圆心.(3)一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.这是圆特有的一个性质:圆的旋转不变性 3.弦:连接圆上任意两点的线段叫做弦。
4.弦心距:圆心到弦的距离叫做弦心距. 5.直径:经过圆心的弦叫直径。
注:圆中有无数条直径6.圆弧:(1)圆上任意两点间的部分,也可简称为“弧”以A,B 两点为端点的弧.记作AB ⋂,读作“弧AB”. (2)圆的任意一条直径的两个端点把圆分成两条弧,其中每一条弧都叫半圆。
如弧AD. (3)小于半圆的弧叫做劣弧,如记作AB ⋂(用两个字母). 7.圆心角:顶点在圆心,两边和圆相交的角叫做圆心角。
说明:(1)直径是弦,但弦不一定是直径,直径是圆中最长的弦。
(2)半圆是弧,但弧不一定是半圆。
(3)等弧只能是同圆或等圆中的弧,离开“同圆或等圆”这一条件不存在等弧。
(4)等弧的长度必定相等,但长度相等的弧未必是等弧。
(二)弦、弧、弦心距、圆心角的关系定理:在同圆或等圆中,弦、弧、弦心距、圆心角四组量中只要有一组量相等,则其余三组量也相等。
(三)和圆有关的角:1、圆周角:顶点在圆上,它的两边和圆还有另一个交点的角叫做圆周角。
2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等。
推论2:圆的两条平行弦所夹的弧相等。
《圆的基本概念和性质—知识讲解 》同步 2022人教九年级上册专练
圆的基本概念和性质—知识讲解(基础)【学习目标】1.知识目标:在探索过程中认识圆,理解圆的本质属性;2.能力目标:了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3.情感目标:通过圆的学习养成学生之间合作的习惯.【要点梳理】要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.【典型例题】类型一、圆的定义1.(2020秋•邳州市校级月考)如图所示,BD,CE是△ABC的高,求证:E,B,C,D四点在同一个圆上.【思路点拨】要证几个点在同一个圆上,就是证明这几个点到同一点的距离都相等即可.【答案与解析】证明:如图所示,取BC的中点F,连接DF,EF.∵BD,CE是△ABC的高,∴△BCD和△BCE都是直角三角形.∴DF,EF分别为Rt△BCD和Rt△BCE斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D四点在以F点为圆心,BC为半径的圆上.【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等. 举一反三:【变式】下列命题中,正确的个数是()⑴直径是弦,但弦不一定是直径;⑵半圆是弧,但弧不一定是半圆;⑶半径相等且圆心不同的两个圆是等圆;⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1个B.2个C.3个D.4个【答案】⑴、⑵、⑶是正确的,⑷是不正确的.故选C.类型二、圆及有关概念2.判断题(对的打√,错的打×,并说明理由)①半圆是弧,但弧不一定是半圆;()②弦是直径;()③长度相等的两段弧是等弧;()④直径是圆中最长的弦. ()【答案】①√②×③×④√.【解析】①因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;②直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;③只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;④直径是圆中最长的弦,正确.【总结升华】理解弦与直径的关系,等弧的定义.举一反三:【变式】(2020•长宁区一模)下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧【答案】B.提示:A、直径相等的两个圆是等圆,正确,不符合题意;B、长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意;C、圆中最长的弦是直径,正确,不符合题意;D、一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意,故选:B.3.直角三角形的三个顶点在⊙O上,则圆心O在 .【答案】斜边的中点.【解析】根据圆的定义知圆心O到三角形的三个顶点距离相等,由三角形斜边的中线等于斜边的一半可知,斜边上的中点到各顶点的距离相等.【总结升华】圆心到圆上各点的距离相等.4.判断正误:有AB、CD,AB的长度为3cm, CD的长度为3cm,则AB与CD是等弧. 【答案】错误.【解析】“能够完全重合的弧叫等弧”.在半径不同的圆中也可以出现弧的长度相等,但它们不会完全重合,因此,只有在同圆或等圆中,长度相等的弧才是等弧.【总结升华】在同圆或等圆中,长度相等的弧才是等弧.举一反三:【变式】有的同学说:“从优弧和劣弧的定义看,大于半圆的弧叫优弧,小于半圆的弧叫劣弧,所以优弧一定比劣弧长.”试分析这个观点是否正确.甲同学:此观点正确,因为优弧大于半圆,劣弧小于半圆,所以优弧比劣弧长.乙同学:此观点不正确,如果两弧存在于半径不相等的两个圆中,如图,⊙O中的优弧AmB,中的劣弧CD,它们的长度大小关系是不确定的,因此不能说优弧一定比劣弧长.请你判断谁的说法正确?【答案】弧的大小的比较只能是在同圆或等圆中进行. 乙的观点正确.类型三、圆的对称性5.已知:如图,两个以O为圆心的同心圆中,大圆的弦AB交小圆于C,D.求证:AC=BD.【答案与解析】证明:过O点作OM⊥AB于M,交大圆与E、F两点.如图,则EF所在的直线是两圆的对称轴,所以AM=BM,CM=DM,故AC=BD.【总结升华】作出与AB垂直的圆的对称轴,由圆的对称性可证得结论.《圆》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.如图所示,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于( ).A.70° B.64° C.62° D.51°2.在半径为27m的圆形广场中心点O的上空安装了一个照明光源S,S射向地面的光束呈圆锥形,其轴截面SAB的顶角为120°(如图所示),则光源离地面的垂直高度SO为( ).A.54m B.63m C.93m D.183m第1题图第2题图第3题图第4题图3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm24.如图,的半径为5,弦的长为8,点在线段(包括端点)上移动,则的取值范围是( ).A. B. C. D.5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸 B.13寸 C.25寸D.26寸6.(2020•贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.37.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ).A.80° B.100° C.80°或100° D.160°或200°8.如图所示,AB、AC与⊙O分别相切于B、C两点,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是( ).A.65° B.115° C.65°或115° D.130°或50°二、填空题9.如下左图,是的内接三角形,,点P在上移动(点P不与点A、C重合),则的变化范围是__ ________.第9题图第10题图10.如图所示,EB、EC是⊙O是两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A的度数是________________.11.已知⊙O 1与⊙O 2的半径1r 、2r 分别是方程2680x x -+= 的两实根,若⊙O 1与⊙O 2的圆心距d =5.则⊙O 1与⊙O 2的位置关系是 __ __ .12.(2020•巴彦淖尔)如图,AB 为⊙O 的直径,AB=AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC ;③AE=2EC ;④劣弧是劣弧的2倍;⑤AE=BC ,其中正确的序号是 .13.两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______ ________. 14.已知正方形ABCD 外接圆的直径为2a ,截去四个角成一正八边形,则这个正八边形EFGHIJLK 的边长为____ ____,面积为_____ ___.15.如图(1)(2)…(m)是边长均大于2的三角形、四边形、……、凸n 边形,分别以它们的各顶点为圆心,以l 为半径画弧与两邻边相交,得到3条弧,4条弧,……(1)图(1)中3条弧的弧长的和为___ _____,图(2)中4条弧的弧长的和为_____ ___; (2)求图(m)中n 条弧的弧长的和为____ ____(用n 表示).16.如图所示,蒙古包可以近似地看做由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为9πm 2,高为3.5m ,外围高4 m 的蒙古包,至少要____ ____m 2的毛毡.三、解答题17. 如图,⊙O 是△ABC 的外接圆,FH 是⊙O 的切线,切点为F ,FH ∥BC ,连结AF 交BC 于E ,∠ABC 的平分线BD 交AF 于D ,连结BF . (1)证明:AF 平分∠BAC ; (2)证明:BF =FD.18.(2020•南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.【答案与解析】一、选择题1.【答案】B;【解析】由AB为⊙O的切线,则AB⊥OD.又BD=OB,则AB垂直平分OD,AO=AD,∠DAB=∠BAO.由AB、AC为⊙O的切线,则∠CAO=∠BAO=∠DAB.所以,∠DAB=∠DAC=26°.∠ADO=90°-26°=64°.本题涉及切线性质定理、切线长定理、垂直平分线的性质、等腰三角形的性质等.2.【答案】C;【解析】圆锥的高、底面半径与母线组成直角三角形.由题意,SO⊥AB于O,∴∠SOA=∠SOB=90°.又SA=SB,∠ASB=120°,∴∠SAB=∠SBA=180120302=°-?°,设SO=x m,则AS=2x m.∵ AO=27,由勾股定理,得(2x)2-x2=272,解得93x=(m).3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.∵矩形ABCD中,AB=2BC,AB=8cm,∴ AD=BC=4cm,∠DAF=90°,,,又AF=AD=4cm,∴ ,∴.4.【答案】A ;【解析】OM 最长是半径5;最短是OM ⊥AB 时,此时OM=3,故选A. 5.【答案】D ;【解析】因为直径CD 垂直于弦AB ,所以可通过连接OA(或OB),求出半径即可. 根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”, 知(寸),在Rt △AOE 中,,即,解得OA=13,进而求得CD=26(寸).故选D. 6.【答案】B.【解析】设OP 与⊙O 交于点N ,连结MN ,OQ ,如图,∵OP=4,ON=2, ∴N 是OP 的中点, ∵M 为PQ 的中点,∴MN 为△POQ 的中位线,∴MN=OQ=×2=1,∴点M 在以N 为圆心,1为半径的圆上, 当点M 在ON 上时,OM 最小,最小值为1, ∴线段OM 的最小值为1.故选B . 7.【答案】C ; 【解析】圆周角的顶点在劣弧上时,圆周角为5136010092⨯⨯=°°;圆周角的顶点在优弧上时, 圆周角为413608092⨯⨯=°°.注意分情况讨论. 8.【答案】C ;【解析】连接OC 、OB ,则∠BOC =360°-90°-90°-50°=130°.