六年级奥数行程问题答案3
小学六年级数学行程问题讲解提高练习(附答案及解析)
行程问题(一)一、知识要点行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
二、精讲精练【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。
这句话的实质就是:“乙48分钟行了24千米”。
可以先求乙的速度,然后根据路程求时间。
也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。
练习1:1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。
两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。
六年级奥数题及答案:复杂行程问题
六年级奥数题及答案:复杂行程问题
甲、乙、丙三个班的学生租用一辆大巴车一起去郊外活动,但大巴车只能搭载一个班的学生,于是计划先让甲班的学生坐车,乙、丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.
【分析】如图所示:虚线为学生步行部分,实线为大巴车行驶路段,由于大巴车的速度是学生的_倍,所以大巴车第一次折返点到出发点的距离是乙班学生搭车前步行距离的6倍,如果将乙班学生搭车前步行距离看作是一份的话,大巴车第一次折返点到出发点的距离为6份,大巴车第一次折返到接到乙班学生又行驶了5份距离,如此大巴车一共行驶了6+5+6+5+6=28份距离,而A到F的总距离为8千米,所以大巴车共行驶了28千米,所花的总时间为小时.(或者是各班各乘车6千米,步行2千米,所花的总时间为(小时))
六年级奥数题及答案:复杂行程问题.到电脑,方便收藏和打印:。
六年级奥数行程问题(3)
行程问题(3)例1:甲、乙两人步行的速度比是13:11,他们分别由A、B两地同时出发相向而行,0.5小时后相遇。
如果他们同向而行,那么甲追上乙需要几小时?练习:从A地到B地,甲要走2小时,乙要走1小时40分钟。
若甲从A地出发8分钟后,乙从A地出发追甲。
乙出发多久能追上甲?例2:甲、乙两辆汽车从A、B两地相对开出。
第一次相遇时离A站有90千米。
然后各按原速继续行驶,分别到达对方车站后立即沿原路返回。
第二次相遇时离A地的距离占A、B两站间全程的 65%。
A、B两站间的路程是多少千米?练习:甲、乙两辆汽车从A 、B 两地相对开出。
第一次相遇时离站有 110千米。
然后各按原速继续行驶,分别到达对方车站后立即 沿原路返回。
第二次相遇时离B 地的距离占A 、B 两站间全程 的65%。
A 、B 两站间的路程是多少千米?例3:一辆汽车从A 站出发经过B 站到C 站,然后按原路返回,汽车 行驶的路程和时间的关系如下图所示。
已知汽车从A 站到C 站 每小时行60千米,那么汽车从C 站返回到A 站的速度是每小时 行多少千米?练习:下面是明明和婷婷外出情况的一张拆线统计图。
他们分别住在 一条大街的两头,相距2千米。
在他们两家之间,中途恰好是 一所书店。
现在请根据下图回答问题:1、他们俩人是( )先出发。
2、婷婷的速度一直保持在每小时( )千米。
3、明明的速度一开始是每小时( )千米。
A C路程(千米) B 0 5 10 15 20 25 时间(分钟)能力检测:1、甲乙两汽车同时从A、B两站相对开出,第一次相遇时离A站70千米。
然后各按原速继续行驶,分别到达对方车站后即沿原路返回,第二次相遇离A站的距离占AB间总长的60%。
AB两站的路程是多少千米?2、有两条纸带,一条长21厘米,一条长13厘米,把两条纸带剪下5,问同样长的一段后,短纸带剩下的长度是长纸带剩下长度的9剪下的一段有多长?5,3、甲、乙两车从A、B两地相向而行,已知甲车的速度是乙车的6甲车先从A城开出55千米后,乙车才从B城出发,两车相遇时,甲车比乙车多行了30千米,求A、B两城市间的距离。
六年级奥数行程问题答案
八、行程问题班级姓名例1、甲、乙两人在400米的环形跑道上跑步,两人同时从同一起跑线朝相反的方向跑,两人第一次和第二次相遇间隔40秒,已知甲每秒跑6米,乙每秒跑多少米?如果两人同时从同一起跑线以原来的速度同向跑步,两人第一次和第二次相遇间隔多少秒?例2、甲、乙两人练习跑步,若甲让乙先跑12米,甲跑6秒钟可追上乙;若乙比甲先跑4秒,则甲跑10秒钟能追上乙,两人每秒钟各跑多少米?例3、同学们去春游,排成一列队以每秒1米的速度行进,队伍长300米,马老师因事以每秒1.5米的速度从队伍的末尾追到排头,又立即从队伍的排头回到排尾。
问马老师又回到排尾时一共用了多少分钟?例4、一辆卡车以每小时30千米的速度从A地驶往B地,出发1小时后,一辆轿车以每小时50千米的速度也从A地驶往B地,比卡车早半小时到达B地。
求A、B两地的路程。
例5、欣欣每天早上步行上学,如果每分走60米,则要迟到5分;如果每分走75米,则可提前2分到校。
求欣欣到校的路程。
例6、快、中、慢三辆车同时同地出发,沿同一公路去追赶前面一骑车人,这三辆车分别用6分钟、10分钟、12分钟追上骑车人。
已知快、慢车的时速分别为24千米和19千米,求中速车的速度。
