一元二次方程的根的判别式练习题
(完整版)一元二次方程的根的判别式练习题
一元二次方程的根的判别式1、方程2x 2+3x -k=0根的判别式是 ;当k 时,方程有实根。
2、关于x 的方程kx 2+(2k+1)x -k+1=0的实根的情况是 。
3、方程x 2+2x+m=0有两个相等实数根,则m= 。
4、关于x 的方程(k 2+1)x 2-2kx+(k 2+4)=0的根的情况是 。
5、当m 时,关于x 的方程3x 2-2(3m+1)x+3m 2-1=0有两个不相等的实数根。
6、如果关于x 的一元二次方程2x(ax -4)-x 2+6=0没有实数根,那么a 的最小整数值是 。
7、关于x 的一元二次方程mx 2+(2m -1)x -2=0的根的判别式的值等于4,则m= 。
8、设方程(x -a)(x -b)-cx=0的两根是α、β,试求方程(x -α)(x -β)+cx=0的根。
9、不解方程,判断下列关于x 的方程根的情况:(1)(a+1)x 2-2a 2x+a 3=0(a>0)(2)(k 2+1)x 2-2kx+(k 2+4)=010、m 、n 为何值时,方程x 2+2(m+1)x+3m 2+4mn+4n 2+2=0有实根?11、求证:关于x 的方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。
12、已知关于x 的方程(m 2-1)x 2+2(m+1)x+1=0,试问:m 为何实数值时,方程有实数根? 13、 已知关于x 的方程x 2-2x -m=0无实根(m 为实数),证明关于x 的方程x 2+2mx+1+2(m 2-1)(x 2+1)=0也无实根。
14、已知:a>0,b>a+c,判断关于x 的方程ax 2+bx+c=0根的情况。
15、m 为何值时,方程2(m+1)x 2+4mx+2m -1=0。
(1)有两个不相等的实数根;(2)有两个实数根;(3)有两个相等的实数根;(4)无实数根。
16、当一元二次方程(2k -1)x2-4x -6=0无实根时,k 应取何值? 17、已知:关于x 的方程x 2+bx+4b=0有两个相等实根,y 1、y 2是关于y 的方程y 2+(2-b)y+4=0的两实根,求以1y 、2y 为根的一元二次方程。
一元二次方程之判别式专项练习60题(有答案)ok
一元二次方程判别式专项练习60题(有答案)﹣a=01.已知关于x的一元二次方程2x2﹣5x5x﹣的取值范围.(1)如果此方程有两个不相等的实数根,求a的取值范围.为何值时,方程的两个根互为倒数,求出此时方程的解.(2)当a为何值时,方程的两个根互为倒数,求出此时方程的解..=0.2.已知关于x的方程()﹣p p2=0的方程(x x﹣3)(x﹣2)﹣)求证:方程有两个不相等的实数根;(1)求证:方程有两个不相等的实数根;(2)当p=2时,求该方程的根.时,求该方程的根.(k﹣2)2=x有两个相等的实数根,求k的值与方程的根.的值与方程的根.+2kx+(3.已知关于x的方程x2+2kx+有实数根.﹣a+3=0有实数根.的方程 x4.若关于x的方程x2+4x+4x﹣的取值范围;(1)求a的取值范围;(2)若a为符合条件的最小整数,求此时方程的根.为符合条件的最小整数,求此时方程的根.5.已知关于x的方程.的取值范围;(1)如果此方程有两个不相等的实数根,求m的取值范围;为符合条件的最大整数,求此时方程的根.)在(11)中,若m为符合条件的最大整数,求此时方程的根.(2)在(.展示你的分析能力:6.展示你的分析能力:有两个不相等的实数根.﹣m=8有两个不相等的实数根.+3x﹣已知关于x的方程x2+3x的最小整数值是多少?(1)求m的最小整数值是多少?﹣m=8中解出x的值.的值.+3x﹣(2)将()将(11)中求出的m值,代入方程x2+3x7.已知关于x的一元二次方程mx2﹣5x+3=0的判别式为1,求m的值及该方程的根.的值及该方程的根.8.已知关于x 的方程kx 2﹣2x+1=0有两个实数根x 1、x 2. (1)求k 的取值范围;的取值范围;(2)是否存在k 使(使(x x 1+1+1))(x 2+1+1))=k =k﹣﹣1成立?如果存在,求出k 的值;如果不存在,请说明理由.的值;如果不存在,请说明理由.9.已知关于x 的方程x 2﹣(﹣(2k+12k+12k+1))x+4x+4((k ﹣)=0(1)判断方程根的情况;)判断方程根的情况;(2)k 为何值时,方程有两个相等的实数根,并求出此时方程的根.为何值时,方程有两个相等的实数根,并求出此时方程的根.1010.若关于.若关于x 的一元二次方程有两个不相等的实数根.有两个不相等的实数根.(1)求k 的取值范围;的取值范围;(2)为k 选取一个符合要求的值,并求出此方程的根.选取一个符合要求的值,并求出此方程的根.1111.已知关于.已知关于x 的一元二次方程的一元二次方程 x x 2+2mx++2mx+((m+2m+2))(m ﹣1)=0=0((m 为常数). (1)如果方程有两个不相等的实数根,求m 的取值范围;的取值范围;(2)如果方程有两个相等的实数根,求m 的值;如果方程没有实数根,求m 的取值范围.的取值范围.1212.当.当k 取什么值时,关于x 的一元二次方程(1)有两个不相等的实数根?)有两个不相等的实数根? (2)没有实数根?)没有实数根?1313.已知关于.已知关于x 的方程是ax 2﹣3(a ﹣1)x ﹣9=09=0.. (1)证明:不论a 取何值,总有一个根是x=3x=3;; (2)当a ≠0时,利用求根公式求出它的另一个根.时,利用求根公式求出它的另一个根.1414.若.若k 是一个整数,已知关于x 的一元二次方程(的一元二次方程(11﹣k )x 2﹣2x 2x﹣﹣1=0有两个不相等的实数根,则k 最大可以取多少?为什么?多少?为什么?1515.已知关于.已知关于x 的方程x 2+(m+2m+2))x+2m x+2m﹣﹣1=01=0.. (1)求证:方程有两个不相等的实数根.)求证:方程有两个不相等的实数根. (2)当m=m=﹣﹣2时,方程的两根互为相反数吗?并求出此时方程的解.时,方程的两根互为相反数吗?并求出此时方程的解.1616.已知关于.已知关于x 的方程x 2+2x+k +2x+k﹣﹣1=01=0,, (1)若方程有一个根是1,求k 的值;的值;(2)若方程没有实数根,求实数k 的取值范围.的取值范围.1717.已知关于.已知关于x 的方程x 2+(m ﹣2)x ﹣9=0(1)求证:无论m 取什么实数,这个方程总有两个不相等的实数根;取什么实数,这个方程总有两个不相等的实数根; (2)若这个方程两个根α,β满足2α+β=m+1=m+1,求,求m 的值.的值.1818.已知.已知p 为质数,使二次方程x 2﹣2px+p 2﹣5p 5p﹣﹣1=0的两根都是整数,求出p 的所有可能值.的所有可能值.1919..m 是什么实数时,方程x 2﹣4|x|+5=m 有4个互不相等的实数根?个互不相等的实数根?2020.设关于.设关于x 的方程x 2﹣4x+4x+((y ﹣1)|x |x﹣﹣2|+22|+2﹣﹣2y=0恰有两个实数根,求y 的负整数值.的负整数值.2121.已知关于.已知关于x 的方程x 2+2mx+m+2=0+2mx+m+2=0..(1)方程两根都是正数时,求m 的取值范围;的取值范围;(2)方程一个根大于1,另一个根小于1,求m 的取值范围.的取值范围.2222.已知关于.已知关于x 的一元二次方程x 2﹣2mx+m 2﹣2m=02m=0.. (1)当m=1时,求方程的根.时,求方程的根. (2)试判断方程根的情况.)试判断方程根的情况.2323.已知.已知a 、b 、c 是三角形的三条边长,且关于x 的方程(的方程(c c ﹣b )x 2+2+2((b ﹣a )x+x+((a ﹣b )=0有两个相等的实数根,试判断三角形的形状.试判断三角形的形状.2424.已知关于.已知关于x 的一元二次方程x 2﹣mx+m mx+m﹣﹣2=02=0,求证:无论,求证:无论m 取何值,该方程总有两个不相等的实数根.取何值,该方程总有两个不相等的实数根.2525.已知关于.已知关于x 的一元二次方程x 2﹣(﹣(m m ﹣1)x+m+2=0x+m+2=0.. (1)若方程有两个相等的实数根,求m 的值;的值; (2)若方程的两实数根之积等于m 2﹣9m+29m+2,求,求的值.的值.2626.关于.关于x 的方程x 2﹣2x+k 2x+k﹣﹣1=0有两个不相等的实数根.有两个不相等的实数根. (1)求k 的取值范围;的取值范围;(2)若k ﹣1是方程x 2﹣2x+k 2x+k﹣﹣1=0的一个解,求k 的值.的值.2727.已知关于.已知关于x 的方程x 2+2x+m +2x+m﹣﹣1=0 (1)若1是方程的一个根,求m 的值;的值;(2)若方程有两个不相等的实数根,求m 的取值范围.的取值范围.2828.若关于.若关于x 的一元二次方程(的一元二次方程(k k ﹣2)2x 2+(2k+12k+1))x+1=0有两个不相等的实数根,求k 的取值范围.的取值范围.2929.已知关于.已知关于x 的方程x 2+(3k 3k﹣﹣2)x ﹣6k=06k=0,, (1)求证:无论k 取何实数值,方程总有实数根;取何实数值,方程总有实数根; (2)若等腰三角形ABC 的一边a=6a=6,另两边长,另两边长b ,c 恰好是这个方程的两个根,求△恰好是这个方程的两个根,求△ABC ABC 的周长.的周长.3030.已知一元二次方程.已知一元二次方程x 2﹣5x+k=05x+k=0.. (1)当k=6时,解这个方程;时,解这个方程;(2)若方程x 2﹣5x+k=0有两个不相等的实数根,求k 的取值范围;的取值范围;3131.已知关于.已知关于x 的方程x 2﹣(﹣(m+1m+1m+1))x+m=0(1)求证:不论m 取何实数,方程都有实数根;取何实数,方程都有实数根;(2)为m 选取一数,使方程有两个不相等的整数根,并求出这两个实数根.选取一数,使方程有两个不相等的整数根,并求出这两个实数根.3232.已知关于.已知关于x 的方程x 2﹣2x+2k 2x+2k﹣﹣3=0有两个不相等的实数根.有两个不相等的实数根. (1)求k 的取值范围;的取值范围;(2)若k 为符合条件的最大整数,求此时方程的根.为符合条件的最大整数,求此时方程的根.3333.已知关于.已知关于x 的方程(的方程(k+1k+1k+1))x 2+(3k 3k﹣﹣1)x+2k x+2k﹣﹣2=02=0.. (1)讨论此方程根的情况;)讨论此方程根的情况;(2)若方程有两个整数根,求正整数k 的值.的值.3434.关于.关于x 的一元二次方程x 2﹣x+p x+p﹣﹣1=0有两个实数根x 1、x 2. (1)求p 的取值范围;的取值范围; (2)若,求p 的值.的值.3535.实数.实数k 取何值时,一元二次方程x 2﹣(﹣(2k 2k 2k﹣﹣3)x+2k x+2k﹣﹣4=0 (1)有两个正根;)有两个正根;(2)有两个异号根,且正根的绝对值较大;)有两个异号根,且正根的绝对值较大; (3)一个根大于3,一个根小于3.3636.已知关于.已知关于x 的方程x 2+(2k+12k+1))x+k 2+2=0有两个不相等的实数根.有两个不相等的实数根. ①求k 的取值范围;的取值范围; ②试判断直线y=y=((2k 2k﹣﹣3)x ﹣4k+7能否通过点A (﹣(﹣22,5),并说明理由.,并说明理由.3737.已知关于.已知关于x 的一元二次方程x 2﹣mx mx﹣﹣2=02=0.. (1)若﹣)若﹣11是方程的一个根,求m 的值和方程的另一个根.的值和方程的另一个根. (2)对于任意实数m ,判断方程根的情况,并说明理由.,判断方程根的情况,并说明理由.3838.证明:无论.证明:无论m 为何值,关于x 的方程x 2﹣2mx 2mx﹣﹣2m 2m﹣﹣4=0总有两个不相等的实数根.总有两个不相等的实数根.3939.已知关于.已知关于x 的一元二次方程x 2﹣(﹣(m m ﹣1)x+m+2=0x+m+2=0,若方程有两个相等的实数根,求,若方程有两个相等的实数根,求m 的值.的值.4040.已知关于.已知关于x 的一元二次方程x 2﹣kx kx﹣﹣2=02=0..(1)求证:无论k 取何值,方程有两个不相等的实数根;取何值,方程有两个不相等的实数根;(2)设方程的两个实数根分别为x 1,x 2,且满足x 1+x 2=x 1•x 2,求k 的值.的值.4141.已知方程.已知方程m 2x 2+(2m+12m+1))x+1=0有实数根,求m 的取值范围.的取值范围.4242.已知关于.已知关于x 的一元二次方程x 2﹣2x+m=0有两个实数根.有两个实数根. (1)求m 的范围;的范围; (2)若方程两个实数根为x 1、x 2,且x 1+3x 2=8=8,求,求m 的值.的值.4343.如果关于.如果关于x 的一元二次方程(的一元二次方程(11﹣m )x 2﹣2x 2x﹣﹣1=0有两个不相等的实数根,当m 在它的取值范围内取最大整数时,求的值.的值.4444.若关于.若关于x 的一元二次方程x 2+2kx++2kx+((k 2+2k +2k﹣﹣5)=0有两个实数根,分别是x 1,x 2. (1)求k 的取值范围;的取值范围; (2)若有x 1+x 2=x 1x 2,则k 的值是多少.的值是多少.4545.已知关于.已知关于x 的方程k 2x 2+(2k 2k﹣﹣1)x+1=0有两个实数根x 1、x 2 (1)求k 的取值范围;的取值范围;(2)是否存在k 的值,可以使得这两根的倒数和等于0?如果存在,请求出k ,若不存在,请说明理由.,若不存在,请说明理由.4646.已知关于.已知关于x 的方程x 2﹣(﹣(k+1k+1k+1))x+k=0x+k=0..(1)求证:无论k 取什么实数值,这个方程总有实根.取什么实数值,这个方程总有实根. (2)若等腰△)若等腰△ABC ABC 的一腰长a=4a=4,另两边,另两边b 、c 恰好是这个方程的两根,求△恰好是这个方程的两根,求△ABC ABC 的周长.的周长.4747.已知.已知x 2+(2k+12k+1))x+k 2﹣2=0是关于x 的一元二次方程方程.的一元二次方程方程. (1)方程有两根不相等的实数根,求k 的取值范围.的取值范围. (2)方程有一根为1,求k 的取值.的取值.(3)方程的两根两根互为倒数,求k 的取值.的取值.4848.已知关于.已知关于x 的方程(的方程(k k ﹣1)x 2+2x +2x﹣﹣5=0有两个不相等的实数根,求:有两个不相等的实数根,求: ①k 的取值范围.的取值范围.②当k 为最小整数时求原方程的解.为最小整数时求原方程的解.4949.已知关于.已知关于x 的方程(的方程(m m ﹣1)x 2﹣(﹣(2m 2m 2m﹣﹣1)x+2=0x+2=0.. (1)求证:无论m 取任何实数,方程总有实数根;取任何实数,方程总有实数根; (2)若方程只有整数根,求整数m 的值.的值.5050.已知关于.已知关于x 的方程2x 2+kx +kx﹣﹣1=01=0.. (1)小明同学说:“无论k 为何实数,方程总有实数根.”你认为他说的有道理吗?”你认为他说的有道理吗? (2)若方程的一个根是﹣)若方程的一个根是﹣11,求另一根及k 的值.的值.5151.已知关于.已知关于x 的一元二次方程.(1)m 取什么值时,方程有两个实数根?取什么值时,方程有两个实数根?(2)设此方程的两个实数根为a 、b ,若y=ab y=ab﹣﹣2b 2+2b+1+2b+1,求,求y 的取值范围.的取值范围.5252.已知关于.已知关于x 的一元二次方程x 2+(2k+12k+1))x+k 2﹣2=0有实根有实根 (1)求k 的取值范围的取值范围 (2)若方程的两实根的平方和等于1111,求,求k 的值.的值.5353.如果一元二方程.如果一元二方程x 2+mx+2m +mx+2m﹣﹣n=0有一个根为2,且根的判别式为0,求m 、n 的值.的值.5454.已知,关于.已知,关于x 的一元二次方程:的一元二次方程:ax ax 2+4x +4x﹣﹣1=01=0,, (1)当a 取什么值时,方程有实数根?取什么值时,方程有实数根?