点P 在优弧上时,∠BPC =12∠BOC =65°;点P 在劣弧上时,∠BPC =180°-65°=115°. 主要应用了切线的性质定理、圆周角定理和多边形内角和定理.二、填空题 9.【答案】; 10.【答案】99°;【解析】由EB=EC ,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°, 在⊙O 中,∠BCD 与∠A 互补,所以∠A=180°-81°=99°. 11.【答案】相交;【解析】求出方程2680x x -+= 的两实根1r 、2r 分别是4、2,则1r -2r <d <1r +2r ,所以两圆相交.12.【答案】①②④;【解析】连接AD ,AB 是直径,则AD ⊥BC ,又∵△ABC 是等腰三角形,故点D 是BC 的中点,即BD=CD ,故②正确; ∵AD 是∠BAC 的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC ﹣∠BAD=45°=2∠CAD ,故④正确; ∵∠EBC=22.5°,2EC ≠BE ,AE=BE ,∴AE ≠2CE ,③不正确; ∵AE=BE ,BE 是直角边,BC 是斜边,肯定不等,故⑤错误. 综上所述,正确的结论是:①②④.13.【答案】7或3;【解析】两圆有三种位置关系:相交、相切(外切、内切)和相离(外离、内含).两圆内切时,圆心距,题中一圆半径为5,而d=2,所以有,解得r=7或r=3,即另一圆半径为7或3.14.【答案】(21)a -; 2(222)a -;【解析】正方形ABCD 外接圆的直径就是它的对角线,由此求得正方形边长为a .如图所示,设正八边形的边长为x .在Rt △AEL 中,LE =x ,AE =AL =22x ,∴ 222x x a ⨯+=,(21)x a =-,即正八边形的边长为(21)a -.222224[(21)](222)AEL S S S a x a a a =-=-=--=-△正方形正八边形.15.【答案】(1)π; 2π; (2)(n-2)π;【解析】∵ n 边形内角和为(n-2)180°,前n 条弧的弧长的和为(2)1801(2)3602n n -=-个以某定点为圆心,以1为半径的圆周长,∴ n 条弧的弧长的和为121(2)(2)2n n ππ⨯⨯-=-.本题还有其他解法,比如:设各个扇形的圆心角依次为1α,2α,…,n α, 则12(2)180n n ααα+++=-…°, ∴ n 条弧长的和为1212111()180180180180n n απαπαππααα⨯+⨯++⨯=+++……(2)180(2)180n n ππ=-⨯=-.16.【答案】720π;【解析】∵ S =πr 2,∴ 9π=πr 2,∴ r =3.∴ h 1=4,∴ 2215l h r =+=,∴ 223523 3.5152136S S S rl rh πππππππ=+=+=⨯⨯+⨯⨯=+=锥柱,2036720S ππ=⨯=总.所求面积包括圆锥的侧面积和圆柱的侧面积,不包括底面积.三、解答题17.【答案与解析】(1)连结OF∵FH 是⊙O 的切线 ∴OF⊥FH ∵FH∥BC ,∴OF 垂直平分BC∴BF FC =∴AF 平分∠BAC .(2)由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2 ∴∠1+∠4=∠2+∠3 ∴∠1+∠4=∠5+∠3 ∠FDB =∠FBD ∴BF =FD.18.【答案与解析】 证明:(1)∵四边形ABCD 是⊙O 的内接四边形, ∴∠A+∠BCD=180°, ∵∠DCE+∠BCD=180°, ∴∠A=∠DCE , ∵DC=DE ,∴∠DCE=∠AEB , ∴∠A=∠AEB ;(2)∵∠A=∠AEB ,A BCDEO 12345HA BCD EO 12∴△ABE 是等腰三角形, ∵EO ⊥CD , ∴CF=DF ,∴EO 是CD 的垂直平分线, ∴ED=EC , ∵DC=DE , ∴DC=DE=EC ,∴△DCE 是等边三角形, ∴∠AEB=60°,∴△ABE 是等边三角形.19.【答案与解析】解:∵公共弦AB =120r R a 6624222212060603=-⎛⎝ ⎫⎭⎪=-=.20. 【答案与解析】 (1)如选命题①. 证明:在图(1)中,∵ ∠BON =60°,∴ ∠1+∠2=60°. ∵ ∠3+∠2=60°,∴ ∠1=∠3. 又∵ BC =CA ,∠BCM =∠CAN =60°, ∴ △BCM ≌△CAN ,∴ BM =CM . 如选命题②.证明:在图(2)中,∵∠BON=90°,∴∠1+∠2=90°.∵∠3+∠2=90°,∴∠1=∠3.又∵ BC=CD,∠BCM=∠CDN=90°,∴△BCM≌△CDN,∴ BM=CN.如选命题③.证明:在图(3)中,∵∠BON=108°,∴∠1+∠2=108°.∵∠2+∠3=108°,∴∠1=∠3.又∵ BC=CD,∠BCM=∠CDN=108°,∴△BCM≌△CDN,∴ BM=CN.(2)①答:当∠BON=(2)180nn°时结论BM=CN成立.②答:当∠BON=108°时.BM=CN还成立.证明:如图(4),连接BD、CE在△BCD和△CDE中,∵ BC=CD,∠BCD=∠CDE=108°,CD=DE,∴△BCD≌△CDE.∴ BD=CE,∠BDC=∠CED,∠DBC=∠ECD.∵∠CDE=∠DEN=108°,∴∠BDM=∠CEM.∵∠OBC+∠OCB=108°,∠OCB+∠OCD=108°.∴∠MBC=∠NCD.又∵∠DBC=∠ECD=36°,∴∠DBM=∠ECM.∴△BDM≌△CEN,∴ BM=CN.。
高中圆的练习题及答案
高中圆的练习题及答案1. 题目:圆的基本概念及性质题目描述:请列举圆的基本概念及性质,并给出相应的解答。
解答:圆是平面上一组离一个确定点的距离都相等的点的集合。
其中,离圆心最远的点称为圆的半径(r),圆心到任意一点的距离称为该点的弧长(s),其中的中心角(θ)满足θ = s/r。
圆的直径(d)是任意经过圆心的两点之间的距离,直径等于半径的两倍,即d = 2r。
圆的性质:1) 圆上的点到圆心的距离都相等;2) 半径相等的两个圆互为同心圆,同心圆必定在同一平面上;3) 圆的任意直径都是一条直线;4) 圆的弧与其对应的圆心角相等;5) 相等弧所对的圆心角相等;6) 同样的弧所对的圆心角相等;7) 两条弧所对应的圆心角互补,其和为360°。
2. 题目:圆的周长和面积计算题目描述:已知圆的半径为6cm,求解其周长和面积。
解答:已知圆的半径 r = 6cm,可以利用以下公式计算周长和面积:1) 周长(C)= 2πr,其中π 取近似值3.14;2) 面积(A)= πr²。
根据给定的半径,代入公式计算得出:1) 周长C = 2πr = 2 × 3.14 ×6 ≈ 37.68cm;2) 面积A = πr² = 3.14 × 6² ≈ 113.04cm²。
所以,该圆的周长约为37.68cm,面积约为113.04cm²。
3. 题目:判断圆的位置关系题目描述:已知两个圆,圆A的半径为8cm,圆心坐标为(2, 3),圆B的半径为6cm,圆心坐标为(5, 7),判断圆A和圆B的位置关系。
解答:根据题目给出的信息,我们可以计算出圆心A与圆心B之间的距离。
使用勾股定理,计算两个圆心之间的距离d:d = √[(x2 - x1)² + (y2 - y1)²],其中(x1, y1)表示圆A的圆心坐标,(x2, y2)表示圆B的圆心坐标。
中考复习讲义 圆的基本概念与性质(含参考答案)
圆的基本概念与性质内容基本要求略高要求较高要求圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题垂径定理会在相应的图形中确定垂径定理的条件和结论能用垂径定理解决有关问题1. 圆的定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,其中固定端点O 叫做圆心,OA 叫做半径. 2. 弧与弦:弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍. 弦心距:从圆心到弦的距离叫做弦心距.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的圆弧记作»AB ,读作弧AB . 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧. 3. 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
一 与圆有关概念【例1】 判断题(1)直径是弦 ( ) (2)弦是直径( )中考说明自检自查必考点中考必做题(3)半圆是弧( )(4)弧是半圆( )(5)长度相等的两条弧是等弧( )(6)等弧的长度相等( )(7)两个劣弧之和等于半圆( )(8)半径相等的两个圆是等圆( )(9)两个半圆是等弧( )(10)圆的半径是R,则弦长的取值范围是大于0且不大于2R( )【答案】(1)√;(2)×;(3)√;(4)×;(5)×;(6)√;(7)×;(8)√;(9)×;(10)√【例2】如图,点A D G M、、、在半圆O上,四边形ABOC DEOF HMNO、、均为矩形,设BC a=,EF b=,NH c=则下列格式中正确的是( )A.a b c>>B.a b c==C.c a b>>D.b c a>>ONMHGFEDCB A【答案】B【例3】如图,直线12l l∥,点A在直线1l上,以点A为圆心,适当长为半径画弧,分别交直线12l l、于B、C两点,连接AC BC、.若54ABC∠=︒,则∠1的大小为________【答案】72°【例4】如图,ABC∆内接于Oe,84AB AC D==,,是AB边上一点,P是优弧¼BAC的中点,连接PA、PB、PC、PD,当BD的长度为多少时,PAD∆是以AD为底边的等腰三角形?并加以证明.【答案】解:当4BD=时,PAD∆是以AD为底边的等腰三角形.证明:∵P是优弧¼ABC的中点∴»»PBPC = ∴PB PC =在PBD ∆与PCA ∆中, ∵4PB PC PBD PCB BD AC =⎧⎪∠=∠⎨⎪==⎩∴PBD PCA SAS ∆∆≌().∴PD PA =,即4BD =时,PAD ∆是以AD 为底边的等腰三角形.【例5】 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A B C D A ⇒⇒⇒⇒滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B C D A B ⇒⇒⇒⇒滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为_________【答案】4π- 【解析】根据直角三角形的性质,斜边上的中线等于斜边的一半,可知:点M 到正方形各顶点的距离都为1,故点M 所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,点M 所经过的路线围成的图形的面积为正方形ABCD 的面积减去4个扇形的面积.二 垂径定理及其应用【例6】 如图,AB 是O e 的直径,BC 是弦,OD BC ⊥于E ,交弧BC 于D .(1)请写出五个不同类型的正确结论; (2)若82BC ED ==,,求O e 的半径.【答案】(1)不同类型的正确结论有:22290•ABC BE CE BD DC BED BOD A AC OD AC BC OE BE OB S BC OE BOD BOE BAC ==∠=︒∠=∠⊥+==⋯V P V V V ①;②弧弧;③;④;⑤;⑥;⑦;⑧;⑨是等腰三角形;⑩∽(2)∵OD BC ⊥,∴12BE CE ==4BC =设O e 的半径为R ,则2OE OD DE R =-=-,在Rt OEB V中,由勾股定理得: 22222224OE BE OB R R +=-+=,即(),解得:5R = ,∴O e 的半径为5.