七年级下册数学人教版 期末复习期末测试卷期末达标检测卷

合集下载

人教版七年级数学下册期末测试题及答案解析共六套

人教版七年级数学下册期末测试题及答案解析共六套

人教版七年级数学下册期末测试题及答案解析共六套人教版七年级数学第二学期期末考试试卷(一)一、选择题(每题3分,计24分,请把各小题答案填到表格内)1.如下图,以下条件中,不能判定l1∥l2的是A.∠1=∠3.B.∠2=∠3.C.∠4=∠5.D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是C.被抽取500名学生的数学成绩3.___某月电话话费中的各项费用统计情形见以下图表,请你依照图表信息完成以下各题:项目月功能费基本话费长途话费短信费金额/元50 60 20 51)请将表格补充完整;2)请将条形统计图补充完整;3)扇形统计图中,表示短信费的扇形的圆心角是多少度?月功能费基本话费长途话费短信费金额/元50 60 20 5第23题图)4.___会期为2020年5月1日至2020年10月31日。

门票设个人票和团队票两大类。

个人一般票160元/张,学生优惠票100元/张;成人团队票120元/张,学生团队票50元/张。

1)若是2名教师、10名学生均购买个人票去参观世博会,请问一共要花多少元钱购买门票?个人票:2*160+10*100=1320元2)用方程组解决以下问题:若是某校共30名师生去参观世博会,并得知他们都是以团队形式购买门票,累计花去2200元,请问该校本次别离有多少名教师、多少名学生参观世博会?设教师人数为x,学生人数为y,则:x+y=30120x+50y=2200解得:x=10,y=20人教版七年级第二学期综合测试题(二)一、填空题:(每题3分,共15分)1.121的算术平方根是11,364=-61.2.若是1<x<2,化简│x-1│+│x-2│=2-x。

3.在△ABC中,已知两条边a=3,b=4,那么第三边c的取值范围是1<c<7.4.假设三角形三个内角度数的比为2:3:4,那么相应的外角比是3:2:1.5.已知两边相等的三角形一边等于5cm,另一边等于11cm,那么周长是27cm。

人教版七年级数学下学期期末测试题和答案(共3套)

人教版七年级数学下学期期末测试题和答案(共3套)

七年级下期末测评一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面CAA BBCD积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( ) A.(5,4) B.(4,5) C.(3,4) D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩CB AD21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

人教版七年级数学下册期末测试题及答案(共五套)

人教版七年级数学下册期末测试题及答案(共五套)

七下期期末(共六套)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

完整版)(人教版)初一数学下册期末测试题及答案

完整版)(人教版)初一数学下册期末测试题及答案

完整版)(人教版)初一数学下册期末测试题及答案人教版初一数学(下)期末测试题及答案一、选择题:(本大题共10个小题,每小题3分,共30分)1.若m>-1,则下列各式中错误的是()A。

6m>-6B。

-5m<-5C。

m+1>0D。

1-m<22.下列各式中,正确的是()A。

16=±4B。

±16=4C。

327=-3D。

(4)2=-43.已知a>b>0,那么下列不等式组中无解的是()A。

x a x a x a x ax b x b x b x bB。

x a x a x a x ax b x b x b x bC。

x a x a x a x ax b x b x b x bD。

x a x a x a x ax b x b x b x b4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。

先右转50°,后右转40°B。

先右转50°,后左转40°C。

先右转50°,后左转130°D。

先右转50°,后左转50°5.解为x 1y 2的方程组是()A。

3x y 13x y 5B。

3x y 13x y 1C。

x y 3x2y 3D。

x y 1x2y 36.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。

100°B。

110°C。

115°D。

120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。

4B。

3C。

2D。

18.在各个内角都相等的多边形中,一个外角等于一个内角的1,则这个多边形的边数是()2A。

5B。

6C。

7D。

89.如图,△A1B1C1是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm2,则四边形A1DCC1的面积为()A。

人教版七年级数学下册期末测试题及答案解析含答案(共六套)

人教版七年级数学下册期末测试题及答案解析含答案(共六套)

人教版七年级数学第二学期期末考试试卷(一)(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内)题号12345678答案1.如图所示,下列条件中,不能判断l 1∥l 2的是..A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是A .某市5万名初中毕业生的中考数学成绩B .被抽取500名学生(第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生3.下列计算中,正确的是A .x 3÷x =x 2B .a 6÷a 2=a 3C .x ⋅x 3=x 3D .x 3+x 3=x 64.下列各式中,与(a -1)2相等的是A .a 2-1B .a 2-2a +1C .a 2-2a -1 D .a 2+15.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有A .4个B .5个C .6个D .无数个6.下列语句不正确的是...A .能够完全重合的两个图形全等B .两边和一角对应相等的两个三角形全等 C .三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等7.下列事件属于不确定事件的是A .太阳从东方升起 B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同8.请仔细观察用直.尺.和.圆.规.作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根1DBD ′B ′OC A O ′C ′A ′(第8题图)据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是A .SASB .ASAC .AASD .SSS 二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为cm .10.将方程2x+y=25写成用含x 的代数式表示y 的形式,则y=.11.如图,AB∥CD ,∠1=110°,∠ECD=70°,∠E 的大小是°.12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是°.(第16题图)13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最小.15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:m正面朝上的频率试验者试验次数n 正面朝上的次数mn布丰404020480.5069德·摩根费勤409210000204849790.50050.4979那么估计抛硬币正面朝上的概率的估计值是 .A 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、P OB 上,如果要得到OP =OP′,需要添加以下条件中的某一个即可:OC ①PC=P′C;P′②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一B 个正确结果的序号:.(第16题图)三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC 的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图.在图①中画出与△ABC 全等且有一个公共顶点的格点△A 'B 'C ';在图②中画出与△ABC 全等且有一条公共边的格点△A ''B ''C ''.218.计算或化简:(每小题4分,本题共8分)(1)(—3)+(+0.2)2009×(+5)2010(2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)x3-x(2)-2x+x2+120.解方程组:(每小题5分,本题共10分)⎧x=150-2y(1)⎨(2)4x+3y=300⎩⎧x+y=300⎨⎩5%x+53%y=25%⨯300⎧ax+by=3⎧x=2 21.(本题共8分)已知关于x、y的方程组⎨的解是⎨,bx+ay=7y=1⎩⎩3求a +b 的值.22.(本题共9分)如图,AB=EB ,BC=BF ,∠ABE =∠CBF .EF 和AC 相等吗?为什么?CFB(第22题图)EA23.(本题9分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目月功能费基本话费50金额/元60504030短信费月功能费4%基本话费 40%长途话费短信费金额/元5(1)请将表格补充完整;(2)请将条形统计图补充完整.42010长途话费 36%(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?24.(本题4+8=12分)上海世博会会期为2010年5月1日至2010年10月31日。