练习八1、一辆公共汽车和一辆小桥车同时从相距299千米的两地相向而行,公共汽车每小时行40千米,小轿车每小时行52千米。
问:几小时后两车第一次相距69千米?再过多少时间两车再次相距69千米?2、甲、乙两人分别从两地同时相向而行,8小时可以相遇。
如果两人每小时都少行1.5千米,那么10小时后相遇,问两地相距多少千米?3、一辆面包车的速度是每小时60千米,在面包车开出30分钟后,一辆轿车以每小时84千米的速度从同一地点出发沿着同一行驶路线去追赶面包车,追上时距出发地多少千米?4、A、B两城相距420千米,一辆轿车和一辆货车分别从两城相向而行。
货车上午8点出发,轿车上午9点出发,轿车的速度是货车速度的2倍。
六年级奥数第22讲:行程问题(三)
行程问题(三)对于一些往返行程问题若用折线图来解,则会更形象、直观、简捷。
常用方法是借助时间比,作出运动轨迹图。
例1、甲、乙两人在相邻90米的直路上来回跑步,甲的速度是每秒跑3米,乙的速度是每秒跑2米。
问:如果他们同时分别从直路两端出发,当他们跑了10分钟时,在这段时间内共相遇多少次?做一做:甲、乙两名运动员同时从游泳池的两端相向下水,做往返游泳训练。
从池的一端到另一端,甲要游3分钟,乙要游3.2分钟。
两人下水后连续游了48分钟,求:一共相遇了多少次?例2、甲、乙两人同时从东镇出发,到相距90千米的西镇办事。
甲骑自行车每小时行30千米,乙步行每小时行10千米。
甲到西镇用1小时办完事情沿原路返回,途中与乙相遇。
问:这时乙走了多少千米?做一做:A、B两地相距60千米,甲、乙分别从A、B两地同时出发相向而行,甲的速度为20千米/时,乙的速度为30千米/时,两人到对方出发点休息1小时后立即折回。
问:两人再次相遇时跑B地多少千米?例3、甲、乙两车分别从A、B两地同时出发,在A、B之间不断地往返行驶。
已知甲车速度是15千米每小时,乙车速度是35千米每小时,并且甲、乙两车第三次相遇的地点与第四次相遇的地点恰好相距100千米,那么,A、B两地相距多少千米?做一做:甲、乙两车分别从A、B两地同时出发,在A、B两地之间不断地往返行驶。
甲、乙两车的速度之比为3:7,并且甲、乙两车第1 996次相遇的地点和第1 997次相遇的地点恰好相距120千米。
(注:当甲、乙两车同向时,乙车追上甲车不算做相遇)那么A、B两地之间的距离是多少千米?例4、A、B两地之间公路长96千米,甲骑自行车自A往B行驶,乙骑摩托车自B往A行驶。
他们同时出发,经80分钟后两人相遇。
乙到A地后马上折回,在第一次相遇后40分钟追上甲。
乙到B地后又马上折回。
问:再过多长时间甲与乙又一次相遇?做一做:客、货两车分别从A、B两地同时出发,经过120分钟后两车相遇。
完整版)六年级奥数题及答案:行程问题
完整版)六年级奥数题及答案:行程问题六年级奥数题及答案:行程问题一、填空题(共10小题,每小题3分,满分30分)1.两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距216千米。
2.XXX从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时。
XXX来回共走了45公里。
3.一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的1.5倍。
4.一位少年短跑选手,顺风跑90米用了10秒钟,在同样的风速下,逆风跑70米,也用了10秒钟。
在无风的时候,他跑100米要用11.67秒。
5.A、B两城相距56千米。
有甲、乙、丙三人。
甲、乙从A城,丙从B城同时出发,相向而行。
甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进。
求出发后经2小时,乙在甲丙之间的中点为20千米。
6.主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了24步。
7.兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走2.5米才能回到出发点。
8.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟。
那么需要18分钟,电车追上骑车人。
9.一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次。
他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有540公里。
10.如图,是一个边长为90米的正方形,甲从A出发,乙同时从B出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在BC边上。
小学六年级奥赛行程问题及解析三篇.doc
小学六年级奥赛行程问题及解析三篇第1条小学六年级数学划题划题([知识点讲解)基本概念划题是研究物体的运动,它研究物体速度、时间、距离三者之间的关系.距离速度时间的基本公式;距离/时间速度;距离/速度/时间键决定移动过程中的位置和方向。
遇到问题的速度和遇到时间的距离请写出其他公式来追踪问题和时间与距离之间的差异速度与距离之间的差异写出其他公式主要方法是画一个线图基本问题类型是已知的遇到距离、遇到距离、遇到时间、时间相遇的时间、轨迹的时间、速度和速度差、并找到第三个量。