【例7】 如图,在O e 中,120,3AOB AB ∠=︒=,则圆心O 到AB 的距离=_______BAO【答案】23【例8】 如图,D 内接于O e ,D 为线段AB 的中点,延长OD 交O e 于点E , 连接,AE BE 则下列五个结论①AB DE ⊥,②AE BE =,③OD DE =,④AEO C ∠=∠,⑤»¼12AB ACB =,正确结论的个数是( )DCBAA .2B .3C . 4D .5【答案】A【例9】 如图,AB 为O e 的直径,CD 为弦, AB CD ⊥,如果70BOC ∠=︒,那么A ∠的大小为( )ODCAA . 70︒B . 35︒C . 30︒D .20︒【答案】B【例10】 如图,AB 是O e 的在直径,弦CD AB ⊥于点E ,若8CD =,3OE =,则O e 的直径为( )EO BDCAA .10B .12C .14D .16【答案】A【例11】 如图,O e 是ABC ∆的外接圆,60BAC ∠=︒,若O e 的半径OC 为2,则弦BC 的长为( ) A .1 B 3 C .2 D .23OCBA【答案】D【例12】 小英家的圆镜子被打破了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是( )A .2B 5C .22D .3【答案】B【解析】考查垂径定理与勾股定理的应用.此题关键找到圆心,由不在同一条直线上的三点确定唯一一个圆.如图,作线段,AB BC 的垂直平分线交于点O ,点O 即为圆镜的圆心,连结OA ,由图可知 1,2AD OD ==,由勾股定理得半径2222125OA AD OD +=+ODCBA【例13】 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得=∠DOE sin 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5m 的速度下降,则经过多长时间才能将水排干?【答案】(1)∵OE ⊥CD 于点E ,CD =24, ∴ED =12CD =12.在Rt △DOE 中,∵sin ∠DOE =ED OD =1213, ∴OD =13(m ). (2)OE 22OD ED -2213125-=. ∴将水排干需:50.510÷=小时.【例14】 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )OEC DABCDA .5米B . 8米C .7米D .53米 【答案】B【例15】 如图,AB 为O e 的直径,弦CD AB ⊥,垂足是E ,连接OC ,若5,8OC CD ==,则AE =_______BEO DCA【答案】2【例16】 一条排水管的截面如图所示.已知排水管的截面圆半径10OB =,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( )OCBAA .16B .10C .8D .6 【答案】A【例17】 已知,如图,1O e 与坐标轴交与A (1,0)、B ( 5,0)两点,点1O 的纵坐标为5,求1O e 的半径。
2024成都中考数学第一轮专题复习 圆的有关概念及性质 知识精练(含答案)
2024成都中考数学第一轮专题复习圆的有关概念及性质知识精练基础题1. (2023江西)如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为()A. 3B. 4C. 5D. 6第1题图2. (2023广东省卷)如图,AB是⊙O的直径,∠BAC=50°,则∠D=()第2题图A. 20°B. 40°C. 50°D. 80°3. (2023广元)如图,AB是⊙O的直径,点C,D在⊙O上,连接CD,OD,A C.若∠BOD=124°,则∠ACD的度数是()A. 56°B. 33°C. 28°D. 23°第3题图4. (2023山西)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC =40°,则∠DBC的度数为()第4题图A. 40°B. 50°C. 60°D. 70°5. (2023安徽)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()A. 60°B. 54°C. 48°D. 36°第5题图6. (2023赤峰)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC =2∠COD,则∠CBD的度数是()第6题图A. 25°B. 30°C. 35°D. 40°7. [新考法—数学文化](2023岳阳)我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合下图,其大意是:今有圆形材质,直径BD为25寸,要做成方形板材,使其厚度CD达到7寸,则BC的长是() A. 674寸 B. 25寸C. 24寸D. 7寸第7题图8. (2023杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC=()第8题图A. 23°B. 24°C. 25°D. 26°9. (2023广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37 m,拱高约为7 m,则赵州桥主桥拱半径R约为()第9题图A. 20 mB. 28 mC. 35 mD. 40 m10. (2023凉山州)如图,在⊙O中,OA⊥BC,∠ADB=30°,BC=23,则OC=()A. 1B. 2C. 2 3D. 4第10题图11. 如图,点A,B,D在⊙O上,CD垂直平分AB于点C.现测得AB=CD=16,则圆形宣传图标的半径为()第11题图A. 12B. 10C. 8D. 612. 如图,在平面直角坐标系中,⊙O的半径为4,弦AB的长为3,过O作OC⊥AB于点C,则OC的长度是________;⊙O内一点D的坐标为(-2,1),当弦AB绕O点顺时针旋转时,点D到AB的距离的最小值是________.第12题图13. (2023武汉)如图,OA,OB,OC都是⊙O的半径,∠ACB=2∠BA C.(1)求证:∠AOB=2∠BOC;(2)若AB=4,BC=5,求⊙O的半径.第13题图拔高题14. (2023吉林省卷)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A. 70°B. 105°C. 125°D. 155°第14题图15. 如图,正方形ABCD 内接于⊙O ,点E 为弧AB 的中点,连接DE 与AB 交于点F .若AB=1,记△ADF 的面积为S 1,△AEF 的面积为S 2,则S 1S 2的值为________.第15题图16. 如图,以原点O 为圆心的圆交x 轴于A ,B 两点,交y 轴的正半轴于点C ,且点A 的坐标为(-2,0),D 为第一象限内⊙O 上的一点,若∠OCD =75°,则AD 的长为________.第16题图参考答案与解析1. D 【解析】本题考查了确定圆的条件及圆的有关定义及性质.∵过不在同一直线上的三个点一定能作一个圆,∴要经过题中所给的3个点画圆,除选定直线l 外的点P 外,再在直线l 上的A ,B ,C ,D 四个点中任选其中2个即可画圆.∵从A ,B ,C ,D 四个点中任选其中2个点的方法可以是AB ,AC ,AD ,BC ,BD ,CD ,共6种,∴最多可以画出圆的个数为6.2. B 【解析】∵AB 是⊙O 的直径,∠BAC =50°,∴∠ACB =90°,∠B =180°-50°-90°=40°.∵AC =AC ,∴∠D =∠B =40°.3. C 【解析】∵∠BOD =124°,∴∠AOD =180°-124°=56°,∴∠ACD =12∠AOD =28°. 4. B 【解析】∵BD 经过圆心O ,∴∠BCD =90°.∵∠BDC =∠BAC =40°,∴∠DBC =90°-∠BDC =50°.5. D 【解析】∵五边形ABCDE 是正五边形,∴∠BAE =(5-2)×180°5=108°,∠COD =360°5=72°,∴∠BAE -∠COD =108°-72°=36°. 6. A 【解析】∵∠BCD =105°,∴∠BAD =180°-105°=75°,∴∠BOD =150°.∵∠BOC=2∠COD ,∴∠COD =13 ∠BOD =50°,∴∠CBD =12∠COD =25°. 7. C 【解析】∵BD 是圆的直径,∴∠BCD =90°.∵BD =25,CD =7,∴在Rt △BCD 中,由勾股定理得,BC =252-72 =24(寸).8. D 【解析】如解图,连接OC ,∵∠ABC =19°,∴∠AOC =2∠ABC =38°.∵半径OA ,OB 互相垂直,∴∠AOB =90°,∴∠BOC =90°-38°=52°,∴∠BAC =12∠BOC =26°.第8题解图9. B 【解析】如解图,在Rt △OAB 中,由勾股定理,得AO 2+AB 2=OB 2,即(R -7)2+(372)2=R 2,解得R ≈28(m).第9题解图10. B 【解析】如解图,连接OB ,设OA 交BC 于点E ,∵∠ADB =30°,∴∠AOB =60°.∵OA ⊥BC ,BC =23 ,∴BE =12 BC =3 .在Rt △BOE 中,sin ∠AOB =BE OB,∴sin 60°=3OB =32,∴OB =2,∴OC =2.第10题解图11. B 【解析】如解图,连接OA ,设圆形宣传图标的半径为R ,∵CD 垂直平分AB ,AB=CD =16,∴CD 过点O ,AC =BC =12 AB =12×16=8,∠DCA =90°.∵AO =OD =R ,∴在Rt △AOC 中,由勾股定理,得OC 2+AC 2=OA 2,即(16-R )2+82=R 2,解得R =10,即圆形宣传图标的半径为10.第11题解图 12. 552 ;552 -5 【解析】如解图,连接OB ,∵OC ⊥AB ,∴BC =12 AB =32.由勾股定理,得OC =OB 2-BC 2 =552.当OD ⊥AB 时,点D 到AB 的距离最小,由勾股定理,得OD =22+12 =5 ,∴点D 到AB 的距离的最小值为552 -5 .第12题解图13. (1)证明:由圆周角定理,得∠ACB =12 ∠AOB ,∠BAC =12∠BOC . ∵∠ACB =2∠BAC ,∴∠AOB =2∠BOC ;(2)解:如解图,过点O 作半径OD ⊥AB 于点E ,连接BD .则∠DOB =12∠AOB ,AE =BE . ∵∠AOB =2∠BOC ,∴∠DOB =∠BOC .∴BD =BC .∵AB =4,BC =5 ,∴BE =2,DB =5 .在Rt △BDE 中,∵∠DEB =90°,∴DE =BD 2-BE 2 =1.在Rt △BOE 中,∵∠OEB =90°,∴OB 2=(OB -1)2+22,∴OB =52, 即⊙O 的半径是 52.第13题解图14. D 【解析】如解图,连接BC ,∵∠BAC =70°,∴∠BOC =2∠BAC =140°.∵OB =OC ,∴∠OBC =∠OCB =180°-140°2=20°.∵点P 为OB 上任意一点(点P 不与点B 重合),∴0°<∠OCP <20°.∵∠BPC =∠BOC +∠OCP =140°+∠OCP ,∴140°<∠BPC <160°,故选D.第14题解图15. 2(2 +1) 【解析】如解图,连接OE 交AB 于点G ,连接AC .根据垂径定理的推论,得OE ⊥AB ,AG =BG .由题意可得,AC 为⊙O 的直径,AC =2 ,则圆的半径是22.根据正方形的性质,得∠OAF =45°,∴OG =12 ,EG =2-12.∵OE ∥AD ,∴△ADF ∽△GEF ,∴FE FD =EG DA =2-12 .∵△ADF 与△AEF 等高,∴S 1S 2 =S △ADF S △AEF=DF EF =2(2 +1).第15题解图16. 23 【解析】如解图,连接OD ,BD .∵A (-2,0),∴OA =OB =2,∴AB =4.∵OC =OD ,∴∠OCD =∠ODC =75°,∴∠DOC =180°-2×75°=30°,∴∠DOB =90°-30°=60°,∴∠DAB =12∠DOB =30°.∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD =AB ·cos 30°=23 .第16题解图。