人教版七年级数学下册 期末试卷达标检测卷(Word版 含解析)

人教版七年级数学下册 期末试卷达标检测卷(Word版 含解析)

人教版七年级数学下册期末试卷达标检测卷(Word版含解析)一、解答题1.已知直线AB//CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3°旋转至QD停止,此时射线PB也停止旋转.(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB'与QC'的位置关系为;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB′//QC′.2.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD 于G,过点F作FH⊥MN交EG于H.(1)当点H在线段EG上时,如图1①当∠BEG=36 时,则∠HFG=.②猜想并证明:∠BEG与∠HFG之间的数量关系.(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系.3.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点.(1)若∠DAP =40°,∠FBP =70°,则∠APB =(2)猜想∠DAP ,∠FBP ,∠APB 之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP 1,BP 1分别平分∠DAP ,∠FBP ,请你写出∠P 与∠P 1的数量关系,并说明理由;②如图3,AP 2,BP 2分别平分∠CAP ,∠EBP ,若∠APB =β,求∠AP 2B .(用含β的代数式表示)4.综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,//EF MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出PAF ∠、PBN ∠和APB ∠之间的数量关系;(问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动,①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设ADP α∠=∠,BCP β∠=∠.则CPD ∠,α∠,β∠之间有何数量关系?请说明理由.②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出CPD ∠,α∠,β∠之间的数量关系.5.已知:直线AB ∥CD ,M ,N 分别在直线AB ,CD 上,H 为平面内一点,连HM ,HN . (1)如图1,延长HN 至G ,∠BMH 和∠GND 的角平分线相交于点E .求证:2∠MEN ﹣∠MHN =180°;(2)如图2,∠BMH 和∠HND 的角平分线相交于点E .①请直接写出∠MEN 与∠MHN 的数量关系: ;②作MP 平分∠AMH ,NQ ∥MP 交ME 的延长线于点Q ,若∠H =140°,求∠ENQ 的度数.(可直接运用①中的结论)二、解答题6.如图1所示:点E为BC上一点,∠A=∠D,AB∥CD(1)直接写出∠ACB与∠BED的数量关系;(2)如图2,AB∥CD,BG平分∠ABE,BG的反向延长线与∠EDF的平分线交于H点,若∠DEB比∠GHD大60°,求∠DEB的度数;(3)保持(2)中所求的∠DEB的度数不变,如图3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角).7.(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1).①请你仿照以上过程,在图2中画出一条直线b,使直线b经过点P,且//b a,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法:②在(1)中的步骤(b)中,折纸实际上是在寻找过点P的直线a的线.(2)已知,如图3,//AB CD ,BE 平分ABC ∠,CF 平分BCD ∠.求证://BE CF (写出每步的依据).8.已知,如图①,∠BAD =50°,点C 为射线AD 上一点(不与A 重合),连接BC . (1)[问题提出]如图②,AB ∥CE ,∠BCD =73 °,则:∠B = .(2)[类比探究]在图①中,探究∠BAD 、∠B 和∠BCD 之间有怎样的数量关系?并用平行....线的性质....说明理由. (3)[拓展延伸]如图③,在射线BC 上取一点O ,过O 点作直线MN 使MN ∥AD ,BE 平分∠ABC 交AD 于E 点,OF 平分∠BON 交AD 于F 点,//OG BE 交AD 于G 点,当C 点沿着射线AD 方向运动时,∠FOG 的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.9.已知ABC ,//DE AB 交AC 于点E ,//DF AC 交AB 于点F .(1)如图1,若点D 在边BC 上,①补全图形;②求证:A EDF ∠=∠.(2)点G 是线段AC 上的一点,连接FG ,DG .①若点G 是线段AE 的中点,请你在图2中补全图形,判断AFG ∠,EDG ∠,DGF ∠之间的数量关系,并证明;②若点G 是线段EC 上的一点,请你直接写出AFG ∠,EDG ∠,DGF ∠之间的数量关系. 10.已知两条直线l 1,l 2,l 1∥l 2,点A ,B 在直线l 1上,点A 在点B 的左边,点C ,D 在直线l 2上,且满足115ADC ABC ∠=∠=o .(1)如图①,求证:AD ∥BC ;(2)点M ,N 在线段CD 上,点M 在点N 的左边且满足MAC BAC ∠=∠,且AN 平分∠CAD ;(Ⅰ)如图②,当30ACD ∠=o 时,求∠DAM 的度数;(Ⅱ)如图③,当8CAD MAN ∠=∠时,求∠ACD 的度数.三、解答题11.在△ABC 中,射线AG 平分∠BAC 交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作DE ∥AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分∠EDB①若∠BAC =100°,∠C =30°,则∠AFD = ;若∠B =40°,则∠AFD = ; ②试探究∠AFD 与∠B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,∠BDE 的角平分线所在直线与射线AG 交于点F 试探究∠AFD 与∠B 之间的数量关系,并说明理由12.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在ABC 中,90ACB ∠=︒,AE 是角平分线,CD 是高,AE 、CD 相交于点F .求证:CFE CEF ∠=∠;(变式思考)如图2,在ABC 中,90ACB ∠=︒,CD 是AB 边上的高,若ABC 的外角BAG ∠的平分线交CD 的延长线于点F ,其反向延长线与BC 边的延长线交于点E ,则CFE ∠与CEF ∠还相等吗?说明理由;(探究延伸)如图3,在ABC 中,AB 上存在一点D ,使得ACD B ∠=∠,BAC ∠的平分线AE 交CD 于点F .ABC 的外角BAG ∠的平分线所在直线MN 与BC 的延长线交于点M .直接写出M ∠与CFE ∠的数量关系.13.在ABC 中,射线AG 平分BAC ∠交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作//DE AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分EDB ∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.14.如图,在ABC 中,ABC ∠与ACB ∠的角平分线交于O 点.(1)若40A ∠=︒,则BOC ∠= ︒;(2)若A n ∠=︒,则BOC ∠= ︒;(3)若A n ∠=︒,ABC ∠与ACB ∠的角平分线交于O 点,ABO ∠的平分线与ACO ∠的平分线交于点1O ,,2016O BD ∠的平分线与2016O CE ∠的平分线交于点2017O ,则2017O ∠=︒.15.