2013-2014学年高三数学一轮复习导学案:空间几何体的表面积导学案(2)
高三数学第一轮复习导学案:第48课时空间几何体的表面积、体积
【学习目标】1.认识柱、锥、台、球及其简单组合体的结构特征.能正确描述现实生活中简单物体的结构.2.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【课本导读】1.几何体的表面积(1)棱柱、棱锥、棱台的表面积就是各个面的面积的和.(2)圆柱、圆锥、圆台的侧面展开图分别是 、 、 .(3)若圆柱、圆锥的底面半径为r ,母线长l ,则其表面积为S柱= 、S 锥= .(4)若圆台的上下底面半径为r 1、r 2,母线长为l ,则圆台的表面积为S = .(5)球的表面积为 .2.几何体的体积:(1)V 柱体= .(2)V 锥体= .(3)V 台体= ,V 圆台= ,V 球= (球半径是R ).【教材回归】1.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积为________.2.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为________.3.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于________.(题3)(题4) (题5)4.如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图所示,则该几何体的表面积为( )A .143 B .6+3 C .12+2 3 D .16+2 35. 一个半径为2的球体经过切割之后所得几何体的三视图如图所示,则该几何体的表面积为________.【授人以渔】题型一:多面体的表面积和体积例1 某几何体的三视图如图所示,该几何体的表面积是________,体积是________. 思考题1 (1)某四棱锥的三视图如图所示,该四棱锥的体积为________.(2)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A.26 B.36 .23 D.22(例1)(思考题1)题型二:旋转体的表面积和体积例2如图所示,在直径AB=4的半圆O内作一个内接直角三角形ABC,使∠BAC=30°,将图中阴影部分,以AB为旋转轴旋转180°形成一个几何体,求该几何体的表面积及思考题2(1)如图(1)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57π D.81π图(1)图(2)(2)如图(2)某几何体的三视图如图所示,则该几何体的体积是________题型三:几何体的直观图例3 (1)已知正方体AC1的棱长为a,E,F分别为棱AA1与CC1的中点,求四棱锥A1-EBFD1的体积.(2) 如图所示(1),多面体是经过正四棱柱底面顶点B作截面A1BC1D1而截得的,已知AA1=CC1,截面A1BC1D1与底面ABCD成45°的二面角,AB=1,则这个多面体的体积为()A.22 B.33 C.24 D. 2(1)思考题3(如上图)正六棱锥P-ABCDEF中,G为PB的中点,则三棱锥D-GAC与三棱锥P-GAC体积之比为()A.1∶1 B.1∶2 C.2∶1 D.3∶2题型四:几何体与球的切接问题例1(1)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为________.(2)求棱长为1的正四面体外接球的体积.思考题1(1)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24π D.32π(2)已知正三棱柱内接于一个半径为2的球,则正三棱柱的侧面积取得最大值时,其底面边长为()A. 6B. 2C. 3 D.2例2正四面体的棱长为a,则其内切球的半径为______.思考题2半径为R的球的外切圆柱(球与圆柱的侧面、两底面都相切)的表面积为________,体积为________.自助餐:1.一个长方体其一个顶点的三个面的面积分别是2,3,6,这个长方体的对角线长是()A .23B .3 2C .6 D. 62.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( ) A.32 B .1 C.2+12 D. 2 3.某几何体的三视图如图所示,它的体积为( )A .72π B .48π C .30π D .24π图(3) 图(4)图(5)4.已知某几何体的三视图如图所示,则该几何体的体积为( )A.8π3 B .3π C.10π3D .6π 5.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是________.6. 如图所示的几何体中,四边形ABCD 是矩形,平面ABCD ⊥平面ABE ,已知AB =2,AE =BE =3,且当规定主(正)视方向垂直平面ABCD 时,该几何体的左(侧)视图的面积为22.若M 、N 分别是线段DE 、CE 上的动点,则AM +MN +NB 的最小值为________.。
高中1.3《空间几何体的表面积》教案苏教版
高中数学:1.3《空间几何体的表面积》教案(苏教版必修2)总课题空间几何体的表面积和体积总课时第15课时分课题空间几何体的表面积分课时第 1 课时教学目标了解柱、锥、台、球的表面积的计算公式.重点难点柱、锥、台、球的表面积计算公式的运用.?引入新课1.简单几何体的相关概念:直棱柱:.正棱柱:.正棱锥:.正棱台:.正棱锥、正棱台的形状特点:(1)底面是正多边形;(2)顶点在底面的正投影是底面的中心,即顶点和底面中心连线垂直于底面(棱锥的高);(3)当且仅当它是正棱锥、正棱台时,才有斜高.平行六面体:.直平行六面体:.长方体:.正方体:.2.直棱柱、正棱锥和正棱台的侧面积公式:,其中指的是.,其中指的是..3.圆柱、圆锥和圆台的侧面积公式:...?例题剖析例1 设计一个正四棱锥形冷水塔塔顶,高是,底面的边长是,制造这种塔顶需要多少平方米铁板?(结果保留两位有效数字).例2 一个直角梯形上底、下底和高之比为.将此直角梯形以垂直于底的腰为轴旋转一周形成一个圆台,求这个圆台上底面积、下底面积和侧面积之比.?巩固练习1.已知正四棱柱的底面边长是,侧面的对角线长是,则这个正四棱柱的侧面积为.2.求底面边长为,高为的正三棱锥的全面积.3.如果用半径为的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高是多少??课堂小结柱、锥、台、球的表面积计算公式的运用.?课后训练一基础题1.棱长都为的正三棱锥的全面积等于________________________.2.正方体的一条对角线长为,则其全面积为_________________.3.在正三棱柱中,,且,则正三棱柱的全面积为_____________________.4.一张长、宽分别为、的矩形硬纸板,以这硬纸板为侧面,将它折成正四棱柱,则此四棱柱的对角线长为___________________.5.已知四棱锥底面边长为,侧棱长为,则棱锥的侧面积为____________________.6.已知圆台的上、下底面半径为、,圆台的高为,则圆台的侧面积为_______.二提高题7.一个正三棱台的上、下底面边长分别为和,高是,求三棱台的侧面积.8.已知一个正三棱台的两个底面的边长分别为和,侧棱长为,求它的侧面积.三能力题9.已知六棱锥,其中底面是正六边形,点在底面的投影是正六边形的中心点,底面边长为,侧棱长为,求六棱锥的表面积.。
高考数学一轮复习 空间几何体表面积体积导学案
(2)求棱A1A的长;
(3)求经过A1,C1,B,D四点的球的表面积.
3.长方体的过一个顶点的三条棱长的比是1∶2∶3,对角线长为2 ,则这个长方体的体积是.
4. 如图所示,三棱锥A—BCD一条侧棱AD=8 cm,底面一边BC=18 cm,其余四条棱的棱长都是17 cm,
求三棱锥A—BCD的体积.
课外作业——空间几何体的表面积体姓名:
1.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是.
三:课堂研讨
例1如图所示,长方体ABCD—A′B′C′D′中,用截面截下一个棱锥
C—A′DD′,求棱锥C—A′DD′的体积与剩余部分的体积之比.
例2、如图所示,在长方体ABCD—A1B1C1D1中,AB=BC=1,BB1=2 ,
E是棱CC1上的点,且CE= CC1.
(1)求三棱锥C—BED的体积;
(2)求证:A1C⊥平面BDE.
江苏省建陵高级中学2014届高考数学一轮复习空间几何体表面积体积导学案
一:学习目标
柱、锥、台、球的表面积与体积
二:课前预习
1.三棱锥S—ABC中,面SAB,SBC,SAC都是以S为直角顶点的等腰直角三角形,且AB=BC=CA=2,则三棱锥S—ABC的表面积是.
2.如图所示,在棱长为4的正方体ABCD-A1B1C1D1 中,P是A1B1上一点,且PB1= A1B1,则多面 体P-BCC1B1的体积为.
例3、如图所示,半径为R的半圆内的阴影部分以直径AB所在直线为轴,旋转一周 得到一几何体,
求该几何 体的表面积(其中∠BAC =30°)及其体积.
备注
课堂检测——空间几何体的表面积体积姓名:
空间几何体的表面积与体积导学案高三数学一轮复习
第八章 第二节 空间几何体的表面积与体积一、学习目标 【课标解读】了解球、棱柱、棱锥、台的表面积和体积的计算公式. 【衍生考点】1.空间几何体的表面积与侧面积2.空间几何体的体积3.与球有关的切、接问题 二、相关知识回顾 1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是 ,表面积是侧面积与底面面积之和.【微点拨】当台体的上底面与下底面全等时,台体变为柱体;当台体上底面缩为一个点时,台体变为锥体.柱体、锥体、台体的体积公式间有如下联系:【微拓展】球的截面的性质 (1)球的截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面圆的半径r 的关系为【微思考】如何求不规则几何体的体积?【常用结论】1.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差. (2)底面面积及高都相等的两个同类几何体的体积相等. 2.长方体的外接球V 柱体=Sh V 台体=13(S'+ S 'S +S )hV 锥体=13Sh.r=√R 2-d 2.(1)球心:体对角线的交点. (2)半径:r=a 2+b 2+c 22(a ,b ,c 分别为长方体的长、宽、高).3.正四面体的外接球与内切球(正四面体可以看作是正方体的一部分)(1)外接球:球心是正四面体的中心;半径r= 64a (a 为正四面体的棱长). (2)内切球:球心是正四面体的中心;半径r= 612a (a 为正四面体的棱长).三、考点精讲精练考点一 空间几何体的表面积与侧面积 【典例突破】例1.(1)(2021四川成都三诊)某几何体的三视图如图所示,已知网格纸上的小正方形边长为1,则该几何体的表面积为( )A.(20+8 2)πB.(20+4 2)πC.(24+8 2)πD.(24+4 2)π(2)(2021河南安阳高三三模)为了给热爱朗读的师生提供一个安静独立的环境,某学校修建了若干“朗读亭”.如图所示,该朗读亭的外形是一个正六棱柱和正六棱锥的组合体,正六棱柱两条相对侧棱所在的轴截面为正方形,若正六棱锥与正六棱柱的侧面积之比为 7∶8,则正六棱锥与正六棱柱的高的比值为( ) A. 32 B.23C. 34D.12对点训练1(1)(2020全国Ⅱ,理10)已知△ABC 是面积为的等边三角形,且其顶点都在球O 的球面上.若球O的表面积为16π,则O 到平面ABC 的距离为(2)(2021陕西西安检测)下图网格纸中小正方形的边长为1,粗线画出的是一个几何体的三视图,则该几何体的表面积为( ) A.4 10π+4 29π+6πB.4 15π+4 29π+6πC.2 15π+2 29π+6πD.2 10π+2 29π+6π 考点二 空间几何体的体积(多考向探究) 考向1.简单几何体的体积 【典例突破】例2.(1)(2021北京,8)某一时间段内,从天空降落到地面上的雨水,未经蒸发、渗漏、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:mm).24 h 降雨量的等级划分如下:在综合实践活动中,某小组自制了一个底面直径为200 mm,高为300 mm 的圆锥形雨量器.若一次降雨过程中,该雨量器收集的24 h 的雨水高度是150 mm(如图所示),则这24 h 降雨量的等级是( )9 34A.小雨B.中雨C.大雨D.暴雨(2)(2021浙江杭州二模)某四棱锥的三视图(图中每个小方格的边长为1)如图所示,则该四棱锥的体积为( )A.4B.83C.43D.1考向2.不规则几何体的体积 【典例突破】例3.(1)(2021河南开封模拟)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈;上袤二丈,无广;高一丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈;上棱长2丈,高一丈.问它的体积是多少?”已知1丈为10尺,现将该楔体的三视图给出如下图所示,其中网格纸上小正方形的边长为1丈,则该楔体的体积为( ) A.5 000立方尺 B.5 500立方尺 C.6 000立方尺 D.6 500立方尺(2)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为( )A.13+2π3B.13+ 2π3C.13+2π6D.1+2π6对点训练2(1)(2021山东莱州高三检测)如图所示,半径为R 的半圆内(其中∠BAC=30°)的阴影部分以直径AB 所在直线为轴,旋转一周得到一个几何体,则该几何体的体积为 .(2)(2021福建龙岩高三模拟)某广场设置了一些多面体形或球形的石凳供市民休息.如图①的多面体石凳是由图②的正方体石块截去八个相同的四面体得到,且该石凳的体积是m m 3,则正方体石块的棱长为 .考点三 与球有关的切、接问题(多考向探究) 考向1.几何体的外接球问题 【典例突破】例4.(1)(2021广西玉林模拟)攒尖是古代中国建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖,依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分.多见于亭阁式建筑、园林建筑.某四角攒尖,它的主要部分轮廓可以近似看作一个正四棱锥,其三视图如图所示,则这个四棱锥外接球的表面积为( )(2)(2021甘肃兰州月考)已知四棱锥P-ABCD 的底面ABCD 是矩形,AD=1,AB=2,侧棱P A ⊥底面ABCD ,且直线PB 与CD 所成角的余弦值为 ,则四棱锥P-ABCD 的外接球的表面积为 .对点训练3(1)(2021四川成都二诊)已知圆柱的两个底面的圆周在体积为的球O 的球面上,则该圆柱的侧面积的最大值为( )160 0003 2 5532π3(2)(2021河北邯郸三模)在上、下底面均为正方形的四棱台ABCD-A1B1C1D1中,已知AA1=BB1=CC1=DD1=,AB=2,A1B1=1,则该四棱台的表面积为;该四棱台外接球的体积为.考向2.几何体的内切球问题【典例突破】例5.(1)(2021四川成都石室中学高三)《九章算术》中将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥P-ABC 为鳖臑,P A⊥平面ABC, P A=BC=4,AB=3,AB⊥BC,若三棱锥P-ABC有一个内切球O,则球O的体积为()A.9π2B.9π4C.9π16D.9π(2)(2021山东潍坊三模改编)圆锥的内切球(与圆锥的底面及侧面都相切的球)的表面积与该圆锥的表面积之比的最大值为.对点训练4(1)(2021广西桂林、崇左二模)有一底面半径与高的比值为12的圆柱,则该圆柱的表面积与其内切球的表面积之比为()∶3∶2∶1∶3(2)(2021云南昆明一中高三月考)在封闭的正四棱锥内有一个体积为V的球.若正四棱锥的底面边长为43,侧棱长为215,则V的最大值是()A.36πB.32π3C.9π2D.4π32。