圆的方程知识点及题型归纳总结
圆的方程知识点及题型归纳总结知识点精讲一、基本概念 平面内到定点的距离等于定长的点的集合(轨迹)叫圆. 二、基本性质、定理与公式 1.圆的四种方程(1)圆的标准方程:222)()(r b y a x =-+-,圆心坐标为(a ,b ),半径为)0(>r r (2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x ,圆心坐标为⎪⎭⎫⎝⎛--2,2E D ,半径2422FE D r -+=(3)圆的直径式方程:若),(),,(2211y x B y x A ,则以线段AB 为直径的圆的方程是0))(())((2121=--+--y y y y x x x x(4)圆的参数方程:①)0(222>=+r r y x 的参数方程为⎩⎨⎧==θθsin cos r y r x (θ为参数);②)0()()(222>=-+-r r b y a x 的参数方程为⎩⎨⎧+=+=θθsin cos r b y r a x (θ为参数).注 对于圆的最值问题,往往可以利用圆的参数方程将动点的坐标设为)sin ,cos (θθr b r a ++(θ为参数,(a,b )为圆心,r 为半径),以减少变量的个数,建立三角函数式,从而把代数问题转化为三角问题,然后利用正弦型或余弦型函数的有界性求解最值.2.点与圆的位置关系判断(1)点),(00y x P 与圆222)()(r b y a x =-+-的位置关系: ①⇔>-+-222)()(r b y a x 点P 在圆外; ②⇔=-+-222)()(r b y a x 点P 在圆上; ③⇔<-+-222)()(r b y a x 点P 在圆内.(2)点),(00y x P 与圆022=++++F Ey Dx y x 的位置关系:①⇔>++++0002020F Ey Dx y x 点P 在圆外; ②⇔=++++0002020F Ey Dx y x 点P 在圆上; ③⇔<++++0002020F Ey Dx y x 点P 在圆内.题型归纳及思路提示题型1 求圆的方程 思路提示(1)求圆的方程必须具备三个独立的条件,从圆的标准方程上来讲,关键在于求出圆心坐标(a,b )和半径r ;从圆的一般方程来讲,必须知道圆上的三个点.因此,待定系数法是求圆的方程常用的方法.(2)用几何法来求圆的方程,要充分运用圆的几何性质,如圆心在圆的任一条弦的垂直平分线上,半径、弦心距、弦长的一半构成直角三角形等. 例9.17 根据下列条件求圆的方程:(1)ABC ∆的三个顶点分别为A (-1,5),B (-2,-2),C (5,5),求其外接圆的方程; (2)经过点A (6,5),B (0,1),且圆心在直线3x +10y +9=0上; (3)经过点P (-2,4),Q (3,-1),且在x 轴上截得的弦长等于6. 分析 根据待定系数法求出相应的量即可.解析 (1)解法一:设所求圆的方程为022=++++F Ey Dx y x ,则由题意有,⎪⎩⎪⎨⎧=+++=++--=+++-0505508220265F E D F E D F E D 解得⎪⎩⎪⎨⎧-=-=-=2024F E D 故所求圆的方程为0202422=---+y x y x解法二:由题意可求得AC 的中垂线方程为x =2,BC 的中垂线方程为x +y -3=0,所以圆心是两条中垂线的交点P (2,1),且半径5)51()12(||22=-++==AP r所以所求圆的方程为25)1()2(22=-+-y x 即0202422=---+y x y x(2)AB 的中垂线与AB 垂直,则斜率231-=-=ABk kAB 的中点(3,3),则由点斜式可得)3(233--=-x y , 即线段AB 的中垂线方程为3x+2y-15=0由⎩⎨⎧=++=-+0910301523y x y x ,解得⎩⎨⎧-==37y x ,所以圆心为C(7,-3),又65||=BC故所求的圆的方程为65)3()7(22=++-y x(3)设圆的方程为022=++++F Ey Dx y x ,将点P ,Q 的坐标分别代入,得⎩⎨⎧-=+-=--1032042F E D F E D ,又令y =0,得02=++F Dx x .设21,x x 是方程的两根,则由韦达定理有F x x D x x =-=+2121,,由6||21=-x x有364)(21221=-+x x x x ,即3642=-F D解得⎪⎩⎪⎨⎧-=-=-=842F E D 或⎪⎩⎪⎨⎧=-=-=086F E D故所求圆的方程为084222=---+y x y x 或08622=--+y x y x评注 圆的方程有两种形式:标准方程和一般方程.求圆的方程问题一般采用待定系数法,并有两种不同的选择,一般地,已知圆 上的三点时用一般方程;已知圆心或半径关系时用标准方程.即首先设出圆的方程(标准方程或一般方程),然后根据题意列出关于圆的方程中参数的方程(组),解方程或方程组即可求得圆的方程.一般地,确定一个圆需要三个独立的条件.变式1 求过点A(6,0),B(1,5),且圆心在直线0872:=+-y x l 上的圆的方程. 变式2 在平面直角坐标系xOy 中,曲线与坐标轴的交点都在圆C 上,求圆C 的方程例9.18 已知圆的半径为10,圆心在直线y =2x 上,圆被直线y=x 截得的弦长为24,求此圆的方程. 分析 求圆的标准方程,就是求222)()(r b y a x =-+-中的a,b,r ,可优先考虑待定系数法. 解析 解法一:设圆的方程为10)()(22=-+-b y a x .由圆心在直线y=2x 上,得b=2a (①) 由圆在直线y=x 上截得的弦长为24,将y=x 代入10)()(22=-+-b y a x ,整理得010)(22222=-+++-b a x b a x 由弦长公式,得24||221=-x x即24)10(2)(2222=-+-+b a b a ,化简得2±=-b a (②) 由式①②可得⎩⎨⎧==42b a 或⎩⎨⎧-=-=42b a故所求圆的方程为10)4()2(22=-+-y x 或10)4()2(22=+++y x解法二:据几何性质,半径、弦长的一半、弦心距构成直角三角形,可得弦心距2)22(22=-=r d ,又弦心距等于圆心(a,b )到直线x-y =0的距离,即22||=-=b a d ,又已知b =2a ,解得⎩⎨⎧==42b a 或⎩⎨⎧-=-=42b a 故所求圆的方程为10)4()2(22=-+-y x 或10)4()2(22=+++y x 评注 注意灵活运用垂径定理来简化圆中弦长的求解过程.变式1 求与x 轴相切,圆心在直线3x-y =0上,且被直线x-y =0截得的弦长为72的圆的方程例9.19 圆01222=--+x y x 关于直线2x -y +3=0对称的圆的方程是( )A.21)2()3(22=-++y x B.21)2()3(22=++-y xC.2)2()3(22=-++y x D.2)2()3(22=++-y x解析 解法一:(推演法)将圆的方程01222=--+x y x 化为标准方程2)1(22=+-y x ,得圆心为(1,0),半径为2,设对称圆的圆心坐标为(a,b),则⎪⎪⎩⎪⎪⎨⎧-=--=+-+⨯2110032212a b b a ,得⎩⎨⎧=-=23b a . 故对称圆的方程是2)2()3(22=-++y x 解法二:(排除法)将圆的方程01222=--+x y x 化为标准方程2)2(22=+-y x ,得2=r ,则对称圆的半径也应为2,故排除选项A,B ,在选项C 中,圆心为(-3,2),验证两圆圆心所在的直线的斜率为211302-=---,与直线032=+-y x 垂直.故选C评注 根据圆的性质求圆关于直线的对称圆的方程问题,一般转化为求圆心关于直线对称点的问题,半径保持不变.变式1 若不同两点P ,Q 的坐标分别为,)3,3(),,(a b b a --,则线段PQ 的垂直平分线l 的斜率为________,圆1)3()2(22=-+-y x 关于直线l 对称的圆的方程为______题型2 直线系方程和圆系方程 思路提示求过两直线交点(两圆交点或直线与圆交点)的直线方程(圆系方程)一般不需求其交点,而是利用它们的直线系方程(圆系方程).(1)直线系方程:若直线0:1111=++C y B x A l 与直线0:2222=++C y B x A l 相交于点P ,则过点P 的直线系方程为:0)()(22221111=+++++C y B x A C y B x A λλ)0(2221≠+λλ简记为:)0(022212211≠+=+λλλλl l 当01≠λ时,简记为:021=+l l λ(不含2l )(2)圆系方程:若圆0:111221=++++F y E x D y x C 与圆0:222222=++++F y E x D y x C 相交于A,B两点,则过A,B两点的圆系方程为:)1(0)(2222211122-≠=+++++++++λλF y E x D y x F y E x D y x简记为:)1(021-≠=+λλC C ,不含2C当1-=λ时,该圆系退化为公共弦所在直线(根轴)0)()(:212121=-+-+-F F y E E x D D l 注 与圆C 共根轴l 的圆系0:=+l C C λλ例9.20 (1)设直线01:1=+-y x l 与直线022:2=++y x l 相交于点P,求过点P 且与直线0132:3=--y x l 平行的直线4l 的方程.(2)求圆心在直线0143=-+y x 上且过两圆0222=-+-+y x y x 与522=+y x 的交点的圆的方程.分析 把两条直线(圆)的方程联立,解得直线(圆)的交点坐标的方法看似平常,实则复杂难解,而利用直线系(圆系)方程的概念,则较易求得答案.解析 (1)解法一:由⎩⎨⎧=++=+-02201y x y x ,得交点)0,1(-P .因为34//l l ,故设032:4=+-C y x l ,又4l 过点)0,1(-P ,故0)1(2=+-C ,得2=C即0232:4=+-y x l解法二:设0)1(22:4=+-+++y x y x l λ,即02)1()2(:4=++-++λλλy x l 因为34//l l ,所以)()(λλ-=+-1223,得8-=λ,故0232:4=+-y x l (2)设所求圆为)1(0)5(222-≠=-++-+-+λλy x y x y x 化为一般式0152111122=++-+++-+λλλλy x y x 所以)1(212,)1(212λλ+-=-+=-E D ,故圆心为⎪⎭⎫ ⎝⎛++)(,)(λλ121-121代入直线0143=-+y x 中,得01)1(24)1(23=-+-+λλ解得23-=λ,把23-=λ代入所设的方程中,得0112222=--++y x y x 故所求圆的方程为0112222=--++y x y x评注 直线系或圆系是具有共同性质的直线或圆的集合,在解题过程中适当利用直线系或圆系方程,往往能够简化运算,快速得出结论.变式1 过直线042=++y x 和圆014222=+-++y x y x 的交点且面积最小的圆的方程是_________ 变式2 (1)设直线0:1=-y x l 与直线04:2=-+y x l 相交于点P ,求过点P 且与直线0543:3=++y x l 垂直的直线4l 的方程.(2)已知圆042:22=---+m y x y x C ,若直线02:=-+y x l 与圆C 相交于A,B 两点,且OB OA ⊥(O 为坐标原点),求m 的值和以AB 为直径的圆的方程.题型3 与圆有关的轨迹问题 思路提示要深刻理解求动点的轨迹方程就是探求动点的横纵坐标x,y 的等量关系,根据题目条件,直接找到或转化得到与动点有关的数量关系,是解决此类问题的关键所在.例9.21(2012北京丰台高三期末理18)在平面直角坐标系xOy 中,O 为坐标原点,动点P 与两个定点)0,4(),0,1(N M 的距离之比为21.