初中几何半角模型
半角模型十五个结论及证明
半角模型十五个结论及证明《探索半角模型的十五个结论及证明》嗨,大家好!今天我要和大家一起探索一个超有趣的数学知识——半角模型的十五个结论及证明。
这就像是一场奇妙的数学冒险,跟我来呀!一、什么是半角模型呢?半角模型呀,就像是一个神秘的数学宝藏,藏在各种几何图形里。
想象一下,我们有一个正方形或者等腰直角三角形,然后在这个图形里出现了一个角,这个角是另外一个大角的一半,这就形成了半角模型。
比如说,在正方形里,一个角是45度,它就是直角90度的一半呢。
这时候啊,就会有好多神奇的结论冒出来。
二、结论一:线段相等我给大家举个例子哈。
在正方形ABCD中,∠EAF = 45度(E、F分别在BC、CD 上)。
我们能发现BE + DF = EF。
这是为啥呢?我们可以把△ADF绕着点A顺时针旋转90度,这样AD就和AB重合了。
旋转后的点F变成了F'。
那这个时候呀,我们就会发现△AEF和△AEF'是全等的。
为啥呢?因为AF = AF',∠EAF = ∠EAF' = 45度,AE是公共边啊。
就像两个一模一样的小积木,那EF就等于EF'了,而EF'就是BE + DF呀。
你们说神奇不神奇?这就好比是把分散的力量集中起来了,原本分开的BE和DF,通过旋转这个魔法,就变成了和EF相等的线段。
三、结论二:三角形面积关系还有一个有趣的结论呢。
三角形AEF的面积等于三角形ABE的面积加上三角形ADF的面积。
这又怎么理解呢?我们刚刚把△ADF旋转到了△ABF'的位置。
那三角形AEF的面积就等于三角形AEF'的面积啦。
而三角形AEF'的面积就是三角形ABE的面积加上三角形ABF'(也就是原来的三角形ADF)的面积。
这就好像是把两个小地块合并起来就等于一个大地块的面积一样。
四、结论三:角平分线如果我们延长CB到G,使得BG = DF,连接AG。
我们会发现AG是∠EAG的角平分线呢。
中考数学必会几何模型:半角模型
中考数学必会几何模型:半角模型半角模型是指存在两个角度是一半关系,并且这两个角共顶点的模型。
通过先旋转全等再轴对称全等,一般结论是证明线段和差关系。
常见的半角模型是90°含45°,120°含60°。
例如,已知正方形ABCD中,∠MAN=45°,它的两边分别交线段CB、DC于点M、N。
要求证:BM+DN=MN,以及作AH⊥XXX于点H,求证:AH=AB。
证明过程如下:1.延长ND到E,使DE=BM。
由四边形ABCD是正方形,得AD=AB。
在△ADE和△ABM中,有AD=AB,∠ADE=∠BAM,DE=BM,因此△ADE≌△ABM。
得AE=AM,∠XXX∠BAM。
由∠MAN=45°,得∠BAM+∠NAD=45°,因此∠MAN=∠EAN=45°。
在△AMN和△AEN中,有MA=EA,∠MAN=∠EAN,AN=AN,因此△AMN≌△AEN。
得MN=EN。
因此BM+DN=DE+DN=EN=MN。
2.由(1)得△AMN≌△XXX。
因此S△AMN=S△AEN,即AH×MN=AD×EN。
又因为MN=EN,得AH=AD。
因此AH=AB。
在等边△ABC的两边AB、AC上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC。
要探究当M、N分别在线段AB、AC上移动时,BM、NC、MN之间的数量关系。
1) 当DM=DN时,BM、NC、MN之间的数量关系是BM+NC=MN。
2) 猜想:当DM≠DN时,仍有BM+NC=MN。
证明如下:延长AC至E,使CE=BM,连接DE。
因为BD=CD,且∠BDC=120°,所以△BDC是等边三角形。
因此BD=DC=CE=BM,得△BDE是等边三角形,∠BED=60°。
因此△DEN和△DME是等腰三角形,得DN=EN,DM=EM。
初中几何|半角模型
初中几何|半角模型
半角模型是初中学习几何最常见的一个模型,这个模型常用的辅助线思维是旋转,而旋转又是学生几何思维中最不习惯的,那么我们如何进行利用呢?今天具体的进行讲解。
一、半角模型特征
1、共端点的等线段;
2、共顶点的倍半角;
二、半角模型辅助线的作法
1、旋转的方法:以公共端点为旋转中心,相等的两条线段的夹角为旋转角;
2、旋转的条件:具有公共端点的等线段;
3、旋转的目的:将分散的条件集中,隐蔽的关系显现。
三、等腰直角三角形的半角模型(大角夹小角)
如图,在△ABC中,AB=AC,∠BAC=90°,点D、E在边BC上,且∠EAD=45°.
(1)求证:△BAE∽△ADE∽△CDA
(2)求证:BD2+CE2=DE2
四、等腰直角三角形的半角模型(拓展)
1、如图,在△ABC中,AB=AC,∠BAC=90°,点D在边BC上,点E在BC的延长线上,且∠EAD=45°.求证:BD2+CE2=DE2
五、一般三角形的半角模型
六、正方形中半角模型相关结论(大角夹小角)
七、正方形中半角模型(拓展)。
第四讲 半角模型
2021.1
【小结】1.辅助线的实质:中间的“半角”等于旁边两小角之和,通过旋转变换,将两小角拼凑成与“半 角”相等的角,构造出“SAS”型全等三角形.
2.与“补短法”有异曲同工之妙,但辅助线的描述不同,证明过程也有细节的差异:若延长 CB 到 G,使 BG=DF,不必证 G,B,C 共线,需先证△AEG≌△AEF;若旋转△ADF(或△ABE),需强调旋转三要素, 且必须先证 G,B,C 共线.
初一寒假“魔法几何”讲义
第四讲 半角模型
内部资料,请勿外传
模型概述 过多边形的某个顶点引两条射线,使这两条射线的夹角为该顶角的一半. 思想方法 通过旋转变换构造全等三角形,实现线段的转化. 基本模型 一、正方形含半角 如图,在正方形 ABCD 中,E,F 分别是 BC,CD 边上的点,∠EAF=45°,证明 以下结论: (1)EF=BE+DF; (2)△CEF 的周长是正方形边长的 2 倍; (3)FA 平分∠DFE,EA 平分∠BEF; (4)S△AEF=S△AEB+S△AFD. 分析:90°角中含 45°角,符合半角模型,通过旋转构造全等三角形,实现线段和 角的转化。 解答:
(1)如图 1,当点 M,N 分别在边 AB,AC 上,且 DM=DN 时,则 BM,NC,MN 之间的数量关系是
;此时 Q = L
(直接写出结果).
(2)如图 2,当点 M,N 分别在边 AB,AC 上,且 DM=DN 时,猜想 BM,NC,MN 之间的数量关系
并以证明.
(3)如图 3,当 M,N 分别在边 AB,CA 的延长线上时,猜想 BM,NC,MN 之间的数量关系并加以
5
初一寒假“魔法几何”讲义
内部资料,请勿外传
中考真题 1.如图,已知△ABC,∠ACB=90°,AC=BC,点 E,F 在 AB 上,∠ECF=45°. (1)求证:△ACF≌△BEC. (2)设△ABC 的面积为 S,求证:AF·BE=2S. (3)试判断以线段 AE,EF,FB 为边的三角形的形状并给出证明.
九年级中考几何模型之半角模型详解
中考几何模型之半角模型【模型由来】半角模型是指:共顶点的两个一大一小的角,其中小角是大角的一半。
如下图中:若小角∠EAD等于大角∠BAC的一半,我们习惯上称之为“半角模型”。
【模型思想】通过旋转变化后构造全等三角形,实线边的转化。
【基本模型】类型一、90°中夹45°(正方形中的半角模型)条件:在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°,BD为对角线,交AE于M点,交AF于N点。
结论①:图1、2中,EF=BE+FD;证明:如图3中,将AF绕点A顺时针旋转90°,F点落在F’处,连接BF’,∴∠EAF’=90°-∠EAF=90°-45°=45°=∠EAF,且AE=AE,AF=AF’,∴△FAE≌△F’AE(SAS),∴EF=EF’,又∠D=∠ABF’=90°,∠ABE=90°,∴∠ABE+∠ABF’=90°+90°=180°,∴F’、B、E三点共线,∴EF’=BE+BF’=BE+DF。
结论②:图2中MN²=BM²+DN²;证明:如图4中,将AN绕点A顺时针旋转90°,N点落在N’处,连接AN’、BN’、MN’,∴∠N’AM=90°-∠EAF=90°-45°=45°=∠MAN,且AM=AM,AN=AN’,∴△MAN’≌△MAN(SAS),∴MN=MN’,又∠ADN=45°=∠ABN ’,∠ABD=45°,∴∠MBN ’=∠ABD+∠ABN ’=45°+45°=90°,∴在Rt △MBN ’中,MN ’²=BM ²+BN ’²,即MN ²=BM ²+BN ’²。
结论③:图1、2中EA 平分∠BEF ,FA 平分∠DFE 。
(完整word版)初中几何-半角模型
归纳一种几何模型:半角模型
特点:
过等腰△ABC(AB=AC)顶角顶点(设顶角为A),引两条射线且它们的夹角为A/2;这两条射线与过底角顶点的相关直线交于两点M、N,则BM,MN,NC之间必存在固定关系。
这种关系仅与两条相关直线及顶角A相关.
解决方法:
以点A为中心,把△ACN(顺时针或逆时针)旋转角A度,至△ABN',连接MN';
结论:
1:△AMN全等于△AMN',MN=MN';
2:关注BM,MN',N'B(=NC),
若共线,则存在x+y=z型的关系;
若不共线,则△BMN'中,∠MBN'必与∠A相关,于是由勾股定理(有时需要作垂线)或直接用余弦定理可得
三者关系.
应用环境:(限于初中)
1:顶角为特殊角的等腰三角形,如顶角为30°、45°60°、75°或它们的补角、90°;
2:正方形、菱形等也能产生等腰三角形;
3:过底角顶点的两条相关直线:底边、底角两条平分线、腰上的两高、底角的邻补角的两条角平分线,底角的邻余角另外两边等;正方形或棱形的另外两边;
4:此等腰三角形的相关弦.
以上条件可以形成数百种题目!而解决方法均可以运用此方法.。
初中几何模型:半角模型分析
初中几何模型—半角模型分析归纳一种几何模型:半角模型特点:过等腰△ABC(AB=AC)顶角顶点(设顶角为A),引两条射线且它们的夹角为A/2;这两条射线与过底角顶点的相关直线交于两点M、N,则BM,MN,NC之间必存在固定关系。
这种关系仅与两条相关直线及顶角A相关。
解决方法:以点A为中心,把△ACN(顺时针或逆时针)旋转角A度,至△ABN',连接MN';结论:1:△AMN全等于△AMN',MN=MN'; 2:关注BM,MN',N'B(=NC),若共线,则存在x+y=z型的关系;若不共线,则△BMN'中,∠MBN'必与∠A相关,于是由勾股定理(有时需要作垂线)或直接用余弦定理可得三者关系.应用环境:(限于初中)1:顶角为特殊角的等腰三角形,如顶角为30°、45°60°、75°或它们的补角、90°;2:正方形、菱形等也能产生等腰三角形;3:过底角顶点的两条相关直线:底边、底角两条平分线、腰上的两高、底角的邻补角的两条角平分线,底角的邻余角另外两边等;正方形或棱形的另外两边;4:此等腰三角形的相关弦。
以上条件可以形成数百种题目!而解决方法均可以运用此方法.例题分析:已知如图:①∠2=12∠AOB;②OA=OB.OAB EF123连接FB,将△FOB绕点O旋转至△FOA的位置,连接F′E,FE,可得△OEF≌△OEF′4321F'FE BAO模型分析∵△OBF≌△OAF′,∴∠3=∠4,OF=OF′.∴∠2=12∠AOB,∴∠1+∠3=∠2∴∠1+∠4=∠2。
中考数学必会几何模型:半角模型
半角模型已知如图:①∠2=12∠AOB;②OA=OB.OABEF123连接FB,将△FOB绕点O旋转至△FOA的位置,连接F′E,FE,可得△OEF≌△OEF′4321F'FE BAO模型分析∵△OBF≌△OAF′,∴∠3=∠4,OF=OF′.∴∠2=12∠AOB,∴∠1+∠3=∠2∴∠1+∠4=∠2又∵OE是公共边,∴△OEF≌△OEF′.(1)半角模型的命名:存在两个角度是一半关系,并且这两个角共顶点;(2)通过先旋转全等再轴对称全等,一般结论是证明线段和差关系;(3)常见的半角模型是90°含45°,120°含60°.模型实例例1 已知,正方形ABCD中,∠MAN=45°,它的两边分别交线段CB、DC于点M、N.(1)求证:BM+DN=MN.(2)作AH⊥MN于点H,求证:AH=AB.证明:(1)延长ND 到E ,使DE=BM ,∵四边形ABCD 是正方形,∴AD=AB . 在△ADE 和△ABM 中, ⎪⎩⎪⎨⎧=∠=∠=BM DE B ADE AB AD∴△ADE ≌△ABM .∴AE=AM ,∠DAE=∠BAM ∵∠MAN=45°,∴∠BAM+∠NAD=45°. ∴ ∠MAN=∠EAN=45°. 在△AMN 和△AEN 中, ⎪⎩⎪⎨⎧=∠=∠=AN AN EAN M AN EA M A∴△AMN ≌△AEN . ∴MN=EN .∴BM+DN=DE+DN=EN=MN .(2)由(1)知,△AMN ≌△AEN . ∴S △AMN =S △AEN .即EN AD 21MN AH 21⋅=⋅.又∵MN=EN , ∴AH=AD . 即AH=AB .例2 在等边△ABC的两边AB、AC上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在线段AB、AC上移动时,BM、NC、MN之间的数量关系.(1)如图①,当DM=DN时,BM、NC、MN之间的数量关系是_______________;(2)如图②,当DM≠DN时,猜想(1)问的结论还成立吗?写出你的猜想并加以证明.图①图②解答(1)BM、NC、MN之间的数量关系是BM+NC=MN.(2)猜想:BM+NC=MN.证明:如图③,延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=120°,∴∠DBC=∠DCB=30°.又∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∴∠MBD=∠NCD=90°.在△MBD与△ECD中,∵DB=DC,∠DBM=∠DCE=90°,BM=CE,∴△MBD≌△ECD(SAS).∴DM=DE,∠BDM=∠CDE.∴∠EDN=∠BDC-∠MDN=60°.在△MDN和△EDN中,∵MD=ED,∠MDN=∠EDN=60°,DN=DN,∴△MDN≌△EDN(SAS).∴MN=NE=NC+CE=NC+BM.图③例3 如图,在四边形ABCD 中,∠B+∠ADC=180°,AB=AD ,E 、F 分别是BC 、CD 延 长线上的点,且∠EAF=21∠BAD .求证:EF=BE-FD .证明:在BE 上截取BG ,使BG=DF ,连接AG . ∵∠B+∠ADC=180°,∠ADF+∠ADC=180°, ∴∠B=∠ADF .在△ABG 和△ADF 中, ⎪⎩⎪⎨⎧=∠=∠=DF BG ADF B AD AB∴△ABG ≌△ADF (SAS ). ∴∠BAG=∠DAF ,AG=AF . ∴∠GAF=∠BAD .∴∠EAF=21∠BAD=21∠GAF . ∴∠GAE=∠EAF . 在△AEG 和△AEF 中, ⎪⎩⎪⎨⎧=∠=∠=AE AE FAE GAE AF AG∴△AEG ≌△AEF (SAS ). ∴EG=EF .∴EF=BE-FD .跟踪练习:1.已知,正方形ABCD ,M 在CB 延长线上,N 在DC 延长线上,∠MAN=45°. 求证:MN=DN-BM .【答案】证明:如图,在DN 上截取DE=MB ,连接AE , ∵四边形ABCD 是正方形, ∴AD=AB ,∠D=∠ABC=90°. 在△ABM 和△ADE 中, ⎪⎩⎪⎨⎧=∠=∠=DE BM ABM D AB AD∴△ABM ≌△ADE .∴AM=AE , ∠MAB=∠EAD . ∵∠MAN=45°=∠MAB+∠BAN , ∴∠DAE+∠BAN=45°. ∴∠EAN=90°-45°=45°=∠MAN . 在△AMN 和△AEN 中, ⎪⎩⎪⎨⎧=∠=∠=AN AN EAN M AN AE AM∴△ABM ≌△ADE .∵DN-DE=EN.∴DN-BM=MN.2.已知,如图①在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°,探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D使问题得到解决.请你参考小明的思路探究并解决以下问题:(1)猜想BD、DE、EC三条线段之间的数量关系式,并对你的猜想给予证明;(2)当动点E在线段BC上,动点D运动到线段CB延长线上时,如图②,其他条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.图①图②【答案】解答:(1)猜想:DE2=BD2+EC2.证明:将△AEC绕点A顺时针旋转90°得到△ABE′,如图①∴△ACE≌△ABE′.∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB.在Rt△ABC中,∵AB=AC,∴∠ABC=∠ACB=45°.∴∠ABC+∠ABE′=90°,即∠E′BD=90°.∴E′B2+BD2=E′D2.又∵∠DAE=45°,∴∠BAD+∠EAC=45°.∴∠E′AB+∠BAD=45°,即∠E′AD=45°.∴△AE′D≌△AED.∴DE=D E′.∴DE2=BD2+EC2.图①(2)结论:关系式DE2=BD2+EC2仍然成立.证明:作∠FAD=∠BAD,且截取AF=AB,连接DF,连接FE,如图②∴△AFD≌△ABD.