空间几何体的表面积和体积导学案
高三数学导学案【学习目标】(1)了解柱体、锥体、台体的表面积计算方法(不要求记忆公式),掌握其推导过程; (2)能利用所学公式进行简单立体几何图形的表面积和体积的计算;(3)进一步掌握数学转化思想、类比思想,提高分析问题和解决问题的能力;培养空间想象能力、逻辑推理能力和计算能力;(4)运用运动变化的观点认识图形的和谐、对称、规范; 【重难点】(1)在高考命题中几何体的表面积和体积以中低档题目出现的可能性较大,有时在解答题中占据其中一问,属容易题;(2)从考查形式上看,主要以选择题和填空题的形式出现;(3)从能力要求上看,重点考查空间想象能力和从立体问题向平面问题转化的能力。
【学习过程】一、知识梳理(复习教材必修2P 25~P 33页有关内容,填空梳理有关知识) 1表中S 表示面积,c ′、c 分别表示上、下底面周长,h 表斜高,h ′表示斜高,l 表示侧棱长。
2旋转体的面积和体积公式表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径 3.球球的定义:_________________________________________________________________________. 球的截面性质:_____________________________________________________________________. 球的大圆:_________________________________________________________________________. 球的小圆:_________________________________________________________________________. 球面距离:__________________________________________________________________________. 地球的经度:________________________________________________________________________. 地球的纬度:________________________________________________________________________. 【热点典例】热点一:几何体的表面积 课堂活动设计例1、已知几何体的三视图如图所示,它的表面积是( ).4.2.3.6A B C D ++例2、一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8π B .6π C .4πD .π例3、已知三棱锥的三视图如图所示,则它的外接球表面积为( ) A .16π B .π C .4πD .2π(2)(2010·新课标全国卷)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为 ( )A.3πa2B.6πa2 C.12πa2 D.24πa2【反思】本题做错的是第题问题探究:【错因】【总结】1.在求多面体的侧面面积时,应对每一侧面分别求解后再相加,对于组合体的表面积应注意重合部分的处理.2.以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.3.圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.4.求球的表面积关键是求出球的半径.热点二:几何体的体积例4、(1)(2009山东卷理)一空间几何体的三视图如图所示,则该几何体的体积为( ).A.2π+4π+C. 2π+D. 4π俯视图(2) 7.用大小相同的且体积为1的小立方块搭一个几何体,使它的 主视图和俯视图如右图所示,则它的体积的最小值与最大值分别为( ) A .9与13 B .7与10 C .10与16 D .10与15(3)下面的三个图中,上面的是一个长方体截去一个角所得多面体的 直观图,它的正视图和侧视图在下面画出(单位:cm )。
【三维设计】2014届高考数学一轮复习 (基础知识+高频考点+解题训练)空间几何体的表面积和体积教学案
页眉内容第二节空间几何体的表面积和体积[知识能否忆起]柱、锥、台和球的侧面积和体积[小题能否全取]1.(教材习题改编)侧面都是直角三角形的正三棱锥,底面边长为a时,该三棱锥的全面积是( )A.3+34a2 B.34a2C.3+32a2 D.6+34a2解析:选A ∵侧面都是直角三角形,故侧棱长等于22a,∴S全=34a2+3×12×⎝⎛⎭⎪⎫22a2=3+34a2.2.已知正四棱锥的侧棱与底面的边长都为32,则这个四棱锥的外接球的表面积为( )A .12πB .36πC .72πD .108π解析:选B 依题意得,该正四棱锥的底面对角线长为32×2=6,高为22-⎝ ⎛⎭⎪⎫12×62=3,因此底面中心到各顶点的距离均等于3,所以该四棱锥的外接球的球心为底面正方形的中心,其外接球的半径为3,所以其外接球的表面积等于4π×32=36π.3.某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为5的等腰三角形,侧视图是一个底边长为6,高为5的等腰三角形,则该几何体的体积为( )A .24B .80C .64D .240解析:选B 结合题意知该几何体是四棱锥,棱锥底面是长和宽分别为8和6的矩形,棱锥的高是5,可由锥体的体积公式得V =13×8×6×5=80.4.(教材习题改编)表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.解析:设圆锥的母线为l ,圆锥底面半径为r , 则πrl +πr 2=3π,πl =2πr . 解得r =1,即直径为2. 答案:25.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是________.解析:由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积,为23;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+3).答案:2(π+3)1.几何体的侧面积和全面积:几何体侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.2.求体积时应注意的几点:(1)求一些不规则几何体的体积常用割补的方法转化成已知体积公式的几何体进行解决.(2)与三视图有关的体积问题注意几何体还原的准确性及数据的准确性. 3.求组合体的表面积时注意几何体的衔接部分的处理.典题导入[例1] (2012·安徽高考)某几何体的三视图如图所示,该几何体的表面积是________.[自主解答] 由几何体的三视图可知,该几何体是底面为直角梯形的直四棱柱(如图所示).在四边形ABCD 中,作DE ⊥AB ,垂足为E ,则DE =4,AE =3,则AD =5. 所以其表面积为2×12×(2+5)×4+2×4+4×5+4×5+4×4=92.[答案] 92由题悟法1.以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.2.多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. 3.旋转体的表面积问题注意其侧面展开图的应用.以题试法1.(2012·河南模拟)如图是某宝石饰物的三视图,已知该饰物的正视图、侧视图都是面积为32,且一个内角为60°的菱形,俯视图为正方形,那么该饰物的表面积为( )A. 3 B .2 3 C .4 3 D .4解析:选D 依题意得,该饰物是由两个完全相同的正四棱锥对接而成,正四棱锥的底面边长和侧面上的高均等于菱形的边长,因此该饰物的表面积为8×⎝ ⎛⎭⎪⎫12×1×1=4.典题导入[例2] (1)(2012·广东高考)某几何体的三视图如图所示,它的体积为( )A .72πB .48πC .30πD .24π(2)(2012·山东高考)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥A -DED 1的体积为________.[自主解答] (1)由三视图知,该几何体是由圆锥和半球组合而成的,直观图如图所示,圆锥的底面半径为3,高为4,半球的半径为3.V =V 半球+V 圆锥=12·43π·33+13·π·32·4=30π.(2)VA -DED 1=VE -ADD 1=13×S △ADD 1×CD =13×12×1=16.[答案] (1)C (2)16本例(1)中几何体的三视图若变为:其体积为________.解析:由三视图还原几何体知,该几何体为圆柱与圆锥的组合体,其体积V =V 圆柱-V 圆锥=π×32×4-13π×32×4=24π.答案:24π由题悟法1.计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解.2.注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.3.等积变换法:利用三棱锥的任一个面可作为三棱锥的底面.①求体积时,可选择容易计算的方式来计算;②利用“等积法”可求“点到面的距离”.以题试法2.(1)(2012·长春调研)四棱锥P -ABCD 的底面ABCD 为正方形,且PD 垂直于底面ABCD ,N 为PB 中点,则三棱锥P -ANC 与四棱锥P -ABCD 的体积比为( )A .1∶2B .1∶3C .1∶4D .1∶8解析:选C 设正方形ABCD 面积为S ,PD =h ,则体积比为13Sh -13·12S ·12h -13·12Sh 13Sh =14.(2012·浙江模拟)如图,是某几何体的三视图,则这个几何体的体积是( )A .32B .24C .8D.323解析:选B 此几何体是高为2的棱柱,底面四边形可切割成为一个边长为3的正方形和2个直角边分别为3,1的直角三角形,其底面积S =9+2×12×3×1=12,所以几何体体积V =12×2=24.典题导入[例3] (2012·新课标全国卷)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36C.23D.22[自主解答] 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如图所示,S △ABC =34×AB 2=34, 高OD =12-⎝⎛⎭⎪⎫332=63, ∴V S -ABC =2V O -ABC =2×13×34×63=26.[答案] A由题悟法1.解决与球有关的“切”、“接”问题,一般要过球心及多面体中的特殊点或过线作截面,把空间问题转化为平面问题,从而寻找几何体各元素之间的关系.2.记住几个常用的结论:(1)正方体的棱长为a ,球的半径为R , ①正方体的外接球,则2R =3a ; ②正方体的内切球,则2R =a ; ③球与正方体的各棱相切,则2R =2a .(2)长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为1∶3.以题试法3.(1)(2012·琼州模拟)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A .23π B.8π3 C .4 3D.16π3(2)(2012·潍坊模拟)如图所示,已知球O 的面上有四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析:(1)由三视图可知几何体的直观图如图所示. 其中侧面DBC ⊥底面ABC ,取BC 的中点O 1,连接AO 1,DO 1知DO 1⊥底面ABC 且DO 1=3,AO 1=1,BO 1=O 1C =1.在Rt △ABO 1和Rt △ACO 1中,AB =AC =2, 又∵BC =2,∴∠BAC =90°.∴BC 为底面ABC 外接圆的直径,O 1为圆心, 又∵DO 1⊥底面ABC ,∴球心在DO 1上, 即△BCD 的外接圆为球大圆,设球半径为R , 则(3-R )2+12=R 2,∴R =23. ∴S 球=4πR 2=4π×⎝ ⎛⎭⎪⎫232=16π3.(2)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=22+22+22=2R ,所以R =62. 故球O 的体积V =4πR33=6π.答案:(1)D (2)6π1.(2012·北京西城模拟)某几何体的三视图如图所示,该几何体的体积是( )A .8 B.83 C .4D.43解析:选D 将三视图还原,直观图如图所示,可以看出,这是一个底面为正方形(对角线长为2),高为2的四棱锥,其体积V =13S 正方形ABCD ×PA =13×12×2×2×2=43.2.