(1)求动点P 的轨迹W 的方程;(2)若直线3:+=kx y l 与曲线W 交于A,B 两点,在曲线W 上是否存在 一点Q ,使得OB OA OQ +=,若存在,求出此时直线l 的斜率;若不存在,说明理由. 解析 (1)设点P 的坐标为),(y x P ,由题意知21||||=PN PM ,即2222)4()1(2y x y x +-=+- 即4:22=+y x W(2)因为直线3:+=kx y l 与曲线W 相交于A,B 两点,所以213),(2<+=kl O d即25>k 或25-<k ① 假设曲线W 上存在点Q ,使得2||,=+=OQ OB OA OQ 因为A,B 在圆上,所以||||OB OA =,且OB OA OQ +=由向量加法的平行四边形法则可知四边形OAQB 为菱形,所以OQ 与AB 互相垂直平分. 故1||21),(==OQ l O d ,即1132=+k,解得22±=k ,符合式①所以存在点Q ,使得OB OA OQ +=评注 在平面上到两定点的距离之比不为1的正数的动点轨迹为圆. 变式1 在ABC ∆中,若BC AC AB 2,2==,则ABC S ∆的最大值为__________变式2 (2012北京石景山一模理8)如图9-10所示,已知平面B A l ,,=βα 是l 上的两个点,C,D 在平面β内,且αα⊥⊥CB DA ,,AD =4,AB =6,BC =8,在平面α上有一个动点P ,使得BPC APD ∠=∠,则P-ABCD 体积的最大值是( )A.324B.16C.48D.144例9.22 如图9-11所示,已知P (4,0)是圆3622=+y x 内的一点,A,B 是圆上两动点,且满足︒=∠90APB ,求矩形APBQ 的顶点Q 的轨迹方程解析 解法一:设AB 的中点为R ,点Q 的坐标为(x,y ),则在ABP Rt ∆中||||PR AR =,又因为R 是弦AB 的中点,由垂径定理,在ORA Rt ∆中36||||22=+OR AR ,又2222|)|2(|)|2()|||(|2PR OR OP OQ +=+(*), 得72362)|||(|2||||2222=⨯-+=+PR OR OP OQ , 故56||72||22=--OP OQ则矩形APBQ 的顶点Q 的轨迹方程是5622=+y x 解法二:设AB 的中点为R ,Q 的坐标为(x,y),则⎪⎭⎫⎝⎛+2,24y x R ,在矩形APBQ 中有||21||||PQ AR PR ==在ORA Rt ∆中,36||||||222==+OA RA OR则()[]364412242222=+-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y x y x ,即5622=+y x 评注 式(*)的依据是,平行四边形对角线的平方和等于四条边的平方和.在矩形APBQ 中,O 为矩形APBQ 外一点,有2222OB OA OQ OP +=+变式1 已知圆422=+y x 上一定点A (2,0),B (1,1)为圆内的一定点,P ,Q 为圆上的动点.(1)求线段AP 中点M 的轨迹方程;(2)若︒=∠90PBQ ,求线段PQ 中点N 的轨迹.变式2 已知点P (0,5)及圆024124:22=+-++y x y x C(1)直线l 过P 且被圆C 截得的线段长34||=AB ,求l 的方程; (2)求过点P 的圆C 的动弦的中点M 的轨迹方程.题型4 用二元二次方程表示圆的一般方程的充要条件 思路提示方程022=++++F Ey Dx y x 表示圆的充要条件是0422>-+F E D ,故在解决圆的一般式方程的有关问题时,必须注意这一隐含条件.在圆的一般方程中,圆心为⎪⎭⎫⎝⎛--2,2E D ,半径F E D r 42122-+=例9.23方程0122222=-+++++a a ay ax y x 表示圆,则a 的取值范围是( )A.()2,-∞-B.⎪⎭⎫⎝⎛-0,32 C.()0,2-D.⎪⎭⎫ ⎝⎛-32,2解析 由0122222=-+++++a a ay ax y x可得0143)(2222>+--=++⎪⎭⎫ ⎝⎛+a a a y a x即04432<-+a a ,得322<<-a .故选D 评注 对于用二元二次方程表示圆的方程的充要条件的不等式不需要记忆,只需通过配方,然后让右边大于零即可变式1 方程042422=+-++m y mx y x 表示圆的方程的充要条件是( )A.⎪⎭⎫ ⎝⎛∈1,41mB.()+∞∈,1mC.⎪⎭⎫ ⎝⎛∞-∈41,mD. ),1(41,+∞⎪⎭⎫ ⎝⎛∞-∈ m变式2 若圆02)1(222=-+-++a ay x a y x 关于直线01=+-y x 对称,则实数a 的值为______ 题型5 点与圆的位置关系判断 思路提示在处理点与圆的位置关系问题时,应注意圆的不同方程形式对应的不同判断方法,另外还应注意其他约束条件,如圆的一般方程的隐含条件对参数的制约.例9.24 若点A (1,1)在圆4)()(22=++-a y a x 的内部,则实数a 的取值范围是( )A.)1,1(-B.)1,0(C.),1()1,.(+∞-∞-D.{}1,1-解析 点A (1,1)在圆内部,满足4)()(22<++-a y a x ,即4)1()1(22<++-a a ,解得11<<-a 故选A评注 判断点与圆的位置关系的代数方法为若点),(00y x P 在圆上,则22020)()(r b y a x =-+-; 若点),(00y x P 在圆外,则22020)()(r b y a x >-+-; 若点),(00y x P 在圆内,则22020)()(r b y a x <-+-.反之也成立.变式1 点A (1,0)在圆0332222=-++-+a a ax y x 上,则a 的值为_______变式2 过占P (1,2)可以向圆024222=-+-++k y x y x 引两条切线,则k 的范围是( )A.)7,(-∞B.)7,0(C.)7,3(D.),5(+∞题型6 与圆有关的最值问题 思路提示解决此类问题,应综合运用方程消元法、几何意义法、参数方程法等各种思想和方法求解,才能做到灵活、高效.例9.25 已知实数x,y 满足方程01422=+-+x y x(1)求xy的最大值和最小值; (2)求x y -的最大值和最小值;(3)求22y x +的最大值和最小值分析 方程01422=+-+x y x 表示圆心为(2,0),半径为3的圆.--=x y x y 的几何意义是圆上一点M(x,y)与原点连线的斜率;设y-x=b ,可看作直线y=x+b 在y 轴上的截距;22y x +是圆上一点与原点距离的平方,可借助于平面几何知识,利用数形结合的方法求解.解析 (1)原方程可化为3)2(22=+-y x ,表示以点(2,0)为圆心,以3为半径的圆.设k xy=,即kx y =.当直线kx y =与圆相切时,斜率最大值和最小值,此时31|02|2=+-k k ,解得3±=k故xy的最大值为3,最小值为3- (2)设y-x =b ,即y =x +b ,当y =x +b 与圆相切时,纵截距b 取得最大值和最小值,此时32|02|=+-b ,即62±-=b ,故y-x 的最大值为62+-,最小值为62--(3)解法一:(几何法)22y x +表示圆上点与原点距离的平方,由平面几何知识知它在原点与圆心连线与圆的两个交点处取得最大值和最小值,又圆心到原点的距离为2,故()347)32(2max22+=+=+y x,()347)32(2min22-=-=+y x解法二:(参数方程法)把圆的方程化为标准方程3)2(22=+-y x设⎪⎩⎪⎨⎧=+=θθsin 3cos 32y x (θ为参数,)2,0[πθ∈) 则()θθθcos 347)sin 3(cos 322222+=++=+y x故当1cos -=θ时,()347)32(2min22-=-=+y x当1cos =θ时,()347)32(2max22+=+=+y x解法三:(方程消元法)由圆的标准方程为3)2(22=+-y x ,可得222(3)--=x y且[]32,32+-∈x故14)2(32222-=--+=+x x x y x 由[]32,32+-∈x故[]347,3471422+-∈-=+x yx故所求最大值为347+,最小值为347-评注 涉及与圆有关的最值,可借助图形性质,利用数形结合求解.一般地:(1)形如ax b y --=μ的最值问题,可转化为动直线斜率的最值问题. (2)形如by ax t +=的最值问题,可转化为动直线截距的最值问题.(3)形如22)()(b y a x m -+-=的最值问题,可转化为曲线上的点到点(a,b)的距离平方的最值问题 变式 1 若圆1)1(22=-+y x 上任意一点(x,y )都使不等式0≥-+m y x 恒成立,则实数m 的取值范围是( ) A.]21,(--∞B.),21[+∞-C.]12,(---∞D.]12,(+-∞ 变式2 若圆1)1(22=-+y x 上任意一点(x,y )都使不等式0)2(22≥-+-m y x 恒成立,则实数m 的取值范围是( ) A.]21,(--∞ B.),51[+∞- C.]15,(--∞ D.]15,(+-∞题型7 数形结合思想的应用思路提示研究曲线的交点个数问题常用数形结合法,即需要作出两种曲线的图像.在此过程中,尤其要注意需对代数式进行等价变形,以防出现错误.例9.26 方程225x y --=表示的曲线是( )A.一条射线B.一个圆C.两条射线D.半个圆分析 对于方程的变形要注意等价性,即在变形前,先制约变量的取值范围解析 由题可知0,55≤≤≤-y x ,且2522=+y x ,故原方程表示圆心在(0,0),半径为5的下半圆.故选D变式1 方程21y x -=表示的曲线是( )A.一条射线B.一个圆C.两条射线D.半个圆 例9.27 直线b x y +=与曲线21y x -=有且仅有一个公共点,则b 的取值范围是( ) A.{}2,2- B.{}211|-=≤<-b b b 或 C.{}11|≤≤-b b D.{}2|≥b b 分析 利用数形结合法求解解析 将曲线方程21y x -=变形为)0(122≥=+x y x ,当直线b x y +=与曲线122=+y x 相切时,满足12|00|=--b ,整理可得2||=b ,即2±=b .如图9-12所示,可得当2-=b 或11≤<-b 时,直线b x y +=与曲线21y x -=有且仅有一个公共点.故选B变式1 当曲线241x y -+=与直线4)2(+-=x k y 有两个相异交点时,实数k 的取值范围是( ) A.⎪⎭⎫ ⎝⎛+∞,125 B.⎥⎦⎤ ⎝⎛43,125 C.⎪⎭⎫ ⎝⎛125,0 D.⎥⎦⎤ ⎝⎛43,31 变式2 若直线b x y +=与曲线243x x y --=有公共点,则b 的取值范围是( ) A.[]221,1+- B.[]221,221+- C.[]3,221- D.[]3,21- 变式3 设集合⎭⎬⎫⎩⎨⎧∈≤+-≤=R y x m y x m y x A ,,)2(2),(222, {}R y x m y x m y x B ∈+≤+≤=,,122),(,若A B ≠∅,则实数m 的取值范围是_______有效训练题1.若直线y =kx 与圆03422=+-+x y x 的两个交点关于直线x +y +b =0对称,则( )A.k=1,b=-2B.k=1,b=2C.k=-1,b=2D.k=-1,b=-2 2.若点(4a -1,3a +2)不在圆25)2()1(22=-++y x 的外部,则a 的取值范围是( ) A.⎪⎪⎭⎫ ⎝⎛-55,55 B.)1,1(- C.⎥⎦⎤⎢⎣⎡-55,55 D.]1,1[- 3.设椭圆)0(12222>>=+b a b y a x 的离心率为21=e ,右焦点为)0,(c F ,方程02=-+c bx ax 的两个实根分别为1x 和2x ,则点),(21x x P ( )A.必在圆222=+y x 内B.必在圆222=+y x 上C.必在圆222=+y x 外D.以上三种情形都有可能 4.已知圆422=+y x ,过点A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程是( ) A.