∴FD=DB,∠AFD=∠ABD.又∵AB=AC,∴AF=AC.∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB )=90°-(45°-∠DAB)=45°+∠DAB,∴∠FAE=∠CAE.又∵AE=AE,∴△AFE≌△ACE.∴FE=EC,∠AFE=∠ACE=45°.∠AFD=∠ABD=180°-∠ABC=135°.∴∠DFE=∠AFD-∠AFE=135°-45°=90°.在Rt△DFE中,DF2+FE2=DE2.即DE2=BD2+EC2.图②3.已知,在等边△ABC中,点O是边AC、BC的垂直平分线的交点,M、N分别在直线AC、BC上,且∠MON=60°.(1)如图①,当CM=CN时,M、N分别在边AC、BC上时,请写出AM、CN、MN三者之间的数量关系;(2)如图②,当CM≠CN时,M、N分别在边AC、BC上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;(3)如图③,当点M在边AC上,点N在BC的延长线上时,请直接写出线段AM、CN、MN三者之间的数量关系.图①图②图③【答案】结论:(1)AM=CN+MN;如图①图①(2)成立;证明:如图②,在AC上截取AE=CN,连接OE、OA、OC.∵O是边AC、BC垂直平分线的交点,且△ABC为等边三角形,∴OA=OC,∠OAE=∠OCN=30°,∠AOC=120°.又∵AE=CN,∴△OAE≌△OCN.∴OE=ON,∠AOE=∠CON.∴∠EON=∠AOC=120°.∵∠MON=60°,∴∠MOE=∠MON=60°.∴△MOE≌△MON.∴ME=MN.∴AM=AE+ME=CN+MN.图②(3)如图③,AM=MN-CN.图③4.如图,在四边形ABCD 中,∠B+∠D=180°,AB=AD ,E 、F 分别是线段BC 、CD 上的 点,且BE+FD=EF .求证:∠EAF=21∠BAD .【答案】证明:如图,把△ADF 绕点A 顺时针旋转∠DAB 的度数得到△ABG ,AD 旋转到AB ,AF 旋转到AG ,∴AG=AF ,BG=DF ,∠ABG=∠D ,∠BAG=∠DAF . ∵∠ABC+∠D=180°, ∴∠ABC+∠ABG=180°. ∴点G 、B 、C 共线. ∵BE+FD=EF , ∴BE+BG=GE=EF . 在△AEG 和△AEF 中, ⎪⎩⎪⎨⎧===EF EG AE AE AF AG ∴△AEG ≌△AEF . ∴∠EAG=∠EAF .∴∠EAB+∠BAG=∠EAF . 又∵∠BAG=∠DAF ,∴∠EAB+∠DAF=∠EAF . ∴∠EAF=21∠BAD .5.如图①,已知四边形ABCD ,∠EAF 的两边分别与DC 的延长线交于点F ,与CB 的延长线交于点E ,连接EF . (1)若四边形ABCD 为正方形,当∠EAF =45°时,EF 与DF 、BE 之间有怎样的数量关系?(只需直接写出结论)(2)如图②,如果四边形ABCD 中,AB =AD ,∠ABC 与∠ADC 互补,当∠EAF =12∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出结论并证明.(3)在(2)中,若BC =4,DC =7,CF =2,求△CEF 的周长(直接写出结论)解答:(1)EF=DF-BE (2)EF=DF-BE证明:如图,在DF 上截取DM=BE ,连接AM , ∵∠D+∠ABC=∠ABE+∠ABC=180° ∵D=ABE ∵AD=AB在△ADM 和△ABE 中,DM BE D ABE AD AB =⎧⎪∠=∠⎨⎪=⎩∴△ADM ≌△ABE∴AM=AE ,∠DAM=∠BAE ∵∠EAF=∠BAE+∠BAF=12∠BAD ,11∴∠DAM+∠BAF=12∠BAD ∴∠MAF=12∠BAD ∴∠EAF=∠MAF在△EAF 和△MAF 中AE AM EAF MAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△EAF ≌△MAF∴EF=MF∵MF=DF-DM=DF-BE ,∴EF=DF-BE(3)∵EF=DF-BE∴△CEF 的周长=CE+EF+FC=BC+BE+DC+CF-BE+CF =BC+CD+2CF=15。
初中数学经典几何模型07-半角模型在三角形中应用(含答案)
初中数学经典几何模型专题07 半角模型在三角形中应用【专题说明】半角模型应用比较广泛:理解半角模型的定义,掌握正方形背景中半角模型的模型的应用,掌握等腰直角三角形背景中半角模型的应用尤为重要。
【知识总结】过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
解题技巧:在图1中,△AEB由△AND旋转所得,可得△AEM≌△AMN,∴BM+DN=MN,∠AMB=∠AMN,AB=AH△CMN的周长等于正方形周长的一半在图2中将△ABC旋转至△BEF,易得△BED≌△BCD同理得到边角之间的关系;总之:半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论.1.如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,则BE+DF=EF.2.如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,则AE平分∠BEF,AF平分∠DF E.3.如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,则.点H,则AH=AB.5.如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º.点M、N,则7.如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则△BME△DFN△AMN△BAN△DMA△A FE.8.如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N点M、N,则.10.如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则.11.如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则点M、N,则当BE=DF时,EF.【基础训练】1、正方形ABCD中,E是CD边上一点.将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示,观察可知:与DE相等的线段是______,∠AFB=_______.如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠P AQ=45°,试通过旋转的方式说明:DQ+BP=PQ.2、如图,已知△ABC中,∠BAC=90°,AB=AC,D,E是BC边上的点,将△ABD绕点A旋转,得到△AC D′,当∠DAE=45°时,求证:DE=D′E;在(1)的条件下,猜想:BD2,DE2,CE2有怎样的数量关系?请写出,并说明理由.3、如图,E、F是正方形ABCD的边AD、CD上的点,连BE、EF、BF,BF平分∠EBC求证:BE=AE+CF4、正方形ABCD中,E,F分别是边BC,CD上的点,且∠EAF=45°,将△ABE绕点A逆时针旋转90°,得到△ADG,求证:EF=BE+DF.5、在等边△ABC的两边AB,AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB,AC上移动时,BM, NC,MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系,如图1,△ABC是周长为9的等边三角形,则△AMN的周长Q=_______=_______如图2,当点M,N边AB,AC上,且DM=DN时,BM,NC,MN之间的数量关系是______;QL点M,N在边AB,AC上,且当DM≠DN时,猜想(2)问的两个结论还成立吗?写出你的猜想并加以证明.【巩固提升】1、已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,若AB=8,CD=2,求OH的长;(2)将△COD绕点O旋转一定的角度到图2所示位置时,线段OH与AD有怎样的数量和位置关系,并证明你的结论.2、(1)问题发现如图1,在△OAB中,OA=OB,∠AOB=50°,D是OB上一点,将点D绕点O顺时针旋转50°得到点C,则AC与BD的数量关系是.(2)类比探究如图2,将∠COD绕点O在平面内旋转,(1)中的结论是否成立,并就图2的情形说明理由.(3)拓展延伸∠COD绕点O在平面内旋转,当旋转到OD∥AB时,请直接写出∠BOD度数.3、如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转a角(0°<a<180°),得到△AB′C′(如图2),连接DB',EC'.(1)探究DB'与EC'的数量关系,并结合图2给予证明;(2)填空:①当旋转角α的度数为时,则DB'∥AE;②在旋转过程中,当点B',D,E在一条直线上,且AD=时,此时EC′的长为.4、如图,△ABC是等腰直角三角形,∠ACB=90°,D为AC延长线上一点,连接DB,将DB绕点D逆时针旋转90°,得到线段DE,连接AE.(1)如图①,当CD=AC时,线段AB、AE、AD三者之间的数量关系式是AB+AE=AD.(2)如图②,当CD≠AC时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由.(3)当点D在射线CA上时,其他条件不变,(1)中结论是否成立?若成立,请说明理由;若不成立,请直接写出线段AB、AE、AD三者之间的数量关系式.5、如图(1),将正方形ABCD与正方形GECF的顶点C重合,当正方形GECF的顶点G在正方形ABCD的对角线AC上时,的值为.如图(2),将正方形CEGF绕点C顺时针方向旋转a角(0°<a<45°),猜测AG与BE之间的数量关系,并说明理由.如图(3),将正方形CEGF绕点C顺时针方向旋转a角(45°<a<90°)使得B、E、G三点在一条直线上,此时tan∠GAC=,AG=6,求△BCE的面积.6、已知,在R t△ACB中,∠ACB=90°,AC=BC,D是AB上一点(不与点A.B重合),连接CD,将CD绕点C逆时针旋转90°得到CE,连接BE.(1)如图1,求证:∠EBD=90°(2)如图2,连接DE与BC相交于点F,G在AC上,连接DG.若AG:CG=7:5.BD=2AD,在不添加任何辅助线的情况下,请直接写出图2中所有正切值为的角.7、已知:在△ABC中,∠BAC=2∠B,AD⊥BC,点D为BC的中点.(1)如图1,求∠B的度数;(2)如图2,点E为AC上一点,连接DE并延长至点F,连接CF,过点C作CH⊥DF,垂足为点H,若DH=CF+HF,探究∠F与∠FDC之间的数量关系,并加以证明;(3)如图3,在(2)的条件下,在AD上取点P,连接BP,使得∠BPD=∠F,将线段EF沿着EC折叠并延长交BC于点G,当BP:PD=12:5,GC﹣PD=3时,求GC的长.专题07 半角模型在三角形中应用答案【专题说明】半角模型应用比较广泛:理解半角模型的定义,掌握正方形背景中半角模型的模型的应用,掌握等腰直角三角形背景中半角模型的应用尤为重要。
中考数学半角模型专题知识解读
半角模型专题知识解读【专题说明】角含半角模型,顾名思义即一个角包含着它的一半大小的角。
它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。
解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。
【方法技巧】类型一:等腰直角三角形角含半角模型(1)如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°,则:BD+CE=DE.旋转法翻折法作法1:将△ABD旋转90°作法2:分别翻折△ABD,△ACE(2)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC上,点E在BC延长线上,且∠DAE=45°,则:BD+CE=DE.(3)如图,将等腰直角三角形变成任意等腰三角形时,亦可以进行两种方法的操作处理..任意等腰三角形类型二:等边三角形中120°含60°的半角模型作辅助线:延长FC到G,使得CG=BE,连接DG结论:▲DEF≌▲DGF;EF=BE+CF类型三:正方形中角含半角模型(1)如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连接EF,过点A作AG⊥于EF于点G,则:EF=BE+DF,AG=AD.图示(1)作法:将△ABE绕点A逆时针旋转90°(2)如图,在正方形ABCD中,点E,F分别在边CB,DC的延长线上,∠EAF=45°,连接EF,则:EF=DF-BE.图示(2)作法:将△ABE绕点A逆时针旋转90°(3)如图,将正方形变成一组邻边相等,对角互补的四边形,在四方形ABCD中,AB=AD,∠BAD+∠C=180°,点E,F分别在边BC,CD上,∠EAF=∠BAD,连接EF,则:EF=BE+DF.图示(3)作法:将△ABE绕点A逆时针旋转∠BAD的大小【典例分析】【类型一:等腰直角三角形角含半角模型】【典例1】如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,若将△ABC绕着点C 逆时针旋转90°得△EDC.(1)求证:∠ADC+∠CDE=180°;(2)若AB=3cm,AC=,求AD的长;(3)在(2)的条件下,求四边形ABCD的周长和面积.【解答】(1)证明:如图,在四边形ABCD中,∠A=∠BCD=90°,则∠B+∠ADC=180°.∵将△ABC绕着点C逆时针旋转90°得△EDC,∴△ABC≌△EDC,∴∠CDE=∠CBA,∴∠ADC+∠CDE=180°;(2)解:∵将△ABC绕着点C逆时针旋转90°得△EDC,∴AC=EC=,AB=ED=3cm,∠ACE=90°,∴AE=AC=8cm,∴AD=AE﹣EC=AE﹣AB=5cm;(3)解:如图,连接BD.由(2)知,AD=5cm.则在直角△ABD中,由勾股定理得到:BD==.又∵BC=CD,∠BCD=90°,∴BC=CD==,∴四边形ABCD的周长为:AB+AD+2BC=3+5+2=8+2;∵△ABC≌△EDC,∴四边形ABCD的面积=△ACE的面积=AC•CE=×4×4=16(cm2).综上所述,四边形ABCD的周长为(8+2)cm,面积为16cm2.【变式1-1】如图,Rt△ABC中,∠BAC=90°,AB=AC,D、E为BC边上两点,∠DAE =45°,过A点作AF⊥AE,且AF=AE,连接DF、BF.下列结论:①△ABF≌△ACE,②AD平分∠EDF;③若BD=4,CE=3,则AB=6;④若AB=BE,S△ABD=,其中正确的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:∵AF⊥AE,∴∠F AE=90°,∵∠BAC=90°,∴∠F AE﹣∠BAE=∠BAC﹣∠BAE,∴∠F AB=∠EAC,∵AB=AC,AF=AE,∴△ABF≌△ACE(SAS),故①正确;∵∠DAE=45°,∠F AE=90°,∴∠F AD=∠F AE﹣∠DAE=45°,∴∠F AD=∠DAE,∵AD=AD,AF=AE,∴△F AD≌△EAD(SAS),∴∠FDA=∠EDA,∴AD平分∠EDF,故②正确;在Rt△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AB,∵△ABF≌△ACE,∴∠ABF=∠C=45°,BF=CE=3,∴∠FBD=∠ABF+∠ABD=90°,∴DF===5,∵△F AD≌△EAD,∴FD=ED=5,∴BC=BD+DE+CE=4+5+3=12,∴AB=6,故③正确;∵AB=BE,∠ABE=45°,∴∠BAE=∠BEA=67.5°,∵∠DAE=45°,∴∠ADE=180°﹣∠DAE﹣∠AED=67.5°,∴∠ADB=∠AEC,∵AB=AC,∠ABE=∠C=45°,∴△ABD≌△ACE(AAS),∴BD=CE,∵BF=CE,∴BD=BF,∵∠FBD=90°,∴DF=BD,∴DE=BD,∴S△ADE=S△ABD,故④错误;综上所述,正确的个数有3个,故选:C【变式1-2】如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC 上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.【解答】解:将△AMB逆时针旋转90°到△ACF,连接NF,∴CF=BM,AF=AM,∠B=∠ACF.∠2=∠3,∵△ABC是等腰直角三角形,AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠MAN=45°,∴∠NAF=∠1+∠3=∠1+∠2=90°﹣45°=45°=∠NAF,在△MAN和△F AN中∴△MAN≌△F AN,∴MN=NF,∵∠ACF=∠B=45°,∠ACB=45°,∴∠FCN=90°,∵CF=BM=1,CN=3,∴在Rt△CFN中,由勾股定理得:MN=NF==,故答案为:.