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑)【参考答案】一、解答题1.(1)PB′⊥QC′;(2)当射线PB 旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O ,过O 作OE ∥AB ,根解析:(1)PB ′⊥QC ′;(2)当射线PB 旋转的时间为5秒或25秒或45秒时,PB ′∥QC ′【分析】(1)求出旋转10秒时,∠BPB ′和∠CQC ′的度数,设PB ′与QC ′交于O ,过O 作OE ∥AB ,根据平行线的性质求得∠POE 和∠QOE 的度数,进而得结论;(2)分三种情况:①当0<t ≤15时,②当15<t ≤30时,③当30<t <45时,根据平行线的性质,得出角的关系,列出t 的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB ′=10°×12=120°,∠CQC ′=3°×10=30°,过O 作OE ∥AB ,∵AB ∥CD ,∴AB ∥OE ∥CD ,∴∠POE =180°﹣∠BPB ′=60°,∠QOE =∠CQC ′=30°,∴∠POQ =90°,∴PB ′⊥QC ′,故答案为:PB ′⊥QC ′;(2)①当0<t ≤15时,如图,则∠BPB ′=12t °,∠CQC ′=45°+3t °,∵AB ∥CD ,PB ′∥QC ′,∴∠BPB ′=∠PEC =∠CQC ′,即12t =45+3t ,解得,t =5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.2.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.解析:(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如图2中,结论:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=1 1802β︒-.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P作PM∥CD,∴∠APM =∠DAP .(两直线平行,内错角相等),∵CD ∥EF (已知),∴PM ∥CD (平行于同一条直线的两条直线互相平行),∴∠MPB =∠FBP .(两直线平行,内错角相等),∴∠APM +∠MPB =∠DAP +∠FBP .(等式性质) 即∠APB =∠DAP +∠FBP =40°+70°=110°. (2)结论:∠APB=∠DAP +∠FBP .理由:见(1)中证明.(3)①结论:∠P=2∠P 1;理由:由(2)可知:∠P =∠DAP +∠FBP ,∠P 1=∠DAP 1+∠FBP 1,∵∠DAP =2∠DAP 1,∠FBP =2∠FBP 1,∴∠P =2∠P 1.②由①得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,∵AP 2、BP 2分别平分∠CAP 、∠EBP ,∴∠CAP 2=12∠CAP ,∠EBP 2=12∠EBP ,∴∠AP 2B =12∠CAP +12∠EBP , = 12(180°-∠DAP )+ 12(180°-∠FBP ),=180°- 12(∠DAP +∠FBP ),=180°- 12∠APB ,=180°- 12β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线. 4.(1);(2)①,理由见解析;②图见解析,或【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过作交于,由平行线的性质,得到,,即可得到答案;②根据题意,可对点P 进行分类讨论解析:(1)360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠,理由见解析;②图见解析,CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过P 作//PE AD 交CD 于E ,由平行线的性质,得到DPE α∠=∠,CPE β∠=∠,即可得到答案;②根据题意,可对点P 进行分类讨论:当点P 在BA 延长线时;当P 在BO 之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ ∥EF ,如图:∵//EF MN ,∴////EF MN PQ ,∴180PAF APQ ∠+∠=°,180PBN BPQ ∠+∠=°,∵APB APQ BPQ ∠=∠+∠∴360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠;理由如下:如图,过P 作//PE AD 交CD 于E ,∵//AD BC ,∴////AD PE BC ,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE αβ∠=∠+∠=∠+∠;②当点P 在BA 延长线时,如备用图1:∵PE ∥AD ∥BC ,∴∠EPC=β,∠EPD=α,∴CPDβα∠=∠-∠;当P在BO之间时,如备用图2:∵PE∥AD∥BC,∴∠EPD=α,∠CPE=β,∴CPDαβ∠=∠-∠.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.5.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣1(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.2【详解】解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=12∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=12∠GND.(两直线平行,内错角相等)∴∠MEN=∠MEQ+∠QEN=12∠BMH+12∠GND=12(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:过点H作GI∥AB.如答图2由(1)可得∠MEN=12(∠BMH+∠HND),由图可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案为:2∠MEN+∠MHN=360°.②:由①的结论得2∠MEN +∠MHN =360°,∵∠H =∠MHN =140°,∴2∠MEN =360°﹣140°=220°.∴∠MEN =110°.过点H 作HT ∥MP .如答图2∵MP ∥NQ ,∴HT ∥NQ .∴∠ENQ +∠ENH +∠NHT =180°(两直线平行,同旁内角互补).∵MP 平分∠AMH ,∴∠PMH =12∠AMH =12(180°﹣∠BMH ).∵∠NHT =∠MHN ﹣∠MHT =140°﹣∠PMH .∴∠ENQ +∠ENH +140°﹣12(180°﹣∠BMH )=180°.∵∠ENH =12∠HND .∴∠ENQ +12∠HND +140°﹣90°+12∠BMH =180°.∴∠ENQ +12(HND +∠BMH )=130°.∴∠ENQ +12∠MEN =130°.∴∠ENQ =130°﹣110°=20°.【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强. 二、解答题6.(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥E 解析:(1) +180ACB BED ∠∠=︒;(2) 100︒;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出+180ACB BED ∠∠=︒;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥ES 推出BED ABE CDE ∠=∠+∠,再根据AB ∥TH ,AB ∥CD 推出GHD THD THB ∠=∠-∠,最后根据BED ∠比BHD ∠大60︒得出BED ∠的度数;(3)如图3,过点E 作EQ ∥DN ,根据DEB CDE ABE ∠=∠+∠得出βα-的度数,根据条件再逐步求出PBM ∠的度数.