⎪⎭⎫ ⎝⎛<≤-=+-2114)1(22x y x B. ()104)1(22<≤=+-x y xC. ⎪⎭⎫ ⎝⎛<≤-=+-2114)2(22x y x D. ()104)2(22<≤=+-x y x 5.已知两点A (-1,0),B (0,2),点P 是圆1)1(22=+-y x 上任意一点,则PAB ∆面积的最大值与最小值分别是( ) A.)54(21,2- B.)54(21),54(21-+ C.54,5- D. )25(21),25(21-+ 6.已知圆C 的方程为012222=+-++y x y x ,当圆心C 到直线04=++y kx 的距离最大时,k 的值为( ) A.31 B.51 C.31- D.51- 7.定义在),0(+∞上的函数f (x )的导函数0)('<x f 恒成立,且1)4(=f ,若1)(22≤+y x f ,则y x y x 2222+++的最小值是______8.已知圆C 经过()()5,1,1,3A B 两点,圆心在x 轴上,则圆C 的方程为______9.已知直线R m m x y l ∈+=,:.若以点M (2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,该圆的方程为_______10.根据下列条件求圆的方程.(1)经过点(1,1)P 和坐标原点,并且圆心在直线2310x y ++=上;(2)圆心在直线4y x =-上,且与直线:10l x y +-=相切于点(3,2)P -;(3)过三点(1,12),(7,10),(9,2)A B C -(4)已知一圆过(4,2),(1,3)P Q --两点,且在y 轴上截得的线段长为.11.设定点(3,4)M -,动点N 在圆224x y +=上运动,以,OM ON 为两边做平行四边形MONP ,求点P 的轨迹方程.12.集合22(,)|((1)4A x y x y ⎧⎫⎪⎪=++≤⎨⎬⎪⎪⎩⎭, 集合{}22()(,)|22,B m x y y x mx m m m R ==-++∈,设集合B 是所有()B m 的并集,求A B ⋂的面积。
《圆》知识点及练习题
《圆》知识点及练习题一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;A四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
圆基本概念+垂径定理练习
11.下列命题中假命题是()(A )平分弦的半径垂直于弦;(B )垂直平分弦的直线必经过圆心;(C )垂直于弦的直径平分这条弦所对的弧;(D )平分弧的直径垂直平分这条弧所对的弦.2.如图,EF 是⊙O 的直径,CD 交⊙O 于M 、N ,H 为MN 的中点,EC CD ⊥于点C ,FD CD ⊥于点D ,则下列结论错误的是()A .CM DN =;B .CH HD =;C .OH CD ⊥;D .EC OH OH FD =.3.我们把两个三角形的外心之间的距离叫做外心距.如图4,在Rt △ABC 和Rt △ACD 中,︒=∠=∠90ACD ACB ,点D 在边BC 的延长线上,如果3==DC BC ,那么△ABC 和△ACD 的外心距是.4.如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =,那么CD =.5.点P 为⊙O 内一点,过点P 的最长的弦长为10cm ,最短的弦长为8cm ,那么OP 的长等于cm .A B CDOE6.如图,CD 为⊙O 的直径,以D 为圆心,DO 长为半径作弧,交⊙O 于AB 两点,求证:=AC BC BA =7.已知:如图,在△ABC 中,D 是边BC 上一点,以点D 为圆心、CD 为半径作半圆,分别与边AC 、BC 相交于点E 和点F .如果AB =AC =5,cos B =54,AE =1.求:(1)线段CD 的长度;(2)点A 和点F 之间的距离.1.下列说法中,结论错误的是()A .直径相等的两个圆是等圆;B .长度相等的两条弧是等弧;C .圆中最长的弦是直径;D .一条弦把圆分成两条弧,这两条弧可能是等弧.2.已知○O 是以坐标原点O 为圆心,5为半径的圆,点M 的坐标为(3,4)-,则点M 与○O 的位置关系为()A.M 在○O 上;B.M 在○O 内;C.M 在○O 外;D.M 在○O 右上方;AB CD E F3.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤5的直径AB垂直弦CD于M,且M是半径OB的中点,CD AB的长为;4.如图,O5.如图,圆O过点CB、,圆心O在等腰直角三角形ABC内部,,6=BCOABAC,那么圆O的半径,1°=90∠=为;6.如图,已知AB 是⊙O 的直径,16AB =,点P 是AB 所在直线上一点,10OP =,点C 是⊙O 上一点,PC 交⊙O 于点D ,3sin 5BPC ∠=,求CD 的长;7.如图,在△ABC 中,10AB AC ==,12BC =,AD BC ⊥于D ,O 为AD 上一点,以O 为圆心,OA 为半径的圆交AB 于G ,交BC 于E 、F ,且AG AD =;(1)求EF 的长;(2)求tan BDG ∠的值;。
九年级数学圆专题训练
九年级数学圆专题训练摘要:1.圆的基本概念和性质2.圆的计算公式和定理3.圆与直线的关系及应用4.圆与二次函数的关系及应用5.圆与三角函数的关系及应用6.圆的典型题型及解题方法7.解题技巧与策略8.实战演练与分析正文:一、圆的基本概念和性质1.圆的定义:平面上一动点以一定点为中心,一定长为半径,所形成的封闭曲线称为圆。
这个定点称为圆心,定长称为半径。
2.圆的性质:(1)圆心到圆上任意一点的距离等于半径;(2)圆上所有点到圆心的距离相等,称为圆的半径;(3)圆心角平分线段;(4)圆周角等于其所对圆弧所对的圆心角;(5)圆周角相等,则其所对圆弧长度相等;(6)圆周长公式:C=2πr;(7)圆面积公式:S=πr。
二、圆的计算公式和定理1.圆的周长公式:C=2πr;2.圆的面积公式:S=πr;3.圆心角公式:α=θ/180°×π;4.圆周角定理:圆周角等于其所对圆弧所对的圆心角;5.圆周角相等,则其所对圆弧长度相等;6.圆周长与半径成正比;7.圆面积与半径平方成正比。
三、圆与直线的关系及应用1.圆与直线的位置关系:相交、相切、相离;2.圆心到直线的距离小于半径,则圆与直线相交;3.圆心到直线的距离等于半径,则圆与直线相切;4.圆心到直线的距离大于半径,则圆与直线相离;5.直线与圆的位置关系应用:判断两点距离与圆半径的大小关系。
四、圆与二次函数的关系及应用1.二次函数图像与圆的位置关系;2.二次函数图像的顶点为圆的圆心;3.二次函数图像的对称轴为圆的直径;4.二次函数图像的零点为圆与直线的交点。
五、圆与三角函数的关系及应用1.弧长与角度的关系:L=θr;2.角度与弧度的关系:θ=L/r;3.三角函数在圆中的应用:判断角度、长度关系;4.三角函数公式:sinθ=对边/斜边,cosθ=邻边/斜边,tanθ=对边/邻边。
六、圆的典型题型及解题方法1.圆的方程求解;2.圆与直线的交点求解;3.圆的参数方程应用;4.圆中的最值问题;5.圆中的几何最值问题。
(版)北师版九年级下册第三章圆知识点及习题
九年级下册第三章圆【知识梳理】一、圆的认识1. 圆的定义:描述性定义:在一个平面内,线段OA绕它固定的一个端点的圆形叫做圆;固定的端点O叫做圆心;线段...O旋转一周,另一个端点A随之旋转所形成OA叫做半径;以点O为圆心的圆,记作⊙..O,读作“圆O〞集合性定义:圆是平面内到定点距离等于定长的点的集合。
其中定点叫做圆心,定长叫做圆的半径,圆......心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆..。
对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心〔即定点〕,二是半径〔即定长〕。
2、与圆相关的概念①弦和直径:弦:连接圆上任意两点的线段叫做弦.。
直径:经过圆心的弦叫做直径。
..②弧、半圆、优弧、劣弧:弧:圆上任意两点间的局部叫做圆弧..,简称弧.,用符号“⌒〞表示,以CD为端点的弧记为“〞,读作“圆弧CD〞或“弧CD〞。
半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..。
优弧:大于半圆的弧叫做优弧。
..劣弧:小于半圆的弧叫做劣弧。
(为了区别优弧和劣弧,优弧用三个字母表示。
)..③弓形:弦及所对的弧组成的图形叫做弓形..。
④同心圆:圆心相同,半径不等的两个圆叫做同心圆...。
⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧..。
⑦圆心角:顶点在圆心的角叫做圆心角....⑧弦心距:从圆心到弦的距离叫做弦心距....3、点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为 d,那么①点在圆上<===>d=r;②点在圆内<===>d<r;③点在圆外<===>d>r.其中点在圆上的数量特征是重点,它可用来证明假设干个点共圆,方法就是证明这几个点与一个定点、的距离相等。
二. 圆的对称性:1、圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。
圆的概念及性质典型题(精选)
一、圆的相关概念1. 圆的定义(1) 描述性定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,其中固定端点O 叫做圆心,OA 叫做半径. (2) 集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径. (3) 圆的表示方法:通常用符号⊙表示圆,定义中以O 为圆心,OA 为半径的圆记作”O ⊙“,读作”圆O “. (4) 同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆. 注意:注意:同圆或等圆的半径相等. 2. 弦和弧(1) 弦:连结圆上任意两点的线段叫做弦. (2) 直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍. (3) 弦心距:从圆心到弦的距离叫做弦心距.(4) 弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的圆弧记作AB ,读作弧AB . (5) 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. (6) 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆. (7) 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧. (8) 弓形:由弦及其所对的弧组成的图形叫做弓形.3. 圆心角和圆周角(1) 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等. (2) 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.二、圆的对称性1. 旋转对称性(1) 圆是中心对称图形,对称中心是圆心;圆是旋转对称图形,无论绕圆心旋转多少度角,总能与自身重合. (2) 圆的旋转对称性⇒圆心角、弧、弦、弦心距之间的关系. 2. 轴对称性(1) 圆是轴对称图形,经过圆心的任一条直线是它的对称轴. (2) 圆的轴对称性⇒垂径定理.三、圆的性质定理1. 圆周角定理(1) 定理:一条弧所对的圆周角等于它所对的圆心角的一半. (2) 推论:知识点圆的概念及性质推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.2. 