遇到问题的例子1、两辆车同时离开AB。
第一次见面后,两辆车将继续行驶,到达对方的起点后立即返回。
在第二次会议上,从AB到B的距离是AB总距离的51%。
众所周知,当第一辆车相遇时,短跑运动员花了1XX年的时间。
顺风跑90米需要10秒.时间,同样风速下逆风跑70米。
在没有风的情况下,他还花了10秒.的时间来询问他在购物中心跑100米需要多少秒。
小明从自动扶梯的顶部向上移动到年级的底部,XXXX 奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克奥林匹克运动每小时行驶48公里,b每小时行驶54公里。
当他们相遇时,两辆车距中点36公里。
当他们相遇时,a和b之间的距离是4+4+4+4+2公里。
小明从a到b每小时走6公里,回来时每小时走9公里,共用5个小时。
六年级 行程问题(综合)奥数 含答案
行程问题(综合)知识梳理教学重、难点作业完成情况典题探究例1. 小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合.问:小明解这道题用了多长时间?例2. 甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。
例3. 甲、乙、丙是一条路上的三个车站,乙站到甲、丙两站的距离相等,小强和小明同时分别从甲、丙两站出发相向而行,小强经过乙站100米时与小明相遇,然后两人又继续前进,小强走到丙站立即返回,经过乙站300米时又追上小明,问:甲、乙两站的距离是多少米?例4. 甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?1耐心细心责任心例5. 甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。
例6. 一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?例7. 甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?演练方阵A档(巩固专练)1.两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距千米.2.小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时.小明来回共走了公里.3.一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的倍.4.一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.在无风的时候,他跑100米要用秒.5.A、B两城相距56千米.有甲、乙、丙三人.甲、乙从A城,丙从B城同时出发.相向而行.甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进.求出发后经小时,乙在甲丙之间的中点?6.主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了步.7.兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走米才能回到出发点.8.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟,那么需要分钟,电车追上骑车人.9.一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次.他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有公里.10.如图,是一个边长为90米的正方形,甲从A 出发,乙同时从B 出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在 边上.11.动物园里有8米的大树.两只猴子进行爬树比赛,一只稍大的猴子爬上2米时,另一只猴子才爬了1.5米.稍大的猴子先爬到树顶,下来的速度比原来快了2倍.两只猴子距地面多高的地方相遇?12.三个人自A 地到B 地,两地相距36千米,三个人只有一辆自行车,这辆车只能坐两人,自行车的速度比步行速度快两倍.13.铁路旁一条平行小路上,有一行人与一骑车人同时向南行进,行人速度为每小时3.6公里,骑车人速度为每小时10.8公里.这时有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.这列火车的车身长多少米?14.一条小河流过A 、B 、C 三镇.A 、B 两镇之间有汽船来往,汽船在静水的速度为每小时11千米.B 、C 两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A 、C 两镇水路相距50千米,水流速度为每小时1.5千米.某人从A 镇乘汽船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时,那么A 、B 两镇的水路路程是多少米.15.B A ,两地间的距离是950米.