(2)设x 1,x 2为方程两根,为方程两根,y=x y=x 1+x 2﹣x 1•x 2,试比较y 与0的大小.的大小.5555.已知关于.已知关于x 的一元二次方程x 2﹣mx mx﹣﹣2=0(1)x=2是方程的一个根,求m 的值和方程的另一个根.的值和方程的另一个根. (2)对于任意实数m ,判断方程的根的情况,并说明理由.,判断方程的根的情况,并说明理由.5656.已知关于.已知关于x 的方程.(1)若方程只有一个根,求k 的值并求出此时方程的根;的值并求出此时方程的根; (2)若方程有两个相等的实数根,求k 的值.的值.5757.已知关于.已知关于x 的方程4x 2+4+4((k ﹣1)x+k 2=0和2x 2﹣(﹣(4k+14k+14k+1))x+2k 2﹣1=01=0,它们都有实数根,试求实数,它们都有实数根,试求实数k 的取值范围.围.5858.已知关于.已知关于x 的一元二次方程kx 2+2+2((k+4k+4))x+x+((k ﹣4)=0 (1)若方程有实数根,求k 的取值范围的取值范围(2)若等腰三角形ABC 的边长a=3a=3,另两边,另两边b 和c 恰好是这个方程的两个根,求△恰好是这个方程的两个根,求△ABC ABC 的周长.的周长.5959.已知关于.已知关于2x 2+kx +kx﹣﹣1=01=0..(1)求证:该方程一定有两个不相等的实数根.)求证:该方程一定有两个不相等的实数根. (2)若已知该方程的一个根是﹣)若已知该方程的一个根是﹣11,请求出另一个根.,请求出另一个根.参考答案:1.(1)∵方程有两个不相等的实数根,)∵方程有两个不相等的实数根, ∴△∴△==(﹣(﹣55)2﹣4×2×(﹣×(﹣a a )>)>00,解得a >﹣,即a 的取值范围为a >﹣;(2)根据题意得=1=1,,解得a=a=﹣﹣2,方程化为2x 2﹣5x+2=05x+2=0,变形为(,变形为(,变形为(2x 2x 2x﹣﹣1)(x ﹣2)=0=0,, 解得x1=,x 2=2=2..2.(1)证明:方程整理为x 2﹣5x+65x+6﹣﹣p 2=0=0,, △=(﹣(﹣55)2﹣4×1×(×(66﹣p 2) =1+4p 2, ∵4p 2≥0, ∴△>∴△>00,∴这个方程总有两个不相等的实数根;∴这个方程总有两个不相等的实数根;(2)解:当p=2时,方程变形为x 2﹣5x+2=05x+2=0,, △=1+4=1+4××4=174=17,,∴x=, ∴x 1=,x 2=.3.方程整理得x 2+(2k 2k﹣﹣1)x+x+((k ﹣2)2=0=0①,①,①, 由题意得(由题意得(2k 2k 2k﹣﹣1)2﹣4(k ﹣2)2=0=0,, 解得. 将代入①得,解得4.(1)△)△=4=42﹣4(3﹣a )=4+4a =4+4a.. ∵该方程有实数根,∵该方程有实数根,∴4+4a 4+4a≥≥0. 解得a ≥﹣≥﹣11.(2)当a 为符合条件的最小整数时,为符合条件的最小整数时,a=a=a=﹣﹣1. 此时方程化为x 2+4x+4=0+4x+4=0,方程的根为,方程的根为x 1=x 2=﹣2 2 5.(1)∵该方程有两个不相等的实数根,)∵该方程有两个不相等的实数根, ∴△∴△=3=32﹣4×1×=9=9﹣﹣3m 3m>>0.解得m <3.∴m 的取值范围是m <3; (2)∵)∵m m <3,∴符合条件的最大整数是m=2m=2.. 解得x==. ∴方程的根为x 1=,x 2=.故答案为:故答案为:m m <3,x 1=,x 2=6.(1)化为一般形式得:)化为一般形式得:x x 2+3x +3x﹣﹣m ﹣8=0△=9+4=9+4((m+8m+8)>)>)>00, 解得m >﹣,∴m 的最小整数值m=m=﹣﹣1010..(2)把m=m=﹣﹣10代入原方程得x 2+3x+10=8+3x+10=8,, 即x 2+3x+2=0解得:解得:x x 1=﹣1,x 2=﹣27.∵△.∵△==(﹣(﹣55)2﹣4×m ×3=253=25﹣﹣12m 12m,, ∴由题意得:∴由题意得:252525﹣﹣12m=112m=1,, ∴m=2m=2,,当m=2时,方程为2x 2﹣5x+3=05x+3=0,, 两根为x 1=1=1,,x 2=.答:答:m m 的值为2,方程的根为1和.8.(1)根据题意得k ≠0且△≥且△≥00,即4﹣4k 4k≥≥0,解得k ≤1,所以k 的取值范围为k ≤1且k ≠0; (2)存在,)存在,k=k=k=﹣﹣1.理由如下:.理由如下: 根据题意得x 1+x 2=,x 1•x 2=,∵(∵(x x 1+1+1))(x 2+1+1))=k =k﹣﹣1,∴x 1•x 2+x 1+x 2+1=k +1=k﹣﹣1,即++1=k +1=k﹣﹣1, 化为整式方程得k 2﹣2k 2k﹣﹣3=03=0,, ∴(∴(k k ﹣3)(k+1k+1))=0=0,, ∴k 1=3=3,,k 2=﹣1, ∵k ≤1且k ≠0; ∴k=k=﹣﹣1 19.①∵△①∵△==(2k+12k+1))2﹣4×1×4(k ﹣)=4k 2+4k+1+4k+1﹣﹣16k+8=4k 2﹣12k+9=12k+9=((2k 2k﹣﹣3)2≥0, ∴该方程有两个实根;∴该方程有两个实根;②若方程有两个相等的实数根,则△②若方程有两个相等的实数根,则△=b =b 2﹣4ac=04ac=0,, ∴(∴(2k 2k 2k﹣﹣3)2=0=0,, 解得:解得:k=k=,把k=时代入原式得:时代入原式得:x 2﹣(﹣(22×+1+1))x+4x+4((﹣)=0 x 2﹣4x+4=04x+4=0,, 解得:解得:x=2x=2x=2;; ∴方程两根均为2.1010..(1)根据题意得k ≠0且△且△==(k+2k+2))2﹣4k 4k××=4k+4=4k+4>>0, 解得k >﹣>﹣11且k ≠0;(2)取k=1k=1,方程化为,方程化为x 2+3x+=0=0,, △=4k+4=8=4k+4=8,, ∴x==, ∴x 1=,x 2=1111..△=(2m 2m))2﹣4(m+2m+2))(m ﹣1)=4m 2﹣4m 2﹣4m+8=4m+8=﹣﹣4m+84m+8..(1分)分)(1)因为方程有两个不相等的实数根,)因为方程有两个不相等的实数根,所以﹣所以﹣4m+84m+84m+8>>0,所以m <2.(2分)分) (2)因为方程有两个相等的实数根,)因为方程有两个相等的实数根, 所以﹣所以﹣4m+8=04m+8=04m+8=0,所以,所以m=2m=2..(2分)分) 因为方程没有实数根,因为方程没有实数根,所以﹣所以﹣4m+84m+84m+8<<0,所以m >2 21212..(1)根据题题意得k ≠0且△且△==(k ﹣2)2﹣4k 4k••>0, 解得k <1且k ≠0;(2)根据题意得k ≠0且△且△==(k ﹣2)2﹣4k 4k••<0, 解得k >1 11313..(1)证明,将x=3代入方程,得代入方程,得 左边左边=9a =9a =9a﹣﹣9(a ﹣1)﹣)﹣9=99=99=9﹣﹣9=0=9=0=右边,右边,右边, 所以,方程总有一个根是x=3x=3;;(2)当a ≠0时,△时,△=9=9=9((a ﹣1)2+4+4××9=99=9((a+1a+1))2, 所以,所以,x x 1==3=3,,x 2==﹣,即方程的另一个根是x=x=﹣﹣.1414..∵一元二次方程∵一元二次方程((1﹣k )x 2﹣2x 2x﹣﹣1=0有两个不相等的实数根,实数根,∴1﹣k ≠0,且△>,且△>00,即22﹣4×(×(11﹣k )×(﹣)×(﹣11)>)>00, 解得k <2, 又∵又∵k k 是整数,是整数,∴k 的取值范围为:的取值范围为:k k <2且k ≠1的整数,的整数, =(m ﹣2)2+4+4,, ∵(∵(m m ﹣2)2≥0,∴(∴(m m ﹣2)2+4+4>>0,即△>,即△>00, ∴方程有两个不相等的实数根;∴方程有两个不相等的实数根;(2)解:当m=m=﹣﹣2时,方程变形为x 2﹣5=05=0,, 解得x 1=,x 2=﹣,∴方程的两根互为相反数∴方程的两根互为相反数1616..(1)∵)∵x=1x=1是方程x 2+2x+k +2x+k﹣﹣1=0的一个根,的一个根,∴12+2+2××1+k 1+k﹣﹣1=01=0,,解得,解得,k=k=k=﹣﹣2; (2)∵方程没有实数根,)∵方程没有实数根,∴b 2﹣4ac 4ac<<0,即22﹣4(k ﹣1)<)<00, 解得k >2 21717..(1)证明:方程的根的判别式△)证明:方程的根的判别式△==(m ﹣2)2﹣4×1×(﹣(﹣99)=(m ﹣2)2+36∵无论m 取何实效(取何实效(m m ﹣2)2+36+36>>0恒成立恒成立 ∴这个方程总有两个不相等的实数根∴这个方程总有两个不相等的实数根 (2)解由根与系数的关系.得α+β=2=2﹣﹣m 则2α+β=α+α+β=α+2+2﹣﹣m∵2α+β=m+1=m+1,∴,∴α+2+2﹣﹣m=m+1m=m+1,则,则α=2m =2m﹣﹣1∵α是方程的根,∴α2+(m ﹣2)α﹣9=0 则(则(2m 2m 2m﹣﹣1)2+(m ﹣2)(2m 2m﹣﹣1)﹣)﹣9=0 9=0 整理,得2m 2﹣3m 一2=0 解,得m 1=2=2,,m 2=﹣.1818.∵已知的整系数二次方程有整数根,.∵已知的整系数二次方程有整数根,.∵已知的整系数二次方程有整数根,∴△∴△=4p =4p 2﹣4(p 2﹣5p 5p﹣﹣1)=4=4((5p+15p+1)为完全平方数,)为完全平方数,)为完全平方数, 从而,从而,5p+15p+1为完全平方数为完全平方数设5p+1=n 2,注意到p ≥2,故n ≥4,且n 为整数为整数 ∴5p=5p=((n+1n+1))(n ﹣1), 则n+1n+1,,n ﹣1中至少有一个是5的倍数,即n=5k n=5k±±1(k 为正整数)为正整数)∴5p+1=25k 2±10k+110k+1,,p=k p=k((5k 5k±±2), 由p 是质数,是质数,5k 5k 5k±±2>1, ∴k=1k=1,,p=3或7当p=3时,已知方程变为x 2﹣6x 6x﹣﹣7=07=0,,解得x 1=﹣1,x 2=7=7;;当p=7时,已知方程变为x 2﹣14x+13=014x+13=0,解得,解得x 1=1=1,,x 2=13 所以p=3或p=7p=7..1919.∵△.∵△.∵△=b =b 2﹣4ac=164ac=16﹣﹣4(5﹣m )=4m =4m﹣﹣4>0 ∴m >1当x ≥0时,方程是x 2﹣4x+54x+5﹣﹣m=0m=0,,方程有两个不同的根,则两个的积一定大于0,即5﹣m >0,则m <5 ∴1<m <5当x <0时,方程是x 2+4x+5+4x+5﹣﹣m=0m=0,方程有两个不同的根,,方程有两个不同的根,则两个根的积一定大于0,即5﹣m >0,则m <5 则1<m <5∴1<m <5时,方程x 2﹣4|x|+5=m 有4个互不相等的实数(|x |x﹣﹣2|2|﹣﹣2)[|x [|x﹣﹣2|+2|+((1+y 1+y))]=0]=0,, 则|x |x﹣﹣2|=2或|x |x﹣﹣2|=2|=﹣(﹣(﹣(y+1y+1y+1)), 故2=2=﹣(﹣(﹣(y+1y+1y+1)), 则y=y=﹣﹣3,当|x |x﹣﹣2|=22|=2,且,且1+y 1+y>>0时,时, 则y >﹣>﹣11,故y 的负整数值为:﹣的负整数值为:﹣3 3 3 2121..(1)根据题意,)根据题意,mm 应当满足条件…(3分)分)即∴﹣∴﹣22<m ≤﹣≤﹣11…(7分)分)(2)根据题意,)根据题意,mm 应当满足条件…(10分),即∴m <﹣<﹣1 1 12222..(1)当m=1时,原方程变为:时,原方程变为:x x 2﹣2x 2x﹣﹣1=0 解得:;(2)△)△=b =b 2﹣4ac=4ac=(﹣(﹣(﹣2m 2m 2m))2﹣4×(×(m m 2﹣2m 2m))=8m =8m,, 当m >0时,原方程有两个不相等的实数根;时,原方程有两个不相等的实数根; 当m=0时,原方程有两个相等的实数根;时,原方程有两个相等的实数根; m <0时,原方程没有实数根时,原方程没有实数根2323.由已知条件△.由已知条件△.由已知条件△=4=4=4((b ﹣a )2﹣4(c ﹣b )(a ﹣b )=4=4((a ﹣b )(a ﹣c )=0=0,, ∴a=b 或a=c a=c,, ∵c ﹣b ≠0则c ≠b ,∴这个三角形是等腰三角形∴这个三角形是等腰三角形 2424.△.△.△=m =m 2﹣4(m ﹣2) =m 2﹣4m+8 =(m ﹣2)2+4+4,, ∵(∵(m m ﹣2)2≥0,∴(∴(m m ﹣2)2+4+4>>0,即△>,即△>00,∴无论m 取何值,该方程总有两个不相等的实数根.取何值,该方程总有两个不相等的实数根. 2525..(1)∵方程有两个相等的实数根,)∵方程有两个相等的实数根, ∴(∴(m m ﹣1)2﹣4(m+2m+2))=0=0,, ∴m 2﹣2m+12m+1﹣﹣4m 4m﹣﹣8=08=0,, m 2﹣6m 6m﹣﹣7=07=0,, ∴m=7或﹣或﹣11;(2)∵方程的两实数根之积等于m 2﹣9m+29m+2,, ∴m 2﹣9m+2=m+29m+2=m+2,, ∴m 2﹣10m=010m=0,, ∴m=0或m=10m=10,,当m=0时,方程为:时,方程为:x x 2+x+2=0+x+2=0,方程没有实数根,舍去;,方程没有实数根,舍去;,方程没有实数根,舍去; ∴m=10m=10,, ∴=4 =42626..(1)由题意,知(﹣)由题意,知(﹣22)2﹣4(k ﹣1)>)>00, 解得k <2,即k 的取值范围为k <2.(2)由题意,得()由题意,得(k k ﹣1)2﹣2(k ﹣1)+k +k﹣﹣1=0 即k 2﹣3k+2=0解得k 1=1=1,,k 2=2=2(舍去)(舍去)(舍去) ∴k 的值为12727..(1)把x=1代入方程,得1+2+m 1+2+m﹣﹣1=01=0,所以,所以m=m=﹣﹣2; (2)∵方程有两个不相等的实数根,)∵方程有两个不相等的实数根, ∴△>∴△>00,即22﹣4(m ﹣1)>)>00, 解得m <2.所以m 的取值范围为m <2 22828.∵关于.∵关于x 的一元二次方程(的一元二次方程(k k ﹣2)2x 2+(2k+12k+1))x+1=0有两个不相等的实数根,有两个不相等的实数根, ∴,解得k >.所以k 的取值范围是k >且k ≠2.2929..(1)证明:∵△)证明:∵△=b =b 2﹣4ac=4ac=((3k 3k﹣﹣2)2﹣4•(﹣6k 6k))=9k 2﹣12k+4+24k=9k 2+12k+4=+12k+4=((3k+23k+2))2≥0 ∴无论k 取何值,方程总有实数根.取何值,方程总有实数根.(2)解:①若a=6为底边,则b ,c 为腰长,则b=c b=c,则,则△=0=0..∴(∴(3k+23k+23k+2))2=0=0,解得:,解得:,解得:k=k=k=﹣﹣.此时原方程化为x 2﹣4x+4=0∴x 1=x 2=2=2,即,即b=c=2b=c=2..此时△此时△ABC ABC 三边为6,2,2不能构成三角形,故舍去;不能构成三角形,故舍去; ②若a=b 为腰,则b ,c 中一边为腰,不妨设b=a=6 代入方程:代入方程:662+6+6((3k 3k﹣﹣2)﹣)﹣6k=0 6k=0 ∴k=k=﹣﹣2则原方程化为x 2﹣8x+12=0 (x ﹣2)(x ﹣6)=0 ∴x 1=2=2,,x 2=6 即b=6b=6,,c=2此时△此时△ABC ABC 三边为6,6,2能构成三角形,能构成三角形, 综上所述:△综上所述:△ABC ABC 三边为6,6,2. ∴周长为6+6+2=146+6+2=14..3030..(1)k=6k=6,方程变为,方程变为x 2﹣5x+6=05x+6=0,即(,即(,即(x x ﹣2)(x ﹣3)=0=0,,∴x 1=2=2,,x 2=3=3;;(2)根据题意△)根据题意△==(﹣(﹣55)2﹣4k 4k>>0,解得k <;(3)根据题意得x 1+x 2=5=5,,x 1,•x 2=k =k,, 而2x 1﹣x 2=2=2,, ∴x 1=, ∴x 2=, ∴k=×=3131..