圆心角、弧、弦、弦心距之间的关系(1) 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.A (2) 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,注意:①前提条件是在同圆或等圆中;②在由等弦推出等弧时应注意:优弧与优弧相等;劣弧与劣弧相等.3.垂径定理(1) 定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2) 推论1:①平分弦(非直径)的直径,垂直于弦,并且平分弦所对的两条弧. ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧.③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (3) 推论2:圆的两条平行线所夹的弧相等.注意:若“过圆心的直线”、“垂直于弦”、“平分弦(非直径)”、“平分弦所对的优弧”、“平分弦所对的劣弧”中的任意两个成立,则另外三个都成立.注意:应用垂径定理与推论进行计算时,往往要构造如右图所示的直角三角形,根据垂径定理与勾股定理有:222()2ar d =+,根据此公式,在a ,r ,d 三个量中知道任何两个量就可以求出第三个量.D一、圆的相关概念及性质【例1】 判断题:(1)直径是弦 ( ) (2)弦是直径 ( ) (3)半圆是弧 ( ) (4)弧是半圆 ( ) (5)长度相等的两条弧是等弧 ( ) (6)等弧的长度相等 ( ) (7)两个劣弧之和等于半圆 ( ) (8)半径相等的两个圆是等圆 ( ) (9)两个半圆是等弧 ( ) (10)圆的半径是R ,则弦长的取值范围是大于0且不大于2R ( )【例2】 如图,在两半径不同的同心圆中,''60AOB A OB ∠=∠=︒,则( )A .''AB A B = B .''AB A B >C .AB 的度数=''A B 的度数D .AB 的长度=''A B 的长度【例3】 如图,AB 是O ⊙的直径,点C D 、在O ⊙上,110BOC ∠=︒,AD OC ∥,则AOD ∠=___________.【例4】 如图,点A D G M 、、、在半圆O 上,四边形ABOC DEOF HMNO 、、均为矩形,设BC a =,EF b =,NH c =则下列格式中正确的是( )A .a b c >>B .a b c ==C .c a b >>D .b c a >>ON MHG FE DC B A例题【例5】 如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为216cm ,则该半圆的半径为______.【例6】 如图①,1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 . 图1图2二、圆的性质定理1. 圆周角定理【例7】 如图,80AOB ∠=︒,则弧AB 所对圆周角ACB ∠的度数是( )A .40︒B .45︒C .50︒D .80︒【例8】 如图,已知ACB ∠是O 的圆周角,50ACB ∠=︒,则圆心角AOB ∠是( )A .40︒B .50︒C .80︒D .100︒【例9】 如图,O ⊙是ABC ∆的外接圆,已知50ABO ∠=︒,则ACB ∠的大小为__________.【例10】 如下左图,四个边长为1的小正方形拼成一个大正方形,A B O 、、是小正方形顶点,O ⊙的半径为1,P 是O ⊙上的点,且位于右上方的小正方形内,则APB ∠等于__________.PO BA【例11】 已知:如图,四边形ABCD 是O ⊙的内接正方形,点P 是劣弧CD 上不同于点C 的任意一点,则BPC ∠的度数是( )A.45︒B.60︒C.75︒D.90︒PO D C BA【例12】 如图,量角器外沿上有A B 、两点,它们的度数分别是7040︒︒、,则1∠的度数为_________.O1BA【例13】 如图,量角器外缘边上有A P Q ,,三点,它们所表示的读数分别是180︒,70︒,30︒,则PAQ∠的大小为( ) A .10︒ B .20︒ C .30︒ D .40︒【例14】 如图,O ⊙是ABC ∆的外接圆,已知60B ∠=︒,则CAO ∠的度数是( )A .15︒B .30︒C .45︒D .60︒OA【例15】 如图,AB 是O 的直径,CD 是⊙O 的弦,连接AC AD ,,若35CAB ∠=︒,则ADC ∠的度数为 .CDO A【例16】 如图,CD 为O ⊙的直径,过点D 的弦DE 平行于半径OA ,若D ∠的度数是50︒,则C ∠的度数是( ) A .25︒ B .40︒ C .30︒ D .50︒E【例17】 如图,已知O 的弦AB CD ,相交于点E ,AC 的度数为60︒,BD 的度数为100︒,则AEC ∠等于( ) A .60° B .100° C .80° D .130°C【例18】 如图,AB 是O ⊙的直径,弦PC 交OA 于点D ,弦PE 交OB 于点F ,且OC DC OF EF ==,.若C E ∠=∠,则CPE ∠=___________.O PFEDC B A【例19】 如图所示的半圆中,AD 是直径,且32AD AC ==,,则sin B 的值是________.DCA B【例20】 如图,AB 是O ⊙的直径,CD AB ⊥,设COD α∠=,则2sin 2AB AD α⋅=_____________.【例21】如图,AB为O、的延长线交于点E,若218⊙的弦,AB CD⊙的直径,CD是O,,=∠=︒AB DE E 求AOC∠的度数.E 【例22】如图所示CD是O=,求A⊙于B,且AB OC∠=︒,AE交OEOD⊙的直径,87∠的度数.D【例23】如图,已知AB为⊙O的直径,20∠=______.∠=︒,则CBEE∠=︒,50DBC【例24】如图,在O∠的度数为m,C是ACB上一点,D E⊙中,AOB、是AB上不同的两点(不与A B、两点重合),则D E∠+∠的度数为____________.【例25】如图,AB是O 的直径,点C,D,E都在O上,若C D E∠∠∠,求A B==∠∠.+AB【例26】 如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65︒.为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器 台.【例27】 如图所示,在ABC ∆中,45C ∠=︒,4AB =,则O ⊙的半径为( )B.4D.5CA【例28】 如图,ABC △的三个顶点都在O ⊙上,302cm C AB ∠=︒=,,则O ⊙的半径为______cm .【例29】 如图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.B【例30】 已知O ⊙的弦AB 长等于圆的半径,求该弦所对的圆周角.【例31】 两圆相交于A 、B ,P 是大圆O 上一点,过A 、P 和B 、P 分别作直线交小圆于C 、D ,过O 、P 作直径PE .求证:PE CD ⊥PG FEDCBA【例32】如图,O⊙分成度数比为12⊙的直径,且把O⊙与P⊙相交于B、C两点,BC是P∶的两条弧,⊙于D、E两点.A是BmC上的动点(不是B、C重合),连结AB、AC分别交P(1)当ABC∆是钝角三角形时,判断PD E∆的形状.(2)当ABC∆是直角三角形时,判断PD E∆的形状.(3)当ABC∆是锐角三角形时,判断PD E∆的形状.这种情况加以证明.【例33】已知,如图:AB为OBAC∠=︒.给⊙于点E,45=,BC交O⊙的直径,AB AC⊙于点D,AC交O出以下五个结论:①22.5=;④劣弧AE是劣弧DE的2倍;AE ECEBC∠=︒,;②BD DC=;③2⑤AE BC=.其中正确结论的序号是.【例34】如图,ABC,重合),△是O的内接三角形,点C是优弧AB上一点(点C不与A B设OABα∠=,Cβ∠=.α=︒时,求β的度数;(1)当35(2)猜想α与β之间的关系,并给予证明.∠,已知106、在弧AB上,且AD平分CAB,,求AD==AB AC 的长.【例10】 圆1S 及2S 相交于点A 及B .圆1S 的圆心O 落在2S 的圆周上,圆1S 的弦AC 交2S 于点D (如图),证明:线段OD 与BC 是互相垂直的.ABC D OS 1S 2【例36】 已知,如图M N ,为O 中劣弧AB 的三等分点,E F ,为弦AB 的三等分点,连接ME 并延长,交直线MF 于点P ,连接AP BP ,交O 于C D ,两点,求证:3AOB APB ∠=∠.PNMOFEDCBA【例37】 如图,已知AB 是O ⊙的直径,点C 是O ⊙上一点,连结BC AC 、,过点C 作直线CD AB ⊥于点D ,点E 是AB 上一点,直线CE 交O ⊙于点F ,连结BF ,与直线CD 交于点G .求证:2BC BG BF =⋅.【例38】 如图,半圆的直径10AB =,点C 在半圆上,6BC =.(1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.PEC B A【例39】 如图,已知:在O ⊙中,直径4AB =,点E 是OA 上任意一点,过E 作弦CD AB ⊥,点F 是BC 上一点,连接AF 交CE 于H ,连接AC CF BD OD 、、、. ⑴ 求证:ACH AFC ∆∆∽;⑵ 猜想:AH AF ⋅与AE AB ⋅的数量关系,并说明你的猜想; ⑶ 探究:当点E 位于何处时,:1:4AEC BOD S S ∆∆=?并加以说明.【例40】 如图,AB ,AC ,AD 是圆中的三条弦,点E 在AD 上,且AB AC AE ==.请你说明以下各式成立的理由:(1)2CAD DBE ∠=∠;(2)22AD AB BD DC -=⋅.E DCBA【例41】 在ABC ∆中,60ABC ∠=︒,点O 、H 分别是ABC ∆的外心、垂心.点D 、E 分别在边BC 、AB上,使得BD BH =,BE BO =,已知1BO =.求BD E ∆的面积.图 12HOFE DCBA2. 圆内接四边形【例42】 已知:如图,面积为2的四边形ABCD 内接于O ⊙,对角线AC 经过圆心,若45BAD ∠=︒,CD =AB 的长等于 .【例43】 如图,AB 为O 的直径,AC 交O 于E 点,BC 交O 于D 点,CD BD =,70C ∠=︒. 现给出以下四个结论:①45A ∠=︒; ②AC AB =; ③AE BE =; ④22CE AB BD ⋅=. 其中正确结论的序号是A .①②B .②③C .②④D .③④BA【例44】 已知AD 是O ⊙的直经,AB AC、是弦,若2AD AB AC =,A B C D ,,,四点构成的四边形的周长.图1【例45】 如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点P ,AB BD =,且0.6PC =,求四边形ABCD 的周长.C【例46】 如图,四边形ABCD 为正方形,O 过正方形的顶点A 和对角线的交点P ,分别交AB AD ,于点F E ,.(1)求证:DE AF =(2)若O,1AB ,求AEED的值.【例47】 如图,O ⊙外接于正方形ABCD,P 为弧AD 上一点,且1AP =,PB =PC 的长.P D CBA【例48】 圆内接四边形ABCD ,AC BD ⊥,AC 交BD 于E ,EG CD ⊥于G ,交AB 于F .求证:AF BF =.GEFABC D【例49】 圆内接矩形CEDF ,过D 作圆的切线AB ,分别与CE 、CF 的延长线相交于A 、B ,求证:33BF BC AE AC =.A3. 圆心角、弧、弦、弦心距之间的关系【例50】 在同圆中,CD 的度数小于180︒,且2AB CD =,那么弦AB 和弦CD 的大小关系为( )A .AB CD > B .AB CD =C .AB CD < D .无法确定【例51】 如图所示在O ⊙中,2AB CD =,那么( )A.2AB CD >B.2AB CD <C.2AB CD =D.AB 与2CD 的大小关系不能确定【例52】 已知AB AC 、是O ⊙的弦,AD 平分BAC ∠交O ⊙于D ,弦DE AB ∥交AC 于P ,求证:OP 平分APD ∠.