【类型二:等边三角形中120°含60°的半角模型】【典例4】已知在△ABC中,AB=AC,D,E是BC边上的点,将△ABD绕点A旋转,得到△ACD',连接D'E.(Ⅰ)如图1,当∠BAC=120°,∠DAE=60°时,求证:DE=D'E;(Ⅱ)如图2,当DE=D'E时,请写出∠DAE与∠BAC的数量关系,并说明理由.(Ⅲ)当∠BAC=90°,DE=D'E,EC=CD'时,请直接写出BD与DE的数量关系(不必说明理由).【解答】(I)证明:∵将△ABD绕点A旋转,得到△ACD',∴AD=AD',∠CAD'=BAD,∵∠BAC=120°,∠DAE=60°,∴∠D'AE=∠CAD'+∠CAE=∠BAD+∠CAE=∠BAC﹣∠DAE=120°﹣60°=60°,∴∠DAE=∠D'AE,在△ADE与△AD'E中,,∴△ADE≌△AD'E(SAS),∴DE=D'E;(Ⅱ)解:∠DAE=,理由如下:在△ADE与△AD'E中,,∴△ADE≌△AD'E(SSS),∴∠DAE=∠D'AE,∴∠BAD+∠CAE=∠CAD'+∠CAE=∠D'AE=∠DAE,∴∠DAE=;(Ⅲ)解:DE=BD,理由如下:∵∠BAC=90°,AB=AC,∴∠B=∠ACD=45°,∴∠ECD=90°,∵EC=CD',∴△ECD'是等腰直角三角形,∴D'E=CD'=BD,∵DE=D'E,∴DE=BD.【变式4-1】(2017秋•锦江区期末)在△ABC中,AB=AC,点E,F是边BC所在直线上与点B,C不重合的两点.(1)如图1,当∠BAC=90°,∠EAF=45°时,直接写出线段BE,CF,EF的数量关系;(不必证明)(2)如图2,当∠BAC=60°,∠EAF=30°时,已知BE=3,CF=5,求线段EF的长度;(3)如图3,当∠BAC=90°,∠EAF=135°时,请探究线段CE,BF,EF的数量关系,并证明.【解答】解:(1)结论:EF2=BE2+CF2.理由:∵∠BAC=90°,AB=AC,∴将△ABE绕点A逆时针旋转90°得△ACG,连接FG,如图1中,∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;又∵∠EAF=45°,而∠EAG=90°,∴∠GAF=90°﹣45°=45°,∴∠EAF=∠GAF,∵AF=AF,AE=AG,∴△AEF≌△AGF(SAS),∴EF=FG,∴EF2=BE2+CF2.(2)如图2中,∵∠BAC=60°,AB=AC,∴将△ABE绕点A逆时针旋转60°得△ACG,连接FG,作GH⊥BC交BC的延长线于H.∵∠BAC=60°,∠EAF=30°,∴∠BAE+∠CAF=∠CAG+∠CAF=∠F AG=30°,∴∠EAF=∠F AG,∵AF=AF,AE=AG,∴△AEF≌△AGF(SAS),∴EF=FG,在Rt△CGH中,∵CG=BE=3,∠GCH=60°,∴∠CGH=30°,∴CH=CG=,GH=CH=,在Rt△FGH中,FG===7,∴EF=FG=7.(3)结论:EF2=EC2+BF2理由:如图3中,将△AEC绕点A顺时针旋转90°,得到△ABG,连接FG.∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵△ACE≌△ABG,∴∠CAE=∠BAG,EC=BG,∠ACE=∠ABG=45°,∴∠CAB=∠EAG=90°,∠GBF=90°,∴∠F AG=360°﹣∠EAF﹣∠EAG=360°﹣135°﹣90°=135°,∴∠F AE=∠F AG,∵F A=F A,AG=AE,∴△F AE≌△F AG(SAS),∴EF=FG,在Rt△FBG中,∵∠FBG=90°,∴FG2=BG2+BF2,∵FG=EF,BG=EC,∴EF2=EC2+BF2.【变式4-2】等边△ABC,D为△ABC外一点,∠BDC=120°,BD=DC,∠MDN=60°,射线DM与直线AB相交于点M,射线DN与直线AC相交于点N,①当点M、N在边AB、AC上,且DM=DN时,直接写出BM、NC、MN之间的数量关系.②当点M、N在边AB、AC上,且DM≠DN时,猜想①中的结论还成立吗?若成立,请证明.③当点M、N在边AB、CA的延长线上时,请画出图形,并写出BM、NC、MN之间的数量关系.【解答】解①BM、NC、MN之间的数量关系BM+NC=MN.②猜想:结论仍然成立.证明:在CN的反向延长线上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,③证明:在CN上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,∴DM=DM1,可证∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N,∴NC﹣BM=MN.【类型三:正方形中角含半角模型】【典例2】(2022春•西山区校级月考)如图,已知正方形ABCD,点E、F分别是AB、BC 边上,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:△EDF≌△MDF;(2)若正方形ABCD的边长为5,AE=2时,求EF的长?【解答】(1)证明:∵四边形ABCD是正方形,∴∠A=∠B=∠DCF=90°,AD=AB=BC=5,由旋转得:∠A=∠DCM=90°,DE=DM,∠EDM=90°,∴∠DCF+∠DCM=180°,∴F、C、M三点在同一条直线上,∵∠EDF=45°,∴∠FDM=∠EDM﹣∠EDC=45°,∴∠EDF=FDM,∵DF=DF,∴△EDF≌△MDF(SAS);(2)设CF=x,∴BF=BC﹣CF=5﹣x,由旋转得:AE=CM=2,∴BE=AB﹣AE=3,FM=CF+CM=2+x,∵△EDF≌△MDF,∴EF=FM=2+x,在Rt△EBF中,BE2+BF2=EF2,∴9+(5﹣x)2=(2+x)2,∴x=,∴EF=2+x=,∴EF的长为.【变式2-1】(2022春•路北区期末)如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.(1)求证:GE=FE;(2)若DF=3,求BE的长为.【解答】(1)证明:∵将△ADF绕点A顺时针旋转90°得到△ABG,∴△ADF≌△ABG,∴DF=BG,∠DAF=∠BAG,∵∠DAB=90°,∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠BAG+∠EAB=45°,∴∠EAF=∠EAG,在△EAG和△EAF中,,∴△EAG≌△EAF(SAS),∴GE=FE,(2)解:设BE=x,则GE=BG+BE=3+x,CE=6﹣x,∴EF=3+x,∵CD=6,DF=3,∴CF=3,∵∠C=90°,∴(6﹣x)2+32=(3+x)2,解得,x=2,即BE=2,【变式2-2】(2021秋•山西期末)阅读以下材料,并按要求完成相应的任务:如图3,在四边形ABCD中,AB=AD,∠B=∠D=90°,∠BAD=120°,以A为顶点的∠EAF=60°,AE、AF与BC、CD边分别交于E、F两点.请参照阅读材料中的解题方法,你认为结论EF=BE+DF是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.【解答】解:成立.证明:将△ADF绕点A顺时针旋转120°得到△ABM,∴△ABM≌△ADF,∠ABM=∠D=90°,∠MAB=∠F AD,AM=AF,MB=DF,∴∠MBE=∠ABM+∠ABE=180°,∴M、B、E三点共线,∴∠MAE=∠MAB+∠BAE=∠F AD+∠BAE=∠BAD﹣∠EAF=60°,∴∠MAE=∠F AE,∵AE=AE,AM=AF,∴△MAE≌△F AE(SAS),∴ME=EF,∴EF=ME=MB+BE=DF+BE.【典例3】已知正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,AH=6,求NH的长.(可利用(2)得到的结论)【解答】解:(1)∵正方形ABCD,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABM和Rt△ADN中,,∴Rt△ABM≌Rt△ADN(SAS),∴∠BAM=∠DAN,AM=AN,∵∠MAN=45°,∴∠BAM+∠DAN=45°,∴∠BAM=∠DAN=22.5°,∵∠MAN=45°,AM=AN,AH⊥MN∴∠MAH=∠NAH=22.5°,∴∠BAM=∠MAH,在Rt△ABM和Rt△AHM中,,∴Rt△ABM≌Rt△AHM(AAS),∴AB=AH,故答案为:AB=AH;(2)AB=AH成立,理由如下:延长CB至E,使BE=DN,如图:∵四边形ABCD是正方形,∴AB=AD,∠D=∠ABE=90°,∴Rt△AEB≌Rt△AND(SAS),∴AE=AN,∠EAB=∠NAD,∵∠DAN+∠BAM=45°,∴∠EAB+∠BAM=45°,∴∠EAM=45°,∴∠EAM=∠NAM=45°,又AM=AM,∴△AEM≌△ANM(SAS),∵AB,AH是△AEM和△ANM对应边上的高,∴AB=AH.(3)分别沿AM,AN翻折△AMH和△ANH,得到△ABM和△AND,分别延长BM和DN交于点C,如图:∵沿AM,AN翻折△AMH和△ANH,得到△ABM和△AND,∴AB=AH=AD=6,∠BAD=2∠MAN=90°,∠B=∠AHM=90°=∠AHN=∠D,∴四边形ABCD是正方形,∴AH=AB=BC=CD=AD=6.由(2)可知,设NH=x,则MC=BC﹣BM=BC﹣HM=4,NC=CD﹣DN=CD﹣NH=6﹣x,在Rt△MCN中,由勾股定理,得MN2=MC2+NC2,∴(2+x)2=42+(6﹣x)2,解得x=3,∴NH=3【变式3-1】探究:(1)如图1,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,试判断BE、DF与EF三条线段之间的数量关系,直接写出判断结果:;(2)如图2,若把(1)问中的条件变为“在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD”,则(1)问中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由;(3)在(2)问中,若将△AEF绕点A逆时针旋转,当点分别E、F运动到BC、CD延长线上时,如图3所示,其它条件不变,则(1)问中的结论是否发生变化?若变化,请给出结论并予以证明.【解答】解:(1)如图1,将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF′,∵∠EAF=45°,∴∠EAF′=∠EAF=45°,在△AEF和△AEF′中,,∴△AEF≌△AEF′(SAS),∴EF=EF′,又EF′=BE+BF′=BE+DF,∴EF=BE+DF;(2)结论EF=BE+DF仍然成立.理由如下:如图2,将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF′,则△ADF≌△ABF′,∴∠BAF′=∠DAF,AF′=AF,BF′=DF,∠ABF′=∠D,又∵∠EAF=∠BAD,∴∠EAF=∠DAF+∠BAE=∠BAE+∠BAF′,∴∠EAF=∠EAF′,又∵∠ABC+∠D=180°,∴∠ABF′+∠ABE=180°,∴F′、B、E三点共线,在△AEF与△AEF′中,,∴△AEF≌△AEF′(SAS),∴EF=EF′,又∵EF′=BE+BF′,∴EF=BE+DF;(3)发生变化.EF、BE、DF之间的关系是EF=BE﹣DF.理由如下:如图3,将△ADF绕点A顺时针旋转,使AD与AB重合,点F落在BC上点F′处,得到△ABF′,∴△ADF≌△ABF′,∴∠BAF′=∠DAF,AF′=AF,BF′=DF,又∵∠EAF=∠BAD,且∠BAF′=∠DAF,∴∠F′AE=∠BAD﹣(∠BAF′+∠EAD)=∠BAD﹣(∠DAF+∠EAD)=∠BAD﹣∠F AE=∠F AE,即∠F′AE=∠F AE,在△F′AE与△F AE中,,∴△F′AE≌△F AE(SAS),∴EF=EF′,又∵BE=BF′+EF′,∴EF′=BE﹣BF′,即EF=BE﹣DF.【变式3-2】已知:如图边长为2的正方形ABCD中,∠MAN的两边分别交BC、CD边于M、N两点,且∠MAN=45°①求证:MN=BM+DN;②若AM、AN交对角线BD于E、F两点.设BF=y,DE=x,求y与x的函数关系式.【解答】(1)证明:将△ABM绕点A逆时针旋转90°至△ADM′,∴∠M′AN=∠DAN+∠MAB=45°,AM′=AM,BM=DM′,∵M′AN=∠MAN=45°,AN=AN,∴△AMN≌△AM′N′,∴MN=NM′,∴M′N=M′D+DN=BM+DN,∴MN=BM+DN.(2)解:∵∠AED=45°+∠BAE,∠F AB=45°+∠BAE,∴∠AED=∠F AB,∵∠ABF=∠ADE,∴△BF A∽△DAE,∴=,∴=,∴y=.。
初中几何模型之——半角模型
初中几何模型之——半角模型前面介绍了手拉手模型、对角互补模型、十字架模型,今天介绍半角模型。
从一个角顶点在角的内部引出两条射线,如果这两条射线组成的新角是原来角的一半,像这样的模型我们称之为半角模型。
常见的图形框架为正方形、等边三角形、等腰直角三角形。
其根本的解题思路都是通过旋转构造全等三角形。
一、正方形—半角【条件】:①正方形ABCD;②∠EAF=45°第一个结论:EF=DF+BE也可以这样:【条件】:①正方形ABCD;②EF=DF+BE;【结论】:∠EAF=45°第二个结论:三角形CEF的周长=两倍边长=正方形ABCD周长的一半第三个结论:三角形ABE的面积+三角形ADF的面积=三角形AEF的面积第四个结论:AH=AD第五个结论:当BE=DF时,三角形CEF的面积最大第六个结论:BM的平方+DN的平方=MN的平方第七个结论:三角形ANE和三角形AMF都是等腰直角三角形第八个结论:存在多组相似第九个结论:EA和FA是三角形CEF的两条外角平分线第十个结论:四组共圆问题第十一个结论:MN和EF的数量关系第十二个结论:三角形AEF的面积=三角形AMN的面积×2变形一【条件】:①正方形ABCD;②∠EAF=45°【结论】:EF=DF-BE变形二【条件】:①正方形ABCD;②∠EAF=45°【结论】:EF=BE-DF变形三如图,将正方形变成一组邻边相等,对角互补的四边形,在四边形ABCD中,AB=AD,∠BAD+∠C=180°,点E,F分别在边BC,CD 上,∠EAF=∠BAD,连接EF,则:EF=BE+DF。
二、等边三角形—半角【条件】:①等边三角形ABC;②∠EDF=60°【结论】:EF=BE+CF分析:延长FC到G,使得CG=BE,联结DG,易证△CDG≌△BDE,再证△DEF≌△DFG,所以EF=FG=BE+CF。
也可以这样:【条件】:①等边三角形ABC;②EF=BE+CF;【结论】:∠EDF=60°三、等腰直角三角形—半角。
初中数学几何模型:半角模型