甲、乙两人同时由A 地出发往返锻炼.甲步行每分走40米,乙跑步每分行150米,40分后停止运动.甲、乙二人第____次迎面相遇时距B 地最近,距离是______米.16. 甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两人多次相遇(两人同时到达同一地点叫做相遇).他们最后一次相遇的地点离乙的起点有______米.甲追上乙_____次,甲与乙迎面相遇_____次.17.甲、乙二人在400米圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为每秒8米,乙的速度为每秒6米.当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距终点多少米?B 档(提升精练)1. 甲乙两人分别从圆的直径两端点同时出发,沿圆周行进。
六年级行程问题(含答案)
比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s st t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比 2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比(1) 理解行程问题中的各种比例关系. (2) 掌握寻找比例关系的方法来解行程问题.知识框架重难点比例解行程问题【例 1】 甲、乙两车从相距330千米的A 、B 两城相向而行,甲车先从A 城出发,过一段时间后,乙车才从B 城出发,并且甲车的速度是乙车速度的。
当两车相遇时,甲车比乙车多行驶了30千米,则甲车开出 千米,乙车才出发。
【巩固】 甲乙两地相距12千米,上午10:45一位乘客乘出租车从甲地出发前往乙地,途中,乘客问司机距乙地还有多远,司机看了计程表后告诉乘客:已走路程的加上未走路程的2倍,恰好等于已走的路程,又知出租车的速度是30千米/小时,那么现在的时间是 。
六年级下册数学试题-奥数思维训练习题---行程问题(解析版)全国通用
奥数思维训练题库---行程问题【基础】【2】从A到B有两条路可走,小王骑车从A过C到B比走另一条路少用3分钟,而从A出发到B,再经过C返回到A要53分钟,小王骑车速度为每小时36千米。
求:小王从A经过C到B所走过的路程。
【答案】15千米【基础】【2】从小明的家到长途汽车站有3千米。
现在从家往车站去,如果用每小时4千米的速度行走,在汽车发车前17分钟到达车站;如果想在汽车发车前2分钟到达车站,那么需用每小时多少千米的速度行走?【答案】每小时3千米【基础】【1】小明以一固定的速度从甲地跑到乙地,上午8时,他离乙地20千米,上午9时半他离乙地8千米,小明几点到达乙地?【答案】十点半【相遇追及】【2】兄弟两人同时从家里出发到学校,路程是1400米。
哥哥骑自行车每分钟行200米,弟弟步行每分钟行80米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。
从出发到相遇,弟弟走了多少分钟?【答案】10分钟【相遇追及】【3】如图,有两只蜗牛同时一个等腰三角形的顶点A出发,分别沿着两腰爬行。
一只蜗牛每分钟行2.5米,另一只蜗牛每分钟行2米,8分钟后在离C点6米处的P点相遇,则线段BP的长度是多少?【答案】2米(2.5-2)×8=4米,6-4=2米。
则BP长是2米。
【相遇追及】【2】甲、乙二人练习跑歩,若甲让乙先跑10米则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:甲、乙二人的速度各是________、________。
【答案】6米/秒,4米/秒【相遇追及】【2】甲走一段路用40分钟,乙走同样一段路用30分钟。
从同一地点出发,甲先走5分钟,乙再开始追,乙________分钟才能追上甲。
【答案】20【多次相遇】【1】甲乙两车同时从A、B两地相向而行,甲车每小时行驶36千米,乙车每小时行驶34千米,两车分别到达目的地后立即返回,第二次相遇时共行驶了12小时,两地相距________米。
【答案】280【多次相遇】【2】甲,乙两车分别同时从A,B两地相对开出,第一次在离A地95千米处相遇,相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇,AB两地间距离为________。
六年级奥数简单行程问题试题及答案【三篇】
六年级奥数简单行程问题试题及答案【三篇】教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.海阔凭你跃,天高任你飞。
愿你信心满满,尽展聪明才智;妙笔生花,谱下锦绣第几篇。
学习的敌人是自己的知足,要使自己学一点东西,必需从不自满开始。
以下是小编为大家整理的《六年级奥数简单行程问题试题及答案【三篇】》供您查阅。