【例53】 如图,过O ⊙的直径AB 上两点M N ,,分别作弦CD EF ,,若CD EF AC BF =,∥.求证:⑴ BEC ADF =;⑵AM BN =.【例54】 已知点A 、B 、C 、D 顺次在O ⊙上,AB BD =,BM AC ⊥于点M ,求证:AM DC CM =+.d cb a【例55】 在ABC ∆中,AC BC >,M 是它的外接圆上包含点C 的弧AB 的中点,AC 上的点X 使得MX AC ⊥,求证:AX XC CB =+.【例56】 如图,ABC ∆是O ⊙的内接三角形,AC BC =,D 为O ⊙中AB 上一点,延长DA 至点E ,使CE CD 、是关于x 的方程()22123412904x m x m m --+-+=的两根.⑴ 求证:AE BD =;⑵若AC BC ⊥,求证:AD BD +=.【例57】 如图,四边形ABCD 内接于圆,AB AD =,且其对角线交于点E ,点F 在线段AC 上,使得BFC BAD ∠=∠.若2BAD DFC ∠=∠,求BEDE的值.图 4F EDC BA【例58】 已知:如图,D 是Rt ABC ∆中直角边BC 上的一点,以BD 为直径的圆交斜边AB 于点E ,连结EC交此圆于点F ,BF 交AC 于点G .求证:GF CA CF EA ⋅=⋅.【例59】 如图,AB CD ,是O ⊙的两条弦,它们相交于点P ,连结AD BD 、,已知4AD BD ==,6PC =,求CD 的长.【例60】 AB 是半圆的直径,C 点在圆上,过点A 、B 分别作过C 点的切线的垂线AD 、BE ,D 、E 为垂足,求证:24DE AD DE =⋅.A【例61】 已知A D 、是一段圆弧上的两点,且在直线l 的同侧,分别过这两点作l 的垂线,垂足为B C 、,E 是BC 上一动点,连结AD AE D E 、、,且90AED ∠=︒.⑴如图⑴,如果616AB BC ==,,且:1:3BE CE =,求AD 的长; ⑵如图⑵,若点E 恰为这段圆弧的圆心,则线段AB BC CD 、、之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当A D 、分别在直线l 两侧且AB CD ≠,而其余条件不变时,线段AB BC CD 、、之间又有怎样的等量关系?请直接写出结论,不必证明.图(2)lE DCBA图(1)lEDC B A。
中考专题——圆的概念定义及习题专练
中考圆的定义及习题专练◆考点聚焦知识点直线和圆的位置关系、切线的判定和性质、三角形的内切圆、切线长定理、弦切角的定理、相交弦、切割线定理1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离): P在⊙O外,PO>r;P 在⊙O上,PO=r;P在⊙O内,PO2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。
圆也是中心对称图形,其对称中心是圆心垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧同弧所对的圆周角等于它所对的圆心角的一半直径所对的圆周角是直角。
90度的圆周角所对的弦是直径与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。
三角形的内心是三角形三条角平分线的交点三角形有外接圆,其他的图形不一定有外接圆,三角形的外接圆圆心是任意两边的垂直平分线的交点,三角形外接圆圆心叫外心。
外接圆圆心到三角形各个顶点的线段长度相等。
圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):外离P>R+r;外切P=R+r;相交R-r 内切内含圆与直线的关系:相切相交相离切线的定义及性质:经过半径的外端且垂直于这条半径的直线是圆的切线判定一条直线是圆的切线的三种方法:(1)根据切线定义判定.即与圆有唯一公共点的直线是圆的切线。
(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线.(3)根据切线的判定定理来判定.其中(2)和(3)本质相同,只是表达形式不同.解题时,灵活选用其中之一.切线长定理:是指从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线,平分两条切线的夹角弦切角定理:弦切角的度数等于它所夹的弧的圆心角度数的一半。
等于它所夹的弧的圆周角度数。
与圆相切的直线,同圆内与圆相交的弦相交所形成的夹角叫做弦切角。
相交弦定理:是指圆内的两条相交弦,被交点分成的两条线段长的积相等。
圆的概念、垂径定理练习题
圆的基本概念、垂径定理复习一、圆的相关概念知识扫描:1、圆的定义:(1 在同一平面内, 线段 OP 绕它固定的一个端点 O , 另一端点 P 所经过的叫做圆,定点 O 叫做 ,线段 OP 叫做圆的 ,以点 O 为圆心的圆记作 ,读作圆O 。
(2动点到定点等于定长的点的轨迹叫做圆。
2、弦和直径:连接圆上任意叫做弦,其中经过圆心的弦叫做 , 是圆中最长的弦。
3、弧:圆上任意叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成的两条弧,每一条弧都叫做。
小于半圆的弧叫做 , 用弧两端的字母上加上“⌒”就可表示出来,大于半圆的弧叫做 ,用弧两端的字母和中间的字母,再加上“⌒”就可表示出来。
4、等圆:半径相等的两个圆叫做等圆;也可以说能够完全重合的两个圆叫做等圆5、过一点可作过两点可作个圆; 过的三点确定一个圆。
对应练习:1、有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④长度相等的两段弧是等弧。
其中正确的有(A.4个B.3个C.3个D.2个2、已知矩形 ABCD 的边 AB=3cm, AD=4cm, 若以 A 点为圆心作⊙ A , 使 B 、C 、D 三点中至少有一个点在圆内且至少有一个点在圆外, 则⊙ A 的半径 r 的取值范围是3、如图, AB 为⊙ O 的直径, CD 为⊙ O 的弦, AB 、 CD 的延长线交于点 E ,已知 AB=2DE,∠ E=18°,求∠ AOC 的度数4、已知⊙ O 的半径为 1, 点 P 与圆心 O 的距离为 d , 且方程 x 2-2x+d=0有实数根, 则点 P 在⊙ O 的5、若线段 AB=6,则经过 A 、 B 两点的圆的半径 r 的取值范围是6、在 Rt △ ABC 中,∠ C=90°,两直角边 a 、 b 是方程 x 2-7x+12=0的两根,则△ABC 的外接圆面积为127、如图,点 A 、 D 、 G 、 M 在半圆上,四边形 ABOC , DEOF 、 HMNO 均为矩形, 设 BC=a, EF=b, NH=c,则 a , b , c 的大小关系是二、垂径定理知识扫描:1、轴对称图形:如果一个图形沿着某一条直线直线 , 直线两旁的部分能够 ,那么这个图形就叫做轴对称图形,这条直线就是对称轴。
九年级圆的知识点练习
九年级圆的知识点练习圆是初中数学中的一个重要概念,广泛应用于几何学和代数学等领域。
掌握圆的基本概念、性质以及相关公式,是学习数学的基础。
本文将通过一系列习题来帮助九年级的学生巩固和提升对圆的理解和运用能力。
I. 单项选择题1. 设O为圆心,半径为r的圆,点A、B、C分别在圆上,若角AOB的度数为60°,则弧AC的度数是:A. 30°B. 60°C. 90°D. 120°2. 在平面直角坐标系中,点A(3,4)在单位圆上,则点A对应弧的长度为:A. 3B. 4C. πD. 2π3. 已知AB是圆的直径,C是圆上一点,且∠ACB = 45°,则弧AB所对的圆心角是:A. 30°B. 45°C. 60°D. 90°4. 若圆的半径为r,则圆的周长等于:A. 2πrB. πr²C. 4πr²D. 2r5. 圆的面积公式是:A. πrB. πr²C. 2πrD. 2πr²II. 解答题1. 已知圆O的半径为8cm,点A在圆上,求弧OA所对的圆心角的度数。
解答过程:由圆的性质可知,圆心角的度数是它所对的弧所占的圆周角的比例。
而圆周角的度数是360°,弧OA所对的弧所占的圆周角的比例可以表示为 x/360°。
设弧OA的度数为x°,则x/360° = OA/2πr,代入已知数据可列出方程x/360° = 8cm / (2π×8cm)。
解方程得x = 360° × (8cm / 2π×8cm) = 45°。
所以弧OA所对的圆心角的度数为45°。
2. 两圆O₁和O₂的半径分别为6cm和8cm,且O₁O₂ = 10cm,求两圆的外切线长。
解答过程:外切线是与两圆都相切的直线,且通过两圆的外切点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆中的基本概念及定理(习题)
➢ 巩固练习
1. 一条排水管的截面如图所示,已知排水管的截面圆半径OB 为10,截面圆圆
心O 到水面的距离OC 为6,则水面宽AB 的长为( ) A .16
B .10
C .8
D .6 第2题图
2. 如图,AB 是⊙O 的弦,OD ⊥AB 于点D ,交⊙O 于点E ,则下列说法不一定
正确的是( ) A .AD =BD B .∠ACB =∠AOE C .AE ︵=BE ︵
D .OD =DE
3. 如图,AB 为⊙O 的直径,CD 为弦,AB ⊥CD ,若∠BOC =70°,则∠A 的度
数为( ) A .70°
B .35°
C .30°
D .20°
A
O
D
C
O
C
B
A
第3题图 第4题图
4. 如图,⊙O 是△ABC 的外接圆,∠BAC =60°,若⊙O 的半径OC 为2,则弦
BC 的长为( ) A .1
B
C .2
D .5. 6. E
O
D
C
B
A
A
第6题图 第7题图
7. 如图,已知⊙O 是△ABC 的外接圆,且∠C =70°,则∠OAB =
__________.
8. 如图,点O 为优弧ACB 所在圆的圆心,∠AOC =108°,若点D 在AB 的延长
线上,且BD =BC ,则∠D =_________.
O D
C B
A
第8题图 第9题图
9. 如图,以原点O 为圆心的圆交x 轴于A ,B 两点,交y 轴的正半轴于点C ,
D 为第一象限内⊙O 上的一点,若∠DAB =20°,则∠OCD =_________. 10. 某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知
AB =16 m ,半径OA =10 m ,则中间柱CD 的高度为______m .
C
D B
O
A
D
C
第10题图 第11题图
11. 如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有
圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD 为⊙O 的直径,弦AB ⊥CD 于点E ,若CE =1寸,AB =10寸,则直径CD 的长为_________.
12. 如图,点A ,B ,C ,D 在⊙O 上,点O 在∠D 的内部,若四边形OABC 为
平行四边形,则∠OAD +∠OCD =______.
13.如图,∠PAC=30°,在射线AC上顺次截取AD=3 cm,
DB=10 cm,以DB为直径作⊙O,交射线AP于E,F两点,则线段EF的长是___________cm.
➢思考小结
1.圆中处理问题的思路
①找圆心,连半径,转移边;
②遇弦,作垂线,垂径定理配合勾股定理建等式;
③遇直径,找直角,由直角,找直径;
④由弧找角,由角看弧.
2.中考数学中涉及“一半”的相关内容
①直角三角形斜边中线等于斜边的一半;
②30°所对的直角边等于斜边的一半;
③三角形的中位线平行于第三边,且等于第三边的一半;
④圆周角的度数等于它所对弧上圆心角度数的一半.
【参考答案】
➢巩固练习
1. A
2. D
3. B
4. D
5. B
6.30°
7.20°
8.27°
9.65°
10.4
11.26寸
12.60°
13.6。