(2012·山西模拟)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =3,BC =2,则棱锥O -ABCD 的体积为( )A.51 B .351 C .251D .651解析:选A 依题意得,球心O 在底面ABCD 上的射影是矩形ABCD 的中心,因此棱锥O-ABCD 的高等于42-⎝ ⎛⎭⎪⎫1232+222=512,所以棱锥O -ABCD 的体积等于13×(3×2)×512=51.3.(2012·马鞍山二模)如图是一个几何体的三视图,则它的表面积为( )A .4π B.154π C .5πD.174π 解析:选D 由三视图可知该几何体是半径为1的球被挖出了18部分得到的几何体,故表面积为78·4π·12+3·14·π·12=174π. 4.(2012·济南模拟)用若干个大小相同,棱长为1的正方体摆成一个立体模型,其三视图如图所示,则此立体模型的表面积为( )A .24B .23C .22D .21解析:选C 这个空间几何体是由两部分组成的,下半部分为四个小正方体,上半部分为一个小正方体,结合直观图可知,该立体模型的表面积为22.5. (2012·江西高考)若一个几何体的三视图如下图所示,则此几何体的体积为( )A.112B .5 C.92D .4解析:选D 由三视图可知,所求几何体是一个底面为六边形,高为1的直棱柱,因此只需求出底面积即可.由俯视图和主视图可知,底面面积为1×2+2×12×2×1=4,所以该几何体的体积为4×1=4.6.如图,正方体ABCD -A ′B ′C ′D ′的棱长为4,动点E ,F 在棱AB 上,且EF =2,动点Q 在棱D ′C ′上,则三棱锥A ′-EFQ 的体积( )A .与点E ,F 位置有关B .与点Q 位置有关C .与点E ,F ,Q 位置都有关D .与点E ,F ,Q 位置均无关,是定值解析:选D 因为V A ′-EFQ =V Q -A ′EF =13×⎝ ⎛⎭⎪⎫12×2×4×4=163,故三棱锥A ′-EFQ 的体积与点E ,F ,Q 的位置均无关,是定值.7.(2012·湖州模拟)如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析:由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 答案:268.(2012·上海高考)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________.解析:因为半圆的面积为2π,所以半圆的半径为2,圆锥的母线长为2.底面圆的周长为2π,所以底面圆的半径为1,所以圆锥的高为3,体积为33π.答案:33π 9.(2013·郑州模拟)在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的表面积为________.解析:依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,则⎩⎪⎨⎪⎧a 2+b 2=62,b 2+c 2=52,c 2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a 2+b 2+c 2=43,易知R 即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为4πR 2=43π.答案:43π10.(2012·江西八校模拟)如图,把边长为2的正六边形ABCDEF 沿对角线BE 折起,使AC = 6.(1)求证:面ABEF ⊥平面BCDE ; (2)求五面体ABCDEF 的体积.解:设原正六边形中,AC ∩BE =O ,DF ∩BE =O ′,由正六边形的几何性质可知OA =OC =3,AC ⊥BE ,DF ⊥BE .(1)证明:在五面体ABCDE 中,OA 2+OC 2=6=AC 2, ∴OA ⊥OC ,又OA ⊥OB ,∴OA ⊥平面BCDE .∵OA ⊂平面ABEF , ∴平面ABEF ⊥平面BCDE .(2)由BE ⊥OA ,BE ⊥OC 知BE ⊥平面AOC ,同理BE ⊥平面FO ′D ,∴平面AOC ∥平面FO ′D ,故AOC -FO ′D 是侧棱长(高)为2的直三棱柱,且三棱锥B -AOC 和E -FO ′D 为大小相同的三棱锥,∴V ABCDEF =2V B -AOC +V AOC -FO ′D=2×13×12×(3)2×1+12×(3)2×2=4.11.(2012·大同质检)如图,在四棱锥P -ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB =4,CD =2,侧面PAD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为PA 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A -PBC 的体积.解:(1)证明:如图,取AB 的中点F ,连接DF ,EF .在直角梯形ABCD 中,CD ∥AB ,且AB =4,CD =2,所以BF 綊CD . 所以四边形BCDF 为平行四边形. 所以DF ∥BC .在△PAB 中,PE =EA ,AF =FB ,所以EF ∥PB . 又因为DF ∩EF =F ,PB ∩BC =B , 所以平面DEF ∥平面PBC .因为DE ⊂平面DEF ,所以DE ∥平面PBC . (2)取AD 的中点O ,连接PO . 在△PAD 中,PA =PD =AD =2, 所以PO ⊥AD ,PO = 3.又因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD , 所以PO ⊥平面ABCD .在直角梯形ABCD 中,CD ∥AB ,且AB =4,AD =2,AB ⊥AD ,所以S △ABC =12×AB ×AD =12×4×2=4.故三棱锥A -PBC 的体积V A -PBC =V P -ABC =13×S △ABC ×PO =13×4×3=433.12.(2012·湖南师大附中月考)一个空间几何体的三视图及部分数据如图所示,其正视图、俯视图均为矩形,侧视图为直角三角形.(1)请画出该几何体的直观图,并求出它的体积; (2)证明:A 1C ⊥平面AB 1C 1.解:(1)几何体的直观图如图所示,四边形BB 1C 1C 是矩形,BB 1=CC 1=3,BC =B 1C 1=1,四边形AA 1C 1C 是边长为3的正方形,且平面AA 1C 1C 垂直于底面BB 1C 1C ,故该几何体是直三棱柱,其体积V =S △ABC ·BB 1=12×1×3×3=32.(2)证明:由(1)知平面AA 1C 1C ⊥平面BB 1C 1C 且B 1C 1⊥CC 1, 所以B 1C 1⊥平面ACC 1A 1.所以B 1C 1⊥A 1C . 因为四边形ACC 1A 1为正方形,所以A 1C ⊥AC 1. 而B 1C 1∩AC 1=C 1,所以A 1C ⊥平面AB 1C 1.1.(2012·潍坊模拟)已知矩形ABCD 的面积为8,当矩形ABCD 周长最小时,沿对角线AC 把△ACD 折起,则三棱锥D -ABC 的外接球表面积等于( )A .8πB .16πC .482πD .不确定的实数解析:选B 设矩形长为x ,宽为y ,周长P =2(x +y )≥4xy =82,当且仅当x =y =22时,周长有最小值.此时正方形ABCD 沿AC 折起,∵OA =OB =OC =OD ,三棱锥D -ABC 的四个顶点都在以O 为球心,以2为半径的球上,此球表面积为4π×22=16π.2.(2012·江苏高考)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=AD =3 cm ,AA 1=2 cm ,则四棱锥A -BB 1D 1D 的体积为________cm 3.解析:由题意得VA -BB 1D 1D =23VABD -A 1B 1D 1=23×12×3×3×2=6.答案:63.(2013·深圳模拟)如图,平行四边形ABCD 中,AB ⊥BD ,AB =2,BD =2,沿BD 将△BCD 折起,使二面角A -BD -C 是大小为锐角α的二面角,设C 在平面ABD 上的射影为O .(1)当α为何值时,三棱锥C -OAD 的体积最大?最大值为多少? (2)当AD ⊥BC 时,求α的大小. 解:(1)由题知CO ⊥平面ABD ,∴CO ⊥BD , 又BD ⊥CD ,CO ∩CD =C ,∴BD ⊥平面COD . ∴BD ⊥OD .∴∠ODC =α.V C -AOD =13S △AOD ·OC =13×12·OD ·BD ·OC=26·OD ·OC =26·CD ·cos α·CD ·sin α =23·sin 2α≤23, 当且仅当sin 2α=1,即α=45°时取等号. ∴当α=45°时,三棱锥C -OAD 的体积最大,最大值为23.(2)连接OB ,∵CO ⊥平面ABD ,∴CO ⊥AD ,又AD ⊥BC , ∴AD ⊥平面BOC . ∴AD ⊥OB .∴∠OBD +∠ADB =90°.故∠OBD =∠DAB ,又∠ABD =∠BDO =90°, ∴Rt △ABD ∽Rt △BDO . ∴OD BD =BD AB.∴OD =BD 2AB=222=1,在Rt △COD 中,cos α=OD CD =12,得α=60°.1.两球O 1和O 2在棱长为1的正方体ABCD -A 1B 1C 1D 1的内部,且互相外切,若球O 1与过点A 的正方体的三个面相切,球O 2与过点C 1的正方体的三个面相切,则球O 1和O 2的表面积之和的最小值为( )A .(6-33)πB .(8-43)πC .(6+33)πD .(8+43)π解析:选A 设球O 1、球O 2的半径分别为r 1、r 2, 则3r 1+r 1+3r 2+r 2=3,r 1+r 2=3-32,从而4π(r 21+r 22)≥4π·r 1+r 222=(6-33)π.2.已知某球半径为R ,则该球内接长方体的表面积的最大值是( ) A .8R 2B .6R 2C .4R 2D .2R 2解析:选A 设球内接长方体的长、宽、高分别为a 、b 、c ,则a 2+b 2+c 2=(2R )2,所以S 表=2(ab +bc +ac )≤2(a 2+b 2+c 2)=8R 2,当且仅当a =b =c =233R 时,等号成立.3.右图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3πB .24+3πC .20+4πD .24+4π解析:选 A 根据几何体的三视图可知,该几何体是一个正方体和一个半圆柱的组合体,其中,正方体的棱长为2,半圆柱的底面半径为1,母线长为2.故该几何体的表面积为4×5+2×π+2×12π=20+3π.4.(2012·湖北高考)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈ 3169V .人们还用过一些类似的近似公式,根据π=3.141 59…判断,下列近似公式中最精确的一个是( )A .d ≈ 3169VB .d ≈ 32V C .d ≈ 3300157VD .d ≈ 32111V解析:选D ∵V =43πR 3,∴2R =d = 36V π,考虑到2R 与标准值最接近,通过计算得6π-169≈0.132 08,6π-2≈-0.090 1,6π-300157≈-0.001 0,6π-2111≈0.000 8,因此最接近的为D 选项.5.(2012·上海高考)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC =2.若AD =2c ,且AB +BD =AC +CD =2a ,其中a ,c 为常数,则四面体ABCD的体积的最大值是________.解析:如图过点B 在平面BAD 中作BE ⊥AD ,垂足为E ,连接CE ,因为BC ⊥AD ,所以AD ⊥平面BCE .所以四面体ABCD 的体积为13S △BCE ·AD .当△BCE 的面积最大时,体积最大.因为AB +BD =AC +CD =2a ,所以点B ,C在一个椭圆上运动,由椭圆知识可知当AB =BD =AC =CD =a 时,BE =CE=a 2-c 2为最大值,此时截面△BCE 面积最大,为12×2a 2-c 2-1=a 2-c 2-1,此时四面体ABCD 的体积最大,最大值为13S △BCE ·AD =2c 3·a 2-c 2-1.答案:23c a 2-c 2-1。
高三数学一轮复习精品学案 第2讲 空间几何体的表面积和体积
§8.1 空间几何体的三视图、直观图、表面积与体积第2讲空间几何体的表面积和体积板块一知识梳理·自主学习必备知识考点1多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是侧面展开图的面积,表面积是侧面积与底面面积之和.考点2圆柱、圆锥、圆台的侧面展开图及侧面积公式考点3柱、锥、台和球的表面积和体积必会结论1.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差. (2)底面面积及高都相等的两个同类几何体的体积相等. 2.几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为3∶1. 考点自测 1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( ) (2)设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为3πa 2.( )(3)若一个球的体积为43π,则它的表面积为12π.( )(4)将圆心角为2π3,面积为3π的扇形作为圆锥的侧面,则圆锥的表面积等于4π.( )2.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为( )A.323B.64C.3233D.6433.某空间几何体的三视图如图所示,则该几何体的表面积为( )A.12+4 2B.18+8 2C.28D.20+8 24.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A.2B.4+2 2C.4+4 2D.6+4 25.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.6.由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为________.板块二典例探究·考向突破考向1几何体的表面积例1(1)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.16(2)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20π B.24π C.28π D.32π触类旁通空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图,确定几何体的直观图.