【详解】(1)如答图1所示,延长DE 交AB 于点F .AB ∥CD ,所以D EFB ∠=∠,又因为A D ∠=∠,所以A EFB ∠=∠,所以AC ∥DF ,所以ACB CED ∠=∠.因为+180CED BED ∠∠=︒,所以+180ACB BED ∠∠=︒.(2)如答图2所示,过点E 作ES ∥AB ,过点H 作HT ∥AB .设ABG EBG α∠=∠=,FDH EDH β∠=∠=,因为AB ∥CD ,AB ∥ES ,所以ABE BES ∠=∠,SED CED ∠=∠,所以21802BED BES SED ABE CDE αβ∠=∠+∠=∠+∠=+︒-,因为AB ∥TH ,AB ∥CD ,所以ABG THB ∠=∠,FDH DHT ∠=∠,所以GHD THD THB βα∠=∠-∠=-,因为BED ∠比BHD ∠大60︒,所以2+1802()60αββα︒---=︒,所以40βα-=︒,所以40BHD ∠=︒,所以100BED ∠=︒(3)不发生变化如答图3所示,过点E 作EQ ∥DN .设CDN EDN α∠=∠=,EBM KBM β∠=∠=,由(2)易知DEB CDE ABE ∠=∠+∠,所以2+1802100αβ︒-=︒,所以40βα-=︒, 所以180()180DEB CDE EDN EBM PBM PBM αβ∠=∠+∠+︒-∠+∠=+︒--∠, 所以80()40PBM βα∠=︒--=︒.【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键.7.(1)①见解析;②垂;(2)见解析【分析】(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;②步骤(b )中,折纸实际上是在寻找过点的直线的垂线.(2)先根据解析:(1)①见解析;②垂;(2)见解析【分析】(1)①过P 点折纸,使痕迹垂直直线a ,然后过P 点折纸使痕迹与前面的痕迹垂直,从而得到直线b ;②步骤(b )中,折纸实际上是在寻找过点P 的直线a 的垂线.(2)先根据平行线的性质得到ABC BCD ∠=∠,再利用角平分线的定义得到23∠∠=,然后根据平行线的判定得到结论.【详解】(1)解:①如图2所示:②在(1)中的步骤(b )中,折纸实际上是在寻找过点P 的直线a 的垂线.故答案为垂;(2)证明:BE 平分ABC ∠,CF 平分BCD ∠(已知),12∠∠∴=,33∠=∠(角平分线的定义),//AB CD (已知),ABC BCD ∴∠=∠(两直线平行,内错角相等),2223∴∠=∠(等量代换),23∴∠=∠(等式性质),//BE CF ∴(内错角相等,两直线平行).【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定.8.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.9.(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF ;②∠AFG-∠EDG=∠DGF【分析】(1)①根据题意画出图形;②依据DE ∥AB ,DF ∥AC ,可得∠EDF+∠AFD=180°,∠解析:(1)①见解析;②;见解析(2)①∠AFG +∠EDG =∠DGF ;②∠AFG -∠EDG =∠DGF【分析】(1)①根据题意画出图形;②依据DE ∥AB ,DF ∥AC ,可得∠EDF +∠AFD =180°,∠A +∠AFD =180°,进而得出∠EDF =∠A ;(2)①过G 作GH ∥AB ,依据平行线的性质,即可得到∠AFG +∠EDG =∠FGH +∠DGH =∠DGF ;②过G 作GH ∥AB ,依据平行线的性质,即可得到∠AFG -∠EDG =∠FGH -∠DGH =∠DGF .【详解】解:(1)①如图,②∵DE∥AB,DF∥AC,∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,∴∠EDF=∠A;(2)①∠AFG+∠EDG=∠DGF.如图2所示,过G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②∠AFG-∠EDG=∠DGF.如图所示,过G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【点睛】本题考查了平行线的判定和性质:两直线平行,内错角相等.正确的作出辅助线是解题的关键.10.(1)证明见解析;(2)(Ⅰ);(Ⅱ).【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得 解析:(1)证明见解析;(2)(Ⅰ)5DAM ∠=︒;(Ⅱ)25ACD ∠=︒.【分析】(1)先根据平行线的性质可得65BAD ∠=︒,再根据角的和差可得180BAD ABC ∠+∠=︒,然后根据平行线的判定即可得证;(2)(Ⅰ)先根据平行线的性质可得30BAC ACD ∠=∠=︒,从而可得30MAC ∠=︒,再根据角的和差可得35DAC ∠=︒,然后根据DAM DAC MAC ∠=∠-∠即可得;(Ⅱ)设MAN x ∠=,从而可得8CAD x ∠=,先根据角平分线的定义可得142CAN CAD x ∠=∠=,再根据角的和差可得5BAC MAC x ∠=∠=,然后根据65CAD BAC BAD ∠+∠=∠=︒建立方程可求出x 的值,从而可得BAC ∠的度数,最后根据平行线的性质即可得.【详解】(1)12//,115l l ADC ∠=︒,18065BAD ADC ∴∠=︒-∠=︒,又115ABC ∠=︒,180BAD ABC ∴∠+∠=︒,//AD BC ∴;(2)(Ⅰ)12//,30l l ACD ∠=︒,30BAC ACD ∴∠=∠=︒,MAC BAC ∠=∠,30MAC ∴∠=︒,由(1)已得:65BAD ∠=︒,35DAC BAD BAC ∴∠=∠-∠=︒,35305DAM DAC MAC ∴∠=∠-∠=︒-︒=︒;(Ⅱ)设MAN x ∠=,则8CAD x ∠=, AN 平分CAD ∠,142CAN CAD x ∴∠=∠=, 5MAC CAN MAN x ∴∠=∠+∠=,MAC BAC ∠=∠,5BAC x ∴∠=,由(1)已得:65BAD ∠=︒,65CAD BAC BAD ∴∠+∠=∠=︒,即8565x x +=︒,解得5x =︒,525BAC x ∴∠==︒,又12//l l ,25ACD BAC ∴∠=∠=︒.【点睛】本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键.三、解答题11.(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论;(2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论. 【详解】(1)①若∠BAC=100°,∠C=30°, 则∠B=180°-100°-30°=50°, ∵DE ∥AC , ∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB ,∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒, ∴∠DGF=∠B+∠BAG=50°+50°=100°, ∴∠AFD=∠DGF+∠FDG=100°+15°=115°; 若∠B=40°,则∠BAC+∠C=180°-40°=140°, ∵AG 平分∠BAC ,DF 平分∠EDB ,∴12BAG BAC ∠=∠,12FDG EDB ∠=∠,∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠;理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠,∵∠DGF=∠B+∠BAG , ∴∠AFD=∠DGF+∠FDG =∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠ 1902B =︒+∠;(2)如图2所示:1902AFD B ∠=︒-∠; 理由如下:由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,∵∠AHF=∠B+∠BDH , ∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH=︒-∠-∠-∠1118022BAC B C =︒-∠-∠-∠()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠ 1180902B B =︒-∠-︒+∠1902B =︒-∠.