【第一篇】甲乙两地相距6千米.陈宇从甲地步行去乙地,前一半时间每分钟走80米,后一半的时间每分钟走70米.这样他在前一半的时间比后一半的时间多走()米.考点:简单的行程问题.分析:解:设陈宇从甲地步行去乙地所用时间为2_分钟,根据题意,前一半时间和后一半的时间共走(0._+0._)_千米,已知甲乙两地相距6千米,由此列出方程(0._+0._)_=6,解方程求出一半的时间,因此前一半比后一半时间多走:(80-70)_40米,解决问题.解答:解:设陈宇从甲地步行去乙地所用时间为_分钟,根据题意得:(0._+0._)_=6,0.__=6,_=40;前一半比后一半时间多走:(80-70)_40,=__40,=4_(米).答:前一半比后一半的时间多走4_米.故答案为:4_.点评:根据题目特点,巧妙灵活地设出未知数,是解题的关键.【第二篇】1.甲乙两地相距6千米.陈宇从甲地步行去乙地,前一半时间每分钟走80米,后一半的时间每分钟走70米.这样他在前一半的时间比后一半的时间多走()米.分析:解:设陈宇从甲地步行去乙地所用时间为2_分钟,根据题意,前一半时间和后一半的时间共走(0._+0._)_千米,已知甲乙两地相距6千米,由此列出方程(0._+0._)_=6,解方程求出一半的时间,因此前一半比后一半时间多走:(80-70)_40米,解决问题.解答:解:设陈宇从甲地步行去乙地所用时间为_分钟,根据题意得:(0._+0._)_=6,0.__=6,_=40;前一半比后一半时间多走:(80-70)_40,=__40,=4_(米).答:前一半比后一半的时间多走4_米.故答案为:4_.点评:根据题目特点,巧妙灵活地设出未知数,是解题的关键.【第三篇】例1:甲、乙二人沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长4_米.如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?分析:这是一道封闭线路上的追及问题.甲和乙同时同地起跑,方向一致.因此,当甲第一次追上乙时,比乙多跑了一圈,也就是甲与乙的路程差是4_米.根据“路程差÷速度差=追及时间”即可求出甲追上乙所需的时间.解答:解:4_÷(290-270)=4_÷_,=_(分钟);答:甲经过_分钟才能第一次追上乙.点评:此类题根据“追及(拉开)路程÷(速度差)=追及(拉开)时间”,代入数值计算即可.六年级奥数简单行程问题试题及答案【三篇】.到电脑,方便收藏和打印:。
小学六年级奥数第35讲 行程问题(三)(含答案分析)
第35讲 行程问题(三)一、知识要点本周主要讲结合分数、百分数知识相关的较为复杂抽象的行程问题。
要注意:出发的时间、地点和行驶方向、速度的变化等,常常需画线段图来帮助理解题意。
二、精讲精练【例题1】客车和货车同时从A 、B 两地相对开出。
客车每小时行驶50千米,货车的速度是客车的80%,相遇后客车继续行3.2小时到达B 地。
A 、B 两地相距多少千米?图35——1AB 货车客车如图35-1所示,要求A 、B 两地相距多少千米,先要求客、货车合行全程所需的时间。
客车3.2小时行了50×3.2=160(千米),货车行160千米所需的时间为:160÷(50×80%)=4(小时) 所以(50+50×80%)×4=360(千米) 答:A 、B 两地相距360千米。
练习1:1、甲、乙两车分别从A 、B 两地同时出发相向而行,相遇点距中点320米。
已知甲的速度是乙的速度的56,甲每分钟行800米。
求A 、B 两地的路程。
2、甲、乙两人分别从A 、B 两地同时出发相向而行,匀速前进。
如果每人按一定的速度前进,则4小时相遇;如果每人各自都比原计划每小时少走1千米,则5小时相遇。
那么A 、B 两地的距离是多少千米?3、甲、乙两人同时骑自行车从东、西两镇相向而行,甲、乙的速度比是3:4。
已知甲行了全程的13,离相遇地点还有20千米,相遇时甲比乙少行多少千米?【例题2】从甲地到乙地的路程分为上坡、平路、下坡三段,各段路程之比是1:2:3,某人走这三段路所用的时间之比是4:5:6。
已知他上坡时的速度为每小时2.5千米,路程全长为20千米。
此人从甲地走到乙地需多长时间?要求从甲地走到乙地需多长时间,先求上坡时用的时间。
上坡的路程为20×11+2+3=103(千米),上坡的时间为103÷2.5=43(小时),从甲地走到乙地所需的时间为:43÷44+5+6=5(小时)答:此人从甲地走到乙地需5小时。
六年级下册数学试题-奥数专题:行程问题(3)追及问题(含答案)全国通用
行程问题(3)追及问题【题目1】解放战争期间的一次战役中,根据我侦查员报告,敌军在我军东面36 千米的某地正以每小时15 千米的速度向东逃窜,我军立即以快1/5 的速度追击敌人。
问多长时间可以追上?【解答】本题特点是速度差没有直接告诉我们。
追及路程是36 千米,速度差是15 ×1/5=3 千米/时,追及时间是36÷3=12 小时。
【题目2】一辆普通客车以每小时60 千米的速度从甲站出发。
2 小时后,一辆快客以每小时100 千米的速度也从甲站出发追普通客车。
问快客出发几小时能追上普通客车?【解答】本题特点是追及路程没有直接告诉我们。
追及路程是60×2=120 千米,这段路就是追及路程,根据“追及时间=追及路程÷速度差”,可求出快客追上普通客车需要的时间是120÷(100-60)=3 小时。
【题目3】两辆卡车为农场送化肥,第一辆卡车以每小时30 千米的速度由仓库开往农场;第二辆卡车晚12 分钟,以每小时40 千米的速度由仓库开往农场,结果两车同时到达农场。