半角模型模型讲解【结论】如图,在正方形ABCD 中,∠MAN=45°,则(1)MN=BM+DN;(2)△MCN 的周长等于正方形ABCD 边长的2倍;(3)MA 是∠BMN 的平分线,NA 是∠DNM 的平分线.【证明】延长ND 至点E ,使得DE=BM ,连接AE ,如图. ∵AB=AD, ∠B=∠ADE,BM=DE.∴△ABM ≌△ADE(SAS),.∴∠BAM =∠DAE, ∠AMB =∠E,AM=AE.∵∠MAN=45°,∴∠BAM+∠DAN=45°,∴∠DAE+∠DAN=∠NAE=45°.在△AMN 和△AEN 中,{AM =AE∠MAN =∠EAN =45°AN =AN∴△AMN ≌△AEN(SAS),∴MN=EN=DE+DN=BM+DN.∠AMB=∠AMN=∠E,∠ANM=∠AND,即MA是∠BMN的平分线,NA是∠DNM的平分线.CM+CN+MN=CM+BM+ND+CN=BC+CD=2BC,即△MCN的周长等于正方形ABCD边长的2倍.拓展【结论1】(等腰三角形中的半角模型)如图,△ABC是边长为a的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则(1)MN=BM+CN;(2)△MAN的周长等于△ABC边长的2倍;(3)MD是∠BMN的平分线,ND是∠CNM的平分线.【证明】:∵△BDC是等腰三角形,且∠BDC=120°,∴∠BCD=∠DBC=30°.∵△ABC是边长为a的等边三角形,∴∠ABC=∠BAC=∠BCA=60°,∴∠DBA=∠DCA=90°.延长AB至点F,使BF=CN,连接DF,如图. 在△BDF和△CDN中,{DB=DC ∠DBF=DCN BF=CN∴△BDF≌△CDN(SAS),∴∠BDF=∠CDN,∠F=∠CND,DF=DN. ∵∠MDN=60°,∴∠BDM+∠CDN=60°,∴∠BDM+∠BDF=60°,即∠FDM=60°=∠MDN.在△DMN和△DMF中,{DN=DF∠MDN=∠MDF DM=DM∴△DMN≌△DMF(SAS),∴MN=MF=BM+CN,∠F=∠MND=∠CND,∠FMD=∠DMN,∴△AMN的周长是AM+AN+MN=AM+MB+CN+AN=AB+AC=2a.【结论2】(对角互补且一组邻边相等的半角模型)如图所示,在四边形ABCD中,∠B+∠D=180°,∠BAD=2∠EAF,AB=AD,则(1)EF=BE+FD;(2)EA是∠BEF的平分线,FA是∠DFE的平分线.典型例题典例1如图,已知正方形ABCD中,∠MAN=45°,则线段MN,BM与DN之间的关系是( ).A.MN=BM+DNB.BM=MN+DNC.DN=MN+BMD.无法确定典例2如图,△ABC是边长为a的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长是( ).A.aB.2aC.3aD.不能确定典例3(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=∠BAD,求证:EF=BE+FD.(2)在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF= ∠BAD,(1)中的结论是否仍然成立?(不需要说明理由)(3)如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E,F分别是边BC,CD延长线上的点,且∠EAF= ∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.初露锋芒1.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为________.2.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°.若BE=4,CD=3,则AB的长为_________.3. 如图,正方形ABCD中,∠EAF=45°,连接对角线BD交AE于点M,交AF于点N.若DN=1,BM=2,那么MN=________.感受中考1.(2020山东济南中考模拟)如图,在正方形ABCD中,E,F分别是BC,CD上的点,且∠EAF=45°,AE,AF分别交BD于点M,N,连接EN,EF.有以下结论:=2 - √2;③BE+DF=EF;④存在点E,F,①AN=EN;②当AE=AF时,BEEC使得NF>DF.其中正确的个数是( ).A.1B.2C.3D.4参考答案典型例题典例1【答案】A【解析】:∵正方形ABCD中,∠MAN=45°,∴根据半角模型结论可知MN=BM+DN.故选A.典例2【答案】B【解析】:∵△BDC是等腰三角形,观察图形,能发现图形为等腰三角形的半角模型,根据半角模型结论可知,△AMN的周长为△ABC边长的2倍,即为2a.故选B.典例3【解析】(1)如图,延长EB到点G,使BG=DF,连接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF(SAS), ∴AG=AF. ∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF= 1∠BAD,2∴∠GAE=∠EAF.又 AE=AE. ∴△AEG≌△AEF(SAS),∴EG=EF.∵EG=BE+BG, ∴EF=BE+FD.(2)(1)中的结论EF=BE+FD仍然成立.(3)结论EF=BE+FD不再成立,应当是EF=BE-FD.证明:如图,在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.又∵AB=AD, ∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,AG=AF.∠BAD.∴∠BAG +∠EAD=∠DAF+∠EAD=∠EAF= 12∴∠GAE=∠EAF.又∵AE=AE, ∴△AEG≌△AEF(SAS),∴EG=EF.∵EG=BE-BG. ∴EF=BE-FD.初露锋芒1.【答案】6.【解析】∵△BDC 是等腰三角形,且∠BDC=120°,∠MDN=60°,△ABC 是边长为3的等边三角形,∴根据等腰三角形的半角模型结论可知,△AMN 的周长是△ABC 边长的2倍,即为6.2. 【答案】6√2.【解析】如图,过点B 作BC 的垂线,垂足为B ,并截取BF=CD ,连接FE ,AF.∵∠FBE=90°,FB=3,BE=4,∴在Rt △FBE 中,FE 2=FB 2+BE 2=32+42=52,∴FE=5.∵Rt △ABC 中,AB=AC,∴∠ABC=∠ACB=45°,∴∠FBA=∠FBC-∠ABC=90°- 45°= 45°.在△AFB 与△ADC 中,{BF =CD∠ABF =∠ACD =45AB =AC∴△AFB ≌△ADC(SAS),∴∠2=∠3,AF=AD.又∵∠1+∠EAD+∠2=90°,∠DAE=45°,∴∠1+∠2=45°,∴∠FAE=∠1+∠3=45°,∴∠FAE=∠DAE.在△AFE 与△ADE 中,{AF =AD∠FAE =∠DAE AE =AE,∴△AFE ≌△ADE(SAS),∴FE=DE=5,∴BC=BE+ED+DC=4+5+3=12.又∵在Rt △ABC 中,AB=BC ·cos ∠ABC ,∴AB=12×cos 45°=12×√22 = 6√2.3. 【答案】√5.【解析】如图,延长CB 到点G ,使BG=DF ,连接AG ,在AG 上截取AH=AN ,连接MH,BH.∵四边形ABCD 为正方形,∴AB=BC=CD=AD,∠4=∠5=45°,∠BAD=∠ADF=∠ABE=∠ABG=90°.在△ABG 和△ADF 中,{AB =AD∠ABG =∠ADF =90BG =DF,∴△ABG ≌△ADF(SAS),∴∠1=∠2,∠7=∠G,AG=AF ,∴∠GAE=∠2+∠3=∠1+∠3=∠BAD-∠EAF=90°-45°=45°=∠EAF. 在△AMN 和△AMH 中,{AN =AH∠MAN =∠MAH =45°AM =AM∴△AMN ≌△AMH(SAS),∴MN=MH.∵AF=AG,AN=AH ,∴FN=AF-AN=AG-AH=GH.在△DFN 和△BGH 中,{DF =BG∠7=∠G FN =GH∴△DFN ≌△BGH(SAS),∴∠6=∠4=45°,DN=BH.∴∠MBH=90°-45°+45°=90°,∴BM+DN=BM+BH=MH=MN.又∵DN=1,BM=2,∴22+12=MN 2,∴MN=√5.感受中考1.【答案】 B【解析】①如图,∵四边形ABCD是正方形,∴∠EBM = ∠ADM =∠FDN =∠ABD=45°.∵∠MAN=∠EBM=45°,∠AMN=∠BME,∴△AMN∽BME,∴AMBM = MNEM.又∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°.∴∠NAE=∠AEN=45°,∴△AEN是等腰直角三角形,∴AN=EN,故①正确.②∵∠ABE=∠ADF=90°,在Rt △ABE 和Rt △ADF 中,{AB =AD AE =AF∴Rt △ABE ≌Rt △ADF(HL),∴BE=DF.又∵BC=CD ,∴CE=CF.假设正方形ABCD 的边长为1,设CE=x则BE=1-x.如图,连接AC ,交EF 于点O.∵AE=AF,CE=CF ,∴AC 是EF 的垂直平分线,∴AC ⊥EF,OE=OF.在Rt △CEF 中,OC= 12 EF= √22x. 在△EAF 中,∠EAO=∠FAO=22.5°=∠BAE=22.5°, ∴OE=BE.又∵AE=AE ,∴Rt △ABE ≌RtAOE(HL),∴AO=AB=1.∴AC=√2=AO+OC, ∴1+√22x=√2,解得x=2 -√2.∴BEEC = √2)2−√2= (√2−1)(2+√2)2=√22,故②不正确.③∵正方形ABCD中,∠EAF=45°,∴根据半角模型结论可知EF=BE+DF,故③正确.④∵∠FND=∠ADN+∠NAD>45°.而∠FDN=45°,∴DF>FN.故不存在点E,F,使得NF>DF,故④不正确. 因此,正确结论的个数是2.故选B.。
初二几何 半角模型
半角模型基本模型(1)——正方形内含半角(90°夹45°)1如图,在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°,(1)求证:EF=BE+DF.(2)AE平分∠BEF.AF平分∠DFE变式一:已知:如图,在正方形ABCD中,E、F分别是CB、DC的延长线上的点,且∠EAF=45°. 猜想:线段BE,DF,EF之间有什么关系并证明.变式(2)已知:如图,在正方形ABCD中,E、F分别是BC、CD延长线上的点,且∠EAF=45°. 猜想:线段BE,DF,EF之间有什么关系.基本模型(2)——等腰直角三角形内含半角如图,已知Rt △ABC 中,∠BAC=90°,AB=AC ,点D 、E 在斜边BC 上,且∠DAE=45°,探究BD 、DE 、EC 三条线段之间的数量关系,并对你的猜想给予证明.基本模型(3)——正三角形内含半角如图,已知:在等边△ABC 的两边AB 、AC 上分别有两点M 、N,D 为△ABC 外一点,且∠MDN=60°, ∠BDC=120°,BD=DC.求证:BM+CN=MN4变式、如图,四边形 ABCD 中,∠A =∠BCD =90°,∠ADC =60°,AB =BC ,E 、F 分别在 AD 、DC 延长线上,且∠EBF =60°,求证:AE =EF +CF . E D C B AA B C M A N1. 如图,正方形ABCD 的边长为1,AB,AD 上各存在一点P 、Q ,若△APQ 的周长为2,求PCQ 的度数。
A QP2、如图,E 是正方形 ABCD 中 CD 边上的任意一点,以点 A 为中心,把△ADE 顺时针旋转 90°得△AB E 1 ,∠EA E 1 的平分线交 BC 边于点 F ,求证:△CFE 的周长等于正方形 ABCD 的周长的一半.3.如图△ABC 是边长为3 的等边三角形,△BDC 是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°的角,角的两边分别交A B、AC 于M、N,连接M N,则△AMN 的周长为.34.已知如图,五边形ABCDE 中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°.求证:(1)AD 平分∠CDE;(2)∠BAE=2∠CAD.。
初中几何9大模型(1):半角模型
初中几何9大模型(1):半角模型重要几何模型1--半角模型模型特点倍长中线或类中线(与中点有关的线段)构造全等三角形如图①:(1)∠2=1/2∠AOB;(2)OA=OB。
如图②:连接 FB,将△FOB 绕点 O 旋转至△FOA 的位置,连接F′E、FE,可得△OEF′≌△OEF。
典型例题1如图.在四边形ABCD中,∠B+∠ADC=180°,AB=AD,E、F 分别是边BC、CD延长线上的点,且∠EAF=1/2∠BAD,求证:EF=BE﹣FD.【分析】在BE上截取BG,使BG=DF,连接AG.根据SAA证明△ABG≌△ADF得到AG=AF,∠BAG=∠DAF,根据∠EAF =1/2∠BAD,可知∠GAE=∠EAF,可证明△AEG≌△AEF,EG=EF,那么EF=GE=BE﹣BG=BE﹣DF.【解析】证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.在△ABG和△ADF中,易证△ABG≌△ADF(SAS),∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=1/2∠BAD.∴∠GAE=∠EAF.在△AEG和△AEF中,易证△AEG≌△AEF(SAS).∴EG=EF,∵EG=BE﹣BG∴EF=BE﹣FD.典型例题2问题情境:已知,在等边△ABC中,∠BAC与∠ACB的角平分线交于点O,点M、N分别在直线AC,AB上,且∠MON=60°,猜想CM、MN、AN三者之间的数量关系.方法感悟:小芳的思考过程是在CM上取一点,构造全等三角形,从而解决问题;小丽的思考过程是在AB取一点,构造全等三角形,从而解决问题;问题解决:(1)如图1,M、N分别在边AC,AB上时,探索CM、MN、AN三者之间的数量关系,并证明;(2)如图2,M在边AC上,点N在BA的延长线上时,请你在图2中补全图形,标出相应字母,探索CM、MN、AN三者之间的数量关系,并证明.【分析】(1)在AC上截取CD=AN,连接OD,证明△CDO≌△ANO,根据全等三角形的性质得到OD=ON,∠COD=∠AON,证明△DMO≌△NMO,得到DM=MN,结合图形证明结论;(2)在AC延长线上截取CD=AN,连接OD,仿照(1)的方法解答.【解析】解:(1)CM=AN+MN,理由如下:在AC上截取CD=AN,连接OD,∵△ABC为等边三角形,∠BAC与∠ACB的角平分线交于点O,∴∠OAC=∠OCA=30°,∴OA=OC,在△CDO和△ANO中,易证△CDO≌△ANO(SAS)∴OD=ON,∠COD=∠AON,∵∠MON=60°,∴∠COD+∠AOM=60°,∵∠AOC=120°,∴∠DOM=60°,在△DMO和△NMO中,易证△DMO≌△NMO,∴DM=MN,∴CM=CD+DM=AN+MN;(2)补全图形如图2所示:CM=MN﹣AN,理由如下:在AC延长线上截取CD=AN,连接OD,在△CDO和△ANO中,易证△CDO≌△ANO(SAS)∴OD=ON,∠COD=∠AON,∴∠DOM=∠NOM,在△DMO和△NMO中,易证△DMO≌△NMO(SAS)∴MN=DM,∴CM=DM﹣CD=MN﹣AN.典型例题3如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN =CD=6,设BD与AM的延长线交于点P,交AN于Q,直接写出AQ、AP的长.分析典型例题4-5已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:AH=AB;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)【分析】(1)由三角形全等可以证明AH=AB,(2)延长CB至E,使BE=DN,证明△AEM≌△ANM,能得到AH=AB,(3)分别沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND,然后分别延长BM和DN交于点C,得正方形ABCE,设AH =x,则MC=x﹣2,NC=x﹣3,在Rt△MCN中,由勾股定理,解得x.典型例题6(1)如图1,将∠EAF绕着正方形ABCD的顶点A顺时针旋转,∠EAF的两边交BC于E,交CD于F,连接EF.若∠EAF=45°,BE、DF的长度是方程x2﹣5x+6=0的两根,请直接写出EF的长;(2)如图2,将∠EAF绕着四边形ABCD的顶点A顺时针旋转,∠EAF的两边交CB的延长线于E,交DC的延长线于F,连接EF.若AB=AD,∠ABC与∠ADC互补,∠EAF∠BAD,请直接写出EF与DF、BE之间的数量关系,并证明你的结论;(3)在(2)的前提下,若BC=4,DC=7,CF=2,求△CEF的周长.①EF的长为:5;②数量关系:EF=DF﹣BE.【分析】(1)先证明△ABE≌△ADM,再证明△AEF≌△AMF,得到EF=DF+BE即可;(2)先证明△ADM≌△ABE,再证明△EAF≌△MAF,即可;(3)直接计算△CEF的周长=EF+BE+BC+CF=DF+BC+CF=9+4+2=15.(3)由上面的结论知:DF=EF+BE;∵BC=4,DC=7,CF=2,∴DF=CD+CF=9∴△CEF的周长=EF+BE+BC+CF=DF+BC+CF=9+4+2=15.即△CEF的周长为15.①EF=DF﹣BE=FC+CD﹣BE=5②和(2)方法一样,EF=DF﹣BE.故答案为EF=DF﹣BE.。
初中几何半角模型教案设计
初中几何半角模型教案设计教学目标:1. 理解半角模型的定义和性质;2. 学会运用半角模型解决实际几何问题;3. 培养学生的空间想象能力和逻辑思维能力。
教学内容:1. 半角模型的定义和性质;2. 半角模型在实际几何问题中的应用。
教学过程:一、导入(5分钟)1. 引导学生回顾等腰三角形的性质;2. 提问:如果有一条射线与等腰三角形的顶角相交,那么这条射线与等腰三角形的关系是什么?二、新课讲解(15分钟)1. 引入半角模型的定义:过等腰三角形顶角的顶点引两条射线,使两条射线的夹角为等腰三角形顶角的一半,这样的模型称为半角模型;2. 讲解半角模型的性质:a. 半角模型中的两条射线与等腰三角形的两边相交,交点之间的连接线长度等于等腰三角形的两边与其最近交点之间的距离之和;b. 半角模型中的两条射线的公共端点是从射线切割顶点的两条相对边获得的直角三角形的边中心;c. 半角模型中的两条射线的端点到射线的两条相对边的交点与端点之间的连接线的距离等于正方形的边长;d. 半角模型中的两个三角形以及半角三角形外的两个小三角形分别是全等的。
三、例题讲解(15分钟)1. 讲解例题:如图,等腰三角形ABC,顶角为α,射线DE与BC相交于点E,射线DF与AC相交于点F,求证:EF=AB。
2. 引导学生跟随步骤,自主解答:如图,等腰三角形ABC,顶角为α,射线AE与BC相交于点E,射线AF与AC相交于点F,求证:EF=AC。
四、课堂练习(10分钟)1. 完成教材上的练习题;2. 学生之间互相讨论,解答疑问。
五、总结与布置作业(5分钟)1. 总结本节课的主要内容和知识点;2. 布置课后作业:运用半角模型解决实际几何问题。