【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.12.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可证明; [变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF 、再根据直角三角形的性质和等角的余角相等即可得出CFE ∠=CEF ∠;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE ,由此可证∠M+∠CFE=90°. 【详解】[习题回顾]证明:∵∠ACB=90°,CD 是高, ∴∠B+∠CAB=90°,∠ACD+∠CAB=90°, ∴∠B=∠ACD , ∵AE 是角平分线, ∴∠CAF=∠DAF ,∵∠CFE=∠CAF+∠ACD ,∠CEF=∠DAF+∠B , ∴∠CEF=∠CFE ;[变式思考]相等,理由如下: 证明:∵AF 为∠BAG 的角平分线, ∴∠GAF=∠DAF , ∵∠CAE=∠GAF , ∴∠CAE=∠DAF ,∵CD 为AB 边上的高,∠ACB=90°, ∴∠ADC=90°, ∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°, ∴∠CEF=∠CFE ;[探究延伸]∠M+∠CFE=90°,证明:∵C 、A 、G 三点共线 AE 、AN 为角平分线, ∴∠EAN=90°, 又∵∠GAN=∠CAM , ∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B ,∠CFE=∠EAC+∠ACD ,∠ACD=∠B , ∴∠CEF=∠CFE , ∴∠M+∠CFE=90°. 【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.13.(1)①115°,110°;②,证明见解析;(2),证明见解析. 【解析】 【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②1902AFD B ︒∠=+∠,证明见解析;(2)1902AFD B ︒∠=-∠,证明见解析.【解析】 【分析】(1)①根据角平分线的定义求得∠CAG=12∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD 的度数即可;已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;即可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+12∠B ,已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;由此可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×(180°-∠B )=90°-12∠B ;再由三角形的内角和定理可得∠AFD=90°+12∠B ;(2)∠AFD=90°-12∠B ,已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠NDE=12∠EDB ,即可得∠FDM=∠NDE=12∠EDB ;由DE//AC ,根据平行线的性质可得∠EDB=∠C ,∠FMD=∠GAC ;即可得到∠FDM=∠NDE=12∠C ,所以∠FDM+∠FMD =12∠C+12∠BAC=12(∠BAC+∠C )=12×(180°-∠B )=90°-12∠B ;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-12∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=12∠BAC=50°;∵//DE AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=12∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+12∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-12∠B)=90°+12∠B;(2)∠AFD=90°-12∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠NDE=12∠EDB,∴∠FDM=∠NDE=12∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=12∠C,∴∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=∠FDM +∠FMD=90°-12∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.14.(1)110(2)(90 +n)(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平解析:(1)110(2)(90 +12n)(3)201712×90°+20182018212n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数;(3)根据规律直接计算即可.【详解】解:(1)∵∠A=40°, ∴∠ABC+∠ACB=140°,∵点O 是∠AB 故答案为:110°;C 与∠ACB 的角平分线的交点, ∴∠OBC+∠OCB=70°, ∴∠BOC=110°. (2)∵∠A=n°, ∴∠ABC+∠ACB=180°-n°,∵BO 、CO 分别是∠ABC 与∠ACB 的角平分线, ∴∠OBC +∠OCB =12∠ABC +12∠ACB =12(∠ABC +∠ACB ) =12(180°﹣n °) =90°﹣12n °,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+12n °. 故答案为:(90+12n ); (3)由(2)得∠O =90°+12n °,∵∠ABO 的平分线与∠ACO 的平分线交于点O 1,∴∠O 1BC =34∠ABC ,∠O 1CB =34∠ACB ,∴∠O 1=180°﹣34(∠ABC +∠ACB )=180°﹣34(180°﹣∠A )=14×180°+34n °,同理,∠O 2=18×180°+78n °,∴∠O n =112n +×180°+11212n n ++- n °,∴∠O 2017=201812×180°+20182018212-n °,故答案为:201712×90°+20182018212-n °.【点睛】本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.15.(1)60,30;(2)∠BAD=2∠CDE ,证明见解析;(3)成立,∠BAD=2∠CDE ,证明见解析 【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD =2∠CDE ,证明见解析;(3)成立,∠BAD =2∠CDE ,证明见解析 【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-1802n︒-=1002n︒+,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.。