(1)∵△)∵△=[=[=[﹣﹣(m ﹣1)]2﹣4m=m 2+2m+1+2m+1﹣﹣4m=4m=((m ﹣1)2, 又∵不论m 取何实数,总有(取何实数,总有(m m ﹣1)2≥0, ∴△≥∴△≥00,∴不论m 取何实数,方程都有实数根.取何实数,方程都有实数根. (2)∵由求根公式得=∴x 1=m =m,,x 2=1=1,,∴只要m 取整数(不等于1),则方程的解就都为整数且不相等.相等.如取m=2m=2,则原方程有两个不相等的整数根,分别是,则原方程有两个不相等的整数根,分别是x 1=2=2,,x 2=1=1..3232..(1)△)△==(﹣(﹣22)2﹣4(2k 2k﹣﹣3)=8=8((2﹣k ). ∵该方程有两个不相等的实数根,∵该方程有两个不相等的实数根, ∴8(2﹣k )>)>00,解得k <2.(2)当k 为符合条件的最大整数时,为符合条件的最大整数时,k=1k=1k=1.. 此时方程化为x 2﹣2x 2x﹣﹣1=01=0,方程的根为,方程的根为x==1±.即此时方程的根为x 1=1+,x 2=1=1﹣﹣.3333..(1)当k=k=﹣﹣1时,方程﹣时,方程﹣4x 4x 4x﹣﹣4=0为一元一次方程,此方程有一个实数根;此方程有一个实数根;当k ≠﹣≠﹣11时,方程(时,方程(k+1k+1k+1))x 2+(3k 3k﹣﹣1)x+2k x+2k﹣﹣2=0是一元二次方程,二次方程,△=(3k 3k﹣﹣1)2﹣4(k+1k+1))(2k 2k﹣﹣2)=(k ﹣3)2. ∵(∵(k k ﹣3)2≥0,即△≥,即△≥00,∴k 为除﹣为除﹣11外的任意实数时,此方程总有两个实数根.外的任意实数时,此方程总有两个实数根. 综上,无论k 取任意实数,方程总有实数根;取任意实数,方程总有实数根;(2)∵方程(k+1k+1))x 2+(3k 3k﹣﹣1)x+2k x+2k﹣﹣2=0中a=k+1a=k+1,,b=3k ﹣1,c=2k c=2k﹣﹣2,∴x=,∴x 1=﹣1,x 2=﹣2,∵方程的两个根是整数根,且k 为正整数,为正整数, ∴当k=1时,方程的两根为﹣时,方程的两根为﹣11,0; 当k=3时,方程的两根为﹣时,方程的两根为﹣11,﹣,﹣11. ∴k=1k=1,,3 33434..(1)∵方程x 2﹣x+p x+p﹣﹣1=0有两个实数根x 1、x 2, ∴△≥∴△≥00,即12﹣4×1×(×(p p ﹣1)≥)≥00,解得p ≤, ∴p 的取值范围为p ≤;(2)∵方程x 2﹣x+p x+p﹣﹣1=0有两个实数根x 1、x 2, ∴x 12﹣x 1+p +p﹣﹣1=01=0,,x 22﹣x 2+p +p﹣﹣1=01=0,, ∴x 12﹣x 1=﹣p+1=0p+1=0,,x 22﹣x 2=﹣p+1p+1,, ∴(﹣∴(﹣p+1p+1p+1﹣﹣2)(﹣(﹣p+1p+1p+1﹣﹣2)=9=9,, ∴(∴(p+1p+1p+1))2=9=9,, ∴p 1=2=2,,p 2=﹣4,∵p ≤, ∴p=p=﹣﹣4 43535..(1)设方程的两个正根为x 1、x 2,则:,则: △=(2k 2k﹣﹣3)2﹣4(2k 2k﹣﹣4)≥)≥0 0 ①,①, x 1+x 2=2k =2k﹣﹣3>0,x 1x 2=2k =2k﹣﹣4>0 ②,②,解①,得:解①,得:k k 为任意实数,为任意实数, 解②,得:解②,得:k k >2,所以k 的取值范围是k >2;(2)设方程的两个根为x 1、x 2,则:,则: △=(2k 2k﹣﹣3)2﹣4(2k 2k﹣﹣4)>)>0 0 ①,①, x 1+x 2=2k =2k﹣﹣3>0,x 1x 2=2k =2k﹣﹣4<0 ②,②, 解①,得:解①,得:k k ≠,解②,得:<k <2,所以k 的取值范围是<k <2; (2)设方程的两个根为x 1、x 2,则:,则: △=(2k 2k﹣﹣3)2﹣4(2k 2k﹣﹣4)>)>0 0 ①,①, (x 1﹣3)(x 2﹣3)<)<0 0 ②,②, 解①,得:解①,得:k k ≠,由②,得:由②,得:x x 1x 2﹣3(x 1+x 2)+9+9<<0, 又x 1+x 2=2k =2k﹣﹣3>0,x 1x 2=2k =2k﹣﹣4,代入整理,得﹣代入整理,得﹣4k+144k+144k+14<<0, 解得k >. 则k >.3636..(1)∵关于x 的方程x 2+(2k+12k+1))x+k 2+2=0有两个不相等的实数根,等的实数根, ∴△∴△=b =b 2﹣4ac 4ac>>0∴(∴(2k+12k+12k+1))2﹣4(k 2+2+2)>)>)>0 0 ∴4k 2+4k+1+4k+1﹣﹣4k 2﹣8>0, ∴4k 4k>>7, 解得,解得,k k >;(2)假设直线y=y=((2k 2k﹣﹣3)x ﹣4k+7能否通过点A (﹣(﹣22,5), ∴5=5=((2k 2k﹣﹣3)×(﹣)×(﹣22)﹣)﹣4k+74k+74k+7,即﹣,即﹣,即﹣8=8=8=﹣﹣8k 8k,, 解得k=1k=1<<;又由(又由(11)知,)知,kk >;∴k=1不符合题意,即直线y=y=((2k 2k﹣﹣3)x ﹣4k+7不通过点A (﹣(﹣22,5)3737..(1)把x=x=﹣﹣1代入原方程得:代入原方程得:1+m 1+m 1+m﹣﹣2=02=0,, 解得:解得:m=1m=1m=1,,∴原方程为x 2﹣x ﹣2=02=0..解得:解得:x=x=x=﹣﹣1或2, ∴方程另一个根是2;(2)∵△)∵△=b =b 2﹣4ac=m 2+8+8>>0,∴对任意实数m 方程都有两个不相等的实数根.方程都有两个不相等的实数根. 3838.∵△.∵△.∵△==(﹣(﹣2m 2m 2m))2﹣4×1×(﹣×(﹣2m 2m 2m﹣﹣4) =4=4((m 2+2m +2m))+16 =4=4((m 2+2m+1+2m+1﹣﹣1)+16 =4=4((m+1m+1))2+12+12>>0,∴关于x 的方程x 2﹣2mx 2mx﹣﹣2m 2m﹣﹣4=0总有两个不相等的实数根.根.3939.∵关于.∵关于x 的一元二次方程x 2﹣(﹣(m m ﹣1)x+m+2=0有两个相等的实数根,个相等的实数根, ∴△∴△=b =b 2﹣4ac=04ac=0,,即:(m ﹣1)2﹣4(m+2m+2))=0=0,, 解得:解得:m=7m=7或m=m=﹣﹣1, ∴m 的值为7或﹣或﹣1 14040..1)证明:∵)证明:∵a=1a=1a=1,,b=b=﹣﹣k ,c=c=﹣﹣2∴△∴△=b =b 2﹣4ac=4ac=(﹣(﹣(﹣k k )2﹣4×1×(﹣×(﹣22)=k 2+8+8,, ∵k 2>0, ∴△>∴△>00,∴无论k 取何值,方程有两个不相等的实数根.取何值,方程有两个不相等的实数根. (2)解:∵,;又∵又∵x x 1+x 2=x 1•x 2 ∴k=k=﹣﹣2.4141.当.当m 2=0=0,即,即m=0m=0,方程变为:,方程变为:,方程变为:x+1=0x+1=0x+1=0,有解;,有解;,有解;当m 2≠0,即m ≠0,原方程要有实数根,则△≥,原方程要有实数根,则△≥00, 即△即△==(2m+12m+1))2﹣4m 2=4m+1=4m+1≥≥0, 解得m ≥﹣,则m 的范围是m ≥﹣且m ≠0; 所以,所以,m m 的取值范围为m ≥﹣ 4242..(1)△)△=4=4=4﹣﹣4m 4m,,∵有两个实数根,∵有两个实数根, ∴4﹣4m 4m≥≥0, ∴m ≤1; (2)∵,解得,,∴m=x 1x 2=﹣3 34343.∵一元二次方程有两个不相等的实数根,.∵一元二次方程有两个不相等的实数根,.∵一元二次方程有两个不相等的实数根,∴△∴△=4+4=4+4=4+4((1﹣m )=8=8﹣﹣4m 4m>>0,且1﹣m ≠0,∴,∴m m <2,且m ≠1.当m=0时,无意义,故m ≠0, 则m 的最大整数值为﹣的最大整数值为﹣11,所以=4=4××1+1=51+1=5..答:=5=5..4444..(1)∵方程x 2+2kx++2kx+((k 2+2k +2k﹣﹣5)=0有两个实数根,有两个实数根, ∴△≥∴△≥00,即4k 2﹣4( k 2+2k +2k﹣﹣5 )≥)≥00, ∴﹣∴﹣8k+208k+208k+20≥≥0 ∴k ≤;(2)∵)∵x x 1+x 2=﹣2k 2k,,x 1x 2=k 2+2k +2k﹣﹣5, 而x 1+x 2=x 1x 2,∴﹣∴﹣2k=k 2k=k 2+2k +2k﹣﹣5,即k 2+4k +4k﹣﹣5=0 解得k 1=﹣5,k 2=1=1,, 又∵又∵kk ≤, ∴k=k=﹣﹣5或1 14545..(1)(2k 2k﹣﹣1)2﹣4k 2×1≥0, 解得:解得:k k ≤, 且:且:k k 2≠0, ∴k ≠0, ∴k ≤且k ≠0;(2)不存在,)不存在,∵方程有两个的实数根,∵方程有两个的实数根, ∴x 1+x 2=﹣,x 1x 2=,∴==﹣=﹣2k+1=02k+1=0,,k=,∵k ≤且k ≠0; ∴不存在∴不存在4646..(1)∵△)∵△=[=[=[﹣(﹣(﹣(k+1k+1k+1))]2﹣4k=k 2+2k+1+2k+1﹣﹣4k=4k=((k ﹣1)2≥0,∴无论k 取什么实数值,这个方程总有实根;取什么实数值,这个方程总有实根;(2)∵等腰△)∵等腰△ABC ABC 的一边长a=4a=4,, ∴另两边b 、c 中必有一个数为4,把4代入关于x 的方程x 2﹣(﹣(k+1k+1k+1))x+k=0中得,中得, ∴1616﹣﹣4(k+1k+1))+k=0+k=0,, 解得:解得:k=4k=4k=4,, 所以b+c=k+1=5∴△∴△ABC ABC 的周长的周长=4+5=9=4+5=9=4+5=9..4747..(1)∵方程有两根不相等的实数根,)∵方程有两根不相等的实数根, ∴△∴△==(2k+12k+1))2﹣4×1×(×(k k 2﹣2)>)>00, ∴k >﹣;(2)把x=1代入原方程得1+1+((2k+12k+1))+k 2﹣2=02=0,, 整理得k 2+2k=0+2k=0,, 解得k=0或﹣或﹣22;(3)设两实数根为:)设两实数根为:x x 1,x 2,由根与系数的关系:由根与系数的关系:x x 1x 2=k 2﹣2=12=1,,解得k=k=±±4848.①由题意得,.①由题意得,.①由题意得,222﹣4(k ﹣1)•(﹣5)>)>00.解得,.且k ﹣1≠0,即k ≠1 故且k ≠1.(2)k 的最小整数是k=2k=2.则原方程为.则原方程为x 2+2x +2x﹣﹣5=0 故此时方程的解为:,4949..(1)证明:∵△∵△=[=[=[﹣﹣(2m 2m﹣﹣1)]2﹣4×(m ﹣1)×2=4m 2﹣12m+9=12m+9=((2m 2m﹣﹣3)2≥0,∴无论m 取任何实数,方程总有实数根;取任何实数,方程总有实数根; (2)x==,x 1==2=2,,x 2==,∵方程只有整数根,∵方程只有整数根,∴m ﹣1=1=±±1, 解得:解得:m=0m=0或2 2 5050..(1)有道理,)有道理,△=k 2﹣4×2×(﹣×(﹣11)=k 2+8+8,, ∴k 2≥0,∴k 2+8+8>>0,∴无论k 为何实数,方程总有实数根;为何实数,方程总有实数根;(2)∵方程的一个根是﹣)∵方程的一个根是﹣11, ∴2×(﹣×(﹣11)2﹣k ﹣1=01=0,,解得:解得:k=1k=1k=1,,把k=1代入方程2x 2+kx +kx﹣﹣1=0得方程2x 2+x +x﹣﹣1=01=0,, 解得:解得:x x 1=﹣1,x 2=, 故另一根是,k 的值是1 15151..(1)∵△≥)∵△≥00,方程有两个实数根,,方程有两个实数根, ∴12﹣4×1×m ≥0,解得m ≤1, ∴当m ≤1时,方程有两个实数根;时,方程有两个实数根; (2)∵方程的两个实数根为a 、b , ∴b 2﹣b+m=0m=0,,ab=m , ∴y=m ﹣2(b 2﹣b )+1 =m ﹣2×(﹣m )+1 =m+1m+1,, ∵m ≤1, ∴y ≤+1+1,, 即y ≤.5252..(1)∵关于x 的一元二次方程x 2+(2k+12k+1))x+k 2﹣2=0有实根,有实根,∴△∴△==(2k+12k+1))2﹣4×1×(×(k k 2﹣2)≥)≥00,解得:;(2)设方程x 2+(2k+12k+1))x+k 2﹣2=0设其两根为x 1,x 2,得x 1+x 2=﹣(﹣(2k+12k+12k+1)),x 1•x 2=k 2﹣2, ∵x 12+x 22=11=11,,∴(∴(x x 1+x 2)2﹣2x 1x 2=11=11,, ∴(∴(2k+12k+12k+1))2﹣2(k 2﹣2)=11=11,, 解得k=1或﹣或﹣33; ∵k ≥﹣, ∴k=1k=1..5353.∵一元二方程.∵一元二方程x 2+mx+2m +mx+2m﹣﹣n=0有一个根为2, ∴4+4m 4+4m﹣﹣n=0n=0①,①,①, 又∵根的判别式为0, ∴△∴△=m =m 2﹣4×(×(2m 2m 2m﹣﹣n )=0=0,, 即m 2﹣8m+4n=08m+4n=0②,②,②, 由①得:由①得:n=4+4m n=4+4m n=4+4m,,把n=4+4m 代入②得:代入②得:m m 2+8m+16+8m+16﹣﹣0, 解得m=m=﹣﹣4, 代入①得:代入①得:n=n=n=﹣﹣1212,, 所以m=m=﹣﹣4,n=n=﹣﹣1212.. 5454..(1)∵方程有实数根,)∵方程有实数根, ∴△≥∴△≥00, 即16+4a 16+4a≥≥0, 解得a ≥﹣≥﹣44.由于ax 2+4x +4x﹣﹣1=0是关于x 的一元二次方程,的一元二次方程, 可知a ≠0,∴a ≥﹣≥﹣44且a ≠0. (2)∵)∵ax ax 2+4x +4x﹣﹣1=0是关于x 的一元二次方程,的一元二次方程, ∴x 1+x 2=﹣, x 1•x 2=﹣, ∴y=y=﹣﹣+=﹣.当﹣当﹣44≤a <0时,时,y=y=y=﹣﹣+=﹣>0; 当a >0时,时,y=y=y=﹣﹣+=﹣<0. 5555..(1)将x=2代入方程得:代入方程得:44﹣2m 2m﹣﹣2=02=0,, 解得:解得:m=1m=1m=1,,方程为x 2﹣x ﹣2=02=0,即(,即(,即(x x ﹣2)(x+1x+1))=0=0,, 解得:解得:x=2x=2或x=x=﹣﹣1, 则方程的另一根为﹣则方程的另一根为﹣11; (2)∵△)∵△=m =m 2+8+8≥≥8>0,∴方程有两个不相等的实数根.∴方程有两个不相等的实数根. 5656..(1)∵方程只有一个根,)∵方程只有一个根,∴此方程是一元一次方程,即k ﹣=0=0,, ∴k=;代入原方程得﹣x=1x=1,解得,解得x=x=﹣﹣;(2)∵方程有两个相等的实数根,)∵方程有两个相等的实数根,∴,∴k 1=0=0,,k 2=﹣6.5757.∵两个一元二次方程都有实数根,.∵两个一元二次方程都有实数根,.∵两个一元二次方程都有实数根, ∴,解得﹣≤k ≤.5858..(1)∵关于x 的一元二次方程kx 2+2+2((k+4k+4))x+x+((k ﹣4)=0方程有实数根,方程有实数根,∴b 2﹣4ac=[24ac=[2((k+4k+4))]2﹣4k 4k((k ﹣4)≥)≥00, 解得:解得:k k ≥﹣且k ≠0;(2)①若a=3为底边,则b ,c 为腰长,则b=c b=c,则△,则△,则△=0=0=0.. ∴b 2﹣4ac=[24ac=[2((k+4k+4))]2﹣4k 4k((k ﹣4)=0=0,, 解得:解得:k=k=k=﹣﹣.此时原方程化为x 2﹣4x+4=0 ∴x 1=x 2=2=2,即,即b=c=2b=c=2..此时△此时△ABC ABC 三边为3,2,2能构成三角形,能构成三角形, ∴△∴△ABC ABC 的周长为:的周长为:3+2+2=83+2+2=83+2+2=8;;②若a=b 为腰,则b ,c 中一边为腰,不妨设b=a=3 代入方程:代入方程:kx kx 2+2+2((k+4k+4))x+x+((k ﹣4)=0得:得:k k ×32+2+2((k+4k+4))×3+3+((k ﹣4)=0 ∴解得:∴解得:k=k=k=﹣﹣,∵x 1×x2=bc====3c =3c,,∴c=,∴△∴△ABC ABC 的周长为:的周长为:3+3+3+3+=.5959..(1)证明:∵△)证明:∵△=k =k 2﹣4×2×(﹣×(﹣11)=k 2+4+4>>0, ∴该方程一定有两个不相等的实数根;∴该方程一定有两个不相等的实数根;(2)解:设另一个根为x 1,根据根与系数的关系可得:,根据根与系数的关系可得:x x 1•x 2=﹣, ∵一个根是﹣∵一个根是﹣11, ∴x 1•(﹣1)=﹣,解得:解得:x x 1=6060.∵一元二次方程.∵一元二次方程x 2﹣2(m+1m+1))x+m 2=0有两个整数根,有两个整数根, ∴△∴△=b =b 2﹣4ac=44ac=4((m+1m+1))2﹣4m 2=8m+4=8m+4≥≥0, ∴,∵1212<<m <4040,,由求根公式由求根公式,∵一元二次方程x 2﹣2(m+1m+1))x+m 2=0有两个整数根,有两个整数根, ∴2m+1必须是完全平方数,必须是完全平方数, ∴m=24 m=24。