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.变式训练1 一个四面体的三视图如图所示,则该四面体的表面积是()A.1+ 3 B.1+2 2 C.2+ 3 D.2 2考向2几何体的体积命题角度1补形法求体积例2如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90π B.63π C.42π D.36π命题角度2分割法求体积例3《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈;上袤二丈,无广;高一丈,问:积几何?”其意思为:“今有底面为矩形的屋脊柱的楔体,下底面宽3丈,长4丈;上棱长2丈,高1丈,问它的体积是多少?”已知1丈为10尺,现将该楔体的三视图给出,其中网格纸上小正方形的边长为1丈,则该楔体的体积为()A.5000立方尺 B .5500立方尺 C.6000立方尺D .6500立方尺命题角度3 转化法求体积例4 如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.触类旁通空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.考向3 与球有关的切、接问题 例5 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ) A.3172 B .210 C.132D .310变式探究1 本例若将直三棱柱改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少?变式探究2 本例若将直三棱柱改为“正四面体”,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少?变式探究3 本例中若将直三棱柱改为“侧棱和底面边长都是32的正四棱锥”,则其外接球的半径是多少? 触类旁通“切”“接”问题的处理规律 (1)“切”的处理解决旋转体、多面体的内切球问题时首先要找准切点,通过作截面来解决.截面过球心. (2)“接”的处理把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.变式训练2 (1)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A.π B.3π4 C.π2 D.π4(2)一个几何体的三视图如图所示,该几何体外接球的表面积为( )A.36πB.112π3 C.32π D .28π归纳领悟 核心规律1.表面积是各个面的面积之和,求多面体的表面积时,只需将它们沿着棱剪开后展成平面图形,利用求平面图形面积的方法求多面体的表面积.求旋转体的表面积时,可以从旋转体的生成过程及其几何特征入手,将其展开求表面积.2.求几何体体积时,要选择适当的底面和高. 满分策略1.利用三视图求表面积和体积时,要正确地把它们还原成直观图,从三视图中得到几何体的相关量,再计算.2.求不规则的几何体的表面积和体积时,把它们分成基本的简单几何体再求.3.求几何体体积时注意运用割补法和等体积转换法. 板块三 启智培优·破译高考题型技法系列——破解切割棱柱体的三视图问题 如图是某几何体的三视图,则该几何体的体积为( )A .6B .9C .12D .1解题视点 根据三视图还原几何体,先画出该棱柱在没有切割前完整的图形,然后去掉被切割下的三棱柱,结合图形利用体积公式破解.答题启示 从近年全国各地对于三视图知识的考查来看,所涉及的几何体往往是相对比较规则的,且多与长方体、直棱柱、圆锥及球密切相关.通常考查的不是这些简单的几何体,而是通过对这些简单的几何体的截或接所形成的几何体. 跟踪训练将正方体切去一个三棱锥得到几何体的三视图如下图所示,则该几何体的体积为( )A.223B.203C.163D.6——★ 参 考 答 案 ★——板块一 知识梳理·自主学习考点自测 1.『答案』 (1)× (2)× (3)√ (4)√ 2.『答案』 D『解析』 由三视图可知,该多面体是一个四棱锥,且由一个顶点出发的三条棱两两垂直,长度都为4,∴其体积为13×4×4×4=643.故选D.3.『答案』 D『解析』 由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+8 2.故选D.4.『答案』 C『解析』 由题可知,该几何体的底面为等腰直角三角形,等腰直角三角形的斜边长为2,腰长为2,棱柱的高为2,所以其侧面积S =2×2+22×2=4+4 2.故选C. 5. 『答案』 14π『解析』 ∵长方体的顶点都在球O 的球面上, ∴长方体的体对角线的长度就是其外接球的直径. 设球的半径为R , 则2R =32+22+12=14. ∴球O 的表面积为S =4πR 2=4π×⎝⎛⎭⎫1422=14π. 6.『答案』 2+π2『解析』 该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成, ∴V =2×1×1+2×14×π×12×1=2+π2.板块二 典例探究·考向突破考向1 几何体的表面积 例1 (1)『答案』 B『解析』 观察三视图可知该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2,如图所示.因此该多面体各个面中有2个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这些梯形的面积之和为2×12×(2+4)×2=12.故选B.(2)『答案』 C『解析』 由三视图可得圆锥的母线长为22+(23)2=4,∴S 圆锥侧=π×2×4=8π. 又S 圆柱侧=2π×2×4=16π,S 圆柱底=4π,∴该几何体的表面积为8π+16π+4π=28π.故选C. 变式训练1 『答案』 C『解析』 由三视图可得该四面体的直观图如图所示,平面ABD ⊥平面BCD ,△ABD 与△BCD 为全等的等腰直角三角形,AB =AD =BC =CD = 2.取BD 的中点O ,连接AO ,CO ,则AO ⊥CO ,AO =CO =1.由勾股定理得AC =2,因此△ABC 与△ACD 为全等的正三角形,由三角形面积公式得S △ABC =S △ACD =32,S △ABD =S △BCD =1,所以四面体的表面积为2+ 3.故选C.考向2 几何体的体积命题角度1 补形法求体积 例2 『答案』 B『解析』 (割补法) 由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.命题角度2 分割法求体积 例3 『答案』 A『解析』 该楔体的直观图如图中的几何体ABCDEF .取AB 的中点G ,CD 的中点H ,连接FG ,GH ,HF ,则该几何体的体积为四棱锥F -GBCH 与三棱柱ADE -GHF 的体积之和.又可以将三棱柱ADE -GHF 割补成高为EF ,底面积为S =12×3×1=32平方丈的一个直棱柱,故该楔体的体积V =32×2+13×2×3×1=5立方丈=5000立方尺.故选A.命题角度3 转化法求体积 例4 『答案』 16『解析』 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以正方体ABCD -A 1B 1C 1D 1中△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以VF -DD 1E =13×12×1=16.考向3 与球有关的切、接问题 例5 『答案』 C『解析』 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.故选C.变式探究1 解:由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r . 又正方体的棱长为4,故其体对角线长为43, 从而V 外接球=43πR 3=43π×(23)3=323π,V 内切球=43πr 3=43π×23=32π3.变式探究2 解:正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa26=63π.变式探究3 解:依题意,得该正四棱锥底面对角线的长为32×2=6,高为 (32)2-⎝⎛⎭⎫12×62=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3. 变式训练2 (1)『答案』 B『解析』 设圆柱的底面半径为r ,球的半径为R ,且R =1, 由圆柱两个底面的圆周在同一个球的球面上可知, r ,R 及圆柱的高的一半构成直角三角形. ∴r =12-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4.故选B.(2) 『答案』 B『解析』 根据三视图,可知该几何体是一个四棱锥,其底面是一个边长为4的正方形,高是2 3.将该四棱锥补形成一个三棱柱,如图所示,则其底面是边长为4的正三角形,高是4,该三棱柱的外接球即为原四棱锥的外接球.∵三棱柱的底面是边长为4的正三角形,∴底面三角形的中心到该三角形三个顶点的距离为23×23=433,∴外接球的半径为R =⎝⎛⎭⎫4332+22=283,外接球的表面积S =4πR 2=4π×283=112π3.故选B.板块三 启智培优·破译高考 『答案』 B『解析』 该几何体是一个直三棱柱截去14所得,如图所示,其体积为34×12×3×4×2=9.故选B.跟踪训练 『答案』 A『解析』 由图可知,该几何体为正方体切去一个三棱锥形成.V =2×2×2-13×12×2×2×1=223.故选A.。
高中数学 1.3.1空间几何体的表面积导学案 新人教A版必修2
第1页 共3页 第一章1.3.1柱体、锥体、台体的表面积【学习目标】知识与技能:通过学习掌握柱、锥、台表面积、球的表面积计算公式并会灵活运用,会求简单组合体的表面积过程与方法:通过对柱、锥、台、球表面积公式的探究学习,体会观察、类比、归纳的推理方法。
情感态度与价值观:培养学生从量的角度认识几何体,培养学生的空间想象能力和思维能力。
【学习重点】柱、锥、台、球的计算公式。
难点是:利用相应公式求柱、锥、台、球表面积【知识链接】1.在初中,我们已经学习了正方体和长方体的表面积,以及他们的展开图,你知道上述几何体的展开图与其表面积的关系吗?你知道圆的定义吗?圆的面积与那个量有关系呢?2. 直棱柱、正棱锥、正棱台都是由多个平面图形围成的几何体,它们的侧面展开图是什么?如何计算它们的表面积?球的表面积如何计算3. 圆柱、圆锥、圆台都是旋转体,它们的侧面展开图是什么?如何计算它们的表面积?【基础知识】直棱柱的底面周长为c 高为h ,则=直棱柱侧S ch ,=直棱柱表S ch+2底S正棱锥的底面周长为c ,斜高为h ,则=正棱锥侧S ch 21 ,=正棱锥表S 底S ch 21+正棱台的上下底周长分别为1c ,2c 斜高为h ,则=正棱台侧S h )c c (2121+ ,=正棱台表S 下底上底侧S S S ++圆柱、圆锥、圆台、球的表面积公式?圆柱底面半径为r ,母线长l ,则圆柱侧面积是:S=rl 2π , 表面积是:S=)(2l r r +π圆锥的底面半径为r ,母线长是l ,则它的侧面积是:S=rl π , 它的表面积是:S =)(l r r +π圆台的两底面半径分别是21r ,r 母线长是l ,则侧面积是:S=l )r r (21+π, 表面积是:S=)l r l r r r (212221+++π 球的表面积是:S=2r 4π【例题讲解】例1:已知棱长为a ,各面都是等边三角形的四面体S —ABC ,求它的表面积?例2:如图,一个圆台形花盆盆口直径20 cm ,盆底直径为15cm ,底部渗水圆孔直径为1.5 cm ,盆壁长15cm .那么花盆的表面积约是多少平方厘米(π取3.14,结果精确到1 )?第2页 共3页 例3 在球心同侧有相距9的两个平行截面,它们的面积分别为49π和400π,求球的表面积。
高三 一轮复习 空间几何体的表面积及体积 教案
空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r +r ′)l2.空间几何体的表面积与体积公式名称几何体表面积体积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底 V =Sh 锥体 (棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 31.求组合体的表面积时:组合体的衔接部分的面积问题易出错. 2.易混侧面积与表面积的概念. [试一试]1.(2012·江苏高考)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则四棱锥A -BB 1D 1D 的体积为________cm 3.2.(2013·苏州暑假调查)设P ,A ,B ,C 是球O 表面上的四个点,P A ,PB ,PC 两两垂直,且P A =PB =1,PC =2,则球O 的表面积是________.1.求空间几何体体积的常用方法(1)公式法:直接根据相关的体积公式计算.(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等.(3)割补法:把不能直接计算体积的空间几何体进行适当的分割或补形,转化为可计算体积的几何体.2.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①正方体的外接球,则2R=3a;②正方体的内切球,则2R=a;③球与正方体的各棱相切,则2R=2a.(2)长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.(3)正四面体的外接球与内切球的半径之比为3∶1.3.旋转体侧面积问题中的转化思想计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.[练一练]1.(2014·南通一调)已知正四棱锥的底面边长是6,高为7,则这个正四棱锥的侧面积是________.2.在三棱柱ABC-A′B′C′中,已知AA′⊥平面ABC,AA′=2,BC=23,∠BAC=π2,且此三棱柱的各个顶点都在一个球面上,则球的体积为________.考点一几何体的表面积1.(2013·南通三模)底面边长为2 m,高为1 m的正三棱锥的全面积为________ m2.2.(2013·苏州暑期调查)若正四面体的棱长为a,则其外接球的表面积为________.