教学反思:本节课通过讲解半角模型的定义和性质,以及运用半角模型解决实际几何问题,旨在培养学生的空间想象能力和逻辑思维能力。
在教学过程中,要注意引导学生回顾相关知识点,如等腰三角形的性质,以及讲解例题时的步骤和思路。
初中几何半角模型经典例题
初中几何半角模型经典例题
摘要:
初中几何半角模型经典例题
I.引言
A.介绍半角模型的概念
B.强调半角模型在初中几何中的重要性
II.半角模型的基本性质
A.定义半角模型
B.解释半角模型的基本性质
C.给出半角模型的几个重要例子
III.半角模型的应用
A.讨论半角模型在解决几何问题中的应用
B.举例说明半角模型在具体几何问题中的运用
IV.结论
A.总结半角模型的重要性
B.强调半角模型在初中几何学习中的地位
正文:
I.引言
A.半角模型是初中几何中的一个重要模型,它涉及到旋转等基本几何概念,对于学生来说,掌握半角模型对于理解几何知识有着重要的作用。
II.半角模型的基本性质
A.半角模型是指通过一个角平分线将一个角分成两个相等的角,这两个角的一半就是半角。
B.半角模型的基本性质包括:半角相等、半角所对的边相等、半角所对的弧相等等。
C.半角模型的重要例子包括:等腰三角形、矩形、菱形等。
III.半角模型的应用
A.半角模型在解决几何问题中有着广泛的应用,比如在证明全等三角形、证明相似三角形等问题中,半角模型都是重要的工具。
B.例如,在证明全等三角形时,我们可以通过构造半角模型,将已知条件转化为可以证明全等的条件,从而证明两个三角形全等。
IV.结论
A.半角模型是初中几何中的重要模型,掌握半角模型对于理解几何知识、解决几何问题都有着重要的作用。
2023年中考数学常见几何模型之全等模型-半角模型
专题02 全等模型--半角模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。
模型1.半角模型【模型解读】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
【常见模型及证法】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论.1.(2022·湖北十堰·中考真题)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别在BC ,CD 上,若2BAD EAF ∠∠=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =,若在M ,N 之间修一条直路,则路线M N →的长比路线M A N →→的长少_________m (结果取整数,参考数据:1.7≈).【答案】370【分析】延长,AB DC 交于点E ,根据已知条件求得90E ∠=︒,进而根据含30度角的直角三角形的性质,求得,EC EB ,,AE AD ,从而求得AN AM +的长,根据材料可得MN DM BN =+,即可求解.【详解】解:如图,延长,AB DC 交于点E ,连接,CM CN ,Q 60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,30A ∴∠=︒,90E ∠=︒,100DC DM ==Q ∴△DCM 是等边三角形,60DCM ∴∠=︒,90BCM ∴∠=︒,在Rt BCE V 中,100BC =,18030ECB BCD ∠=︒−∠=︒,1502EB BC ==,EC =100DE DC EC ∴=+=+Rt ADE △中,2200AD DE ==+150AE =, ∴200100100AM AD DM =−=+=+()AN AB BN AE EB BN =−=−−())15050501=−−150=,100150250AM AN ∴+=+=+Rt CMB △中,BM ==Q )50501EN EB BN EC =+=+==∴△ECN 是等腰直角三角形()1752NCM BCM NCB BCM NCE BCE DCB ∴∠=∠−∠=∠−∠−∠=︒=∠由阅读材料可得))100501501MN DM BN =+=+=,∴路线M N →的长比路线M A N →→的长少)250501200370+=+≈m .答案:370. 【点睛】本题考查了含30度角的直角三角形的性质,勾股定理,理解题意是解题的关键.2.(2022·河北邢台·九年级期末)学完旋转这一章,老师给同学们出了这样一道题: “如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到ADE '△的位置,然后证明AFE AFE '≌△△,从而可得=EF E F '.E F E D DF BE DF ''=+=+,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,12EAF BAD ∠=∠,直接写出EF ,BE ,DF 之间的数量关系. (2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,12EAF BAD ∠=∠,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是⊙O 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系. ADE ,证明△逆时针旋转,旋转角等于∠BAD )将△ABP 绕点可知ABE ADE '≌△△,∴由∠ADC +∠ADE =180°知,∵12EAF BAD ∠=∠,∴∠BAF ∴∠DAE '+∠DAF =∠EAF =∴△AEF ≌△AE F ',∴EF =(2)证明:将△ABE 绕点A E '由旋转可知ABE ADE '≌△△,∴BE ∵∠B +∠ADC =180°,∴ADC ∠+∵12EAF BAD ∠=∠,∴BAE DAF ∠+∠∴12DAE DAF BAD '∠+∠=,∴FAE ∠由圆内接四边形性质得:∠AC 即P ,C ,P '在同一直线上.∴∵BC 为直径,∴∠BAC =90°=∠∴△PAP '为等腰直角三角形,∴【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四3.(2022·福建·龙岩九年级期中)(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF ∠=︒,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG V ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且∠EAF =45°,则(1)中的结论还成立吗?若不成立,请写出EF ,BE ,DF 之间的数量关系______(不要求证明)②如图3,如果点E ,F 分别是BC ,CD 延长线上的动点,且45EAF ∠=︒,则EF ,BE ,DF 之间的数量关系是_____(不要求证明).(3)【联想拓展】如图1,若正方形ABCD 的边长为6,AE =AF 的长.4.(2022·山东省青岛第二十六中学九年级期中)【模型引入】当几何图形中,两个共顶点的角所在角度是公共大角一半的关系,我们称之为“半角模型”【模型探究】(1)如图1,在正方形ABCD中,E、F分别是AB、BC边上的点,且∠EDF =45°,探究图中线段EF,AE,FC之间的数量关系.【模型应用】(2)如图2,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF =45°,且BC=7,DC=13,CF=5,求BE的长.【拓展提高】(3)如图3,在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,点E、F∠BAD.当BC=4,DC=7,CF=1时,△CEF的周分别在射线CB、DC上,且∠EAF=12长等于.(4)如图4,正方形ABCD中,V AMN的顶点M、N分别在BC、CD边上,AH⊥MN,且AH=AB,连接BD分别交AM、AN于点E、F,若MH=2,NH=3,DF=EF的长.(5)如图5,已知菱形ABCD中,∠B=60°,点E、F分别是边BC,CD上的动点(不与端点重合),且∠EAF=60°.连接BD分别与边AE、AF交于M、N,当∠DAF=15°时,求证:MN2+DN2=BM2.∵△ADF绕A顺时针旋转得△ABG,∴∠BAG=∠DAF,又AH=AN,AB=AD,∴△ABH≌△ADN(SAS),∴DN=BH,∠ABH=∠ADN,∵∠B=60°,且∠EAF=60°.∴∠BAD=120°,∴∠DAF+∠BAE=∠EAF=60°,∴∠BAG+∠BAE=∠EAF,即∠MAH=∠MAN,而AH=AN,AM=AM,∴△AMH≌△AMN(SAS),∴MN=MH,∠AMN=∠AMH,∵菱形ABCD,∠B=60°,∴∠ABD=∠ADB=30°,∴∠HBD=∠ABH+∠ABD=60°,∵∠DAF=15°,∠EAF=60°,∴△ADM中,∠DAM=∠AMD=75°,∴∠AMN=∠AMH=75°,∴∠HMB=180°-∠AMN-∠AMH=30°,∴∠BHM=90°,∴BH2+MH2=BM2,∴DN2+MN2=BM2.【点睛】本题是四边形综合题,主要考查了旋转的性质、正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题关键是学会用旋转法添加辅助线,构造全等三角形解决问题,学会利用探究的结论解决新的问题,属于中考压轴题.课后专项训练:1.(2022·重庆市育才中学二模)回答问题(1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.(2)仍成立,理由:如图2,延长FD 到点G ,使DG =BE ,连接AG ,∵∠B +∠ADF =180°,∠ADG +∠ADF =180°,∴∠B =∠ADG ,又∵AB =AD ,∴△ABE ≌△ADG (SAS ),∴∠BAE =∠DAG ,AE =AG ,∵EF =BE +FD =DG +FD =GF ,AF =AF ,∴△AEF ≌△AGF (SSS ),∴∠EAF =∠GAF =∠DAG +∠DAF =∠BAE +∠DAF ;1∠DAB .证明:如图3,在DC 延长线上取一点G ,使得2.(2022·江西九江·一模)如图(1),在四边形ABCD 中,180B D ∠+∠=︒,AB AD =,以点A 为顶点作EAF ∠,且12EAF BAD ∠=∠,连接EF .(1)观察猜想 如图(2),当90BAD B D ∠=∠=∠=︒时,①四边形ABCD 是______(填特殊四边形的名称);②BE ,DF ,EF 之间的数量关系为______.(2)类比探究 如图(1),线段BE ,DF ,EF 之间的数量关系是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)解决问题 如图(3),在ABC V 中,90BAC ∠=︒,4AB AC ==,点D ,E 均在边BC 上,且45DAE ∠=︒,若BD =,求DE 的长.Rt ECM 中,由勾股定理可解得ABCD 是矩形,又∵(2)如下图,延长CD 至点H 同(1)②的证明方法得ABE △BE FD EF +=.(3)如图过点C 作CM BC ⊥在ABC V 中, 由90BAC ∠=︒,Rt ECM 中,由勾股定理得,523,即DE 【点睛】本题考查了特殊的平行四边形的判定、全等三角形的性质和判定及勾股定理的应用,熟练应用相关定理和性质是解决本题的关键.3.(2022·山东聊城·九年级期末)(1)如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,连接EF ,求证:EF BE DF =+,试说明理由.(2)类比引申:如图2,四边形ABCD 中,AB AD =,90BAD ∠=︒,点E ,F 分别在边BC ,CD 上,∠EAF =45°,若B 、D ∠都不是直角,则当B 与D ∠满足等量关系______时,仍有EF BE DF =+,试说明理由.(3)联想拓展:如图3,在△ABC 中,90BAC ∠=︒,AB AC =,点D ,E 均在边BC 上,且∠DAE =45,若1BD =,2EC =,求DE 的长.AB AD =Q ,∴把△ABE 绕点A 逆时针旋转90︒至△ADG ,AB 与AD 重合. ∠ADC =∠B =90°∠FDG =180°,点F 、D 、G 三点共线,则DAG BAE ∠∠=,AE AG =,∠F AG =∠F AD +∠GAD =∠F AD +∠BAE =90°-45°=45°=∠EAF 即∠EAF =∠F AG ,在△EAF 和△GAF 中,AF AF EAF GAF AE AG =⎧⎪∠=∠⎨⎪=⎩, ∴△AFG ≌△()AFE SAS ,∴EF =FG =BE +DF ;()2当180B D ∠+∠=︒,仍有EF BE DF =+.理由:AB AD =Q ,∴把△ABE 绕点A 逆时针旋转90︒至△ADG ,可使AB 与AD 重合,如图2,BAE DAG ∴∠=∠,∠B =∠ADG90BAD ∠=︒,45EAF ∠=︒,∴∠BAE +∠DAF =45°,∴∠F AG =45°∴∠EAF =∠F AG , 180ADC B ∠+∠=︒Q ,∴∠ADC +∠ADG =180°∴∠FDG =180°,点F 、D 、G 共线.在△AFE 和△AFG 中,AE AG FAE FAG AF AF =⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△AFG (SAS).EF FG ∴=,即:EF BE DF =+.故答案为:180B D ∠+∠=︒.()3将△ACE 绕点A 旋转到△ABF 的位置,连接DF ,则∠F AB =∠CAE90BAC ∠=︒Q ,45DAE ∠=︒,∴∠BAD +∠CAE =45°.又∵∠F AB =∠CAE ,∴∠F AB +∠BAD =45°,∴∠F AD =∠DAE =45°.则在△ADF 和△ADE 中, AD AD =,∠F AD =∠DAE ,AF AE =,4.(2022·黑龙江九年级阶段练习)已知:正方形ABCD 中,∠MAN=45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N .当∠MAN 绕点A 旋转到BM =DN 时,(如图1),易证BM +DN =MN .(1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM 、DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想. 【答案】(1)BM DN MN +=,理由见解析;(2)DN BM MN −=,理由见解析【分析】(1)把ADN ∆绕点A 顺时针旋转90︒,得到ABE ∆,然后证明得到AEM ANM ∆∆≌,从而证得ME MN =,可得结论;(2)首先证明ADQ ABM ∆∆≌,得DQ BM =,再证明AMN AQN ∆∆≌,得MN QN =,可得结论;(1)解:BM DN MN +=.理由如下:如图2,把ADN ∆绕点A 顺时针旋转90︒,得到ABE ∆,90ABE ADN ∴∠=∠=︒,AE AN =,BE DN =,180ABE ABC ∴∠+∠=︒,∴点E ,点B ,点C 三点共线,90904545EAM NAM ∴∠=︒−∠=︒−︒=︒,又45NAM ∠=︒Q ,在AEM ∆与ANM ∆中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ANM ∴∆∆≌(SAS ),ME MN ∴=, ME BE BM DN BM =+=+Q ,DN BM MN ∴+=;(2)解:DN BM MN −=.理由如下:在线段DN 上截取DQ BM =,在ADQ ∆与ABM ∆中,AD AB ADQ ABM DQ BM =⎧⎪∠=∠⎨⎪=⎩,ADQ ABM ∴∆∆≌(SAS ), DAQ BAM ∴∠=∠,QAN MAN ∴∠=∠.在AMN ∆和AQN ∆中,AQ AM QAN MAN AN AN =⎧⎪∠=∠⎨⎪=⎩,AMN AQN ∴∆∆≌(SAS ), MN QN ∴=,DN BM MN ∴−=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.5.(2022·重庆南川·九年级期中)如图,正方形ABCD 中,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)当MAN ∠绕点A 旋转到BM DN =时(如图1),证明:2MN BM =;(2)绕点A 旋转到BM DN ≠时(如图2),求证:MN BM DN =+;(3)当MAN ∠绕点A 旋转到如图3位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明. 【答案】(1)见解析(2)见解析(3)DN BM MN −=,见解析【分析】(1)把ADN △绕点A 顺时针旋转90︒,得到ABE △,证得B 、E 、M 三点共线,即可得到AEM △≌ANM V ,从而证得ME MN =;(2)证明方法与(1)类似; (3)在线段DN 上截取DQ BM =,判断出ADQ △≌ABM V ,同(2)的方法,即可得出结论.