一元二次方程根的判别式专题训练
一元二次方程根的判别式专题训练1. (2010 广西钦州市) 已知关于x 的一元二次方程x 2 +kx +1 =0有两个相等的实数根,则k = .2. (2010 湖北省荆门市) 如果方程2210ax x ++=有两个不等实根,则实数a 的取值范围是____________.3. (2010 江苏省苏州市) 若一元二次方程()2220x a x a -++=的两个实数根分别是3b 、,则a b +=_________.4. (2010 江苏省苏州市) 下列四个说法中,正确的是( )A .一元二次方程22452x x ++=有实数根; B. 一元二次方程23452x x ++=有实数根; C. 一元二次方程25453x x ++=有实数根; D. 一元二次方程()2451x x a a ++=≥有实数根.5. (2010 湖南省益阳市) 一元二次方程)0(02≠=++a c bx ax 有两个不相等的实数根,则ac b 42-满足的条件是 A.ac b 42-=0 B.ac b 42->0C.ac b 42-<0 D.ac b 42-≥0 6. (2010 山东省烟台市) 方程x2-2x-1=0的两个实数根分别为x1,x2,则(x1-1)(x2-1)= .7. (2010 北京市) 已知关于 x 的一元二次方程 2410x x m -+-= 有两个相等的实数根,求m 的值及方程的根.8. 当k 是什么整数时, 方程(k2–1)x2–6(3k –1)x+72=0有两个不相等的正整数根?9. 关于x 的一元二次方程()011222=-+--m x m x 与0544422=--+-m m mx x 的根都是整数,求m 的整数值, 并求出两方程的整数根.10. (2010 重庆市江津区) 在等腰△ABC 中,三边分别为a 、b 、c ,其中5a =,若关于x的方程()2260x b x b +++-=有两个相等的实数根,求△ABC 的周长. 11. (2010 四川省乐山市) 若关于x 的一元二次方程012)2(222=++--k x k x 有实数根βα、.(1)求实数k 的取值范围;(2)设k t βα+=,求t 的最小值.12. (2010 甘肃省天水市) 已知A B C △的两边A B 、A C 的长是关于x 的一元二次方程22(23)320x k x k k -++++=的两个实数根,第三边B C 的长为5. (1)当k 为何值时,A B C △是直角三角形;(2)当k 为何值时,A B C △是等腰三角形,并求出A B C △的周长.13.已知关于x 的两个一元二次方程: 方程:02132)12(22=+-+-+k k x k x ① 方程:0492)2(2=+++-k x k x② (1)若方程①、②都有实数根,求k 的最小整数值;(2)若方程①和②中只有一个方程有实数根;则方程①,②中没有实数根的方程是______(填方程的序号),并说明理由;(3)在(2)的条件下,若k 为正整数,解出有实数根的方程的根.14.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)15.设两个方程的判别式分别为x 1,x 2,则x 1=a 2-4c ,x 2=b 2-4d .∴x 1+x 2=a 2+b 2-2ab =(a -b )2≥0.从而x 1,x 2中至少有一个非负数,即两个方程中至少有一个方程有实数根.16.求证:不论k 取任何值,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根。
根的判别式练习题(含答案解析)
根的判别式练习题一.填空题(共8小题)1.若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=.2.已知关于x的一元二次方程mx2﹣3x+1=0有两个实数根,则m的取值范围是.3.已知关于x的方程x2+2(m﹣1)x+m2=0有实数根,则m的最大整数值是.4.等腰三角形ABC的三条边长分别为4,a,b,若关于x的一元二次方程x2+(a+2)x+6﹣a=0有两个相等的实数根,则△ABC的周长是.5.等腰三角形三边长分别为a、b、2,且a、b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为.6.定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”,如果关于x的一元二次方程x2﹣2x=0与x2+3x+m﹣1=0为“友好方程”,则m 的值.7.若△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,当k=时,△ABC是等腰三角形;当k=时,△ABC是以BC为斜边的直角三角形.8.若关于x的方程ax2+4x﹣3=0有唯一实数解,则a的值为.二.解答题(共2小题)9.已知关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,求m的取值范围.10.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若方程mx2+(3m+1)x+3=0有两个不同的整数根,且m为正整数,求m的值.参考答案与试题解析一.填空题(共8小题)1.若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=2.【分析】根据方程的系数结合根的判别式,即可得出Δ=16﹣8m=0,解之即可得出结论.【解答】解:∵一元二次方程2x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣8m=0,解得:m=2.∴m=2.故答案为:2.【点评】本题考查了根的判别式以及解一元一次方程,牢记“当Δ=0时,方程有两个相等实数根”是解题的关键.2.已知关于x的一元二次方程mx2﹣3x+1=0有两个实数根,则m的取值范围是m≤且m≠0.【分析】根据判别式的意义得到m≠0,b2﹣4ac=(﹣3)2﹣4m≥0,然后解不等式即可.【解答】解:∵关于x的一元二次方程mx2﹣3x+1=0有两个实数根,∴Δ=(﹣3)2﹣4m≥0且m≠0,解得:m≤且m≠0,故答案为:m≤且m≠0.【点评】本题主要考查根的判别式,掌握方程根的情况与判别式的关系是解题的关键.3.已知关于x的方程x2+2(m﹣1)x+m2=0有实数根,则m的最大整数值是0.【分析】根据方程有实数根可知△≥0,据此求出m的取值范围,从而得到m的最大整数值.【解答】解:∵关于x的方程x2+2(m﹣1)x+m2=0有实数根,∴△≥0,∴[2(m﹣1)]2﹣4m2≥0,∴﹣8m+4≥0,解得,m≤,故m的最大整数值是0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.4.等腰三角形ABC的三条边长分别为4,a,b,若关于x的一元二次方程x2+(a+2)x+6﹣a=0有两个相等的实数根,则△ABC的周长是10.【分析】根据根的判别式的意义得到Δ=(a+2)2﹣4(6﹣a)=0,进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.【解答】解:根据题意得Δ=(a+2)2﹣4(6﹣a)=0,解得a1=﹣10(负值舍去),a2=2,在等腰△ABC中,①4为底时,则b=a=2,∵2+2=4,∴不能组成三角形;②4为腰时,b=4,∵2+4>4,∴能组成三角形,∴△ABC的周长=4+4+2=10.综上可知,△ABC的周长是10.故答案为:10.【点评】此题考查了根的判别式、等腰三角形的性质及三角形三边关系定理;在求三角形的周长时,不能盲目的将三边相加,而应在三角形三边关系定理为前提条件下分类讨论,以免造成多解、错解.5.等腰三角形三边长分别为a、b、2,且a、b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为10.【分析】讨论:当a=2或b=2时,把x=2代入x2﹣6x+n﹣1=0可求出对应的n的值;当a=b时,根据判别式的意义得到Δ=(﹣6)2﹣4×(n﹣1)=0,解得n=10.【解答】解:当a=2或b=2时,把x=2代入x2﹣6x+n﹣1=0得4﹣12+n﹣1=0,解得n=9,此时方程的根为2和4,而2+2=4,故舍去;当a=b时,Δ=(﹣6)2﹣4×(n﹣1)=0,解得n=10,故答案为10.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的两个实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根.也考查了等腰三角形的性质.6.定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”,如果关于x的一元二次方程x2﹣2x=0与x2+3x+m﹣1=0为“友好方程”,则m 的值1或﹣9..【分析】通过解方程x2﹣2x=0,可得出方程的根,分x=0为两方程相同的实数根或x =2为两方程相同的实数根两种情况考虑:①若x=0是两个方程相同的实数根,将x=0代入方程x2+3x+m﹣1=0中求出m的值,将m的值代入原方程解之可得出方程的解,对照后可得出m=1符合题意;②若x=2是两个方程相同的实数根,将x=2代入方程x2+3x+m﹣1=0中求出m的值,将m的值代入原方程解之可得出方程的解,对照后可得出m=2符合题意.综上此题得解.【解答】解:解方程x2﹣2x=0,得:x1=0,x2=2.①若x=0是两个方程相同的实数根.将x=0代入方程x2+3x+m﹣1=0,得:m﹣1=0,∴m=1,此时原方程为x2+3x=0,解得:x1=0,x2=﹣3,符合题意,∴m=1;②若x=2是两个方程相同的实数根.将x=2代入方程x2+3x+m﹣1=0,得:4+6+m﹣1=0,∴m=﹣9,此时原方程为x2+3x﹣10=0,解得:x1=2,x2=﹣5,符合题意,∴m=﹣9.综上所述:m的值为1或﹣9.故答案为:1或﹣9.【点评】本题考查了一元二次方程的解,代入x求出m的值是解题的关键.7.若△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,当k=3或4时,△ABC是等腰三角形;当k=2时,△ABC是以BC为斜边的直角三角形.【分析】(1)此题要分两种情况进行讨论,若AB=BC=5时,把5代入方程即可求出k 的值,若AB=AC时,则Δ=0,列出关于k的方程,解出k的值即可;(2)若△ABC是以BC为斜边的直角三角形,则根据勾股定理,AB2+AC2=25,再根据根与系数的关系求得k的值即可.【解答】解:(1)因为Δ=b2﹣4ac=[﹣(2k+3)]2﹣4×1×(k2+3k+2)=1>0,所以方程总有两个不相等的实数根.若AB=BC=5时,5是方程x2﹣(2k+3)x+k2+3k+2=0的实数根,把x=5代入原方程,得k=3或k=4.∵无论k取何值,Δ>0,∴AB≠AC,故k只能取3或4;(2)根据根与系数的关系:AB+AC=2k+3,AB•AC=k2+3k+2,则AB2+AC2=(AB+AC)2﹣2AB•AC=25,即(2k+3)2﹣2(k2+3k+2)=25,解得k=2或k=﹣5.根据三角形的边长必须是正数,因而两根的和2k+3>0且两根的积k2+3k+2>0,解得k >﹣1,∴k=2.故答案为:3或4;2.【点评】本题主要考查了一元二次方程根与系数的关系和根的判别式,一元二次方程根的情况与判别式△的关系是:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.在解题的过程中注意不要忽视三角形的边长是正数这一条件8.若关于x的方程ax2+4x﹣3=0有唯一实数解,则a的值为0.【分析】根据关于x的方程ax2+4x﹣3=0有唯一实数解,可知是一元一次方程,依此求出a的值.【解答】解:∵关于x的方程ax2+4x﹣3=0有唯一实数解,∴a=0.故答案为:0.【点评】此题主要考查了根的判别式,关键是掌握Δ>0时,方程有两个不相等的实数根,Δ=0时,方程有两个相等的实数根,Δ<0时,方程没有实数根.二.解答题(共2小题)9.已知关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,求m的取值范围.【分析】根据判别式的意义得到Δ=22﹣4(m﹣1)×(﹣1)>0,然后解不等式即可.【解答】解:根据题意得Δ=22﹣4(m﹣1)×(﹣1)>0,解得m>0,且m﹣1≠0,解得:m≠1,所以m>0且m≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程的定义.10.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若方程mx2+(3m+1)x+3=0有两个不同的整数根,且m为正整数,求m的值.【分析】(1)分类讨论:当m=0时,方程变形一元一次方程,有一个实数解;当m≠0时,方程为一元二次方程,再进行判别式得到Δ=(3m﹣1)2,易得△≥0,故判别式的意义得到方程有两个实数根,然后综合两种情况得到不论m为任何实数,此方程总有实数根;(2)先利用求根公式得到x1=﹣3,x2=﹣,再利用方程有两个不同的整数根,且m 为正整数和整数的整除性易得m=1.【解答】(1)证明:当m=0时,方程变形为x+3=0,解得x=﹣3;当m≠0时,Δ=(3m+1)2﹣4m•3=9m2﹣6m+1=(3m﹣1)2,∵(3m﹣1)2,≥0,即△≥0,∴此时方程有两个实数根,所以不论m为任何实数,此方程总有实数根;(2)解:根据题意得m≠0且Δ=(3m+1)2﹣4m•3=(3m﹣1)2>0,x=,所以x1=﹣3,x2=﹣,∵方程有两个不同的整数根,且m为正整数,∴m=1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程的定义.。
一元二次方程根的判别式基础练习30题含详细答案
(3)设该方程的两个实数根为x1,x2,若x12+x22+m(x1+x2)=m2+1,求m的值.
21.已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)若方程的两根x1,x2满足x12+x22=16,求k的值.
【点睛】
此题主要考查一元二次方程根的情况,解题的关键是熟知根的判别式特点.
5.B
【分析】
先根据一元二次方程的解的定义得到α2+2α﹣2015=0,则α2+2α=2015,于是α2+3α+β可化为2015+α+β,再利用根与系数的关系得到α+β=﹣2,然后利用整体代入的方法计算.
【详解】
解:∵α是方程x2+2x﹣2015=0的根,
16.若关于x的一元二次方程kx2-4x+3=0有实数根,则k的取值范围是_____.
三、解答题
17.关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根.
(1)求k的取值范围.
(2)若x1+2x2=3,求|x1﹣x2|的值.
18.已知关于x的方程x2+(2m﹣1)x+m2=0有实数根.
(1)若方程的一个根为1,求m的值;
7.D
【分析】
要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.