(完整版)人教版七年级数学下册期末测试题及答案(共五套),推荐文档

(完整版)人教版七年级数学下册期末测试题及答案(共五套),推荐文档

(-4)2D C. 3 -27 =-3⎩ 七下期期末姓名: 学号班级一、选择题:(本大题共 10 个小题,每小题 3 分,共 30 分) 1.若 m >-1,则下列各式中错误的是( )A .6m >-6B .-5m <-5C .m+1>0D .1-m <2 2.下列各式中,正确的是( )A. 16 =±4B.± =4D. =-43. 已知 a >b >0,那么下列不等式组中无解的是()⎧x < aA. ⎨x > -b⎧x > -a B. ⎨x < -b⎧x > a C. ⎨x < -b⎧x > -a D. ⎨x < b⎩ ⎩ ⎩ ⎩4. 一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转 50°,后右转 40° (B) 先右转 50°,后左转 40°(C) 先右转 50°,后左转 130°(D) 先右转 50°,后左转 50°⎧x = 15. 解为⎨ y = 2 的方程组是( )⎧x - y =1 A. ⎨ ⎩3x + y = 5 ⎧x - y = -1 B. ⎨ ⎩3x + y = -5⎧x - y = 3C. ⎨⎩3x - y = 1⎧x - 2 y = -3 D. ⎨⎩3x + y = 56. 如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200AAA 1PBCB 1 C1B (1) (2) (3)7. 四条线段的长分别为 3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .118. 在各个内角都相等的多边形中,一个外角等于一个内角的 ,则这个多边形的边数是2( ) A .5 B .6 C .7 D .8 9. 如图,△A 1B 1C 1 是由△ABC 沿 BC 方向平移了 BC 长度的一半得到的,若△ABC 的面积为 20 cm 2,则四边形 A 1DCC 1 的面积为( ) A .10 cm 2 B .12 c m 2 C .15 cm 2 D .17 cm 216小刚小军 小华⎪ ⎨ 10. 课间操时,小华、小军、小刚的位置如图 1,小华对小刚说,如果我的位置用( 0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共 8 个小题,每小题 3 分,共 24 分,把答案直接填在答题卷的横线上.11.49 的平方根是 ,算术平方根是 ,-8 的立方根是.12.不等式 5x-9≤3(x+1)的解集是 .13. 如果点 P(a,2)在第二象限,那么点 Q(-3,a)在 . 14. 如图 3 所示,在铁路旁边有一李庄,现要建一火车站, 为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由: . 15. 从 A 沿北偏东 60°的方向行驶到 B,再从 B 沿南偏西 20°的方向行驶到 C, 则∠ABC=度.16. 如图,AD∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=.李庄火车站AD17. 给出下列正多边形:① 正三角形;② 正方形;③ 正六边形; ④ 正八边形.用上述正多边形中的一种能够辅满地面的是 .(将所有答案的序号都填上) 18.若│x 2-25│+ =0,则 x=,y=.BC三、解答题:本大题共 7 个小题,共 46 分,解答题应写出文字说明、证明过程或演算步骤.⎧x - 3(x - 2) ≥ 4, ⎪19.解不等式组: ⎨ 2x - 1 < x + 1. ,并把解集在数轴上表示出来.5 2⎧ 2 x - 3 y = 1 20.解方程组: ⎪3 42 ⎩4(x - y ) - 3(2x + y ) = 17y - 321.如图, AD∥BC , AD平分∠EAC,你能确定∠B与∠C的数量关系吗?请说明理由。

2023-2024学年全国初中七年级下数学人教版期末考试试卷(含答案解析)

2023-2024学年全国初中七年级下数学人教版期末考试试卷(含答案解析)

一、选择题(每题2分,共30分)1. (2分)共15题二、判断题(每题1分,共20分)1. (1分)共20题三、填空题(每空1分,共10分)1. (1分)共10空四、简答题(每题10分,共10分)1. (10分)共1题五、综合题(共30分)1. (7分)共2题2. (8分)共2题(考试时间:90分钟,满分:100分)一、选择题1. 下列选项中,哪个数是平方根?()A. ±2B. ±3C. 4D. 42. 一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长是()cm。

A. 16B. 26C. 283. 下列各数中,是无理数的是()。

A. √9B. √16C. √3D. √14. 已知a、b互为相反数,且|a|=3,|b|=5,则a+b的值为()。

A. 2B. 2C. 8D. 85. 下列各式中,是整式的是()。

A. a²+b²B. a²+b²1C. a²+b²+1D. a²+b²+26. 若x²2x+1=0,则x的值为()。

A. 0B. 1C. 1D. 27. 下列各式中,是分式的是()。

A. 1/xC. x³D. x⁴二、判断题1. 任何两个无理数相加一定是无理数。

()2. 两个等腰三角形一定全等。

()3. 互为相反数的两个数的绝对值相等。

()4. 平方根和算术平方根是同一个概念。

()5. 任何数乘以0都等于0。

()三、填空题1. 若a+b=5,ab=3,则a=______,b=______。

2. 若x²=9,则x=______。

3. 下列各数中,______是4的平方根。

四、简答题1. 请解释一下什么是算术平方根,并给出一个例子。

五、综合题1. (7分)已知一个等腰三角形的底边长为10cm,腰长为13cm,求这个三角形的面积。

2. (7分)已知x²5x+6=0,求x的值。

2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)

2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)

2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)一、选择题:每题1分,共5分1. 一个等差数列的前三项分别是2,5,8,那么第10项是______。

A. 29B. 30C. 31D. 322. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是______。

A. 6B. 7C. 17D. 233. 下列哪一个数是有理数______?A. √2B. √3C. √5D. √94. 下列哪一个比例是正确的______?A. 3 : 4 = 6 : 8B. 4 : 5 = 8 : 9C. 5 : 6 = 10 : 12D.6 :7 = 12 : 145. 下列哪一个图形是平行四边形______?A. 矩形B. 正方形C. 梯形D.菱形二、判断题:每题1分,共5分1. 任何两个奇数之和都是偶数。