(1)证明:如图1,∵把ADN △绕点A 顺时针旋转90︒,得到ABE △,ABE ∴V ≌ADN △,AE ANM ∴=,ABE D ∠=∠,Q 四边形ABCD 是正方形,90ABC D ∴∠=∠=︒,90ABE ABC ∴∠=∠=︒,∴点E 、B 、M 三点共线.90904545EAM NAM ∴∠=︒−∠=︒−︒=︒,又45NAM ∠=︒Q ,在AEM △与ANM V 中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ∴△≌()ANM SAS V ,ME MN ∴=,ME BE BM DN BM =+=+Q ,DN BM MN ∴+=,BM DN =Q ,2MN BM ∴=.(2)证明:如图2,把ADN △绕点A 顺时针旋转90︒,得到ABE △,ABE ∴V ≌ADN △,AE ANM ∴=,ABE D ∠=∠,Q 四边形ABCD 是正方形,90ABC D ∴∠=∠=︒,90ABE ABC ∴∠=∠=︒,∴点E 、B 、M 三点共线.90904545EAM NAM ∴∠=︒−∠=︒−︒=︒,又45NAM ∠=︒Q ,在AEM △与ANMV 中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ∴△≌()ANM SAS V ,ME MN ∴=,ME BE BM DN BM =+=+Q ,DN BM MN ∴+=.(3)解:DN BM MN −= 理由如下:如图3,在线段DN 上截取DQ BM =,连接AQ ,在ADQ △与ABM V 中,AD AB ADQ ABM DQ BM =⎧⎪∠=∠⎨⎪=⎩,ADQ ∴≌()ABM SAS V ,DAQ BAM ∴∠=∠,QAN MAN ∴∠=∠.在AMN V 和AQN △中,AQ AM QAN MAN AN AN =⎧⎪∠=∠⎨⎪=⎩,AMN ∴V ≌()AQN SAS V ,MN QN ∴=,DN BM MN ∴−=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,学会利用旋转法添加辅助线,构造全等三角形是解题的关键.6.(2022·江西景德镇·九年级期中)(1)【特例探究】如图1,在四边形ABCD 中,AB AD =,90ABC ADC ∠=∠=︒,100BAD ∠=︒,50EAF ∠=︒,猜想并写出线段BE ,DF ,EF 之间的数量关系,证明你的猜想; (2)【迁移推广】如图2,在四边形ABCD 中,AB AD =,180ABC ADC ∠+∠=︒,2BAD EAF ∠∠=.请写出线段BE ,DF ,EF 之间的数量关系,并证明;(3)【拓展应用】如图3,在海上军事演习时,舰艇在指挥中心(O 处)北偏东20°的A处.舰艇乙在指挥中心南偏西50°的B 处,并且两舰艇在指挥中心的距离相等,接到行动指令后,舰艇甲向正西方向以80海里/时的速度前进,同时舰艇乙沿北偏西60°的方向以90海里/时的速度前进,半小时后,指挥中心观测到甲、乙两舰艇分别到达C ,D 处,且指挥中心观测两舰艇视线之间的夹角为75°.请直接写出此时两舰艇之间的距离.【答案】(1)EF =BE +DF ,理由见解析;(2)EF =BE +DF ,理由见解析;(3)85海里【分析】(1)延长CD 至点G ,使DG =BE ,连接AG ,可证得△ABE ≌△ADG ,可得到AE =AG ,∠BAE =∠DAG ,再由100BAD ∠=︒,50EAF ∠=︒,可证得△AEF ≌△AGF , 从而得到EF =FG ,即可求解;(2)延长CD 至点H ,使DH =BE ,连接AH ,可证得△ABE ≌△ADH ,可得到AE =AH ,∠BAE =∠DAH ,再由2BAD EAF ∠∠=,可证得△AEF ≌△AHF ,从而得到EF =FH ,即可求解;(3)连接CD ,延长AC 、BD 交于点M ,根据题意可得∠AOB =2∠COD ,∠OAM +∠OBM =70°+110°=180°,再由(2)【迁移推广】得:CD =AC +BD ,即可求解.【详解】解:(1)EF =BE +DF ,理由如下:如图,延长CD 至点G ,使DG =BE ,连接AG ,∵90ABC ADC ∠=∠=︒,∴∠ADG =∠ABC =90°,∵AB =AD ,∴△ABE ≌△ADG ,∴AE =AG ,∠BAE =∠DAG ,∵100BAD ∠=︒,50EAF ∠=︒,∴∠BAE +∠DAF =50°,∴∠F AG =∠EAF =50°,∵AF =AF ,∴△AEF ≌△AGF ,∴EF =FG ,∵FG =DG +DF ,∴EF =DG +DF =BE +DF ;(2)EF =BE +DF ,理由如下:如图,延长CD 至点H ,使DH =BE ,连接AH ,∵180ABC ADC ∠+∠=︒,∠ADC +∠ADH =180°,∴∠ADH =∠ABC ,∵AB =AD ,∴△ABE ≌△ADH ,∴AE =AH ,∠BAE =∠DAH ,∵2BAD EAF ∠∠=∴∠EAF =∠BAE +∠DAF =∠DAF +∠DAH ,∴∠EAF =∠HAF , ∵AF =AF ,∴△AEF ≌△AHF ,∴EF =FH ,∵FH =DH +DF ,∴EF =DH +DF =BE +DF ;(3)如图,连接CD ,延长AC 、BD 交于点M ,根据题意得: ∠AOB =20°+90°+40°=150°,∠OBD =60°+50°=110°,∠COD =75°,∠OAM =90°-20°=70°,OA =OB ,∴∠AOB =2∠COD ,∠OAM +∠OBM =70°+110°=180°,∵OA =OB ,∴由(2)【迁移推广】得:CD =AC +BD ,∵AC =80×0.5=40,BD =90×0.5=45,∴CD =40+45=85海里.即此时两舰艇之间的距离85海里.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质、勾股定理的运用、等腰直角三角形的性质,题目的综合性较强,难度较大,解题的关键是正确的作出辅助线构造全等三角形,解答时,注意类比思想的应用.7.(2022·上海·九年级专题练习)小明遇到这样一个问题:如图1,在Rt △ABC 中,∠BAC=90°,AB =AC ,点D ,E 在边BC 上,∠DAE =45°.若BD =3,CE =1,求DE 的长.小明发现,将△ABD 绕点A 按逆时针方向旋转90º,得到△ACF ,联结EF (如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE =45°,可证△F AE ≌△DAE ,得FE =DE .解△FCE ,可求得FE (即DE )的长.(1)请回答:在图2中,∠FCE 的度数是 ,DE 的长为 .参考小明思考问题的方法,解决问题:(2)如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是边BC ,CD 上的点,且∠EAF =12∠BAD .猜想线段BE ,EF ,FD 之间的数量关系并说明理由. )根据旋转的性质,可得ADB AFC ≌,勾股定理解按逆时针方向旋转,使AB 与AD 重合,得到△AEF ≌△AGF ,EF =∴ADB AFC ≌ACF ∴∠,90AB AC BAC ∠==45ACF ABD ∴∠=∠=︒Rt FCE 中,Q BD =2EF CF =+猜想:EF =BE 如图,将△ABE8.(2022·黑龙江·哈尔滨市九年级阶段练习)已知四边形ABCD是正方形,一个等腰直角三角板的一个锐角顶点与A点重合,将此三角板绕A点旋转时,两边分别交直线BC,CD 于M,N.(1)如图1,当M,N分别在边BC,CD上时,求证:BM+DN=MN(2)如图2,当M,N分别在边BC,CD的延长线上时,请直接写出线段BM,DN,MN之间的数量关系(3)如图3,直线AN与BC交于P点,MN=10,CN=6,MC=8,求CP的长.【答案】(1)见解析;(2)BM DN MN −=;(3)3【分析】(1)延长CB 到G 使BG DN =,连接AG ,先证明AGB AND ≅△△,由此得到AG AN =,GAB DAN ∠=∠,再根据45MAN ∠=︒,90BAD ∠=︒,可以得到45GAM NAM ∠=∠=︒,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN +=;(2)在BM 上取一点G ,使得BG DN =,连接AG ,先证明AGB AND ≅△△,由此得到AG AN =,GAB DAN ∠=∠,由此可得90GAN BAD ∠=∠=︒,再根据45MAN ∠=︒可以得到45GAM NAM ∠=∠=︒,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN −=;(3)在DN 上取一点G ,使得DG BM =,连接AG ,先证明ABM ADG V V ≌,再证明AMN AGN △≌△,设DG BM x ==,根据DC BC =可求得2x =,由此可得6AB BC CD CN ====,最后再证明ABP NCP △≌△,由此即可求得答案.【详解】(1)证明:如图,延长CB 到G 使BG DN =,连接AG ,∵四边形ABCD 是正方形,∴AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG V 与ADN △中,AB AD ABG ADN BG DN =⎧⎪∠=∠⎨⎪=⎩, ()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,45MAN ∠=︒Q ,90BAD ∠=︒,∴45DANBAM BAD MAN ∠+∠=∠−∠=︒,45GAM GAB BAM DAN BAM ∴∠=∠+∠=∠+∠=︒,GAM NAM ∴∠=∠,在AMN V 与AMG V 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩, ()AMN AMG SAS ∴△≌△,MN GM ∴=,又∵BM GB GM +=,BG DN =,BM DN MN ∴+=;(2)BM DN MN −=,理由如下:如图,在BM 上取一点G ,使得BG DN =,连接AG ,∵四边形ABCD 是正方形,∴AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG V 与ADN △中,AB AD ABG ADN GB DN =⎧⎪∠=∠⎨⎪=⎩,()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,∴GAB GAD DAN GAD ∠+∠=∠+∠,∴90GAN BAD ∠=∠=︒,又45MAN ∠=︒Q ,45GAM GAN MAN MAN ∴∠=∠−∠=︒=∠,在AMN V 与AMG V 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩,()AMN AMG SAS ∴△≌△,MN GM ∴=,又∵BM BG GM −=,BG DN =,∴BM DN MN −=,故答案为:BM DN MN −=;(3)如图,在DN 上取一点G ,使得DG BM =,连接AG ,9.(2022·浙江·九年级阶段练习)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数点,∠EAF=12量关系.并证明你的猜想.10.(2022·北京四中九年级期中)如图,在△ABC中,∠ACB=90°,CA=CB,点P在线段AB上,作射线CP(0°<∠ACP<45°),射线CP绕点C逆时针旋转45°,得到射线CQ,过点A作AD⊥CP于点D,交CQ于点E,连接BE.(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明.【答案】(1)作图见解析.(2)结论:AD+BE=DE.证明见解析.【分析】(1)根据要求作出图形即可.(2)结论:AD +BE =DE .延长DA 至F ,使DF=DE ,连接CF .利用全等三角形的性质解决问题即可.(1)解:如图所示:(2)结论:AD +BE =DE .理由:延长DA 至F ,使DF =DE ,连接CF .∵AD ⊥CP ,DF =DE ,∴CE =CF ,∴∠DCF =∠DCE =45°,∵∠ACB =90°,∴∠ACD +∠ECB =45°,∵∠DCA +∠ACF =∠DCF =45°,∴∠FCA =∠ECB ,在△ACF 和△BCE 中,CA CB ACF BCE CF CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD +BE =DE .【点睛】本题考查作图-旋转变换,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
初中数学几何模型之半角模型
数学模型-----半角模型几何是初中数学中非常重要的内容,在数学的学习过程中,若能抓住基本图形,举一反三,定能引领学生领略到“一图一世界”的风采.下面先给大家介绍一种常见的数学模型---半角模型,通过对模型的理解和掌握,把模型的结论融会贯通,理解透彻,有助于理清思路、节省大量时间,遇到这一类题型,都是可以迎刃而解的.一、模型类别二、相关结论的运用(一)等边三角形中120︒含60︒半角模型条件:△ABC是等边三角形,∠CDB =120︒,∠EDF=60︒,BD=CD,旋转△BDE至△CDG结论1:△FDE △FDG结论2:EF=BE+CF结论3:∠DEB =∠DEF典例精讲:已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E、F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想AE,CF,EF之间存在怎样的数量关系?请将三条线段分别填入后面横线中:+=.(不需证明)(2)当∠MBN绕B点旋转到AE≠CF(如图2)时,上述(1)中结论是否成立?请说明理由.(3)当∠MBN绕B点旋转到AE≠CF(如图3)时,上述(1)中结论是否成立?若不成立,线段AE,CF,EF又有怎样的数量关系?请直接写出你的猜想,不需证明.【思路点拨】(1)证明△ABE≌△CBF且△BEF是等边三角形即可;(2)根据“半角”模型1,先证△BAE≌△BCG,再根据“半角”模型1中的结论2得出△GBF≌△EBF,再根据“半角”模型1中的结论3即可;(3)根据“半角”模型1,先证△BAH≌△BCF,再根据“手拉手”模型1中的结论2得出△EBF≌△EBH即可.【详解】解:(1)如图1,△ABE 和△CBF 中,AE CF BAE BCF AB CB =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (SAS ),∴∠CBF =∠EBA ,BE =BF ,∵∠ABC =120°,∠EBF =60°,∴△BEF 是等边三角形,CF =12B ,AE =12BE , ∴EF =BE =BF =AE+CF ;(2)如图2,延长FC 至G ,使AE =CG ,连接BG ,在△BAE 和△BCG 中,BA BC BAE BCG AE CG =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△BCG (SAS ),∴∠ABE =∠CBG ,BE =BG ,∵∠ABC =120°,∠EBF =60°,∴∠ABE+∠CBF =60°,∴∠CBG+∠CBF =60°,∴∠GBF =∠EBF ,在△GBF 和△EBF 中,BG BE GBF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴△GBF ≌△EBF (SAS ),∴EF =GF =CF+CG =CF+AE ;(3)不成立,但满足新的数量关系.如图3,在AE 上截取AH =CF ,连接BH ,在△BAH 和△BCF 中,BA BC BAH BCF AH CF =⎧⎪∠=∠⎨⎪=⎩,∴△BAH ≌△BCF (SAS ),∴BH =BF ,∠ABH =∠CBF ,∵∠EBF =60°=∠FBC+∠CBE∴∠ABH+∠CBE =60°,∵∠ABC =120°,∴∠HBE =60°=∠EBF ,在△EBF 和△HBE 中,BH BF HBE EBF BE BE =⎧⎪∠=∠⎨⎪=⎩,∴△EBF ≌△EBH (SAS ),∴EF =EH ,∴AE =EH+AE =EF+CF .【解题技法】本题典型的利用“半角”模型1,其基本思路是“旋转补短”,从而构造全等三角形.实战演练:1. 如图1,在菱形ABCD 中,AC =2,BD =AC ,BD 相交于点O .(1)求边AB 的长;(2)求∠BAC 的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A处,绕点A 左右旋转,其中三角板60°角的两边分别与边BC ,CD 相交于点E ,F ,连接EF .判断△AEF 是哪一种特殊三角形,并说明理由.【答案】(1)2;(2)60︒ ;(3)见详解【解析】【分析】(1)由菱形的性质得出OA=1,,根据勾股定理可得出答案; (2)得出△ABC 是等边三角形即可;(3)由△ABC 和△ACD 是等边三角形,利用ASA 可证得△ABE△△ACF ;可得AE=AF ,根据有一个角是60°的等腰三角形是等边三角形推出即可.