【详解】
解:A、x2+1=0中 ,没有实数根,故本选项错误;
《一元二次方程的解法及根的判别式》练习
《一元二次方程的解法及根的判别式》练习1.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是( ) A.2018 B.2008 C.2014 D.20122.一元二次方程x2-2x-3=0的解是( )A.x1=-1,x2=3 B.x1=1,x2=-3C.x1=-1,x2=-3 D.x1=1,x2=33.已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0,下列说法正确的是( )A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解4.若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m的值等于( ) A.1 B.2 C.1或2 D.05.若关于x的一元二次方程x2+2x+a-1=0有两个根,分别为x1,x2,且21x-x1x2=0,则a的值是( )A.a=1 B.a=1或a=-2 C.a=2 D.a=1或a=26.若关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是( ) A.k<-2 B.k<2 C.k>2 D.k<2且k≠17.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰方程”,若ax2+bx+c=0(a≠0)是凤凰方程,且有两个相等的实数根,则下列结论正确的是( )A.a=c B.a=bC.b=c D.a=b=c8.若将方程x2+6x=7化为(x+m)2=16,则m=_______.9.一元二次方程x(x-6)=0的两个实数根中较大的根是_______.10.定义运算“★”:对于任意实数a,b,都有a★b=a2-3a+b,如:3★5=32-3×3+5.若x★2=6,则实数x的值是_______.11.若a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是_______.12.如果关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是_______.13.对于实数a,b,定义运算“*”:a*b=22,,a ab a bab b a b⎧-≥⎪⎨-<⎪⎩例如:4*2,因为4>2,所以4*2=42-4×2=8.若x1,x2是一元二次方程x2-5x+6=0的两个根.则x1*x2=_______.14.若关于x的一元二次方程x2-x-3=0的两个实数根分别为α,β,则(α+3)(β+3)=_______.15.选择适当的方法解下列方程:(1)(x+1)(x-3)=2x-6;(2)3(x-3)2=x2-9.16.已知关于x的方程x2+x+n=0有两个实数根-2,m,求m,n的值.17.已知关于x的一元二次方程(m-1)x2-2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?18.阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看成一个整体,然后设x2-1=y……①,那么原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,x2-1=1,∴x2=2,∴x;当y=4时,x2-1=4,∴x2=5,∴x故原方程的解为x1,x2,x3x4解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用_______法达到了解方程的目的,体现了转化的数学思想;(2)请利用以上知识解方程x4-x2-6=0.参考答案1.A2.A3.B4.B5.D6.D7.A8.39.6 10.-1或411.没有实数根12.a≥-1 13.-3或3 14.915.(1)x1=1,x2=3 (2)x1=3,x2=616.n=-2,m=117.(1)x1=11mm+-,x2=1 (2)m=2或318.(1)换元(2)x1x2。
中考复习——一元二次方程的根的判别式(解析版)
中考复习——一元二次方程的根的判别式一、选择题1、一元二次方程2x2-3x+1=0的根的情况是().A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根答案:B解答:∵Δ=b2-4ac=(-3)2-4×2×1=1>0,∴该方程有两个不相等的实数根.2、已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2,则实数k的取值范围是().A. k<14B. k≤14C. k>4D. k≤14且k≠0答案:B解答:∵关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2,∴Δ=b2-4ac≥0,∵a=1,b=-(2k+1),c=k2+2k,∴[-(2k+1)]2-4×1×(k2+2k)≥0,∴-4k≥-1,∴k≤14.选B.3、若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是().A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定答案:A解答:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴Δ=k2-4b>0,∴方程有两个不相等的实数根.选A.4、关于x的一元二次方程x2+2(m-1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是().A. m≤12B. m≤12且m≠0C. m<1D. m<1且m≠0答案:B解答:∵Δ=[2(m-1)]2-4m2=-8m+4≥0,∴m≤12.∵x1+x2=-2(m-1)>0,x1x2=m2>0,∴m<1,m≠0,∴m≤12且m≠0.5、关于x的方程x2+2(m-1)x+m2-m=0有两个实数根α,β,且α2+β2=12,那么m的值为().A. -1B. -4C. -4或1D. -1或4答案:A解答:由题意知α+β=-2(m-1)=2-2m,αβ=m2-m,且Δ=[2(m-1)]2-4(m2-m)≥0,4(m2-2m+1)-4m2+4m≥0,4m2-8m+4-4m2+4m≥0,-4m≥-4,m≤1,由α2+β2=12可有(α+β)2-2αβ=12,(2-2m)2-2(m2-m)=12,4m2-8m+4-2m2+2m-12=0,2m2-6m-8=0,m2-3m-4=0,(m-4)(m+1)=0,解得m1=-1,m2=4,∵m ≤1故m =-1. 故答案为:A.6、关于x 的一元二次方程x 2+2mx +2n =0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m =0同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②(m -1)2+(n -1)2≥2;③-1≤2m -2n ≤1.其中正确结论的个数是( ).A. 0个B. 1个C. 2个D. 3个答案:D解答:①两个整数根且乘积为正,两个根同号,由韦达定理有,x 1·x 2=2n >0,y 1·y 2=2m >0,y 1+y 2=-2n <0,x 1+x 2=-2m <0,这两个方程的根都为负根,①正确; ②由根判别式有:Δ=b 2-4ac =4m 2-8n ≥0,Δ=b 2-4ac =4n 2-8m ≥0, ∵4m 2-8n ≥0,4n 2-8m ≥0,∴m 2-2n ≥0,n 2-2m ≥0,m 2-2m +1+n 2-2n +1=m 2-2n +n 2-2m +2≥2,(m -1)2+(n -1)2≥2,②正确;③由根与系数关系可得2m -2n =y 1y 2+y 1+y 2=(y 1+1)(y 2+1)-1,由y 1、y 2均为负整数,故(y 1+1)(y 2+1)≥0,故2m -2n ≥-1,同理可得:2n -2m =x 1x 2+x 1+x 2=(x 1+1)(x 2+1)-1,得2n -2m ≥-1,即2m -2n ≤1,故③正确. 7、若关于x 的不等式x -2a<1的解集为x <1,则关于x 的一元二次方程x 2+ax +1=0根的情况是( ). A. 有两个相等的实数根 B. 有两个不相等的实数根C. 无实数根D. 无法确定答案:C解答:解不等式x -2a <1得x <1+2a , 而不等式x -2a<1的解集为x <1, 所以1+2a=1,解得a =0, 又因为Δ=a 2-4=-4,所以关于x 的一元二次方程x 2+ax +1=0没有实数根.8、已知命题“关于x 的一元二次方程x 2+bx +1=0,当b <0时必有实数解”,能说明这个命题是假命题的一个反例可以是( ).A. b=-1B. b=2C. b=-2D. b=0答案:A解答:Δ=b2-4,由于当b=-1时,满足b<0,而Δ<0,方程没有实数解,所以当b=-1时,可说明这个命题是假命题.9、在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c 是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A. 若M1=2,M2=2,则M3=0B. 若M1=1,M2=0,则M3=0C. 若M1=0,M2=2,则M3=0D. 若M1=0,M2=0,则M3=0答案:B解答:设3个函数的判别式分别为Δ1=a2-4,Δ2=b2-8,Δ3=c2-16,∵b2=ac,∴c=2ba,A选项,若M1=2,M2=2,则Δ1=a2-4>0,Δ2=b2-8>0,∵a>2,b2>8,∴c=2ba与4无法比较大小,∴Δ3=c2-16无法确定,故A错误;B选项,若M1=1,M2=0,则Δ1=a2-4=0,Δ2=b2-8<0,∴a=2,0<b2<8,∴c=282ba<=4,∴Δ3=c2-16<0,∴M3=0,故B正确;C选项,若M1=0,M2=2,则Δ1=a2-4<0,Δ2=b2-8>0,∴0<a<2,b2>8,∴C =2b a>4,∴Δ3=c 2-16>0, ∴M 3=2,故C 错误; D 选项,若M 1=0,M 2=0, 则Δ1=a 2-4<0,Δ2=b 2-8<0, ∴0<a <2,0<b 2<8,∴c =2b a与4无法比较大小,∴Δ3=c 2-16无法确定,故D 错误. 选B.10、已知抛物线y =ax 2+bx +c (b >a >0)与x 轴最多有一个公共点. 有下列结论:①该抛物线的对称轴在y 轴左侧; ②关于x 的方程ax 2+bx +c +2=0无实数根; ③a -b +c ≥0; ④a b cb a++-的最小值为3.其中,正确结论的个数是( ).A. 1个B. 2个C. 3个D. 4个答案:D解答:∵b >a >0, ∴-2ba<0, 所以①正确;∵抛物线与x 轴最多有一个交点, ∴b 2-4ac ≤0,∴关于x 的方程αx 2+bx +c +2=0中,Δ=b 2-4a (c +2)=b 2-4ac -8a <0, 所以②正确;∵a >0及抛物线与x 轴最多有一个交点, ∴x 取任何值时,y ≥0,∴当x =-1时,a -b +c ≥0, 所以③正确;· 当x =-2时,4a -2b +c ≥0 a +b +c ≥3b -3a a +b +c ≥3(b -a )a b cb a++-≥3,所以④正确. 选D. 二、填空题11、若关于x 的一元二次方程(x +2)2=n 有实数根,则n 的取值范围是______. 答案:n ≥0解答:∵关于x 的一元二次方程(x +2)2=n 有实数根, ∴x 2+4x +4-n =0有实数根, ∴Δ=b 2-4ac =16-4(4-n )=4n ≥0, ∴n ≥0, 故答案为:n ≥0.12、已知关于x 的一元二次方程x 2+k =0有两个相等的实数根,则k 值为______. 答案:3解答:∵关于x 的一元二次方程x 2+k =0有两个相等的实数根,∴Δ=()2-4k =0,∴12-4k =0,解得k =3.13、已知x =4是一元二次方程x 2-3x +c =0的一个根,则另一个根为______. 答案:-1解答:设另一个根为t , 根据题意得4+t =3, 解得t =-1, 即另一个根为-1.14、若一元二次方程x 2+4x +c =0有两个不相等的实数根,则c 的值可以是______(写出一个即可). 答案:3解答:若一元二次方程x2+4x+c=0有两个不相等的实数根,则Δ=42-4c>0,故c<4.15、若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是______.答案:k≤5且k≠1解答:∵一元二次方程(k-1)x2+4x+1=0有实数根,∴k-1≠0,且b2-4ac=16-4(k-1)≥0,解得:k≤5且k≠1.16、已知关于x的一元二次方程x2-4x+m-1=0的实数根x1,x2,满足3x1x2-x1-x2>2,则m 的取值范围是______.答案:3<m≤5解答:由一元二次方程根与系数的关系,得x1x2=m-1,x1+x2=4,代入3x1x2-x1-x2>2,得3(m-1)-4>2,解得m>3,又Δ=16-4(m-1)≥0,解得m≤5,综上可知:3<m≤5.17、已知关于x的一元二次方程x2+(2k+1)x+k2-2=0的两根为x1和x2,且(x1-2)(x1-x2)=0,则k的值是______.答案:-2或-9 4解答:∵(x1-2)(x1-x2)=0,∴x1-2=0或x1-x2=0.①如果x1-2=0,那么x1=2,将x=2代入x2+(2k+1)x+k2-2=0,得4+2(2k+1)+k2-2=0,整理,得k2+4k+4=0,解得k=-2.②如果x1-x2=0,那么(x1-x2)2=(x1+x2)2-4x1x2=[-(2k+1)]2-4(k2-2)=4k+9=0,解得k=-94.又∵Δ=(2k+1)2-4(2k+1)≥0.解得:k≥-94.所以k的值为-2或-94.18、关于x的方程x2-(2m-1)x+m2-1=0的两实数根为x1,x2,且x12+x22=3,则m=______.答案:0解答:∵方程x2-(2m-1)x+m2-1=0的两实数根为x1,x2,∴x1+x2=2m-1,x1x2=m2-1,∵x12+x22=(x1+x2)2-2x1x2=(2m-1)2-2(m2-1)=3,解得:m1=0,m2=2,∵方程有两实数根,∴Δ=(2m-1)2-4(m2-1)≥0,既m≤5 4∴m2=2(不合题意,舍去),∴m=0.19、关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解.其中正确的是______(填序号).答案:①③解答:当m=0时,x=-1,方程只有一个解,①正确;当m≠0时,方程mx2+x-m+1=0是一元二次方程,1-4m(1-m)=1-4m+4m2=(2m-1)2≥0,方程有两个实数解,②错误;把mx2+x-m+1=0分解为(x+1)(mx-m+1)=0,当x=-1时,m-1-m+1=0,即x=-1是方程mx2+x-m+1=0的根,③正确;故答案为∶①③.20、对于函数y=x n+x m,我们定义y’=nx n-1+mx m-1(mn为常数).例如y=x4+x2,则y’=4x3+2x.已知:y=13x3+(m-1)x2+m2x.(1)若方程y’=0有两个相等实数根,则m的值为______.(2)若方程y’=m-14有两个正数根,则m的取值范围为______.答案:(1)1 2(2)m≤34且m≠12解答:(1)y’=x2+2(m-1)x+m2=0方程有两个相等的实数根,则Δ=0,即Δ=4(m-1)2-4m2=-8m+4=0,则m=12.(2)y’=x2+2(m-1)x+m2=m-14,∴x2+2(m-1)x+m2-m+14=0.要使方程有两个实数根,则Δ=4(m-1)2-4(m2-m+14)≥0,∴m≤34.要使方程有正根,则当x=0时x2+2(m-1)x+m2-m+14>0,∴m≠12.答案为m≤34且m≠12.三、解答题21、已知关于x的一元二次方程(m-1)x2+2x-1=0有两个不相等的实数根,求m的取值范围.答案:m>0且m≠1.解答:∵一元二次方程有两个不等实根,∴Δ=22-4(m-1)×(-1)>0,即m>0,又m-1≠0,∴m≠1,∴m>0且m≠1.22、已知关于x的一元二次方程x2-3x+m=0有两个不相等的实数根x1、x2.(1)求m的取值范围.(2)当x1=1时,求另一个根x2的值.答案:(1)m<9 4(2)2解答:(1)由题意得:Δ=(-3)2-4×1×m=94m0,解得:m<94.(2)∵x1+x2=-ba=3,x1=1,∴x2=2.23、已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2.(1)求实数k的取值范围.(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.答案:(1)k≤54.(2)k=-2.解答:(1)有两个实数根x1,x2,∴Δ=b2-4ac=(2k-1)2-4(k2-1)=-4k+5,∴-4k+5≥0,∴k≤54.(2)∵x12+x22=(x1+x2)2-2x1x2,∴(x1+x2)2-2x1x2=16+x1x2,∴(2k-1)2=16+3(k2-1)k2-4k-12=0,∴k=-2或k=6(舍),∴k=-2.24、已知关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围.(2)若x1,x2满足3x1=|x2|+2,求m的值.答案:(1)m的取值范围为m≤5.(2)符合条件的m的值为4.解答:(1)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴Δ=(-6)2-4(m+4)=20-4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1·x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4.当x2<0时,有3x1=-x2+2④,联立①④解得:x1=-2,x2=8(不合题意,舍去).∴符合条件的m的值为4.25、已知:一元二次方程12x2+kx+k-12=0.(1)求证:不论k为何实数时,此方程总有两个实数根.(2)设k<0,当二次函数y=12x2+kx+k-12的图象与x轴的两个交点A、B间的距离为4时,求此二次函数的解析式.(3)在(2)的条件下,若抛物线的顶点为C,过y轴上一点M(0,m)作y轴的垂线l,当m为何值时,直线l与△ABC的外接圆有公共点?答案:(1)证明见解答.(2)此二次函数的解析式是y=12x2-x-32.(3)-2≤m≤2.解答:(1)∵Δ=k2-4×12×(k-12)=k2-2k+1=(k-1)2≥0,∴关于x的一元二次方程12x2+kx+k-12=0,不论k为何实数时,此方程总有两个实数根.(2)令y=0,则12x2+kx+k-12=0,∵x A+x B=-2k,x A·x B=2k-1,∴|x A-x B=2|k-1|=4,即|k-1|=2,解得k=3(不合题意,舍去),或k=-1,∴此二次函数的解析式是y=12x2-x-32.(3)由(2)知,抛物线的解析式是y =12x 2-x -32, 易求A (-1,0),B (3,0),C (1,-2),∴AB =4,AC,BC, 显然AC 2+BC 2=AB 2,得△ABC 是等腰直角三角形,AB 为斜边,∴外接圆的直径为AB =4,∴-2≤m ≤2.26、设m 是不小于-1的实数,使得关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个不相等的实数根x 1,x 2.(1)若11x +21x =1,求132m-的值. (2)求111mx x -+221mx x --m 2的最大值. 答案:(1(2)当m =-1时,最大值为3.解答:(1)∵方程有两个不相等的实数根,∴Δ=b 2-4ac =4(m -2)2-4(m 2-3m +3)=-4m +4>0,∴m <1,结合题意知:-1≤m <1.∵x 1+x 2=-2(m -2),x 1x 2=m 2-3m +3 ∴11x +21x =1212x x x x +=()22233m m m ---+=1 解得:m 1=12,m 2=12(不合题意,舍去) ∴132m-. (2)111mx x -+221mx x --m 2 =()()1212121221m x x mx x x x x x +--++-m 2=-2(m-1)-m2=-(m+1)2+3.当m=-1时,最大值为3.。