[类题通法]几何体的表面积问题的求法(1)找准几何体中各元素间的位置关系及数量关系.(2)注意组合体的表面积问题中重合部分的处理.考点二几何体的体积[典例](1)如图所示,已知三棱柱ABC -A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1 -ABC1的体积为________.(2)如图,在长方体ABCD-A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则三棱锥A-B1D1D的体积为________ cm3.[类题通法]求解几何体体积的策略及注意问题(1)计算柱、锥、台的体积关键是根据条件找出相应的底面积和高.(2)注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.(3)注意组合体的组成形式及各部分几何体的特征.[针对训练](2013·苏北四市二模)如图,已知正方体ABCD-A1B1C1D1的棱长为2,O为底面正方形ABCD的中心,则三棱锥B1-BCO的体积为________.与球有关的切、接问题考点三与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点.命题角度多变,归纳起来常见的命题角度有: (1)直三棱柱的外接球; (2)正(长)方体的外接球; (3)正四面体的内切球; (4)四面体的外接球; (5)正三棱柱的内切球.角度一 直三棱柱的外接球1.(2013·辽宁高考改编)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为________.角度二 正(长)方体的外接球2.一个正方体的棱长为2,则该几何体外接球的体积为________.角度三 正四面体的内切球3.若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.角度四 四面体的外接球4.(2014·南通期末)正方体ABCD -A 1B 1C 1D 1的棱长为23,则四面体A -B 1CD 1的外接球的体积为________.角度五 正三棱柱的内切球5.点P 是底边长为23,高为2的正三棱柱表面上的动点,MN 是该棱柱内切球的一条直径,则PM ·PN 的取值范围是________.[类题通法]解决与球有关的切、接问题的方法(1)一般要过球心及多面体中的特殊点或过线作截面将空间问题转化为平面问题,从而寻找几何体各元素之间的关系.(2)若球面上四点P,A,B,C中P A,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.[课堂练通考点]1.(2013·南京三模)已知圆锥的母线长为2,高为3,则该圆锥的侧面积是________.2.(2014·苏北三市统考)若一个长方体的长、宽、高分别为3,2,1,则它的外接球的表面积是________.3.(2014·苏北四市质检)已知棱长为3的正方体ABCD-A1B1C1D1中,P,M分别为线段BD1,B1C1上的点,若BPPD1=12,则三棱锥M-PBC的体积为________.4.已知三棱锥O-ABC中,∠BOC=90°,OA⊥平面BOC,其中AB=AC=7,BC=11,O,A,B,C四点均在球S的表面上,则球S的表面积为________.5.已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=23,AB=1,AC=2,∠BAC=60°,则球O的表面积为________.[课下提升考能]第Ⅰ组:全员必做题1.正六棱柱的高为6,底面边长为4,则它的全面积为________.2.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为________.3.(2013·南京、淮安二模)已知圆锥的侧面展开图是一个半径为3 cm ,圆心角为2π3的扇形,则此圆锥的高为________ cm.4.设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为________.5.设M 、N 是球O 半径OP 上的两点,且NP =MN =OM ,分别过N ,M ,O 作垂直于OP 的平面,截球面得三个圆,则这三个圆的面积之比为________.6.(2013·苏北四市三调)在矩形ABCD 中,已知AB =2,BC =3,以边BC 所在的直线为轴旋转一周,则形成的几何体的侧面积为________.7.(2014·苏北四市摸底)已知正三棱锥的底面边长为2,侧棱长为433,则它的体积为________.8.(创新题)如图,在三棱锥D -ABC 中,已知BC ⊥AD ,BC =2,AD =6,AB +BD =AC +CD =10,则三棱锥D -ABC 的体积的最大值是________.9.如图所示,四棱锥P -ABCD 的底面ABCD 是半径为R 的圆的内接四边形, 其中BD 是圆的直径,∠ABD =60°,∠BDC =45°,△ADP ∽△BAD .(1)求线段PD的长;(2)若PC=11R,求三棱锥P-ABC的体积.10.(2014·徐州质检)如图,在直三棱柱ABC -A1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点.(1)求证:DE∥平面ABC;(2)求三棱锥E -BCD的体积.第Ⅱ组:重点选做题1.(2014·苏中三市、宿迁调研(一))若将一个圆锥的侧面沿一条母线剪开,其展开图是半径为2 cm的半圆,则该圆锥的高为________ cm.2.已知正四面体的俯视图如图所示,其中四边形ABCD是边长为2的正方形,则这个正四面体的体积为。
高考数学一轮复习 第八章 立体几何 第2讲 空间几何体的表面积与体积教案 文
第2讲 空间几何体的表面积与体积一、知识梳理1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱 圆锥 圆台侧面展开图侧面积公式S 圆柱侧=2πrl S 圆锥侧=πrlS 圆台侧=π(r +r ′)l表面积 体积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底 V =S 底h锥体 (棱锥和圆锥)S 表面积=S 侧+S 底 V =13S 底h 台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h 球S =4πR 2 V =43πR 31.正方体与球的切、接常用结论 正方体的棱长为a ,球的半径为R ,(1)若球为正方体的外接球,则2R =3a ; (2)若球为正方体的内切球,则2R =a ; (3)若球与正方体的各棱相切,则2R =2a .2.长方体共顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. 二、习题改编1.(必修2P27练习1改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为 cm.解析:由题意,得S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,解得r 2=4,所以r=2(cm).答案:22.(必修2P27例4改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱的体积比V 球∶V 柱为 .解析:设球的半径为R ,则V 球V 柱=43πR 3πR 2×2R =23.答案:23一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)多面体的表面积等于各个面的面积之和.( ) (2)锥体的体积等于底面积与高之积.( ) (3)球的体积之比等于半径比的平方.( )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( ) (5)长方体既有外接球又有内切球.( ) 答案:(1)√ (2)× (3)× (4)√ (5)× 二、易错纠偏常见误区(1)锥体的高与底面不清楚致误; (2)不会分类讨论致误.1.如图,长方体ABCD A 1B 1C 1D 1的体积是120,E 为CC 1的中点,则三棱锥E BCD 的体积是 .解析:设长方体中BC =a ,CD =b ,CC 1=c ,则abc =120, 所以V E BCD =13×12ab ×12c =112abc =10.答案:102.将一个相邻边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是 .解析:当底面周长为4π时,底面圆的半径为2,两个底面的面积之和是8π;当底面周长为8π时,底面圆的半径为4,两个底面的面积之和为32π.无论哪种方式,侧面积都是矩形的面积32π2,故所求的表面积是32π2+8π或32π2+32π.答案:32π2+8π或32π2+32π空间几何体的表面积(师生共研)(1)(2018·高考全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2020·湖南省五市十校联考)某四棱锥的三视图如图所示,其侧视图是等腰直角三角形,俯视图的轮廓是直角梯形,则该四棱锥的各侧面面积的最大值为( )A .8B .4 5C .8 2D .12 2【解析】 (1)因为过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+22π×22=12π.(2)由三视图可知该几何体是一个底面为直角梯形,高为4的四棱锥,如图,其中侧棱PA ⊥平面ABCD ,PA =4,AB =4,BC =4,CD =6,所以AD =25,PD =6,PB =42,连接AC ,则AC =42,所以PC =43,显然在各侧面面积中△PCD 的面积最大,又PD =CD =6,所以PC 边上的高为62-⎝ ⎛⎭⎪⎫4322=26,所以S △PCD =12×43×26=122,故该四棱锥的各侧面面积的最大值为122,故选D.【答案】 (1)B (2)D空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积问题应注意衔接部分的处理. (3)旋转体的表面积问题应注意其侧面展开图的应用.1.(2020·江西七校第一次联考)一个半径为1的球对称削去了三部分,其俯视图如图所示,那么该立体图形的表面积为( )A .3πB .4πC .5πD .6π解析:选C.由题中俯视图可知该球被平均分成6部分,削去了3部分,剩余的3部分为该几何体,所以该立体图形的表面积为2×π×12+3×π×12=5π,故选C.2.(2020·辽宁丹东质量测试(一))一个圆锥的轴截面是面积为1的等腰直角三角形,则这个圆锥的侧面积为 .解析:设圆锥的底面圆半径为r ,因为圆锥的轴截面是面积为1的等腰直角三角形,所以等腰直角三角形的斜边长为2r ,斜边上的高为r ,所以12×2r ×r =1,解得r =1,圆锥的母线长l =12+12=2,圆锥的侧面积为πrl =2π. 答案:2π空间几何体的体积(多维探究) 角度一 求简单几何体的体积(1)(2020·石家庄质量检测)某几何体的三视图如图所示(图中小正方形网格的边长为1),则该几何体的体积是( )A .8B .6C .4D .2(2)将一张边长为12 cm 的正方形纸片按如图(1)所示将阴影部分的四个全等的等腰三角形裁去,余下部分沿虚线折叠并拼成一个有底的正四棱锥,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )A.3236 cm 3B.6436 cm 3C.3232 cm 3D .6432 cm 3【解析】 (1)由三视图可得该几何体为底面是直角梯形的直四棱柱(如图所示),其中底面直角梯形的上、下底分别为1,2,高为2,直四棱柱的高为2,所以该几何体的体积为(1+2)×22×2=6,故选B. (2)设折成的四棱锥的底面边长为a cm ,高为h cm ,则h =32a cm ,由题设可得四棱锥侧面的高等于四棱锥的底面边长,所以12a +a =12×22⇒a =42,所以四棱锥的体积V =13×(42)2×32×42=6463cm 3,故选B. 【答案】 (1)B (2)B简单几何体体积的求法对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解.角度二 求组合体的体积(2020·唐山市摸底考试)已知某几何体的三视图如图所示(俯视图中曲线为四分之一圆弧),则该几何体的表面积为( )A .1-π4B .3+π2C .2+π4D .4【解析】 由题设知,该几何体是棱长为1的正方体被截去底面半径为1的14圆柱后得到的,如图所示,所以表面积S =2×(1×1-14×π×12)+2×(1×1)+14×2π×1×1=4.故选D.【答案】 D(1)处理体积问题的思路 (2)求体积的常用方法 直接法 对于规则的几何体,利用相关公式直接计算割补法把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算 等体积法选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面作为三棱锥的底面进行等体积变换1.(2019·高考北京卷)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为 .解析:如图,由三视图可知,该几何体为正方体ABCD A 1B 1C 1D 1去掉四棱柱B 1C 1GF A 1D 1HE 所得,其中正方体ABCD A 1B 1C 1D 1的体积为64,VB 1C 1GF A 1D 1HE =(4+2)×2×12×4=24,所以该几何体的体积为64-24=40.答案:402.(2019·高考全国卷Ⅲ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD A 1B 1C 1D 1挖去四棱锥O EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3.不考虑打印损耗,制作该模型所需原料的质量为 g.解析:长方体ABCD A 1B 1C 1D 1的体积V 1=6×6×4=144(cm 3),而四棱锥O EFGH 的底面积为矩形BB 1C 1C 的面积的一半,高为AB 长的一半,所以四棱锥O EFGH 的体积V 2=13×12×4×6×3=12(cm 3),所以长方体ABCD A 1B 1C 1D 1挖去四棱锥O EFGH 后所得几何体的体积V =V 1-V 2=132(cm 3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案:118.8球与空间几何体的接、切问题(师生共研)(1)若直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,且AB =3,AC =4,AB⊥AC ,AA 1=12,则球O 的表面积为 .