【详解】解:(1)△四边形ABCD 是菱形,△AC△BD ,△△AOB 为直角三角形,且111,22OA AC OB BD ====△2AB ===;(2)△四边形ABCD 是菱形,△AB=BC ,由(1)得:AB=AC=BC=2,△△ABC 为等边三角形,△BAC=60°;(3)△AEF 是等边三角形,△由(1)知,菱形ABCD 的边长是2,AC=2,△△ABC 和△ACD 是等边三角形,△△BAC=△BAE+△CAE=60°,△△EAF=△CAF+△CAE=60°,△△BAE=△CAF ,在△ABE 和△ACF 中,BAE CAF AB ACEBA FCA ∠=∠⎧⎪=⎨⎪∠=∠⎩△△ABE△△ACF (ASA ),△AE=AF ,△△EAF=60°,△△AEF 是等边三角形.【点睛】本题考查了菱形的性质,全等三角形的性质和判定,等边三角形的性质以及图形的旋转.解题的关键是熟练掌握菱形的性质.2. 在平行四边形ABCD 中,点E ,F 分别在边AD ,AB 上(均不与顶点重合),且∠BCD =120°,∠ECF =60°.(1)如图1,若AB =AD ,求证:AEC BFC ≅;(2)如图2,若AB =2AD ,过点C 作CM ⊥AB 于点M ,求证:①AC ⊥BC ;②AE =2FM ;(3)如图3,若AB =3AD ,试探究线段CE 与线段CF 的数量关系.【答案】(1)证明见解析;(2)①证明见解析;②证明见解析;(3)3CE CF =,证明见解析.【解析】【分析】(1)先根据菱形的判定与性质可得60CAE ACB B ∠=∠=∠=︒,再根据等边三角形的判定与性质可得AC BC =,然后根据角的和差可得ACE BCF ∠=∠,最后根据三角形全等的判定定理即可得证;(2)①先根据平行四边形的性质可得60B ∠=︒,BC AD =,从而可得1cos 2BC B AB ==,再根据直角三角形的性质即可得证;②先根据平行线的性质、直角三角形的性质可得90,30CAE ACB BAC ∠=∠=︒∠=︒,2AC MC=,再根据角的和差可得60ACM ECF ∠=∠=︒,从而可得ACE MCF ∠=∠,然后根据相似三角形的判定与性质可得2AE AC FM MC==,由此即可得证; (3)如图(见解析),先根据平行四边形的性质可得60D B ∠=∠=︒,BC AD =,AB CD =,再根据等边三角形的判定与性质可得60BGC BCG ∠=∠=︒,BC CG =,从而可得3CD CG=,然后根据角的和差可得DCE GCF ∠=∠,最后根据相似三角形的判定与性质可得3CE CD CF CG==,由此即可得出答案. 【详解】(1)四边形ABCD 是平行四边形,AB AD =,∴四边形ABCD 是菱形,120BCD ∠=︒,60,CAE ACB B AB BC ∴∠=∠=∠=︒=,ABC ∴是等边三角形,AC BC ∴=,60ECF =︒∠,60ACE ACF ∴∠+∠=︒,又60ACB ∠=︒,即60BCF ACF ∠+∠=︒,ACE BCF ∴∠=∠,在AEC 和BFC △中,CAE B AC BC ACE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AEC BFC ASA ∴≅;(2)①四边形ABCD 是平行四边形,120BCD ∠=︒,60B ∴∠=︒,BC AD =,//BC AD ,1cos cos 602B ∴=︒=, 2AB AD =,2AB BC ∴=,即12BC AB =, ∴在ABC 中,1cos 2BC B AB ==, ABC ∴是直角三角形,且90ACB ∠=︒,即AC BC ⊥;②90,60,//ACB B BC AD ∠=︒∠=︒,90,30CAE ACB BAC ∴∠=∠=︒∠=︒,∴在Rt ACM △中,2AC MC =,即2AC MC=, CM AB ⊥,90,60CMF ACM ∴∠=︒∠=︒,60MCF ACF ∴∠+∠=︒,60ECF =︒∠,60ACE ACF ∴∠+∠=︒,ACE MCF ∴∠=∠,在ACE 和MCF △中,90CAE CMF ACE MCF ∠=∠=︒⎧⎨∠=∠⎩, ACE MCF ∴~,2AE AC FM MC∴==, 即2AE FM =;(3)3CE CF =,证明如下:如图,在AB 上取一点G ,使得BG BC =,连接CG ,四边形ABCD 是平行四边形,120BCD ∠=︒,60D B ∴∠=∠=︒,BC AD =,AB CD =,BCG ∴是等边三角形,BC CG ∴=,60BGC BCG ∠=∠=︒,3AB AD =,33CD BC CG ∴==,即3CD CG=, 120,60BCD ECF ∠=︒∠=︒,60DCE BCF ∴∠+∠=︒,60BCF ∴∠<︒,即BCF BCG ∠<∠,∴点G 一定在点F 的左侧,60GCF BCF BCG ∴∠+∠=∠=︒,DCE GCF ∴∠=∠,在CDE △和CGF △中,60D FGC DCE GCF ∠=∠=︒⎧⎨∠=∠⎩, CDE CGF ∴~,3CE CD CF CG∴==, 即3CE CF =.【点睛】本题考查了三角形全等的判定定理、菱形的判定与性质、等边三角形的判定与性质、相似三角形的判定与性质等知识点,较难的是题(3),通过作辅助线,构造相似三角形是解题关键.(二)等腰直角三角形中90︒含45︒半角模型条件:△ABC是等腰直角三角形,∠CAB =90︒,AB=AC,∠DAE=45︒,旋转△BDE至△CDG(△BDE沿AD翻折到△ADF)结论1:△ADE≅△AFE(△ACE≅△AFE)结论2:DE2=BD2+EC2结论3:C∆CEF=BC(C∆DEF=BC)典例精讲:已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.(1)当扇形CEF绕点C在∠ACB的内部旋转时,如图①,求证:MN2=AM2+BN2;思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程:(2)当扇形CEF绕点C旋转至图②的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.【思路点拨】(1)将△ACM沿直线CE对折,得△DCM,连DN,根据“半角”模型2,证明出△CDN≌△CBN,再根据“半角”模型2的结论2即可;(2)将△ACM沿直线CE对折,得△GCM,连GN,根据“半角”模型2,证明△CGN≌△CBN,再根据“半角”模型2的结论2即可;【详解】(1)证明:将△ACM沿直线CE对折,得△DCM,连DN,则△DCM≌△ACM.有CD=CA,DM=AM,∠DCM=∠ACM,∠CDM=∠A.又由CA=CB,得CD=CB.由∠DCN=∠ECF﹣∠DCM=45°﹣∠DCM,∠BCN=∠ACB﹣∠ECF﹣∠ACM=90°﹣45°﹣∠ACM,得∠DCN=∠BCN.又CN=CN,∴△CDN≌△CBN.∴DN=BN,∠CDN=∠B.∴∠MDN=∠CDM+∠CDN=∠A+∠B=90°.∴在Rt△MDN中,由勾股定理,得MN2=DM2+DN2.即MN2=AM2+BN2.(2)关系式MN2=AM2+BN2仍然成立.证明:将△ACM沿直线CE对折,得△GCM,连GN,则△GCM≌△ACM.有CG=CA,GM=AM,∠GCM=∠ACM,∠CGM=∠CAM.又由CA=CB,得CG=CB.由∠GCN=∠GCM+∠ECF=∠GCM+45°,∠BCN=∠ACB﹣∠ACN=90°﹣(∠ECF﹣∠ACM)=45°+∠ACM.得∠GCN =∠BCN .又CN =CN ,∴△CGN ≌△CBN .有GN =BN ,∠CGN =∠B =45°,∠CGM =∠CAM =180°﹣∠CAB =135°,∴∠MGN =∠CGM ﹣∠CGN =135°﹣45°=90°.∴在Rt △MGN 中,由勾股定理,得MN 2=GM 2+GN 2.即MN 2=AM 2+BN 2.【解题技法】利用“半角”模型2,正确作出辅助线,构造直角三角形是解题的关键. 实战演练:3. 在等腰ABC 中,CA =CB ,点D ,E 在射线AB 上,不与A ,B 重合(D 在E 的左边),且∠DCE =12∠ACB . (1)如图1,若∠ACB =90°,将CAD 沿CD 翻折,点A 与M 重合,求证:MCE BCE ≅;(2)如图2,若∠ACB =120°,且以AD 、DE 、EB 为边的三角形是直角三角形,求AD EB的值; (3)∠ACB =120°,点D 在射线AB 上运动,AC =3,则AD 的取值范围为 .【答案】(1)证明见解析;(2)12或2;(3)0AD <<【解析】【分析】(1)先根据翻折的性质可得,CA CM ACD MCD =∠=∠,从而可得CM CB =,再根据角的和差可得MCE BCE ∠=∠,然后根据三角形全等的判定定理即可得证; (2)如图(见解析),先根据等腰三角形的性质可得30A B ==︒∠∠,再根据翻折的性质可得,30DF AD CFD A =∠=∠=︒,然后根据三角形全等的判定定理与性质可得,30EF EB CFE B =∠=∠=︒,从而可得60DFE ∠=︒,最后根据直角三角形的定义分90EDF ∠=︒和90DEF ∠=︒两种情况,分别利用余弦三角函数即可得; (3)先判断出AD 取得最大值时点D 的位置,再利用余弦三角函数求解即可得.【详解】(1)由翻折的性质得:,CA CM ACD MCD =∠=∠,CA CB =,CM CB ∴=,190,2ACB DCE ACB ∠=︒∠=∠, 45MCD MCE DCE ∴∠+∠=∠=︒,45ACD BCE ACB DCE ∠+∠=∠-∠=︒, MCE BCE ∠=∠∴,在MCE 和BCE 中,CM CB MCE BCE CE CE =⎧⎪∠=∠⎨⎪=⎩,()MCE BCE SAS ≅∴;(2)如图,将ACD △沿CD 翻折,点A 与F 重合,连接EF ,,120ACB CA CB ∠==︒,30A B ∴∠=∠=︒,由翻折的性质得:,30DF AD CFD A =∠=∠=︒,同(1)的方法可证:FCE BCE ≅,,30EF EB CFE B ∴=∠=∠=︒,60CFD DFE CFE =∠+∴=∠∠︒,以AD 、DE 、EB 为边的三角形是直角三角形,∴以DF 、DE 、EF 为边的三角形是直角三角形,即DEF 是直角三角形, 因此分以下两种情况:①当90EDF ∠=︒时,在Rt DEF △中,1cos 2cos 60DF DFE EF ∠==︒=, 则12AD DF EB EF ==, ②当90DEF ∠=︒时,在Rt DEF △中,1cos 2cos 60EF DFE DF ∠==︒=, 则12EB EF AD DF ==, 即2AD EB =, 综上,AD EB 的值为12或2;(3),120ACB CA CB ∠==︒,30A B ∴∠=∠=︒,如图,当点D 在射线AB 上运动至CA CD ⊥的位置时,在Rt ACD △中,cos AC A AD =,即3cos302AD ︒==, 解得AD =120ACB ∠=︒,1209030BCD ACB ACD ∴∠=∠-∠=︒-︒=︒,1602DCE ACB ∠=∠=︒, 30BCE DCE BCD ∴∠=∠-∠=︒,30BCE B ∴∠=∠=︒,//∴AB CE ,要使点E 在射线AB 上,且点D 在E 的左边,则AD <即AD 的取值范围为0AD <<,故答案为:0AD <<.【点睛】本题考查了翻折的性质、三角形全等的判定定理与性质、等腰三角形的性质、余弦三角函数等知识点,较难的是题(3),正确判断出AD 取得最大值时点D 的位置是解题关键.(三)正方形中90︒含45︒半角模型条件:正方形ABCD 中,∠MAN =45︒ ,旋转△ABF 至△AND ;结论1:△AFM ≅△AMN结论2: MN=BM+DN(MN=DN-BM)结论3:C ∆MCN =2AB ;结论4: AMN ABM ADN S S S =+(AMN ADN ABM S S S =-)典例精讲:(1)(发现证明)如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且∠EAF =45°,求证:EF =DF+BE .小明发现,当把△ABE 绕点A 顺时针旋转90°至△ADG ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)(类比引申)①如图2,在正方形ABCD中,如果点E,F分别是CB,DC延长线上的动点,且∠EAF=45°,则(1)中的结论还成立吗?请写出证明过程.②如图3,如果点E,F分别是BC,CD延长线上的动点,且∠EAF=45°,则EF,BE,DF之间的数量关系是(不要求证明)(3)(联想拓展)如图1,若正方形ABCD的边长为6,AE=AF的长.【思路点拨】(1)(发现证明)根据“半角”模型3,证明出△EAF≌△GAF,再根据“半角”模型3的结论2即可得证;(2)(类比引申)①根据“半角”模型3,证明出△EAF≌△GAF,再根据“半角”模型3的结论2即可得证;②根据“半角”模型3,证明△AFE≌△ANE,再根据“半角”模型3的结论2即可得证;(3)(联想拓展)求出DG=2,设DF=x,则根据“半角”模型3的结论2得出EF=DG=x+3,CF=6﹣x,在Rt△EFC中,得出关于x的方程,解出x则可得解.【详解】(1)(发现证明)证明:把△ABE绕点A顺时针旋转90°至△ADG,如图1,∴∠BAE=∠DAG,AE=AG,∵∠EAF=45°,∴∠BAE+∠FAD=45°,∴∠DAG+∠FAD=45°,∴∠EAF=∠FAG,∵AF=AF,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=DF+BE;(2)(类比引申)①不成立,结论:EF=DF﹣BE;证明:如图2,将△ABE绕点A顺时针旋转90°至△ADM,∴∠EAB=∠MAD,AE=AM,∠EAM=90°,BE=DM,∴∠FAM=45°=∠EAF,∵AF=AF,∴△EAF≌△MAF(SAS),∴EF=FM=DF﹣DM=DF﹣BE;②如图3,将△ADF绕点A逆时针旋转90°至△ABN,∴AN=AF,∠NAF=90°,∵∠EAF=45°,∴∠NAE=45°,∴∠NAE=∠FAE,∵AE=AE,∴△AFE≌△ANE(SAS),∴EF=EN,∴BE=BN+NE=DF+EF.即BE=EF+DF.故答案为:BE=EF+DF.(3)(联想拓展)解:由(1)可知AE=AG=3,∵正方形ABCD的边长为6,∴DC=BC=AD=6,∴3DG===∴BE=DG=3,∴CE=BC﹣BE=6﹣3=3,设DF=x,则EF=DG=x+3,CF=6﹣x,在Rt△EFC中,∵CF2+CE2=EF2,∴(6﹣x)2+32=(x+3)2,解得:x=2.∴DF=2,∴AF==【解题技法】“半角”模型3,常与旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,将分散的条件集中起来,将隐秘的关系显现出来.实战演练:4. 思维探索:在正方形ABCD中,AB=4,∠EAF的两边分别交射线CB,DC于点E,F,∠EAF=45°.(1)如图1,当点E,F分别在线段BC,CD上时,△CEF的周长是;(2)如图2,当点E,F分别在CB,DC的延长线上,CF=2时,求△CEF的周长;拓展提升:如图3,在Rt△ABC中,∠ACB=90°,CA=CB,过点B作BD⊥BC,连接AD,在BC的延长线上取一点E,使∠EDA=30°,连接AE,当BD=2,∠EAD=45°时,请直接写出线段CE的长度.【答案】思维探索:(1)8;(2)12;拓展提升:CE﹣1.【解析】【分析】思维探索:(1)利用旋转的性质,证明△AGE≌△AFE即可;(2)把△ABE绕点A逆时针旋转90°到AD,交CD于点G,证明△AEF≌△AGF 即可求得EF=DF﹣BE;拓展提升:如图3,过A作AG⊥BD交BD的延长线于G,推出四边形ACBG是矩形,得到矩形ACBG是正方形,根据正方形的性质得到AC=AG,∠CAG=90°,在BG上截取GF=CE,根据全等三角形的性质得到AE=AF,∠EAC=∠F AG,∠ADF=∠ADE=30°,解直角三角形得到DE=DF=4,BE=CE=x,则GF=CE=x,BC=BG=﹣x,根据线段的和差即可得到结论.【详解】思维探索:(1)如图1,将△ADF绕点A顺时针旋转90°得到△ABG,∴GB=DF,AF=AG,∠BAG=∠DAF,∵四边形ABCD为正方形,∴∠BAD=90°,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠BAG+∠BAE=45°=∠EAF,在△AGE和△AFE中AG AFGAE EAF AE AE=⎧⎪∠=∠⎨⎪=⎩∴△AGE≌△AFE(SAS),∴GE=EF,∵GE=GB+BE=BE+DF,∴EF=BE+DF,∴△CEF的周长=CE+CF+EF=CE+BE+DF+CF=BC+CD=8,故答案为:8;(2)如,2,把△ABE绕点A逆时针旋转90°到AD,交CD于点G,同(1)可证得△AEF≌△AGF,∴EF=GF,且DG=BE,∴EF=DF﹣DG=DF﹣BE,∴△CEF的周长=CE+CF+EF=CE+CF+DF﹣BE=BC+DF+CF=4+4+2+2=12;拓展提升:如图3,过A作AG⊥BD交BD的延长线于G,∵BD⊥BC,∠ACB=90°,∴∠ACB=∠CBG=∠G=90°,∴四边形ACBG是矩形,∵AC=BC,∴矩形ACBG是正方形,∴AC=AG,∠CAG=90°,在BG上截取GF=CE,∴△AEC≌△AGF(SAS),∴AE=AF,∠EAC=∠F AG,∵∠EAD=∠BAC=∠GAB=45°,∴∠DAF=∠DAE=45°,∵AD=AD,∴△ADE≌△ADF(SAS),∴∠ADF=∠ADE=30°,∴∠BDE=60°,∵∠DBE=90°,BD=2,∴DE=DF=4,BE=设CE=x,则GF=CE=x,BC=BG=x,∴DG=x,∴DG﹣FG=DF,即x﹣x=4,∴x﹣1,∴CE1.