一元二次方程根的判别式练习题
…一元二次方程根的判别式练习题(一)填空1.方程x2+2x-1+m=0有两个相等实数根,则m=____.2.a是有理数,b是____时,方程2x2+(a+1)x-(3a2-4a+b)=0的根也是有理数.3.当k<1时,方程2(k+1)x2+4kx+2k-1=0有____实数根.5.若关于x的一元二次方程mx2+3x-4=0有实数根,则m的值为____.6.方程4mx2-mx+1=0有两个相等的实数根,则 m为____.$7.方程x2-mx+n=0中,m,n均为有理数,且方程有一个根是28.一元二次方程ax2+bx+c=0(a≠0)中,如果a,b,c是有理数且Δ=b2-4ac是一个完全平方数,则方程必有____.9.若m是非负整数且一元二次方程(1-m2)x2+2(1-m)x-1=0有两个实数根,则m的值为____.10.若关于x的二次方程kx2+1=x-x2有实数根,则k的取值范围是____.11.已知方程2x2-(3m+n)x+m·n=0有两个不相等的实数根,则m,n的取值范围是____.12.若方程a(1-x2)+2bx+c(1+x2)=0的两个实数根相等,则a,b,c的关系式为_____.13.二次方程(k2-1)x2-6(3k-1)x+72=0有两个实数根,则k为___.14.若一元二次方程(1-3k)x2+4x-2=0有实数根,则k的取值范围是____.,15.方程(x2+3x)2+9(x2+3x)+44=0解的情况是_解.16.如果方程x2+px+q=0有相等的实数根,那么方程x2-p(1+q)x+q3+2q2+q=0____实根.(二)选择那么α=[ ].18.关于x的方程:m(x2+x+1)=x2+x+2有两相等的实数根,则m值为 [ ].)19.当m>4时,关于x的方程(m-5)x2-2(m+2)x+m=0的实数根的个数为 [ ].A.2个; B.1个; C.0个; D.不确定.20.如果m为有理数,为使方程x2-4(m-1)x+3m2-2m+2k=0的根为有理数,则k的值为 [ ].则该方程[ ].A.无实数根; B.有相等的两实数根;C.有不等的两实数根; D.不能确定有无实数根.,22.若一元二次方程(1-2k)x2+8x=6没有实数根,那么k的最小整数值是 [ ].A.2; B.0; C.1;D.3.23.若一元二次方程(1-2k)x2+12x-10=0有实数根,那么k的最大整数值是 [ ].A.1; B.2; C.-1; D.0.24.方程x2+3x+b2-16=0和x2+3x-3b+12=0有相同实根,则b的值是 [ ].A.4;B.-7;C.4或-7; D.所有实数..[ ].A.两个相等的有理根; B.两个相等的实数根;C.两个不等的有理根; D.两个不等的无理根.26.方程2x(kx-5)-3x2+9=0有实数根,k的最大整数值是 [ ].A.-1; B.0; C.1;D.2.27.若方程k(x2-2x+1)-2x2+x=0有实数根,则[ ].,28.若方程(a-2)x2+(-2a+1)x+a=0有实数根,则 [ ].29.若m为有理数,且方程2x2+(m+1)x-(3m2-4m+n)=0的根为有理数,则n的值为 [ ].A.4; B.1; C.-2; D.-6.30.方程x|x|-3|x|+2=0的实数根的个数是 [ ].A.1; B.2; C.3;D. 4.(三)综合练习|有两个相等的实数根.求证:a2+b2=c2.32.如果a,b,c是三角形的三条边,求证:关于x的方程a2x2+(a2+b2-c2)x+b2=0无解.33.当a,b为何值时,方程x2+2(1+a)x+(3a2+4ab+4b2+2)=0有实数根.34.已知:关于x的方程x2+(a-8)x+12-ab=0,这里a,b是实数,如果对于任意a值,方程永远有实数解,求b的取值范围.35.一元二次方程(m-1)x2+2mx+m+3=0有两个不相等的实数根,求m的最大整数值.36.k为何值时,方程x2+2(k-1)x+ k2+2k-4=0:(1)有两个相等的实数根;(2)没有实数根;(3)有两个不相等的实数根.…37.若方程3kx2-6x+8=0没有实数根,求k的最小整数值.38.m是什么实数值时,方程2(m+3)x2+4mx+2m-2=0:(1)有两个不相等的实数根;(2)没有实数根.39.若方程3x2-7x+3k-2=0有两个不相同的实数根,求k的最大整数值.40.若方程(k+2)x2+4x-2=0有实数根,求k的最小整数值.41.设a为有理数,当b为何值时,方程2x2+(a+1)x-(3a2-4a+b)=0的根对于a的任何值均是有理数\42.k为何值时,方程k2x2+2(k+2)x+1=0:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根.43.已知方程(b-x)2-4(a-x)(c-x)=0(a,b,c为实数).求证(1)此方程必有实根;(2)若此方程有两个相等的实数根,则a= b= c.44.若方程(c2+a2)x+2(b2-c2)x+c2-b2=0有两个相等的实数根,且a,b,c是三角形ABC的三边,证明此三角形是等腰三角形.^有相等的实数根,求证r1=r2或r1+r2=d.46.求证:方程(x-a)(x-a-b)=1有两个实数根,其中一个大于a,另一个小于a.47.已知方程x2+2x+1+m=0没有实数根.求证方程x2+(m-2)x-m-3=0一定有两个不相等的实数根.48.已知 a,b,c是三角形的三边.求证方程a2x2+(a2+c2-b2)x+c2=0无实数根.49.若方程b(x2-4)+4(b-a)x-c(-4+x2)=0的两个根不相等,且a,b,c为△ABC的三边,求证:△ABC不是等边三角形.50.k为何值时,方程4kx+k=x2+4k2+2:(1)有两个不相等的实数根(2)有两个相等的实数根(3)无实数根—51.设实数x满足方程(x-2)2+(kx+2)2=4,求k的最大值.53.如果方程(3k-4)x2+6(k+2)x+3k+4=0没有实数根,那么方程kx2-2(k-1)x+(k+4)=0有实数根吗为什么54.m是什么实数值时,方程2x2+(n+1)x-(3n2-4n+m)=0有有理根1.2 一元二次方程的根的判别式(一)填空1.2}2.13.有两个不相等的4.6,-46.167.4,18.两个有理数根9.m=0—11.m,n为不等于零的任意实数12.b2-c2+a2=013.任意实数14.k≤115.无实数16.也有相等的(二)选择}17.B 18.A 19.A 20.B 21.C22.A 23.B 24.A 25.B 26.D27.C 28.B 29.B 30.C(三)综合练习已知方程有两个相等的实根,得Δ=0,即化简得4m(a2-c2+b2)=0.由于m>0,所以a2-c2+b2=0,即a2+b2=c2.]32.提示:Δ=(a2+b2-c2)2-4a2b2=(a2+b2-c2+2ab)(a2+b2-c2-2ab)=[(a+b)2-c2][(a-b)2-c2]=(a+b+c)(a+b-c)(a-b+c)(a-b-c).因为a,b,c是三角形的三条边,所以a+b+c>0,a+b-c>0,a-b+c>0,a-b-c<0,因此Δ<0,所以方程无解.33.当a=1,b=时,方程有实数根.提示:由方程有实数根得Δ=[2(1+a)]2-4(3a2+4ab+4b2+2)=-4[(1-a)2+(a+2b)2]≥0.又因为(1-a)2≥0,(a+2b)2≥0,故而有(1-a)2+(a+2b)2≥0,所以只有-4[(1-a)2+(a+2b)2]=0,即(1-a)2+(a+2b)2=0.从而得出1-a=0,所以a=1;a+2b=0,解出b=.34.2≤b≤6.提示:方法一Δ=(a-8)2-4(12-2b)≥0,即a2+4a(b-4)+16≥0.因为对于任意a值上式均大于等于零,且二次项系数大于0.所以关于a的二次三项式中的判别式应小于等于零,即[4(b-4)]2-4×16≤0,即有b2-8b+12≤0,解之2≤b≤6.方法二Δ=(a-8)2-4(12-2b)=a2+4a(b-4)+16={a2+2a[2(b-4)]+[2(b-4)]2}-[2(b-4)]2+16=[a+2(b-4)]2-4[(b-4)2-4]≥0.因此只能(b-4)2-4≤0,由此得-2≤b-4≤2,所以2≤b≤6.35.m的最大整数值为零.提示:由m-1≠0且Δ=(2m)2-4^k的最大整数值为2.40.-4.41.b=1.提示:Δ=(a+1)2+8(3a2-4a+b)=25a2-30a+8b+1.由于25a2-30a+8b+1应为a的完全平方式.所以(-30)2-4×25×(8b+1)=0,所以b=1.!42.(1)-1<k<0或k>0;(2)k=-1;(3)k<-1.43.(1)(a-b)2+(b-c)2+(c-a)2≥0,即Δ≥0;(2)a-b=0,b-c=0,c-a=0,则a=b=c.44.提示:Δ=[2(b2-c2)]2-4(c2+a2)(c2-b2)=4(b2-c2)(b2-c2+a2+c2)=4(b+c)(b-c)(b2+a2).由方程有两个相等实根.故而Δ= 0,即4(b+c)(b-c)(b2+a2)=0.因为a,b,c是三角形的三边,所以b+c≠0,a2+b2≠0,只有b-c=0,解出b=c.45.提示:Δ=(-2r1)2-4(r22+r1d-r2d)=0,即4r21-4r22-4r1d+4r2d=0,(r21-r22)-d(r1-r2)=0,(r1-r2)(r1+r2-d)=0,所以r1=r2或r1+r2=d.46.提示:原方程化为x2-(2a+b)x+(a2+ab-1)=0,Δ=[-(2a+b)]2-4(a2+ab-1)=4a2+4ab+b2-4a2-4ab+4=b2+4,即Δ>0.代47.提示:因为方程x2+2x+1+m=0无实根,所以Δ=4-4(1+m)=4-4-4m<0,推知m>0.而方程x2+(m-2)x-(x+3)=0的Δ=(m-2)2+4(m+3)>0.48.提示:Δ=(a2+c2-b2)2-4a2c2=(a2+c2-b2+2ac)(a2+c2-b2-2ac)=[(a+c)2-b2]×[(a-c)2-b2]=(a+c+b)×(a+c-b)×(a-c+b)×(a-c-b).因为a,b,c是三角形的三边,所以a+b+c>0,a+c-b >0,a-c+b>0,a-c-b<0,推知Δ<0.49.提示:原方程化为:(b-c)x2+4(b-a)x-4(b-c)=0,Δ=16(b-a)2+16(b-c)2>0.所以(b-a)与(b-c)不全为0,a,b,c不全相等,因此△ABC不是等边三角形.50.(1)k>2;(2)k=2;(3)k<2.51.k的最大值为0,提示:原方程化为:(k2+1)x2+(4k-4)x+4=0.因为x是实数,所以Δ=(4k-4)2-4×4(k2+1)=16(k2-2k+1-k2-1)=-32k≥0.所以k≤0,即k的最大值是0.x+(k+4)=0的Δ>0,故而方程有实数根.54.m=1.。
一元二次方程的根的判别式练习题
一元二次方程的根的判别式一、新课预习关于x的一元二次方程ax2+bx+c=0(a≠0)的根的判别式及求根公式.(1)b2-4ac>0⇔方程有_______个_________的实数根,x=_______________.(2)b2-4ac=0⇔方程有________个________的实数根,x1=x2=______________.(3)b2-4ac<0⇔方程__________实数根.二、例变讲练例1 方程3x2-2x-1=0的根的判别式为b2-4ac=16,此方程有两个__________的实数根.变1 下列关于x的一元二次方程中,有两个不相等的实数根的方程是( )A.x2+4=0 B.4x2-4x+1=0 C.x2+x+3=0 D.x2+2x-1=0例2 已知关于x的方程x2-3x+2-m2=0.(1)求方程的根的判别式(用含m的代数式表示);(2)说明不论m取何值,方程总有两个不相等的实数根.变2 已知关于x的一元二次方程x2+(m-3)x-3m=0.求证:无论实数m取何值,方程总有两个实数根.例3 若一元二次方程x2+2x-m=0有实数解,则m的取值范围是______________.变3 已知关于x的方程x2-2x+m=0没有实数根,则m的取值范围是__________.例4 若关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是_______________.变4 若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是__________三、课堂训练一级1. 若关于x的方程x2-4x-c=0的根的判别式Δ=4,则c=_________.2. 下列方程中有两个不相等的实数根的方程是( )A.(x-1)2=0 B.x2+2x-19=0 C.x2+4=0 D.x2+x+1=03. 如果关于x的一元二次方程x2+4x-m=0没有实数根,那么m的取值范围是_________.4. 若关于x的方程x2-x-k=0有两个相等的实数根,则k=______,方程的两根为x=x=_____________5. 若关于x的方程x2+x-94a=0有两个不相等的实数根,则实数a的取值范围是__________.6. 已知关于x的一元二次方程(m-1)x2-2x+1=0有实数根,则m的取值范围是( ) A.m≤2 B.m≥2C.m≤2且m≠1 D.m≥-2且m≠17. 若关于x的一元二次方程(k-1)x2-4x-5=0没有实数根,则k的取值范围是_________.8. 求证:不论m为任何实数,关于x的一元二次方程x2+(4m+1)x+2m-1=0总有两个不相等的实数根.四、能力提升9. 已知关于x的一元二次方程x2-(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长.10. 等腰三角形的边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,求n的值.第7课时 一元二次方程的根的判别式一、新课预习关于x 的一元二次方程ax 2+bx +c =0(a≠0)的根的判别式及求根公式.(1)b 2-4ac >0⇔方程有_______个_________的实数根,x =_______________. 两,不相等,-b±b2-4ac 2a(2)b 2-4ac =0⇔方程有________个________的实数根,x 1=x 2=______________.(3)b 2-4ac <0⇔方程__________实数根.两,相等,-b 2a,无 二、例变讲练例1 方程3x 2-2x -1=0的根的判别式为b2-4ac =16,此方程有两个__________的实数根.不相等变1 下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .x 2+4=0B .4x 2-4x +1=0C .x 2+x +3=0D .x 2+2x -1=0 D例2 已知关于x 的方程x 2-3x +2-m 2=0.(1)求方程的根的判别式(用含m 的代数式表示);解:b 2-4ac =4m 2+1;(2)说明不论m 取何值,方程总有两个不相等的实数根.解:b 2-4ac =4m 2+1≥1>0,∴无论m 取何值,方程总有两个不相等的实数根.变2 已知关于x 的一元二次方程x 2+(m -3)x -3m =0.求证:无论实数m 取何值,方程总有两个实数根.解:Δ=(m -3)2-4×(-3m)=m 2-6m +9+12m=m 2+6m +9=(m +3)2,∵无论实数m 取何值,总有(m +3)2≥0,即Δ≥0,∴无论实数m 取何值,方程总有两个实数根.