仓库到农场的路程有多远?【解答】本题特点是追及路程没有直接告诉,求的是追上时,快的行的路程。
列举如下解法:【解法一】追及路程是30×12/60=6 千米,速度差是40-30=10 千米/时,追及时间是6÷10=0.6 小时,仓库到农场的路程有40×0.6=24 千米。
【解法二】时间差是12/60 小时,每千米相差1/30-1/40=1/120 小时,则仓库到农场的路程是12/60÷1/120=24 千米。
【题目4】甲乙丙兄弟三人骑自行车旅行,出发时约好到某地集合。
甲乙两人同时从家中出发,甲每小时行15 千米,乙每小时行12 千米,丙因早上有事,2 小时后才从家里出发,丙出发10 小时后与甲同时到达某地。
问丙在出发后几小时追上乙?【解答】本题特点是增加了一个运动者。
六年级 行程问题(综合)奥数 答案
正比例和反比例的性质参考答案典题探究一、行程问题考点1)一般行程问题:基本公式:路程=速度×时间高级公式:(务必倒背如流,此两公式太重要了)相遇问题(速度和×相遇时间=路程和),追击问题(速度差×追击时间=路程差)2)流水问题:水速对追击和相遇时间无影响。
原因?四者中只要知2就可求另外2个量。
基本公式:顺水速度=船速+水速逆水速度=船速-水速高级公式:船速=(顺+逆)÷2,水速=(顺-逆)÷23)非环形跑道多次相遇问题:要注意“第一次相遇行的全程数”与“第二次相遇行的全程数”的关系。
环形跑道:每相遇一次,总路程多了一圈,不存在以上关系。
所以如果速度和不变,则每相遇一次所用时间相同。
二:行程问题主要方法:(1)列方程求解;(2)画图分析;(3)抓住原因分析求解;(4)比例(常用到设数的方法)例1小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合.问:小明解这道题用了多长时间?分析这道题实际上是一个行程问题.开始时两针成一直线,最后两针第一次重合.因此,在我们所考察的这段时间内,两针的路程差为30分格,又因分格/分钟,所以,当它们第一次重合时,一定是分针从后面追上时针.这是一个追及问题,追及时间就是小明的解题时间。
例2甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A 地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。
画图如下:分析结合上图,如果我们设甲、乙在点C相遇时,丙在D点,则因为过15分钟后甲、丙在点E相遇,所以C、D之间的距离就等于(40+60)×15=1500(米)。
又因为乙和丙是同时从点B出发的,在相同的时间内,乙走到C点,丙才走到D点,即在相同的时间内乙比丙多走了1500米,而乙与丙的速度差为50-40=10(米/分),这样就可求出乙从B到C的时间为1500÷10=150(分钟),也就是甲、乙二人分别从A、B出发到C点相遇的时间是150分钟,因此,可求出A、B的距离。
(奥数典型题)行程问题-2023-2024学年六年级下册小升初数学思维拓展含答案
(奥数典型题)行程问题-2023-2024学年六年级下册小升初数学思维拓展第8讲行程问题【知识点归纳】1.、速度:指单位时间内所行的路程。
因为速度=路程÷时间,所以速度的单位名称是路程单位/时间单位,即千米/时,米/分,米/秒,千米/分……2、路程、时间与速度的关系:(1)已知路程和时间,求速度:速度=路程÷时间;(2)已知路程和速度,求时间:时间=路程÷速度;(3)已知速度和时间,求路程:路程=速度×时间。
在路程、时间和速度三个量中,知道其中的任何两个量,都能求出第三个量。
【方法总结】1、路程、时间和速度之间的关系:路程=速度×时间时间=路程÷速度速度=路程÷时间1.客车和货车分别从甲、乙两地同时出发,相向而行,3h相遇,相遇后客车又行驶2h到达乙地,已知货车每时行驶50km,问甲、乙两地相距多少千米?2.甲乙两列火车分别从南、北两地同时相对开出,6小时后相遇。
甲车的速度是120千米/时,乙车的速度是130千米/时。
求南、北两地的路程。
(先画图整理条件和问题,再解答。
)3.客、货两车同时从甲乙两地相对开出在离乙地80千米的地方第一次相遇,相遇后继续行驶,到达对方出发点后立即返回,第二次在距离甲地50千米的地方相遇。
求甲、乙两地间相距多少千米?(画图可以帮助理解!)4.甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。
求甲原来的速度。
5.从电车总站每隔一定时间开出一辆电车。
甲和乙两人在一条街上沿着同一方向步行,甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。
则电车总站每隔多少分钟开出一辆电车?6.甲乙两地相距1200千米。
一辆大客车和一辆小客车分别从两地同时出发,相向而行,6小时相遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三十五周 行程问题(三)
例题1:
客车和货车同时从A 、B 两地相对开出。
客车 每小时行驶50千米,货车的速度是客车的80%,相遇后客车继续行3.2小时到达B 地。
A 、B 两地相距多少千米?