()2. 任何两个有理数相乘都是无理数。

()3. 一个等边三角形的三个角都是60度。

()4. 两个锐角之和一定大于90度。

()5. 任何两个等腰三角形的底角相等。

()三、填空题:每题1分,共5分1. 一个等差数列的第5项是15,第10项是______。

2. 如果一个三角形的两边分别是5和12,那么第三边的长度可能是______。

3. 下列哪一个数是无理数______。

4. 如果一个比例是3 : 4 = 6 : 8,那么比例的外项是______。

5. 下列哪一个图形是矩形______。

四、简答题:每题2分,共10分1. 简述等差数列的定义和通项公式。

2. 简述勾股定理及其应用。

3. 简述有理数的定义和性质。

4. 简述平行四边形的性质和判定。

5. 简述等边三角形的性质和判定。

五、应用题:每题2分,共10分1. 一个等差数列的前三项分别是2,5,8,求第10项。

2. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是多少?3. 下列哪一个数是有理数?4. 下列哪一个比例是正确的?5. 下列哪一个图形是平行四边形?六、分析题:每题5分,共10分1. 分析并证明等差数列的前n项和公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末达标检测卷一、选择题(每题3分,共30分)1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.下列各等式中,正确的是()A.-(-3)2=-3 B.±32=3C.(-3)2=-3 D.32=±33.已知a,b两个实数在数轴上的对应点如图所示,则下列各式一定成立的是()A.a-1>b-1 B.3a>3b C.-a>-b D.a+b>a-b(第3题)(第4题)(第6题)4.如图,AB∥CD,EF⊥AB于点E,EF交CD于点F,EM交CD于点M,已知∠1=55°,则∠2=()A.55° B.35° C.125° D.45°5.如果点M(3a-9,1+a)是第二象限的点,则a的取值范围在数轴上表示正确的是()6.如图,将四边形ABCD先向左平移3个单位长度,再向下平移3个单位长度,那么点D的对应点D′的坐标是()A.(0,1) B.(6,1) C.(6,-1) D.(0,-1) 7.甲、乙两人练习跑步,如果让乙先跑10 m,那么甲跑5 s就追上了乙;如果让乙先跑2 s ,那么甲跑4 s 就追上了乙,求甲、乙两人的速度.若设甲、乙两人的速度分别为x m/s ,y m/s ,则下列方程组正确的是( )A.⎩⎨⎧5x +10=5y ,4x -4y =2B.⎩⎨⎧5x =5y +10,4x -2=4yC.⎩⎨⎧5x -5y =10,4(x -y )=2yD.⎩⎨⎧5(x -y )=10,4(x -2y )=2x8.若关于x 的不等式组⎩⎪⎨⎪⎧2x <3(x -3)+1,3x +24>x +a 有四个整数解,则a 的取值范围是( )A .-114<a ≤-52B .-114≤a <-52C .-114≤a ≤-52D .-114<a <-529.某校现有学生1 800人,为了增强学生的法律意识,学校组织全体学生进行了一次普法测试.现抽取部分测试成绩(得分取整数)作为样本,进行整理后分成五组,并绘制成频数分布直方图(如图).根据图中提供的信息,下列判断不正确的是( )(第9题)A .样本容量是48B .估计本次测试全校在90分以上的学生约有225人C .样本中70.5~80.5这一分数段内的人数最多D .样本中50.5~70.5这一分数段内的人数所占比例是25%10.已知方程组⎩⎨⎧x +y =1-a ,x -y =3a +5的解x 为正数,y 为非负数,给出下列结论:①-1<a ≤1;②当a =-53时,x =y ;③当a =-2时,方程组的解也是方程x +y=5+a 的解.其中正确的是( )A .①②B .②③C .①③D .①②③二、填空题(每题3分,共30分)11.-5的绝对值是________,116的算术平方根是________.12.下列命题:①不相交的直线是平行线;②同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④对顶角相等.其中真命题的序号是________.13.已知点P 在第二象限,点P 到x 轴的距离是2,到y 轴的距离是3,那么点P 的坐标是________.14.某冷饮店一天售出各种口味雪糕量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味的雪糕的数量是________支.(第14题) (第15题) (第16题)(第17题) (第20题) 15.如图,直线AB ,CD 交于点O ,OE ⊥AB ,若∠AOD =50°,则∠COE 的度数为________.16.如图,点E 在AC 的延长线上,给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A =∠DCE ;(4)∠D +∠ABD =180°.能判断AB ∥CD 的有________个.17.如图,ABCD 是一块长方形场地,AB =18米,AD =11米,从A ,B 两个入口的小路的宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为________平方米.18.如果关于x ,y 的方程组⎩⎨⎧x +2y =6+k ,2x -y =9-2k 的解满足3x +y =5,则k 的值为________.19.有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要使总收入不低于15.6万元,则至多安排________人种甲种蔬菜.20.如图,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其排列顺序为图中“→”所指方向,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2 025个点的坐标为________.三、解答题(21,22题每题8分,23,24题每题10分,25,26题每题12分,共60分)21.计算下列各题: (1)35+23-|35-23|; (2)(-2)2-327+|3-2|+ 3.22.解方程组或不等式组:(1)⎩⎨⎧6x +5y =31,①3x +2y =13;② (2)⎩⎪⎨⎪⎧3(x +2)+5(x -4)<2,①2(x +2)≥5x +63+1.②23.如图,在平面直角坐标系中,OA=2,OB=3,现同时将点A,B向上平移2个单位长度,再向右平移2个单位长度,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)写出点A,B,C,D的坐标;(2)在线段CO上是否存在一点P,使得S三角形CDP=S三角形PBO?