例3 若一元二次方程x 2+2x -m =0有实数解,则m 的取值范围是______________.m≥-1变3 已知关于x 的方程x 2-2x +m =0没有实数根,则m 的取值范围是__________. m>1例4 若关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是_______________.k>-1且k≠0变4 若关于x 的一元二次方程(k -1)x 2+4x +1=0有实数根,则k 的取值范围是__________,k≤5且k≠1三、课堂训练一级1. 若关于x 的方程x 2-4x -c =0的根的判别式Δ=4,则c =_________.-32. 下列方程中有两个不相等的实数根的方程是( )A .(x -1)2=0B .x 2+2x -19=0C .x 2+4=0D .x 2+x +1=0B 3. 如果关于x 的一元二次方程x 2+4x -m =0没有实数根,那么m 的取值范围是_________.m<-44. 若关于x 的方程x 2-x -k =0有两个相等的实数根,则k=______,方程的两根为 x =x=_____________-14, x 1=x 2=125. 若关于x 的方程x 2+x -94a =0有两个不相等的实数根,则实数a 的取值范围是__________.a>-196. 已知关于x 的一元二次方程(m -1)x 2-2x +1=0有实数根,则m 的取值范围是( )A .m≤2B .m≥2C .m≤2且m≠1D .m≥-2且m≠1C7. 若关于x 的一元二次方程(k -1)x2-4x -5=0没有实数根,则k 的取值范围是_________.k <158. 求证:不论m 为任何实数,关于x 的一元二次方程x 2+(4m +1)x +2m -1=0总有两个不相等的实数根.证明:根据题意得:Δ=(4m +1)2-4(2m -1)=16m 2+8m +1-8m +4=16m 2+5,∵m2≥0,∴16m 2+5>0,即Δ>0,∴不论m 为任何实数,原方程总有两个不相等的实数根.四、能力提升9. 已知关于x 的一元二次方程x 2-(m +2)x +2m =0.(1)求证:不论m 为何值,该方程总有两个实数根;证明:Δ=[-(m +2)]2-4×1×2m =m 2-4m +4=(m -2)2.∵(m -2)2≥0,即Δ≥0,∴不论m 为何值,该方程总有两个实数根.(2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长.解:将x =1代入原方程,得:1-(m +2)+2m =0,∴m =1,∴方程的另一个根为2×11=2. 当1,2为直角边长时,斜边长=12+22=5,∴围成直角三角形的周长=1+2+5=3+5;当2为斜边长时,另一直角边长=22-12=3,∴围成直角三角形的周长=1+2+3=3+ 3.综上所述:以此两根为边长的直角三角形的周长为3+5或3+ 3.10. 等腰三角形的边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程x 2-6x +n -1=0的两根,求n 的值.解:∵三角形是等腰三角形,∴①a =2或b =2,②a =b 两种情况,①当a =2或b =2时,∵a ,b 是关于x 的一元二次方程x2-6x +n -1=0的两根,∴x =2,把x =2代入x 2-6x +n -1=0得22-6×2+n -1=0,解得:n =9,当n =9时,方程的两根是2和4,而2,4,2不能组成三角形,故n =9不合题意,②当a =b 时,方程x2-6x +n -1=0有两个相等的实数根,∴Δ=(-6)2-4(n -1)=0,解得:n =10,综上所述:n =10.。
一元二次方程之判别式专项练习60题(有答案)ok
一元二次方程之判别式专项练习60题(有答案)ok1.1) 对于方程2x-5x-a=0,根据一元二次方程的求根公式,判别式为Δ=25+8a,要使方程有两个不相等的实数根,即Δ>0,所以25+8a>0,解得a>-25/8,所以a的取值范围为a>-25/8.2) 当方程的两个根互为倒数时,根据一元二次方程的求根公式,有x1x2=-a/2,又因为x1x2=1/x1,所以x1^2=-a/2,代入原方程得2x-5x-2x1^2=0,解得x1=±√(5/2),代入x1x2=-a/2得a=5.2.1) 将方程展开得x^2-5x+6-p=0,根据一元二次方程的求根公式,判别式为Δ=25-24+4p=1+4p,要使方程有两个不相等的实数根,即Δ>0,所以1+4p>0,解得p>-1/4,所以p的取值范围为p>-1/4.2) 当p=2时,代入方程得(x-3)(x-2)=2,展开得x^2-5x+4=0,根据一元二次方程的求根公式,解得x1=1,x2=4.3.将方程化简得2kx+k-2=0,由于方程有两个相等的实数根,所以判别式Δ=0,解得k=1,代入方程得3x-1=0,解得x=1/3.4.1) 将方程化简得x^2+(4-a)x+3=0,根据一元二次方程的求根公式,判别式为Δ=(4-a)^2-12,要使方程有实数根,即Δ≥0,所以(4-a)^2-12≥0,解得a∈(-∞,4-2√3]∪[4+2√3,+∞)。
2) 当a=4-2√3时,代入方程得x^2+(4-4+2√3)x+3=0,解得x1=√3-1,x2=-(√3+1)。
5.1) 将方程化简得4x^2-4mx+m^2-4m+1=0,根据一元二次方程的求根公式,判别式为Δ=16m-4m^2,要使方程有两个不相等的实数根,即Δ>0,所以m∈(-∞,0)∪(1,4]。
2) 当m=4时,代入方程得4x^2-16x+17=0,根据一元二次方程的求根公式,解得x1=(4-√3)/2,x2=(4+√3)/2.6.1) 将方程化简得4x^2-3x-m=0,由于方程有两个不相等的实数根,所以判别式Δ=9+16m>0,解得m>-9/16,所以m的最小整数值为-1.2) 当m=-1时,代入方程得4x^2-3x+1=0,根据一元二次方程的求根公式,解得x1=1/4,x2=1.7.根据一元二次方程的求根公式,判别式Δ=25-12m,要使判别式为1,即Δ=1,解得m=2或m=1/3.当m=2时,代入方程得2x^2-10x+3=0,根据一元二次方程的求根公式,解得x1=(5-√13)/2,x2=(5+√13)/2.当m=1/3时,代入方程得x^2-5/3x+1=0,根据一元二次方程的求根公式,解得x1=(5-√5)/6,x2=(5+√5)/6.8.删除此段落。
完整版)一元二次方程的根的判别式练习题
完整版)一元二次方程的根的判别式练习题1.方程2x+3x-k=0的根的判别式为b^2-4ac,即(3+2)^2-4(2)(-k)=k+13,当k>-13时,方程有实根。
2.关于x的方程kx+(2k+1)x-k+1=0可以化简为(3k+1)x-k+1=0,根的判别式为(2k+1)^2-4(k)(-k+1)=8k^2+8k+1,当k 不等于0时,方程有实根。
3.方程x+2x+m=0有两个相等实数根,即b^2-4ac=0,即4-4m=0,解得m=1.4.关于x的方程(k+1)x-2kx+(k+4)=0可以化简为(x-k)(x+k+4)=0,根的情况为一个实根为-k,一个实根为k+4.5.当m=-1时,关于x的方程3x-2(3m+1)x+3m-1=0化简为3x+7x-1=0,有两个不相等的实数根。
6.将2x(ax-4)-x+6=0化简为2ax^2-(8+a)x+6=0,根的判别式为(8+a)^2-4(2a)(6)=a^2+16a-23,要使方程没有实数根,根的判别式小于0,即a的最小整数值为-15.7.方程mx^2+(2m-1)x-2=0的根的判别式为(2m-1)^2-4(m)(-2)=16m+1,解得m=1或m=-1/4,但由于题目中要求判别式的值等于4,所以m=-1/4.8.将(x-α)(x-β)+cx=0展开化简得x^2-(α+β)x+αβ+cx=0,根据韦达定理,α+β=-c,αβ=c,所以方程的两个根为α和β。
9.1) 当a>0时,判别式为4a^4-4a^3,即a^3>1时有两个实数根,否则无实数根。
2) 判别式为4k^2-4(k^2+4),即-16,所以方程无实数根。
10.将方程x+2(m+1)x+3m+4mn+4n+2=0化简为x+(2m+2)x+(3m+4mn+2)=0,根的判别式为(2m+2)^2-4(3m+4mn+2)=4(m-n+1)^2-8,要使方程有实数根,根的判别式大于等于0,即(m-n+1)^2>=2,解得m-n=-1+sqrt(2),即m=n-1+sqrt(2)。
一元二次方程的根的判别式(练习)
一元二次方程的根的判别式同步练习一、填空题1.若方程ax2+bx+c=0(a≠0),则根的判别式为_________;当_________时,方程有两个不相等的实数根,当_______时,方程有两个相等的实数根,则_______时,方程无实数根.2.利用根的判别式,判断方程根的情况,首先将方程(x-2)(x-5)-16=0化成一般形式是_________,再代入判别式为_________,则方程根的情况___________.3.不解方程,判断方程根的情况:(1) 4p(p-1)-3=0.△_________,则方程____________.(2)△_________,则方程_________________.(3)△___________,则方程_________________.4.当k_________时,方程x2-2(k+1)x+(k2-2)=0有两个不相等的实数根.5.当m________时,方程x2-(m+1)x+4=0有两个相等的实数根.6.如果方程x2-2x+=0没有实数根,那么c的取值是__________.二、解答题7.已知关于x的方程(m2-2)x2-2(m+1)x+1=0有两个不相等的实数根,求m的取值范围.8.证明关于x的方程x2+(k-1)x+(k-3)=0有两个不相等的实数根.9.已知关于x的方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根,且a,b,c是△ABC的三条边,判断△ABC的形状.三、选择题10.关于x的方程x2-2有两个不相等的实数根,则k的取值范围是().(A)k≥0(B)k>0 (C)k>-1 (D)k≥-1 11.关于x的方程mx2-mx+1=0有两个相等的实数根,则m的取值范围是().(A)m=0 (B)m=7 (C)m=4 (D)m>4且m≠0 12.若关于x的二次方程2x(kx-4)-x2+6=0无实数根,则k的最小整数应是().(A)-1 (B)2 (C)3 (D)413.关于x的方程nx2-(2n-1)x+n=0有两个实数根,则n的值为( ).(A)n≤(B)≤且n≠0(C)n≥- (D)n≥-或n≠014.若关于y的方程y2-19y+k=0有两个相等的实数根,那么方程y2+19y-k=0的根的情况是( ).(A)有两个不相等的实数根 (B)有两个相等的实数根(C)无实数根 (D)无法判定四、填空题15.若方程组有一个实数根,则m值为__________.16.已知方程x2-有两个相等的实数根,求锐角a=_________.五、解答题17.判断关于y的方程y2+3(m-1)y+2m2-4m+=0的根的情况.18.当m>3时,讨论关于x的方程(m-5)x2-2(m+2)x+m=0的实数根的个数.19.关于x的方程x2+3x+a=0中有整数解,a为非负整数,求方程的整数解.20.当m=1时,求证关于x的方程(k-3)x2+kmx-m2+6m-4=0有实数根.。
一元二次方程根的判别式练习题
一元二次方程根的判别式练习题一元二次方程根的判别式练题一)填空1.方程x^2+2x-1+m=0有两个相等实数根,则m=1.2.a是有理数,b是整数,方程2x^2+(a+1)x-(3a^2-4a+b)=0的根也是有理数.3.当k<1时,方程2(k+1)x^2+4kx+2k-1=0有两个实数根.4.若关于x的一元二次方程mx^2+3x-4=0有实数根,则m 的值为正数.5.方程4mx^2-mx+1=0有两个相等的实数根,则m=1/4.6.若m是非负整数且一元二次方程(1-m^2)x^2+2(1-m)x-1=0有两个实数根,则m的值为0或2.7.若关于x的二次方程kx^2+1=x-x^2有实数根,则k的取值范围是[0,1/4].8.二次方程(k^2-1)x^2-6(3k-1)x+72=0有两个实数根,则k=3或-2/3.9.若一元二次方程(1-3k)x^2+4x-2=0有实数根,则k的取值范围是[-1/3,1/3].二)选择10.关于x的方程:m(x^2+x+1)=x^2+x+2有两相等的实数根,则m值为[1/2].11.当m>4时,关于x的方程(m-5)x^2-2(m+2)x+m=0的实数根的个数为B.1个.12.如果m为有理数,为使方程x^2-4(m-1)x+3m^2-2m+2k=0的根为有理数,则k的值为(m-1)^2.13.若一元二次方程(1-2k)x^2+8x=6没有实数根,那么k的最小整数值是D.3.14.若一元二次方程(1-2k)x^2+12x-10=0有实数根,那么k 的最大整数值是A.1.15.方程2x(kx-5)-3x^2+9=0有实数根,k的最大整数值是D.2.16.若方程k(x^2-2x+1)-2x^2+x=0有实数根,则k=1/2.17.若方程(a-2)x^2+(-2a+1)x+a=0有实数根,则a∈(0,1/2]∪[2,∞).18.若m为有理数,且方程2x^2+(m+1)x-(3m^2-4m+n)=0的根为有理数,则n的值为D.-6.三)综合练19.如果a,b,c是三角形的三条边,求证:关于x的方程a^2x^2+(a^2+b^2-c^2)x+b^2=0无解.20.当 $a=-1$,$b=0$ 时,方程$x^2+2(1+a)x+(3a^2+4ab+4b^2+2)=0$ 有实数根。
九年级:一元二次方程-根的判别式-道经典考试题-有详细解答
九年级数学,一元二次方程,有一个非常重要的内容,就是根的判别式。
一元二次方程ax2+bx+c=0的根的判别式是,△=b2-4ac.①若△=b2-4ac>0,则一元二次方程有两个不相等实数根。
②若△=b2-4ac=0,则一元二次方程有两个相等的实数根。
③若△=b2-4ac<0,则一元二次方程没有实数根。
反之,亦成立。
题型一,根据△的情况来判定方程的根的情况。
例1题中,第1小题,原方程没有实数根,则△<0,得出m的取值范围。
再把m的取值范围,代入到第2小题的△=b2-4ac中,得出结论。
例2题,第1小题,不解方程,判定根的情况,是不是很简单?通过计算,△=b2-4ac=4>0,所以,原方程有两个不相等的实数根.第2小题,原方程有一个根是x=3,代入原方程,即可求出m的值.例3题,原方程有两个实数根,那么就有可能是两个相等,或者两个不相等实数根。
所以,△=b2-4ac≥0,即可求出t的值。
后面要是学了二次函数的同学就很容易理解,暂时还没有学到二次函数的同学,可以暂时略过。
例4题,a,b是等腰三角形的两边,而且是一元二次方程的两个根。
凡是讲到等腰三角形,没有明确腰和底的时候,一定要记得分类讨论。
不管是哪种题型,只要和等腰三角形有关.例5题,一元二次方程有两个相等的实数根,则△=b2-4ac=0,即可求出m的取值。
再分别代入代数式,求出代数式的值,非常简单常见的考试题型。
例6题,第1小题,求证方程总有两个不相等的实数根。
那么只要计算△=b2-4ac的结果,判定它的正负性,就好。
第2小题,把已知的一个根代入原方程,即可求出m的值。
当然,此题不需要求出m的取值,整体代入更简单。
例7题,先根据,根与系数的关系,分别得到两根之和,和两根之积的代数式,依据题意得出一个关于m的方程,解得m=6或者m=-4再根据题意,原方程有两个实数根,即△=b2-4ac≥0,求出m的取值范围,得出符合题型的m的值。
例8题,二次根式,被开方数≥0,一次函数X的系数≠0,所以k-1>0,求出k>1.再根据根的判别式,△=b2-4ac<0,所以原方程没有实数根。
专题17.3 一元二次方程根的判别式【十大题型】(举一反三)-2023-2024学年八年级数学下册举