(2)(一题多解)(2019·高考天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 .【解析】 (1)将直三棱柱补形为长方体ABEC A 1B 1E 1C 1,则球O 是长方体ABEC A 1B 1E 1C 1的外接球.所以体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13. 故S 球=4πR 2=169π.(2)法一:由题意得圆柱的高为四棱锥高的一半,底面圆的直径为以四棱锥侧棱的四个中点为顶点的正方形的对角线,易求得圆柱的底面圆的直径为1,高为1,所以该圆柱的体积V =π×⎝ ⎛⎭⎪⎫122×1=π4.法二:由题可得,四棱锥底面对角线的长为2,则圆柱底面的半径为12,易知四棱锥的高为5-1=2,故圆柱的高为1,所以该圆柱的体积为π×⎝ ⎛⎭⎪⎫122×1=π4. 【答案】 (1)169π (2)π4处理球的“切”“接”问题的求解策略解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:1.正四棱锥P ABCD 的侧棱和底面边长都等于22,则它的外接球的表面积是( ) A .16π B .12π C .8πD .4π解析:选A.设正四棱锥的外接球半径为R ,顶点P 在底面上的射影为O ,因为OA =12AC=12 AB 2+BC 2=12(22)2+(22)2=2,所以PO =PA 2-OA 2=(22)2-22=2.又OA =OB =OC =OD =2,由此可知R =2,于是S 球=4πR 2=16π.2.设球O 内切于正三棱柱ABC A 1B 1C 1,则球O 的体积与正三棱柱ABC A 1B 1C 1的体积的比值为 .解析:设球O 半径为R ,正三棱柱ABC A 1B 1C 1的底面边长为a ,则R =33×a 2=36a ,即a =23R ,又正三棱柱ABC A 1B 1C 1的高为2R ,所以球O 的体积与正三棱柱ABC A 1B 1C 1的体积的比值为43πR 334a 2×2R =43πR 334×12R 2×2R =23π27.答案:23π27核心素养系列14 直观想象——数学文化与空间几何体(2020·甘肃、青海、宁夏3月联考)汉朝时,张衡得出圆周率的平方除以16等于58.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为( )A .32B .40 C.32103D .40103【解析】 将三视图还原成如图所示的几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积V =12π×22×4+13×12π×22×4=323π,因为圆周率的平方除以16等于58,即π216=58,所以π=10,所以V =32103.故选C.【答案】 C本题是数学文化与三视图结合,主要是根据几何体的三视图及三视图中的数据,求几何体的体积或侧(表)面积.此类问题难点:一是根据三视图的形状特征确定几何体的结构特征;二是将三视图中的数据转化为几何体的几何度量.考查了直观想象这一核心素养.(2020·安徽六安一中模拟(四))我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b ,高皆为a 的半椭球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d 处的平面截这两个几何体,可横截得到S 圆及S 环两截面.可以证明S 圆=S 环总成立.据此,短半轴长为1,长半轴长为3的椭球体的体积是 .解析:因为S 圆=S 环总成立,所以半椭球体的体积为πb 2a -13πb 2a =23πb 2a ,所以椭球体的体积V =43πb 2a .因为椭球体的短半轴长为1,长半轴长为3. 所以椭球体的体积V =43πb 2a =43π×12×3=4π.答案:4π[基础题组练]1.(2020·安徽合肥质检)已知圆锥的高为3,底面半径为4,若一球的表面积与此圆锥侧面积相等,则该球的半径为( )A .5 B. 5 C .9D .3解析:选B.因为圆锥的底面半径r =4,高h =3,所以圆锥的母线l =5,所以圆锥的侧面积S =πrl =20π,设球的半径为R ,则4πR 2=20π,所以R =5,故选B.2.(2020·蓉城名校第一次联考)已知一个几何体的正视图和侧视图如图1所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图2所示),则此几何体的体积为( )A .1 B. 2 C .2D .2 2解析:选B.根据直观图可得该几何体的俯视图是一个直角边长分别是2和2的直角三角形(如图所示),根据三视图可知该几何体是一个三棱锥,且三棱锥的高为3,所以体积V =13×⎝ ⎛⎭⎪⎫12×2×2×3= 2.故选B.3.(2020·武汉市武昌调研考试)中国古代数学名著《九章算术》中记载了公元前344年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(单位:立方寸),则图中的x 为( )A .1.2B .1.6C .1.8D .2.4解析:选B.该几何体是一个组合体,左边是一个底面半径为12的圆柱,右边是一个长、宽、高分别为5.4-x ,3,1的长方体,所以组合体的体积V =V 圆柱+V 长方体=π·⎝ ⎛⎭⎪⎫122×x +(5.4-x )×3×1=12.6(其中π=3),解得x =1.6.故选B.4.(2020·辽宁大连第一次(3月)双基测试)我国古代数学名著《九章算术》中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何 ”.羡除是一个五面体,其中三个面是梯形,另两个面是三角形,已知一个羡除的三视图如图中粗线所示,其中小正方形网格的边长为1,则该羡除的表面中,三个梯形的面积之和为( )A .40B .43C .46D .47解析:选C.由三视图可知,该几何体的直观图如图所示,其中平面ABCD ⊥平面ABEF ,CD =2,AB =6,EF =4,等腰梯形ABEF 的高为3,等腰梯形ABCD 的高为4,等腰梯形FECD的高为9+16=5,三个梯形的面积之和为2+62×4+4+62×3+2+42×5=46,故选C.5.(2020·辽宁沈阳东北育才学校五模)将半径为3,圆心角为2π3的扇形围成一个圆锥,则该圆锥的内切球的表面积为( )A .πB .2πC .3πD .4π解析:选B.将半径为3,圆心角为2π3的扇形围成一个圆锥,设圆锥的底面圆半径为R ,则有2πR =3×2π3,所以R =1.设圆锥的内切球半径为r ,圆锥的高为h ,内切球球心必在圆锥的高线上,因为圆锥的母线长为3,所以h =9-1=22,所以有rh -r =R 3,解得r =22,因此内切球的表面积S =4πr 2=2π.故选B. 6.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 .解析:设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7.答案:77.(2020·沈阳质量监测)某四棱锥的三视图如图所示,则该四棱锥的侧面积是 .解析:由三视图可知该几何体是一个四棱锥,记为四棱锥P ABCD ,如图所示,其中PA ⊥底面ABCD ,四边形ABCD 是正方形,且PA =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝ ⎛⎭⎪⎫12×2×2+12×2×22=4+4 2.答案:4+4 28.(2020·长春市质量监测(一))已知一所有棱长都是2的三棱锥,则该三棱锥的体积为 .解析:记所有棱长都是2的三棱锥为P ABC ,如图所示,取BC 的中点D ,连接AD ,PD ,作PO ⊥AD 于点O ,则PO ⊥平面ABC ,且OP =63×2=233,故三棱锥P ABC 的体积V =13S △ABC·OP =13×34×(2)2×233=13.答案:139.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.解:由已知得CE =2,DE =2,CB =5,S 表面积=S 圆台侧+S 圆台下底+S 圆锥侧=π(2+5)×5+π×25+π×2×22=(60+42)π,V =V 圆台-V 圆锥=13(π·22+π·52+22·52π2)×4-13π×22×2=1483π.10.(应用型)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P A 1B 1C 1D 1,下部的形状是正四棱柱ABCD A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解:由PO 1=2 m ,知O 1O =4PO 1=8 m.因为A 1B 1=AB =6 m ,所以正四棱锥P A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3);正四棱柱ABCD A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3),所以仓库的容积V =V 锥+V 柱=24+288=312(m 3). 故仓库的容积是312 m 3.[综合题组练]1.(2019·高考全国卷Ⅰ)已知三棱锥P ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .86πB .46πC .26πD .6π解析:选D.因为点E ,F 分别为PA ,AB 的中点, 所以EF ∥PB ,因为∠CEF =90°, 所以EF ⊥CE ,所以PB ⊥CE . 取AC 的中点D ,连接BD ,PD ,易证AC ⊥平面BDP ,所以PB ⊥AC ,又AC ∩CE =C ,AC ,CE ⊂平面PAC ,所以PB ⊥平面PAC ,所以PB ⊥PA ,PB ⊥PC ,因为PA =PB =PC ,△ABC 为正三角形,所以PA ⊥PC ,即PA ,PB ,PC 两两垂直,将三棱锥P ABC 放在正方体中如图所示.因为AB =2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥P ABC的外接球的半径R =62,所以球O 的体积V =43πR 3=43π⎝ ⎛⎭⎪⎫623=6π,故选D. 2.如图,正方体ABCD A 1B 1C 1D 1的棱长为3,线段B 1D 1上有两个动点E ,F 且EF =1,则当E ,F 移动时,下列结论不正确的是( )A .AE ∥平面C 1BDB .四面体ACEF 的体积不为定值C .三棱锥A BEF 的体积为定值D .四面体ACDF 的体积为定值解析:选B.对于A ,如图1,AB 1∥DC 1,易证AB 1∥平面C 1BD ,同理AD 1∥平面C 1BD ,且AB 1∩AD 1=A ,所以平面AB 1D 1∥平面C 1BD ,又AE ⊂平面AB 1D 1,所以AE ∥平面C 1BD ,A 正确;对于B ,如图2,S △AEF =12EF ·h 1=12×1×(32)2-⎝ ⎛⎭⎪⎫3222=364,点C 到平面AEF 的距离为点C 到平面AB 1D 1的距离d 为定值,所以V A CEF =V C AEF =13×364×d =64d 为定值,所以B 错误;对于C ,如图3,S △BEF =12×1×3=32,点A 到平面BEF 的距离为A 到平面BB 1D 1D 的距离d 为定值,所以V A BEF =13×32×d =12d 为定值,C 正确;对于D ,如图4,四面体ACDF 的体积为V A CDF =V F ACD =13×12×3×3×3=92为定值,D 正确. 3.(2020·东北师大附中、重庆一中等校联合模拟)若侧面积为4π的圆柱有一外接球O ,当球O 的体积取得最小值时,圆柱的表面积为 .解析:设圆柱的底面圆半径为r ,高为h ,则球的半径R =r 2+⎝ ⎛⎭⎪⎫h 22. 因为球的体积V =4π3R 3,故V 最小当且仅当R 最小. 圆柱的侧面积为2πrh =4π,所以rh =2.所以h 2=1r, 所以R =r 2+1r2≥2, 当且仅当r 2=1r 2.即r =1时取等号,此时k 取最小值,所以r =1,h =2,圆柱的表面积为2π+4π=6π. 答案:6π4.(2020·新疆第一次毕业诊断及模拟测试)如图,A 1B 1C 1D 1是以ABCD 为底面的长方体的一个斜截面,其中AB =4,BC =3,AA 1=5,BB 1=8,CC 1=12,求该几何体的体积.解:过A 1作A 1E ⊥BB 1于点E ,作A 1G ⊥DD 1于点G ,过E 作EF ⊥CC 1于点F ,过D 1作D 1H ⊥CC 1于点H ,连接EH ,GF ,因为平面ABB 1A 1∥平面DCC 1D 1,所以A 1B 1∥D 1C 1.因为AA 1=BE =5,所以EB 1=8-5=3,C 1H =EB 1=3,GD 1=HF =12-5-3=4,则几何体被分割成一个长方体ABCD A 1EFG ,一个斜三棱柱A 1B 1E D 1C 1H 和一个直三棱柱A 1D 1G EHF .故该几何体的体积为V =3×4×5+12×3×4×4+12×3×4×3=102.。
《131空间几何体的表面积与体积(1)》导学案2.docx