图35——1A
B 货车
客车
如图35-1所示,要求A 、B 两地相距多少千米,先要求客、货车合行全程所需的时间。
客车3.2小时行了50×3.2=160(千米),货车行160千米所需的时间为:
160÷(50×80%)=4(小时)
所以(50+50×80%)×4=360(千米)
答:A 、B 两地相距360千米。
练习1:
1、甲、乙两车分别从A 、B 两地同时出发相向而行,相遇点距中点320米。
已知甲的
速度是乙的速度的56
,甲每分钟行800米。
求A 、B 两地的路程。
2、甲、乙两人分别从A 、B 两地同时出发相向而行,匀速前进。
如果每人按一定的速度前进,则4小时相遇;如果每人各自都比原计划每小时少走1千米,则5小时相遇。
那么
A 、
B 两地的距离是多少千米?
3、甲、乙两人同时骑自行车从东、西两镇相向而行,甲、乙的速度比是3:4。
已知甲
行了全程的13
,离相遇地点还有20千米,相遇时甲比乙少行多少千米?
例题2:
从甲地到乙地的路程分为上坡、平路、下坡三段,各段路程之比是1:2:3,某人走这三段路所用的时间之比是4:5:6。
已知他上坡时的速度为每小时2.5千米,路程全长为20千米。
此人从甲地走到乙地需多长时间?
要求从甲地走到乙地需多长时间,先求上坡时用的时间。
上坡的路程为20×11+2+3 =103
(千米),上坡的时间为103 ÷2.5=43 (小时),从甲地走到乙地所需的时间为:43 ÷44+5+6
=5(小时)
答:此人从甲地走到乙地需5小时。
练习2:
1、从甲地到乙地的路程分为上坡、平路、下坡三段,各段路程之比是2:3:5,小亮走这三段路所用的时间之比是6:5:4。
已知小亮走平炉时的速度为每小时4.5千米,他从甲地走到乙地共用了5小时。
问:甲、乙两地相距多少千米?
3、青青从家到学校正好要翻一座小山,她上坡每分钟行50米,下坡速度比上坡快40%,从家到学校的路程为2800米,上学要用50分钟。
从学校回家要用多少时间?
例题3:
甲、乙两人分别从A 、B 两地出发,相向而行,出发时他们的速度比是3:2。
他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%。
这样,当乙到B 地时,乙离A 地还有14千米。
那么A 、B 两地间的距离是多少千米?
图35——3B
19
份
把A 、B 两地的路程平均分成5份,第一次相遇,甲走了3份的路程,乙走了2份的路程,当他们第一次相遇后,甲、乙的速度比为[3×(1+20%)]:[2×(1+30%)]=18:13。
甲到达B 点还需行2份的路程,这时乙行了2÷18×13=149
份路程,从图35-3可以看出14千米对应(5—2—149
)份 [3×(1+20%)]:[2×(1+30%)]=18:13 2÷18×13=149
(份) 5—(2+149 )=159
(份) 14÷159
×5=45(千米) 答:A 、B 两地间的距离是45千米。
练习3:
1、甲、乙两人步行的速度比是13:11,他们分别由A 、B 两地同时出发相向而行,0.5小时后相遇。
如果他们同向而行,那么甲追上乙需要几小时?
2、从A 地到B 地,甲要走2小时,乙要走1小时40分钟。
若甲从A 地出发8分钟后,乙从A 地出发追甲。
乙出发多久能追上甲?