【点睛】本题以正方形为背景,结合旋转,三角形全等,解直角三角形进行综合性考查,熟知常见的全等模型,旋转性质,三角形的判定及性质,正方形,矩形的性质是解题的关键.5. (1)如图,在正方形ABCD 中,∠FAG=45°,请直接写出DG,BF 与FG 的数量关系,不需要证明.(2)如图,在Rt△ABC 中,∠BAC=90°,AB=AC,E,F 分别是BC 上两点,∠EAF=45°,①写出BE,CF,EF 之间的数量关系,并证明.②若将(2)中的△AEF 绕点A 旋转至如图所示的位置,上述结论是否仍然成立?若不成立,直接写出新的结论,无需证明.S(3)如图,△AEF 中∠EAF=45°,AG⊥EF 于G,且GF=2,GE=3,则AEF= .【答案】(1)FG=BF+DG;(2)①EF2=BE2+FC2,理由见解析;②仍然成立;(3)15【解析】【分析】(1)把△AGD绕点A逆时针旋转90°至△ABP,可使AD与AB重合,再证明△AFG≌△AFP进而得到PF=FG,即可得FG=BF+DG;(2)①根据△AFC绕点A顺时针旋转90°得到△AGB,根据旋转的性质,可知△ACF≌△ABG得到BG=FC,AG=AF,∠C=∠ABG,∠FAC=∠GAB,根据Rt△ABC中的AB=AC得到∠GBE=90°,所以GB2+BE2=GE2,证△AGE≌△AFE,利用EF=EG得到EF2=BE2+FC2;②将△ABE绕点A逆时针旋转使得AB与AD重合,点E的对应点是G,同上的方法证得GC2+CF2=FG2,再设法利用SAS证得△AFG≌△AFE即可求解;(3)将△AEG沿AE对折成△AEB,将△AFG沿AF对折成△AFD,延长BE、DF相交于C,构成正方形ABCD,在Rt△EFC中,利用勾股定理求得正方形的边长,即可求得AG的长,从而求得答案.【详解】(1)∵四边形ABCD为正方形,∴AB=AD,∠ADC=∠ABC=90°,∴把△AGD绕点A逆时针旋转90°至△ABP,使AD与AB重合,∴∠BAP=∠DAG ,AP= AG ,∵∠BAD=90°,∠FAG=45°,∴∠BAF+∠DAG=45°,∴∠PAF=∠FAG=45°,∵∠ADC=∠ABC=90°,∴∠FBP=180°,点F 、B 、P 共线,在△AFG 和△AFP 中,AG AP FAG FAP AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AFG ≌△AFP (SAS ),∴PF=FG ,即:FG=BF+DG ;(2)①FC 2+BE 2=EF 2,证明如下:∵AB=AC ,∠BAC=90°,∴∠C=∠ABC=45°,将△AFC 绕点A 顺时针旋转90°得到△AGB ,∴△ACF ≌△ABG ,∴BG=FC ,AG=AF ,∠C=∠ABG=45°,∠FAC=∠GAB ,∴∠GBE=∠ABG +∠ABC =90°,∴GB 2+BE 2=GE 2,又∵∠EAF=45°,∴∠BAE+∠FAC=45°,∴∠GAB+∠BAE=45°,即∠GAE=45°,在△AGE 和△AFE 中,GA FA EAG EAF AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△AGE ≌△AFE (SAS ),∴GE=EF ,∴FC 2+BE 2=EF 2;②仍然成立,理由如下:如图,将△ABE 绕点A 逆时针旋转使得AB 与AD 重合,点E 的对应点为点G ,∴△ACG ≌△ABE ,∴CG=BE ,AG=AE ,∠ACG=∠ABE=45°,∠BAE=∠CAG ,∴∠GCB=∠ACB +∠ACG =90°,即∠GCF=90°,∴GC 2+CF 2=FG 2,∵∠BAE+∠EAC=∠BAC=90°,∴∠CAG+∠EAC=90°,又∵∠EAF=45°,∴∠GAF=90°-∠EAF=45°,∴∠GAF=∠EAF=45°,在△AFG 和△AFE 中,GA EA GAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AFG ≌△AFE (SAS ),∴GF=EF ,∴FC 2+BE 2=EF 2;(3)将△AEG 沿AE 对折成△AEB ,将△AFG 沿AF 对折成△AFD ,延长BE 、DF 相交于C ,∴△AEG ≅△AEB ,△AFG ≅△AFD ,∴AB=AG=AD ,BE=EG=3,DF=FG=2,∠EAG=∠EAB ,∠FAG=∠FAD ,∠B=∠D=90°,∵∠EAF=45°,∴∠EAB+∠FAD=∠EAG+∠FAG=∠EAF=45°,∴∠BAD=90°,∴四边形ABCD 为正方形,设AG =x ,则AB=BC=CD=x ,在Rt △EFC 中,EF=3+2=5,EC=BC-BE=3x -,FC=CD-DF= 2x -, ∴222FC EC EF +=,故()()2222?35x x -+-=, 解得:11x =-(舍去),26x =,∴AG=6,∴AEF 115615 22S EF AG==⨯⨯=.故答案为:15.【点睛】本题主要考查了旋转的性质,折叠的性质,正方形的性质,全等三角形的判定与性质,勾股定理,三角形的面积等知识,同时考查了学生的阅读理解能力与知识的迁移能力,综合性较强,难度适中.(四)等边三角形中60︒含30︒半角模型条件:△ABC是等边三角形,∠DAE =30︒,旋转△ABD至△ACF;结论1:△ADE≅△AFE结论2:∠ECF =120︒结论3:C∆ECF=AB;典例精讲:转前后的线段之间、角之间的关系进行了探究.(一)尝试探究如图1所示,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分别在线段BC、CD上,∠EAF=30°,连接EF.(1)如图2所示,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF=度,线段BE、EF、FD之间的数量关系为.(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.(二)拓展延伸如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A 作AM⊥BC于点M,连接MN,求线段MN的长度.【思路点拨】(一)(1)(发现证明)根据“半角”模型4,证明出△AEF≌△AE′F,进而根据线段的和差关系得出结论;(2)先在BE上截取BG=DF,连接AG,根据“半角”模型4,判定△GAE≌△FAE,根据线段的和差关系得出结论;(二)先根据“半角”模型4,判定△AEE′是等边三角形,进而得到AN AMAE AB=和∠BAE=∠MAN,最后判定△BAE∽△MAN,并根据相似三角形对应边成比例,列出比例式求得MN的长.解:(一)(1)将△ABE绕点A逆时针旋转60°后得到△A′B′E′,则∠BAE=∠DAE',BE=DE′,AE=AE′,∵∠BAD=60°,∠EAF=30°,∴∠BAE+∠DAF=30°,∴∠DAE'+∠DAF=30°,即∠FAE′=30°∴∠EAF=∠FAE′,在△AEF和△AE′F中,AE AEEAF E AF AF AF''⎧=⎪∠=∠⎨⎪=⎩,∴△AEF≌△AE′F(SAS),∴EF=E′F,即EF=DF+DE′,∴EF=DF+BE,即线段BE、EF、FD之间的数量关系为BE+DF=EF,故答案为:30,BE+DF=EF;(2)如图3,BE上截取BG=DF,连接AG,在△ABG和△ADF中,AB ADABE ADF BG DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,且AG=AF,∵∠DAF+∠DAE=30°,∴∠BAG+∠DAE=30°,∵∠BAD=60°,∴∠GAE=60°﹣30°=30°,∴∠GAE=∠FAE,在△GAE和△FAE中,AG AFGAE FAE AE AE=⎧⎪∠=∠⎨⎪=⎩,∴△GAE≌△FAE(SAS),∴GE=FE,又∵BE﹣BG=GE,BG=DF,∴BE﹣DF=EF,即线段BE、EF、FD之间的数量关系为BE﹣DF=EF;(二)如图4,将△ABE绕点A逆时针旋转60°得到△A′B′E′,则AE=AE′,∠EAE′=60°,∴△AEE′是等边三角形,又∵∠EAF=30°,∴AN平分∠EAE',∴AN⊥EE′,∴RtANE中,ANAE=∵在等边△ABC中,AM⊥BC,∴∠BAM =30°,∴AM AB =BAE+∠EAM =30°, ∴AN AM AE AB=, 又∵∠MAN+∠EAM =30°,∴∠BAE =∠MAN ,∴△BAE ∽△MAN ,∴MN AN BE AB =,即MN 1=,∴MN 【解题技法】根据“半角”模型,对图形进行分解、组合,抓住图形旋转前后的对应边相等,一般解题方法为作辅助线构造全等三角形或相似三角形.实战演练:6. (1)问题背景:如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC ,CD 上的点且∠EAF =60°,探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG =BE .连结AG ,先证明ABE ADG ≅△△,再证明AEF AGF ≅△△,可得出结论,他的结论应是 ;(2)探索延伸:如图2,若在四边形ABCD 中,AB =AD ,∠B+∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD ,上述结论 仍然成立(填“是”或“否”); (3)结论应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E 、F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.(4)能力提高:如图4,等腰直角三角形ABC 中,∠BAC =90°,AB =AC ,点M ,N 在边BC 上,且∠MAN =45°.若BM =1,CN =3,则MN 的长为 .【答案】(1)BE FD EF +=;(2)是;(3)210海里;(4【解析】【分析】(1)先根据三角形全等的判定定理与性质可得,,BE DG AE AG BAE DAG ==∠=∠,再根据角的和差可得EAF GAF ∠=∠,然后根据三角形全等的判定定理与性质可得EF GF =,最后根据线段的和差、等量代换即可得;(2)如图(见解析),先根据三角形全等的判定定理与性质可得,,BE DM AE AM BAE DAM ==∠=∠,再根据角的和差可得EAF MAF ∠=∠,然后根据三角形全等的判定定理与性质可得EF MF =,最后根据线段的和差、等量代换即可得;(3)先根据方位角的定义、角的和差分别求出140,70,180AOB EOF A OBC ∠=︒∠=︒∠+∠=︒,从而可得12EOF AOB ∠=∠,再根据航行速度与时间分别求出90AE =海里,120BF =海里,然后利用题(2)的结论即可得;(4)过点C 作CE ⊥BC,垂足为点C ,截取CE,使CE=BM.连接AE 、EN,根据(2)中的结论计算即可.【详解】(1)在ABE △和ADG 中,90AB AD B ADG BE DG =⎧⎪∠=∠=︒⎨⎪=⎩()ABE ADG SAS ∴≅,,BE DG AE AG BAE DAG ∴==∠=∠120,60BAD EAF ∠=︒∠=︒60BAE DAF ∴∠+∠=︒60DAG DAF ∴∠+∠=︒,即60GAF =︒∠60EAF GAF ∴∠=∠=︒在AEF 和AGF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩()AEF AGF SAS ∴≅EF GF ∴=DG FD GF +=BE FD EF ∴+=故答案为:BE FD EF +=;(2)是,证明如下:如图,延长CD 至点M ,使得DM BE =180B ADF ∠+∠=︒,180ADM ADF ∠+∠=︒B ADM ∴∠=∠在ABE △和ADM △中,AB AD B ADM BE DM =⎧⎪∠=∠⎨⎪=⎩()ABE ADM SAS ∴≅,,BE DM AE AM BAE DAM ∴==∠=∠12EAF BAD ∠=∠ 12BAE DAF BAD EAF BAD ∴∠+∠=∠-∠=∠ 12DAM DAF BAD ∴∠+∠=∠,即12MAF BAD ∠=∠ EAF MAF ∴∠=∠在AEF 和AMF 中,AE AM EAF MAF AF AF =⎧⎪∠=∠⎨⎪=⎩()AEF AMF SAS ∴≅EF MF ∴=DM FD MF +=BE FD EF ∴+=故答案为:是;(3)如图,延长AE 、BF ,相交于点C ,连接EF ,过点B 作BN x ⊥轴于点N 由题意得:30,907020,,70AOG BOD OA OB EOF ∠=︒∠=︒-︒=︒=∠=︒ 309020140AOB AOG DOG BOD ∴∠=∠+∠+∠=︒+︒+︒=︒,70OBN ∠=︒12∴∠=∠EOF AOB 舰艇甲从A 处向正东方向以45海里/小时的速度航行2小时至E 处//AE x ∴轴,45290AE =⨯=(海里)90AGO ∴∠=︒9060A AOG ∴∠=︒-∠=︒舰艇乙从B 处沿北偏东50︒的方向以60海里/小时的速度航行2小时至F 处 50NBD ∴∠=︒,602120BF =⨯=(海里)120OBC OBN NBD ∴∠=∠+∠=︒60120180A OBC ∴∠+∠=︒+︒=︒则由(2)的结论可得:90120210EF AE BF =+=+=(海里)故此时两舰艇之间的距离为210海里;(4)过点C 作CE ⊥BC,垂足为点C,截取CE ,使CE=BM.连接AE 、EN,由(2)可知,CE=BM=1, NE=MN,= .∴MN=,故答案为:【点睛】本题考查了全等三角形的判定和性质、勾股定理的运用、等腰直角三角形的性质,题目的综合性较强,难度较大,解题的关键是正确的作出辅助线构造全等三角形,解答时,注意类比思想的应用.。
2024专题3.3旋转---半角模型-中考数学二轮复习必会几何模型剖析(全国通用)
A
D
2
2
⑤CE= 2 DM,DF= BG,EF= GM, ⑥ = =
CE FC 2
M
⑦△AEF的边EF上的高等于正方形的边长;
⑧△EFC的周长等于正方形的边长的2倍.
F
角度之间的关系: ①∠AEB=∠AEF,∠AFE=∠AFD
G
O
②根据下面共圆,每个共圆都至少可以得到四队相等的角.
四点共圆:①ABEM ②ADFG ③GEFM ④CEMF ⑤CEGMF
=
=
= .
A
(1)∵∠MEN=∠MFN=45º,∴M、N、F、E四点共圆
D
45º
∴∠ANM=∠AEF,∠AMN=∠AFE,
∴△AMN∽△AFE.
N
F
M
B
E
C
变式训练
考点3-1
半角模型---90°+45°
【变式6】如图,E,F是正方形ABCD的两边上的点,∠EAF=45º,BD交AE,AF于
A
上且∠EDF=60º.求证:EF=BE+CF.
【分析】将△BDN绕点D顺时针旋转120º得△DCG,
E
F
易证:△DBE≌△DCG(SAS)→DE=DG,∠FDG=∠FDE=60º
易证:△DFE≌△DFG(SAS)→EF=GF,
∴EF=GF=GC+CF=BE+CF.
B
60º
D
C
针对训练
考点3-2
半角模型---120°+60°
图形示例
A
模型分析
当一个角包含着这个角的半角
等边三角形
,常将半角两边的三角形通过
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
归纳一种几何模型:半角模型特点:
过等腰△ABC(AB=AC)顶角顶点(设顶角为A),引两条射线且它们的夹角为A/2;这两条射线与过底角顶点的相关直线交于两点M、N,则BM,MN,NC 之间必存在固定关系。
这种关系仅与两条相关直线及顶角A相关.
解决方法:
以点A为中心,把△ACN(顺时针或逆时针)旋转角A度,至△ABN',连接MN';
结论:
1:△AMN全等于△AMN',MN=MN';
2:关注BM,MN',N'B(=NC),
若共线,则存在x+y=z型的关系;
若不共线,则△BMN'中,∠MBN'必与∠A相关,于是由勾股定理(有时需要作垂线)或直接用余弦定理可得
三者关系.
应用环境:(限于初中)
1:顶角为特殊角的等腰三角形,如顶角为30°、45°60°、75°或它们的补角、90°;
2:正方形、菱形等也能产生等腰三角形;
3:过底角顶点的两条相关直线:底边、底角两条平分线、腰上的两高、底角的邻补角的两条角平分线,底角的邻余角另外两边等;正方形或棱形的另外两边;
4:此等腰三角形的相关弦.
以上条件可以形成数百种题目!而解决方法均可以运用此方法.。