《1.3.1空间几何体的表面积与体积(1)》导学案2学习目标:1.理解和掌握柱、锥、台的表面积计算公式;2.能运用柱、锥、台的表面积公式进行计算和解决有关实际问题.学习重点:柱、锥、台表面积、体积的计算公式.学习难点:利用相应公式求柱、锥、台表面积、体积.学习过程课前预习(预习教材P23〜卩25,找出疑惑之处)复习:斜二测画法画的直观图中,F轴与y轴的夹角为—,在原图中平行于X轴或歹轴的线段画成与—和—保持平行;其中平行于兀轴的线段长度保持 ,平行于歹轴的线段长度 .引入:研究空间几何体,除了研究结构特征和视图以外,还得研究它的表面积和体积. 表面积是几何体表面的面积,表示几何体表面的大小;体积是几何体所占空I'可的大小.那么如何求柱、锥、台、球的表面积和体积呢?课内探究探究1:棱柱、棱锥、棱台的表面积问题:我们学习过正方体和长方体的表面积,以及它们的展开图(下图),你觉的它们展开图与其表面积有什么关系吗?结论:正方体、长方体是由多个平面围成的多面体,其表面积就是各个面的面积的和, 也就是展开图的面积.新知1:棱柱、棱锥、棱台都是多面体,它们的表面积就是其侧面展开图的面积加上底 面的面积.试试1:想想下面多面体的侧面展开图都是什么样子,它们的表面积如何计算?探究2:圆柱、圆锥、圆台的表面积问题:根据圆柱、圆锥的几何特征,它们的侧面展开图是什么图形?它们的 表面积等于什么?你能推导它们表面积的计算公式吗?新知2: (1)设圆柱的底面半径为厂,母线长为/,则它的表面积等于圆柱的侧面积(矩形) 加上底面积(两个圆),即S = 2龙尸+ 2^/7 = 2^r (r + /).(2)设圆锥的底面半径为厂,母线长为/,则它的表面积等于圆锥的侧面积(扇形)加上底 面积(圆形),即 S = 7rr 2 + 7crl = nr (r + /).试试2:圆台的侧面展开图叫扇环,扇环是怎么得到的呢?(能否看作是个大扇形减去个 小扇形呢)你能试着求出扇环的血积吗?从而圆台的表面积呢?新知3:设圆台的上、下底面半径分别为厂,母线长为/,则它的表面积等上、下底面的面积(大、小圆)加上侧面的面积(扇环),即S = 7tr~ + 7tr 2 + 7r (rl + rl ) = 7r (r 2 +r 2 + rl + rl ).正六棱柱 正四棱台 正I 川榜锥反思:想想圆柱、圆锥、圆台的结构,你觉得它们的侧面积Z间有什么关系吗?例1已知棱长为各面均为等边三角形的四面体S-ABC,求它的表面积.例2如图,一个圆台形花盆盆口直径为20 cm ,盆底直径为15 CM,底部渗水圆孔直径为1.56777 ,盆壁长15C7H.为了美化花盆的外观,需要涂油漆.已知每平方米用100毫升油漆,涂100个这样的花盆需要多少油漆(龙取3. 14,结果精确到1毫升)?动手试试练1. 一个正三棱锥的侧面都是直角三角形,底面边长为Q,求它的表面积.练2.粉碎机的上料斗是正四棱台形状,它的上、下底面边长分别为80加加、440"", 高(上下底面的距离)是200,计算制造这样一个下料斗所需铁板的面积.当堂检测1.正方体的表面积是64,则它对角线的长火/().4 4^3 B. 3^4 C. 4 运 D. 162.一个圆柱的侧面展开图是一个正方形,这个圆柱的表面积与侧面积的比是().4 1 + 2龙小1 + 4兀小1 + 2兀f 1 + 4”A. -------B. ----------C. --------D. -----------2龙4兀兀2龙3.一个正四棱台的两底面边长分别为加,侧面积等于两个底面积之和,则这个棱台的高为().mn mn _ m + n tn - nA. ------B. -----------C. -----------D. --------m + n m — n mn mn4.如果圆锥的轴截面是正三角形,则该圆锥的侧面积与表面积的比是 _______________ .5.已知圆台的上、下底面半径和高的比为1 : 4: 4,母线长为10,则圆台的侧血积为课后反思1.棱柱、棱锥、棱台及圆柱、圆锥、圆台的表面积计算公式;2.将空间图形问题转化为平面图形问题,是解决立体儿何问题最基木、最常用的方法.知识拓展当柱体、锥体、台体是一些特殊的几何体,比如直棱柱、正棱锥、正棱台时,它们的展开图是一些规则的平面图形,表面积比较好求;当它们不是特殊的几何体,比如斜棱柱、不规则的四面体时,要注意分析各个面的形状、特点,看清楚题目所给的条件,想办法求出各个面的面积,最后相加.课后训练1、用长为4,宽为2的矩形做面围成一个圆柱,则此圆柱的侧面积为()284— B.—C・— D. 8兀兀7C2.圆锥的底面半径为厂,母线长为/,侧面展开图扇形的圆心角为& ,求证:&*360 (度).3•如图,在长方体中,AB = h , BC = c , CC] = a ,且求沿着长方体表面4 到G的最短路线长.A B。
空间几何体的表面积和体积导学案
1.3.1柱体、锥体、台体的表面积与体积班级:_______姓名:_______一、教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。
(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与柱体和锥体之间的转换关系。
(3)培养学生空间想象能力和思维能力。
2、过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状。
(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。
3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。
从而增强学习的积极性。
二、教学重点、难点重点:柱体、锥体、台体的表面积和体积计算难点:台体体积公式的推导三、学法与教学用具1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标。
2、教学用具:实物几何体,投影仪四、教学设想1、创设情境(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类。
(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。
2、探究新知知识探究(一)柱体、锥体、台体的表面积思考1:面积是相对于平面图形而言的,体积是相对于空间几何体而言的.你知道面积和体积的含义吗?思考2:所谓表面积,是指几何体表面的面积.怎样理解棱柱、棱锥、棱台的表面积?思考3:圆柱、圆锥、圆台的底面都是圆面,侧面都是曲面,怎样求它们的侧面面积?思考4:圆柱的侧面展开图的形状有哪些特征?如果圆柱的底面半径为r,母线长为l,那么圆柱的表面积公式是什么?思考5:圆锥的侧面展开图的形状有哪些特征?如果圆锥的底面半径为r,母线长为l,那么圆锥的表面积公式是什么?思考6:圆台的侧面展开图的形状有哪些特征?如果圆台的上、下底面半径分别为r′、r,母线长为l,那么圆台的表面积公式是什么?(思考2)思考7:在圆台的表面积公式中,若r′=r,r′=0,则公式分别变形为什么?知识探究(二)柱体、锥体、台体的体积思考1:你还记得正方体、长方体和圆柱的体积公式吗?它们可以统一为一个什么公式?思考2:推广到一般的棱柱和圆柱,你猜想柱体的体积公式是什么?(图在上面)思考3:关于体积有如下几个原理:(1)相同的几何体的体积相等;(2)一个几何体的体积等于它的各部分体积之和;(3)等底面积等高的两个同类几何体的体积相等;(4)体积相等的两个几何体叫做等积体.将一个三棱柱按如图所示分解成三个三棱锥,那么这三个三棱锥的体积有什么关系?它们与三棱柱的体积有什么关系?1 231 23思考4:推广到一般的棱锥和圆锥,你猜想锥体的体积公式是什么?(思考5图)思考5:根据棱台和圆台的定义,如何计算台体的体积?设台体的上、下底面面积分别为S′、S,高为h,那么台体的体积公式是什么?思考6:在台体的体积公式中,若S′=S,S′=0,则公式分别变形为什么?理论迁移例1 求各棱长都为a的四面体的表面积.例2 一个圆台形花盆盆口直径为20cm,盆底直径为15cm,底部渗水圆孔直径为1.5cm,盆壁长15cm,为了美化花盆的外观,需要涂油漆. 已知每平方米用100毫升油漆,涂100个这样的花盆需要多少油漆(精确到1毫升)?例3 有一堆规格相同的铁制六角螺帽共重5.8kg(铁的密度是7.8g/cm3),已知螺帽的底面是正六边形,边长为12mm,内孔直径为10mm,,高为10mm,问这堆螺帽大约有多少个?课堂小结本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式。
2013高考数学(理)一轮复习教案:第八篇_立体几何第2讲_空间几何体的表面积与体积
2空间几何体的表面积与体积2013年高考预测考查柱、锥、台、球的体积和表面积,由原来的简单公式套用渐渐变为与三视图及柱、锥与球的接切问题相结合,难度有所增大.【复习指导】本讲复习时,熟记棱柱、棱锥、圆柱、圆锥的表面积和体积公式,运用这些公式解决一些简单的问题.基础梳理1.柱、锥、台和球的侧面积和体积2.(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.考向一几何体的表面积【例1】►(2011·安徽)一个空间几何体的三视图如图所示,则该几何体的表面积为().A.48 B.32+817C.48+817 D.80答案 C以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.【训练1】若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于().A. 3 B.2C.2 3 D.6考向二几何体的体积【例2】►(2011·广东)如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为().A.18 3 B.12 3 C.9 3 D.6 3答案 C以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.【训练2】(2012·东莞模拟)某几何体的三视图如图所示,则该几何体的体积等于().A.283π B.163πC.43π+8 D.12 π解析由三视图可知,该几何体是底面半径为2,高为2的圆柱和半径为1的球的组合体,则该几何体的体积为π×22×2+43π=28 3π.答案 A考向三几何体的展开与折叠【例3】►(2012·广州模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体DABC,如图2所示.(1)求证:BC⊥平面ACD;(2)求几何体DABC的体积.[审题视点] (1)利用线面垂直的判定定理,证明BC垂直于平面ACD内的两条相交线即可;(2)利用体积公式及等体积法证明.(1)证明在图中,可得AC=BC=22,从而AC2+BC2=AB2,故AC⊥BC,取AC的中点O,连接DO,则DO⊥AC,又平面ADC⊥平面ABC,平面ADC∩平面ABC=AC,DO⊂平面ADC,从而DO⊥平面ABC,∴DO⊥BC,又AC⊥BC,AC∩DO=O,∴BC⊥平面ACD.(2)解 由(1)可知,BC 为三棱锥BACD 的高,BC =22,S △ACD =2,∴V BACD = 13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体DABC 的体积为423.(1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.难点——空间几何体的表面积和体积的求解空间几何体的表面积和体积计算是高考的一个常见考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧、把一个空间几何体纳入一个更大的几何体中的补形技巧、对旋转体作其轴截面的技巧、通过方程或方程组求解的技巧等,这是化解空间几何体面积和体积计算难点的关键.【示例1】► (2010·安徽)一个几何体的三视图如图,该几何体的表面积为( ).A .280B .292C .360D .372【示例2】►(2011·全国新课标)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.。
[精品]新高中数学第一轮复习第一课时空间几何体的结构及其表面积与体积导学案
第一课时空间几何体的结构及表面积与体积【学习目标】①认识柱,锥,台,球及其简单组合体的结构特征。
②了解柱,锥,台,球的表面积与体积的计算公式【考纲要求】①空间几何体的结构及其表面积与体积的计算公式是A级要求【自主学习】1.棱柱的定义:2.棱锥的定义:3.棱台的定义:4.圆柱的定义:5.圆锥的定义:6 圆台的定义:7 球的定义:[课前热身]1下列不正确的命题的序号是 .①有两个面平行,其余各面都是四边形的几何体叫棱柱②有两个面平行,其余各面都是平行四边形的几何体叫棱柱③有一个面是多边形,其余各面都是三角形的几何体叫棱锥2如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是3 若一个球的体积为,则它的表面积为_____________4 一张长宽分别是8cm和6cm的矩形硬纸板,将这硬纸板折成正四棱柱的侧面,则此四棱柱的对角线长为_______________π,母线长为2,则此圆锥的底面半径5 一圆锥的侧面展开图的中心角为23为________________,则其母线与底面所成角的正弦6 一圆锥的轴截面面积等于它的侧面积的14值为_________________[典型例析]例1 下列结论不正确的是(填序号).①各个面都是三角形的几何体是三棱锥②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥④圆锥的顶点与底面圆周上的任意一点的连线都是母线例2如图所示,等腰ABCD的底边AB=CD=3.点E是线段BD上异于B,D的动点。
点F在BC边上,且EF⊥AB.现沿EF将BEF折起到PEF的位置,使PE AE⊥.记BE=x,V(x)表示四棱锥P-ACEF的体积。
[当堂检测]1.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于 .2. 如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中为真命题的是(填序号).①等腰四棱锥的腰与底面所成的角都相等②等腰四棱锥的侧面与底面所成的二面角都相等或互补③等腰四棱锥的底面四边形必存在外接圆④等腰四棱锥的各顶点必在同一球面上BFD1E在该正方体的面上的正投影可能是 .(把可能的图的序号都填上)4 若正方体的全面积为6,且它的所有顶点都在同一个球面上,则这个球的体积=_______________________5已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图如图所示,则该凸多面体的体积V= .[学后反思]________________________________________________________________________________________________________________________ _____________________________________________________________。
2013-2014学年高三数学一轮复习导学案:空间几何体的表面积(1)
课题: 空间几何体的表面积
姓名:
一:学习目标
1.了解棱柱、棱锥、棱台的侧面积 2.会求一些简单几何体的表面积. 二:课前预习 1. 对于一些特殊的简单的多面体,我们如何求它们的表面积?