专题17.3 一元二次方程根的判别式【十大题型】【沪科版】【题型1 判断不含字母的一元二次方程的根的情况】 (1)【题型2 判断含字母的一元二次方程的根的情况】 (2)【题型3 由方程根的情况确定字母的值或取值范围】 (2)【题型4 应用根的判别式证明方程根的情况】 (3)【题型5 应用根的判别式求代数式的取值范围】 (3)【题型6 根的判别式与不等式、分式、函数等知识的综合】 (3)【题型7 根的判别式与三角形的综合】 (4)【题型8 根的判别式与四边形的综合】 (5)【题型9 关于根的判别式的多结论问题】 (5)【题型10 关于根的判别式的新定义问题】 (6)【知识点一元二次方程根的判别式】一元二次方程根的判别式:∆=b2−4ac.①当∆=b2−4ac>0时,原方程有两个不等的实数根;①当∆=b2−4ac=0时,原方程有两个相等的实数根;①当∆=b2−4ac<0时,原方程没有实数根.【题型1 判断不含字母的一元二次方程的根的情况】【例1】(2023春·山东青岛·八年级统考期末)下列方程中,有两个相等实数根的是()A.x2−2x+1=0B.x2+1=0C.x2−2x−3=0D.x2−2x=0【变式1-1】(2023春·八年级课时练习)一元二次方程x2−2√2x+2=0的实数根的个数是()A.0 B.1 C.2 D.无法判断1【变式1-2】(2023春·江西·八年级统考阶段练习)下列一元二次方程没有实数根的是()A.x2+1=0B.x2+2x+1=0C.x2=4D.x2+x−2=0【变式1-3】(2023春·上海长宁·八年级上海市延安初级中学校考期中)在下列方程中,有实数根的是()A.x2+2x+3=0B.√4x+1+1=0C.xx−1=1x−1D.x3+8=0【题型2 判断含字母的一元二次方程的根的情况】【例2】(2023春·安徽合肥·八年级统考期中)已知关于x的方程ax2−(1−a)x−1=0,下列说法正确的是()A.当a=0时,方程无实数解B.当a≠0时,方程有两个相等的实数解C.当a=−1时,方程有两个不相等的实数解D.当a=−1时,方程有两个相等的实数解【变式2-1】(2023·河北邯郸·统考一模)已知a、c互为相反数,则关于x的方程ax2+5x+c=0(a≠0)根的情况()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.有一根为5【变式2-2】(2023·全国·八年级专题练习)已知关于x的方程x2-2x-m=0没有实数根,试判断关于x的方程x2+2mx+m(m+1)=0的根的情况.【变式2-3】(2023春·福建厦门·八年级厦门市松柏中学校考期末)关于x的一元二次方程x2−5x+c=0,当c=t0时,方程有两个相等的实数根:若将c的值在t0的基础上增大,则此时方程根的情况是()A.没有实数根B.两个相等的实数根C.两个不相等的实数根D.一个实数根【题型3 由方程根的情况确定字母的值或取值范围】【例3】(2023春·浙江舟山·八年级校联考期中)在实数范围内,存在2个不同的x的值,使代数式x2−3x+c 与代数式x+2值相等,则c的取值范围是.【变式3-1】(2023春·北京西城·八年级北京市第三十五中学校考期中)已知关于x的方程mx2−3x+1=0无实数解,则m取到的最小正整数值是.【变式3-2】(2023春·广西梧州·八年级校考期中)关于x的方程x2+2(m−2)x+m2−3m+3=0.(1)有两个不相等的实数根,求m的取值范围;(2)若方程有实数根,而且m为非负整数,求方程的根.【变式3-3】(2023春·北京平谷·八年级统考期末)关于x的一元二次方程ax2−2ax+b+1=0(ab≠0)有两个相等的实数根k,则下列选项成立的是()A.若﹣1<a<0,则ka >kbB.若ka>kb,则0<a<1C.若0<a<1,则ka <kbD.若ka<kb,则-1<a<0【题型4 应用根的判别式证明方程根的情况】【例4】(2023春·广东珠海·八年级统考期末)已知关于x的一元二次方程x2−2mx+m2−1=0.(1)求证:方程总有两个实数根;(2)若方程的一根大于2,一根小于1,求m的取值范围.【变式4-1】(2023春·八年级课时练习)已知关于x的一元二次方程2x2+2mx+m−1=0,求证:不论m为什么实数,这个方程总有两个不相等实数根.【变式4-2】(2023春·八年级课时练习)已知关于x的一元二次方程x2−3x+2=m(x−1).(1)求证:方程总有两个实数根;(2)若方程两个根的差是2,求实数m的值.【变式4-3】(2023春·八年级课时练习)已知关于x的一元二次方程x2﹣(m﹣2)x+2m﹣8=0.(1)求证:方程总有两个实数根.(2)若方程有一个根是负整数,求正整数m的值.【题型5 应用根的判别式求代数式的取值范围】【例5】(2023春·浙江温州·八年级校考期中)已知关于x的一元二次方程x2−2x+3m=0有实数根,设此方程的一个实数根为t,令y=t2−2t+4m+1,则y的取值范围为.【变式5-1】(2023春·安徽合肥·八年级统考期中)关于x的一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根x0,则下列关于2ax0+b的值判断正确的是()A.2ax0+b>0B.2ax0+b=0C.2ax0+b<0D.2ax0+b≤0【变式5-2】(2023春·浙江宁波·八年级统考期末)已知实数m,n满足m2−mn+n2=3,设P=m2+mn−n2,则P的最大值为()A.3B.4C.5D.6【变式5-3】(2023春·浙江杭州·八年级校考期中)已知关于x的一元二次方程x2−2x+m=0有两个不相等的实数根,设此方程的一个实数根为b,令y=4b2−8b+3m+2,则()A.y>1B.y≥1C.y≤1D.y<1【题型6 根的判别式与不等式、分式、函数等知识的综合】【例6】(2023春·重庆北碚·八年级西南大学附中校考期中)若关于x的一元一次不等式组{3x+82≤x+63x+a>4x−5的解集为x≤4,关于x的一元二次方程(a−1)x2+3x+1=0有实数根,则所有满足条件的整数a的值之和是.【变式6-1】(2023春·安徽安庆·八年级安庆市第四中学校考期末)若关于x的一元二次方程x2+2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.【变式6-2】(2023春·八年级课时练习)要使关于x的一元二次方程ax2+2x−1=0有两个实数根,且使关于x的分式方程xx−4+a+24−x=2的解为非负数的所有整数a的个数为()A.5个B.6个C.7个D.8个【变式6-3】(2023·湖北武汉·校联考模拟预测)已知a,b为正整数,且满足a+ba2+ab+b2=449,则a+b的值为()A.4B.10C.12D.16【题型7 根的判别式与三角形的综合】【例7】(2023春·广东惠州·八年级校考期中)已知关于x的一元二次方程(a+c)x2−2bx+(a−c)=0,其中分别a、b、c是△ABC的边长.(1)若方程有两个相等的实数根,试判断△ABC的形状;(2)若△ABC是等边三角形,试求该一元二次方程的根.【变式7-1】(2023春·浙江杭州·八年级校考期中)已知关于x的一元二次方程x2−(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,①若k=3时,请判断△ABC的形状并说明理由;①若△ABC是等腰三角形,求k的值.【变式7-2】(2023春·浙江金华·八年级校考期中)已知关于x的方程x2−(m+1)x+2(m−1)=0.(1)当方程一个根为x=3时,求m的值.(2)求证:无论m取何值,这个方程总有实数根.(3)若等腰△ABC的一腰长a=6,另两边b、c恰好是这个方程的两个根.则△ABC的面积为______.【变式7-3】(2023春·福建厦门·八年级厦门市松柏中学校考期末)已知关于x的一元二次方程x2−(m+5)x+ 5m=0.(1)求证:此一元二次方程一定有两个实数根;(2)设该一元二次方程的两根为a,b,且6,a,b分别是一个直角三角形的三边长,求m的值.【题型8 根的判别式与四边形的综合】【例8】(2023春·四川成都·八年级校考阶段练习)已知:矩形ABCD的两边AB,BC的长是关于方程x2−mx+m 2−14=0的两个实数根.(1)当m为何值时,矩形ABCD是正方形?求出这时正方形的边长;(2)若AB的长为2,那么矩形ABCD的周长是多少?【变式8-1】(2023春·湖南益阳·八年级统考期末)已知①ABCD两邻边是关于x的方程x2-mx+m-1=0的两个实数根.(1)当m为何值时,四边形ABCD为菱形?求出这时菱形的边长.(2)若AB的长为2,那么①ABCD的周长是多少?【变式8-2】(2023春·浙江杭州·八年级杭州市采荷中学校考期中)已知关于x的一元二次方程x2+(m−5)x−5m=0.(1)判别方程根的情况,并说明理由.(2)设该一元二次方程的两根为a,b,且a,b是矩形两条对角线的长,求矩形对角线的长.【变式8-3】(2023春·广东佛山·八年级校考期中)关于x的一元二次方程14x2−mx+2m−1=0的两个根是平行四边形ABCD的两邻边长.(1)当m=2,且四边形ABCD为矩形时,求矩形的对角线长度.(2)若四边形ABCD为菱形,求菱形的周长.【题型9 关于根的判别式的多结论问题】【例9】(2023春·河北保定·八年级保定市第十七中学校考期末)已知关于x的方程kx2−(2k−3)x+k−2=0,则①无论k取何值,方程一定无实数根;①k=0时,方程只有一个实数根;①k≤94且k≠0时,方程有两个实数根;①无论k取何值,方程一定有两个实数根.上述说法正确的个数是()A.1个B.2个C.3个D.4个【变式9-1】(2023春·浙江绍兴·八年级统考期末)已知a(a>1)是关于x的方程x2−bx+b−a=0的实数根.下列说法:①此方程有两个不相等的实数根;①当a=t+1时,一定有b=t−1;①b是此方程的根;①此方程有两个相等的实数根.上述说法中,正确的有( )A .①①B .①①C .①①D .①①【变式9-2】(2023春·浙江杭州·八年级校考期中)对于代数式ax 2+bx +c (a ≠0,a ,b ,c 为常数)①若b 2−4ac =0,则ax 2+bx +c =0有两个相等的实数根;①存在三个实数m ≠n ≠s ,使得am 2+bm +c =an 2+bn +c =as 2+bs +c ;①若ax 2+bx +c +2=0与方程(x +2)(x −3)=0的解相同,则4a −2b +c =−2,以上说法正确的是 .【变式9-3】(2023春·浙江·八年级期末)已知方程甲:ax 2+2bx +a =0,方程乙:bx 2+2ax +b =0都是一元二次方程,①若x =1是方程甲的解,则x =1也是方程乙的解;①若方程甲有两个相等的实数解,则方程乙也有两个相等的实数解;①若方程甲有两个不相等的实数解,则方程乙也有两个不相等的实数解;①若x =n 既是方程甲的解,又是方程乙的解,那么n 可以取1或−1.以上说法中正确的序号是( )A .①②B .③④C .①②③④D .①②④【题型10 关于根的判别式的新定义问题】【例10】(2023春·江苏宿迁·八年级统考阶段练习)对于实数a 、b ,定义运算“*”; a ∗b ={a 2−ab (a ≤b )b 2−ab (a >b ) ,关于x 的方程(2x )∗(x −1)=t +3恰好有三个不相等的实数根,则t 的取值范围是 .【变式10-1】(2023春·四川雅安·八年级统考期末)对于实数a ,b 定义运算“①”如下:a☆b =ab 2−ab ,例如3☆2=3×22−3×2=6,则方程2☆x =−12的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 【变式10-2】(2023春·安徽马鞍山·八年级校考阶段练习)定义:如果一元二次方程ax 2+bx +c =0(a ≠0)满足a +b +c =0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx +c =0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A .a =b −cB .a =bC .b =cD .a =c。
一元二次方程根的的判别式
一元二次方程根的的判别式一、选择题1、 不解方程,判别方程x x 249162=+的根的情况是A.有两个不等实根B.有两个等实根C.无实根D.有一个根为12、关于x 的方程08)18(22=+++k x k kx 有实根,则k 的取值范围是 A.k>161- B. .k>161-且k ≠0 C. k ≥161- D. k ≥161-且k ≠0 3、若关于x 的方程0122=++x ax 有且只有一个实根,则实数a 的值是A.1或-1B. 0或-1C. 0或1D. 0、1或-1 4、若关于x 的一元二次方程0132=--x k x 有实根,则k 的取值范围是A.k ≥0B. .k>0C. k >94-D. k ≥94- 5、已知122+-mx x 是完全平方式,则的值为A.1B. -1C. ±1D. 06、一元二次方程a c bx ax (02=++≠0)的根为有理数根的条件是A.042>-ac b B . 是有理数ac b 42- C. ac b 42-≥0 D. ac b 42-是完全平方数7、关于x 的方程042)1(222=++-+m mx x m 的根的情况是A.有两个不等实根B. 无实根C. 有两个等实根D. 不确定 8、若关于x 的方程0342=+-x kx 有实根,则k 的非负整数值是A.0、1B. 0、1、2C. 1D. 0、1、2、39、方程06)4(22=+--x kx x 无实根,则k 的最小正整数值是A.1B.4C. 3D. 210、若m 是实数,且不等式1)1(+>+m x m 的解集是x<1,则关于x 的方程041)1(2=+++m x m mx 的根的情况是 A.有两个不等实根 B.有两个等实根 C. 无实根 D. 无法确定11、已知一直角三角形的三边为a 、b 、c ,∠B=90°,则关于x 的方程0)1(2)1(22=++--x b cx x a 的根为A.有两个等实根B.有两个不等实根C. 无实根D. 无法确定二、填空题1、不解方程,判断一元二次方程022632=+--x x x 的根的情况是2、若关于x 的一元二次方程2x(kx-4)-x 2+6=0有两个等实根,则化简二次根式2212+-+-k k k 的正确结果是3、若方程kx 2+4kx+3=k 有两个等实根,则k= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的根的判别式
1、方程2x 2+3x -k=0根的判别式是 ;当k 时,方程有实根。
2、关于x 的方程kx 2+(2k+1)x -k+1=0的实根的情况是 。
3、方程x 2+2x+m=0有两个相等实数根,则m= 。
4、关于x 的方程(k 2+1)x 2-2kx+(k 2+4)=0的根的情况是 。
5、当m 时,关于x 的方程3x 2-2(3m+1)x+3m 2-1=0有两个不相等的实数根。
6、如果关于x 的一元二次方程2x(ax -4)-x 2+6=0没有实数根,那么a 的最小整数值是 。
7、关于x 的一元二次方程mx 2+(2m -1)x -2=0的根的判别式的值等于4,则m= 。
8、设方程(x -a)(x -b)-cx=0的两根是α、β,试求方程(x -α)(x -β)+cx=0的根。
9、不解方程,判断下列关于x 的方程根的情况:
(1)(a+1)x 2-2a 2x+a 3=0(a>0)
(2)(k 2+1)x 2-2kx+(k 2+4)=0
10、m 、n 为何值时,方程x 2+2(m+1)x+3m 2+4mn+4n 2+2=0有实根?
11、求证:关于x 的方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。
12、已知关于x 的方程(m 2-1)x 2+2(m+1)x+1=0,试问:m 为何实数值时,方程有实数根? 13、 已知关于x 的方程x 2-2x -m=0无实根(m 为实数),证明关于x 的方程x 2+2mx+1+2(m 2-1)(x 2+1)=0
也无实根。
14、已知:a>0,b>a+c,判断关于x 的方程ax 2+bx+c=0根的情况。
15、m 为何值时,方程2(m+1)x 2+4mx+2m -1=0。
(1)有两个不相等的实数根;
(2)有两个实数根;
(3)有两个相等的实数根;
(4)无实数根。
16、当一元二次方程(2k -1)x 2-4x -6=0无实根时,k 应取何值?
17、已知:关于x 的方程x 2+bx+4b=0有两个相等实根,y 1、y 2是关于y 的方程y 2+(2-b)y+4=0的两实根,求以1y 、2y 为根的一元二次方程。
18、若x 1、x 2是方程x 2+
p x+q=0的两个实根,且23x x x x 222121=++,25x 1x 12221=+求p 和q 的值。
19、设x 1、x 2是关于x 的方程x 2+px+q=0(q ≠0)的两个根,且x 2
1+3x 1x 2+x 2
2=1,
0)x 1(x )x 1(x 2211=+++,求p 和q 的值。
20、已知x 1、x 2是关于x 的方程4x
2-(3m -5)x -6m 2=0的两个实数根,且23x x 21=,求常数m 的值。
21、已知α、β是关于x 的方程x 2+px+q=0的两个不相等的实数根,且α3-α2β-αβ2+ β3=0,求证:p=0,q<0
22、已知方程(x -1)(x -2)=m 2(m 为已知实数,且m ≠0),不解方程证明:
(1)这个方程有两个不相等的实数根;
(2)一个根大于2,另一个根小于1。
23、k为何值时,关于x的一元二次方程kx2-4x+4=0和x2-4kx+4k2-4k-5=0的根都是整数。
24、不解方程判别根的情况
6x(6x-2)+1=0。
25、不解方程判别根的情况x2-0.4+0.6=0;
26、不解方程判别根的情况2x2-4x+1=0;
27、不解方程判别根的情况4y(y-5)+25=0;
28、不解方程判别根的情况(x-4)(x+3)+14=0;
29、不解方程判别根的情况
8
5
4
1
2
1
=
⎪
⎭
⎫
⎝
⎛
+
⎪
⎭
⎫
⎝
⎛
-x
x。
30、试证:关于x的一元二次方程x2+(a+1)x+2(a-2)=0一定有两个不相等的实数根。
31、若a>1,则关于x的一元二次方程2(a+1)x2+4ax+2a-1=0的根的情况如何?
32、若a<6且a≠0,那么关于x的方程ax2-5x+1=0是否一定有两个不相等的实数根?为什么?若此方程一定有两个不相等的实数根,是否一定满足a<6且a≠0?
33、.a为何值时,关于x的一元二次方程x2-2ax+4=0有两个相等的实数根?
34、已知关于x的一元二次方程ax2-2x+6=0没有实数根,求实数a的取值范围。
35、已知关于x的方程(m+1)x2+(1-2x)m=2。
m为什么值时:(1)方程有两个不相等的实数根?(2 )方程有两个相等的实数根?(3)方程没有实数根?
36、分别根据下面的条件求m的值:
(1)方程x2-(m+2)x+4=0有一个根为-1;
(2)方程x2-(m+2)x+4=0有两个相等的实数根;
(3)方程mx2-3x+1=0有两个不相等的实数根;
(4)方程mx2+4x+2=0没有实数根;
(5)方程x2-2x-m=0有实数根。
37、已知关于x的方程x2+4x-6-k=0没有实数根,试判别关于y的方程y2+(k+2)y+6-k=0的根的情况。
38、m为什么值时,关于x的方程mx2-mx-m+5=0有两个相等的实数根?
39、已知关于x的一元二次方程
)0
(0
5
6
2
2≠
=
+
-p
q
px
x
(p≠0)有两个相等的实数根,试证明
关于x的一元二次方程x2+px+q=0有两个不相等的实数根。
40、已知一元二次方程x2-6x+5-k=0的根的判别式∆=4,则这个方程的根为。
41、若关于x的方程x2-2(k+1)x+k2-1=0有实数根,则k的取值范围是( )
A.k≥-1
B.k>-1
C.k≤-1
D.k<-1
42、已知方程ax2+bx+c=0(a≠0,c≠0)无实数根,试判断方程
2=
+
-
c
a
x
c
b
x
的根的情况。