3、甲、乙两车分别从A 、B 两地出发,相向而行。
出发时,甲、乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B 地时,乙离A 地还有10千米。
那么,A 、B 两地相距多少千米?
例题4:
甲、乙两班学生到离校24千米的飞机场参观,一辆汽车一次只能坐一个班的学生。
为了尽快到达机场,两个班商定,由甲班先坐车,乙班步行,同时出发。
甲班学生在中途下车步行去机场,汽车立即返回接途中步行的乙班同学。
已知两班学生步行的速度相同,汽车的速度是步行的7倍,汽车应在距机场多少千米处返回接乙班同学,才能使两班同学同时到达机场(学生上下车及汽车换向时间不计算)?
如图35-4所示,汽车到达甲班学生下车的地方又返回到与乙班学生相遇的地点,汽车所行路程应为乙班步行的7倍,即比乙班学生多走6倍,因此汽车单程比乙班步行多(6÷2)=3(倍)。
汽车返回与乙班相遇时,乙班步行的路程与甲班学生步行到机场的路程相等。
由此得出汽车送甲班学生下车地点到机场的距离为学校到机场的距离的1/5。
列算式为
24÷(1+3+1)=4.8(千米)
答:汽车应在距飞机场4.8千米处返回接乙班学生,才能使两班学生同时到达飞机场。
练习4:
1、红星小学有80名学生租了一辆40座的车去海边观看日出。
未乘上车的学生步行,和汽车同时出发,由汽车往返接送。
学校离海边48千米,汽车的速度是步行的9倍。
汽车应在距海边多少千米处返回接第二批学生,才能使学生同时到达海边?
2、一辆汽车把货物从甲地运往乙地往返只用了5小时,去时所用的时间是回来的112
倍,去时每小时比回来时慢17千米。
汽车往返共行了多少千米?
3、甲、乙两人以同样的速度,同时从A 、B 两地相向出发,相遇后甲的速度提高了13
,用212 小时到达B 地。
乙的速度减少了16
,再用多少小时可到达A 地?
例题5:
一辆汽车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前1小时到达;如果按原速行驶120千米后,再将速度提高25%,则可提前40分钟到达。
那么甲、乙两地相距多少千米?
此题是将行程、比例、百分数三种应用题综合在了一起。
解题时,我们可先求出改车按原定速度到达乙地所需的时间,再求出甲、乙两地的路程。
由车速提高20%可知,现在速度与原来速度的比是(1+20%):1=6:5,路程一定,所需时间比是速度比的反比。
这样可算出原定时间为6小时。
按原速行驶120千米后,速度提高25%可知,现速与原速的比是(1+25%):1=5:4,即所需时间比为4:5,可算出行驶120千
米后,还需23 ÷(5—4)×5=313 (小时),这样120千米占全程的(1—16 ×313
),即可算出甲、乙两地的距离。
现速与原速的比:(1+20%):1=6:5
原定行完全程的时间:1÷(6—5)×6=6(小时)
行120千米后,加快的速度与原速的比:(1+25%):1=5:4
行120千米后,还需行走的时间:23 ÷(5—4)×5=313
(小时) 甲、乙两地的距离:120÷(1—16 ×313
)=270(千米) 答:甲、乙两地的距离270千米。
练习5:
1、一辆车从甲地开往乙地。
如果把车速提高25%,可以比原定时间提前24分钟到达;
如果以原速行驶80千米后,再将速度提高13
,那么可以提前10分钟到达乙地。
甲、乙两地相距多少千米?
2、一个正方形的一边减少20%,另一边增加2米,得到一个长方形。
这个长方形的面积与原正方形的面积相等。
原正方形面积是多少平方米?
3、客、货车同时从甲、乙两地相对开出,相遇时客、货两车所行路程的比是5:4,相遇后货车每小时比客车多走27千米。
客车仍按原速前进,结果两车同时到达对方的出发站,已知客车一共行了10小时。
甲、乙两地相距多少千米?
答案:
练习1:
1.7040米;
2.40千米;
3.30千米;
练习2
1. 25千米;
3. 与鸡兔同笼问题相同,50×50=2500千米,2800-2500=300(米)300/20=15(分) 15×70=1050米;35×50=1750米;1750/70+1050/50=46分钟。
练习3
1.6时;
2.40分;
3.450千米。
练习4
1.48/(1+4+1)=8(千米)
2.102×2=204千米
3.4小时
练习5
1.120千米
2.64平方米
3.1080千米。