如果存在,试求出点P的坐标;如果不存在,请说明理由.(第23题)24.我市教育行政部门为了了解七年级学生每学期参加综合实践活动的情况,随机抽样调查了某中学七年级学生一个学期参加综合实践活动的天数,并用得到的数据绘制了如图所示两幅不完整的统计图.(第24题)请你根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值是________,该校七年级学生共有________人;(2)在该次抽样调查中,活动时间为5天的学生有_______人,并补全条形统计图;(3)如果该市七年级的学生共有2 000人,根据以上数据,试估计这2 000人中“活动时间不少于4天”的学生有多少人.25.如图①,已知直线l1∥l2,且l3和l1,l2分别相交于A,B两点,l4和l1,l2分别相交于C,D两点,记∠ACP=∠1,∠BDP=∠2,∠CPD=∠3,点P 在线段AB上.(1)若∠1=22°,∠2=33°,则∠3=________;(2)试找出∠1,∠2,∠3之间的等量关系,并说明理由;(3)应用(2)中的结论解答下列问题;如图②,点A在B处北偏东40°的方向上,在C处的北偏西45°的方向上,求∠BAC的度数;(4)如果点P在直线l3上且在A,B两点外侧运动时,其他条件不变,试探究∠1,∠2,∠3之间的关系(点P和A,B两点不重合),直接写出结论即可.(第25题)26.今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,州里某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件.(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往受灾地区某中学.已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件,则该单位安排甲、乙两种货车时有几种方案?请你帮忙设计出来.(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元.该单位应选择哪种方案可使运费最少?最少运费是多少元?答案一、1.D 2.A3.C 点拨:由数轴可知a <b <0,则b <-b ,根据不等式的性质可知a -1<b-1,3a <3b ,-a >-b ,a +b <a -b ,故C 正确.4.B5.A 点拨:因为点M (3a -9,1+a )在第二象限,所以⎩⎨⎧3a -9<0,1+a >0.解不等式组得-1<a <3.故选A.6.D 点拨:由题图可知D 点的坐标为(3,2),向左平移3个单位长度,再向下平移3个单位长度,即横坐标减3,纵坐标减3,即D ′(0,-1),故选D.7.C8.B 点拨:先解不等式组,得8<x <2-4a .在这个解集中,要包含四个整数,在数轴上表示如图.(第8题)则这四个整数解为9,10,11,12.从图中可知12<2-4a <13.即-114<a <-52.而当2-4a =12,即a =-52时,不等式组只有三个整数解;当2-4a =13,即a =-114时,不等式组有四个整数解,故-114≤a <-52.9.D10.B 点拨:解方程组得⎩⎨⎧x =3+a ,y =-2a -2. ①由题意得,3+a >0,-2a -2≥0,解得-3<a ≤-1,①不正确;②当3+a =-2a -2时,a =-53,②正确;③当a =-2时,x +y =1-a =3,5+a =3,③正确.故选B.二、11.5;14 12.④ 13.(-3,2) 14.150 15.40° 16.317.160 点拨:由题图可知:长方形ABCD 中去掉小路后,草坪正好可以拼成一个新的长方形,且它的长为(18-2)米,宽为(11-1)米.所以草坪的面积应该是长×宽=(18-2)×(11-1)=160(平方米).18.10 点拨:方程组⎩⎨⎧x +2y =6+k ,①2x -y =9-2k ,②①+②得,3x +y =15-k .因为3x +y =5,所以15-k =5,解得k =10.19.4 20.(45,0)三、21.解:(1)原式=35+23-35+23=4 3.(2)原式=2-3+2-3+3=1.22.解:(1)②×2得,6x +4y =26,③①-③得,y =5.将y =5代入①得,6x +25=31,则x =1.所以方程组的解为⎩⎨⎧x =1,y =5.(2)解不等式①得,x <2;解不等式②得,x ≥-3.所以不等式组的解集为-3≤x <2.23.解:(1)A (-2,0),B (3,0),C (0,2),D (5,2).(2)存在.设点P 的坐标为(0,y ),因为线段CD 是由线段AB 平移得到的,所以CD =AB =5.因为S 三角形CDP =12·5(2-y ),S 三角形PBO =12·3y ,所以12·5(2-y )=12·3y ,解得y =54,所以在线段CO 上存在一点P ⎝ ⎛⎭⎪⎫0,5 4,使得S 三角形CDP =S 三角形PBO . 24.解:(1)25%;200(2)50补全条形统计图如图所示:(第24题)(3)这2 000人中活动时间不少于4天的学生约有2 000×(30%+25%+15%+5%)=1 500(人).25.解:(1)55°(2)∠1+∠2=∠3.理由如下:∵l 1∥l 2,∴∠1+∠PCD +∠PDC +∠2=180°.在三角形PCD 中,∠3+∠PCD +∠PDC =180°,∴∠1+∠2=∠3.(3)由(2)可知∠BAC =∠DBA +∠ACE =40°+45°=85°.(4)当P 点在A 的外侧时,∠3=∠2-∠1;当P 点在B 的外侧时,∠3=∠1-∠2.26.解:(1)方法一:设饮用水有x 件,则蔬菜有(x -80)件,依题意,得x +(x -80)=320,解这个方程,得x =200,x -80=120.答:饮用水和蔬菜分别有200件、120件.方法二:设饮用水有x 件,蔬菜有y 件,依题意,得⎩⎨⎧x +y =320,x -y =80,解这个方程组,得⎩⎨⎧x =200,y =120. 答:饮用水和蔬菜分别有200件、120件.(2)设租甲型货车n 辆,则租乙型货车(8-n )辆.依题意,得⎩⎨⎧40n +20(8-n )≥200,10n +20(8-n )≥120,解这个不等式组,得2≤n≤4.∵n为正整数,∴n=2或3或4,∴安排甲、乙两种型号的货车时有3种方案:①安排甲型货车2辆,乙型货车6辆;②安排甲型货车3辆,乙型货车5辆;③安排甲型货车4辆,乙型货车4辆.(3)3种方案的运费分别为:方案①:2×400+6×360=2 960(元);方案②:3×400+5×360=3 000(元);方案③:4×400+4×360=3 040(元).∴方案①运费最少,最少运费是2 960元.答:该单位应选择安排甲型货车2辆,乙型货车6辆,可使运费最少,最少运费是2 960元.。

相关文档
最新文档