备注
2. 请回答一下直棱柱、正棱柱、正棱锥、正棱台相关概念。
2/5
2013-2014 学年高三数学一轮复习导学案:空间几何体的表面积(1)
1.长方体 AC1 的长宽高分别为 5、4、3,一个能爬不能 飞的小虫由长方体的表面沿顶点 A 到顶点 C1 所走的最短 路程为________
空间几何体的表面积 姓名: 3/5
2013-2014 学年高三数学一轮复习导学案:空间几何体的表面积(1) 当堂检测 1..以下命题:
SHale Waihona Puke 1O2E
变题:求底面边长为 2m,高为 1m 的正三棱锥的全面积
1/5
2013-2014 学年高三数学一轮复习导学案:空间几何体的表面积(1)
例 2.一个直角梯形上底、下底和高之比 2:4: 5 .将此直角梯形以垂直
于底的腰为轴旋转一周形成一个圆台求这个圆台上底面积、下底面积和 侧面积之比.
2x B
(1) 求三棱台的斜高;(2)求三棱台的侧面积和表面积.
5/5
①直角三角形绕一边所在直线旋转得到的旋转体是圆锥; ②夹在圆柱的两个平行截面间的几何体还是圆柱; ③圆锥截去一个小圆锥后剩余部分是圆台; ④棱锥截去一个小棱锥后剩余部分是棱台. 其中正确的命题序号是________.
2.已知一个正三棱台的两个底面的边长分别为 8cm 和 18cm,侧棱长为 13cm,求 它的侧面积.
2013年普通高考数学科一轮复习精品学案 第9讲 空间几何体的表面积和体积
2013年普通高考数学科一轮复习精品学案第9讲空间几何体的表面积和体积一.课标要求:了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
二.命题走向近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。
即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。
由于本讲公式多反映在考题上,预测2013年高考有以下特色:(1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;三.要点精讲1.多面体的面积和体积公式表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。
2.旋转体的面积和体积公式表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。
四.典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:)2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。
点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。
我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。
例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=。
2013高考数学(理)一轮复习教案:第八篇 立体几何第2讲 空间几何体的表面积与体积2013高考数学
第2讲空间几何体的表面积与体积【2013年高考会这样考】考查柱、锥、台、球的体积和表面积,由原来的简单公式套用渐渐变为与三视图及柱、锥与球的接切问题相结合,难度有所增大.【复习指导】本讲复习时,熟记棱柱、棱锥、圆柱、圆锥的表面积和体积公式,运用这些公式解决一些简单的问题.基础梳理1.柱、锥、台和球的侧面积和体积面积体积圆柱S侧=2πrh V=Sh=πr2h圆锥S侧=πrlV=13Sh=13πr2h=13πr2l2-r2圆台S侧=π(r1+r2)lV=13(S上+S下+S上S下)h=13π(r21+r22+r1r2)h直棱柱S侧=Ch V=Sh正棱锥S侧=12Ch′V=13Sh正棱台S侧=12(C+C′)h′V=13(S上+S下+S上S下)h球S球面=4πR2V=43πR3(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.作出新的选择化学教案那就是化学教案以刺猬的抱负化学教案做狐狸的工作化学教案不迷失自己的价、两种方法(1)解与球有关的组合体问题的方法,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图.元试卷试题这样养孩子的花费令人咂舌试卷试题那么问题来了化学教案在天津化学教案孩子(2)等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高.这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.教案最终呈现出潮汕本土、香港和南洋三种风格、双基自测1.(人教A 版教材习题改编)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是( ).A .4πS B .2πS C .πSD.233πS解析 设圆柱底面圆的半径为r ,高为h ,则r =Sπ,又h =2πr =2πS ,∴S 圆柱侧=(2πS )2=4πS .答案 A2.(2012·东北三校联考)设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为().A.3πa2B.6πa2C.12πa2D.24πa2解析由于长方体的长、宽、高分别为2a、a、a,则长方体的体对角线长为(2a)2+a2+a2=6a.又长方体外接球的直径2R等于长方体的体对角线,∴2R=6a.∴S球=4πR2=6πa2.答案 B3.(2011·北京)某四面体的三视图如图所示,该四面体四个面的面积中最大的是().A.8 B.6 2C.10 D.8 2解析由三视图可知,该几何体的四个面都是直角三角形,面积分别为6,62,8,10,所以面积最大的是10,故选择C.答案 C4.(2011·湖南)设右图是某几何体的三视图,则该几何体的体积为().A.92π+12 B.92π+18C .9π+42D .36π+18解析 该几何体是由一个球与一个长方体组成的组合体,球的直径为3,长方体的底面是边长为3的正方形,高为2,故所求体积为2×32+43π⎝ ⎛⎭⎪⎫323=92π+18.答案 B5.若一个球的体积为43π,则它的表面积为________.解析 V =4π3R 3=43π,∴R =3,S =4πR 2=4π·3=12π.答案 12π考向一 几何体的表面积【例1】►(2011·安徽)一个空间几何体的三视图如图所示,则该几何体的表面积为( ).A .48B .32+817C .48+817D .80[审题视点] 由三视图还原几何体,把图中的数据转化为几何体的尺寸计算表面积.解析 换个视角看问题,该几何体可以看成是底面为等腰梯形,高为4的直棱柱,且等腰梯形的两底分别为2,4,高为4,故腰长为17,所以该几何体的表面积为48+817.答案 C以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.【训练1】若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于().A. 3 B.2C.2 3 D.6解析由正视图可知此三棱柱是一个底面边长为2的正三角形、侧棱为1的直三棱柱,则此三棱柱的侧面积为2×1×3=6.答案 D考向二几何体的体积【例2】►(2011·广东)如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为().A.18 3 B.12 3 C.9 3 D.63[审题视点] 根据三视图还原几何体的形状,根据图中的数据和几何体的体积公式求解.解析该几何体为一个斜棱柱,其直观图如图所示,由题知该几何体的底面是边长为3的正方形,高为3,故V=3×3×3=9 3.答案 C以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.【训练2】(2012·东莞模拟)某几何体的三视图如图所示,则该几何体的体积等于().A.283π B.163πC.43π+8 D.12 π解析由三视图可知,该几何体是底面半径为2,高为2的圆柱和半径为1的球的组合体,则该几何体的体积为π×22×2+43π=28 3π.答案 A考向三几何体的展开与折叠【例3】►(2012·广州模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,将△ADC 沿AC折起,使平面ADC⊥平面ABC,得到几何体DABC,如图2所示.(1)求证:BC ⊥平面ACD ; (2)求几何体DABC 的体积.[审题视点] (1)利用线面垂直的判定定理,证明BC 垂直于平面ACD 内的两条相交线即可;(2)利用体积公式及等体积法证明.(1)证明 在图中,可得AC =BC =22,从而AC 2+BC 2=AB 2,故AC ⊥BC , 取AC 的中点O ,连接DO ,则DO ⊥AC ,又平面ADC ⊥平面ABC ,平面ADC ∩平面ABC =AC ,DO ⊂平面ADC ,从而DO ⊥平面ABC ,∴DO ⊥BC ,又AC ⊥BC ,AC ∩DO =O ,∴BC ⊥平面ACD .(2)解 由(1)可知,BC 为三棱锥BACD 的高,BC =22,S △ACD =2,∴V BACD =13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体DABC 的体积为423. (1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【训练3】已知在直三棱柱ABCA1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1=2,P是BC1上一动点,如图所示,则CP+P A1的最小值为________.解析P A1在平面A1BC1内,PC在平面BCC1内,将其铺平后转化为平面上的问题解决.计算A1B=AB1=40,BC1=2,又A1C1=6,故△A1BC1是∠A1C1B=90°的直角三角形.铺平平面A1BC1、平面BCC1,如图所示.CP+P A1≥A1C.在△AC1C中,由余弦定理得A1C=62+(2)2-2·6·2·cos 135°=50=52,故(CP+P A1)min=5 2.答案5 2难点突破17——空间几何体的表面积和体积的求解空间几何体的表面积和体积计算是高考的一个常见考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧、把一个空间几何体纳入一个更大的几何体中的补形技巧、对旋转体作其轴截面的技巧、通过方程或方程组求解的技巧等,这是化解空间几何体面积和体积计算难点的关键.【示例1】►(2010·安徽)一个几何体的三视图如图,该几何体的表面积为().A.280 B.292 C.360 D.372【示例2】►(2011·全国新课标)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名: 备 注
2.会求一些简单几何体的表面积. 二:课前预习 1. 对于一些特殊的简单的多面体,我们如何求它们的表面积?
2. 请回答一下直棱柱、正棱柱、正棱锥、正棱台相关概念。
3. S直棱柱侧 =
S正棱锥侧 =
S正棱台侧 =
姓名:
2
当堂检测 1..以下命题: ①直角三角形绕一边所在直线旋转得到的旋转体是圆锥; ②夹在圆柱的两个平行截面间的几何体还是圆柱; ③圆锥截去一个小圆锥后剩余部分是圆台; ④棱锥截去一个小棱锥后剩余部分是棱台. 其中正确的命题序号是________. 2.已知一个正三棱台的两个底面的边长分别为 8cm 和 18cm,侧棱长为 13cm,求 它的侧面积.
4
4.请回答一下正棱柱、正棱台以及正棱锥侧面积之间的关系。
5. S圆柱侧 =
S圆棱锥侧 =
S正棱台侧 =
6.请回答一下圆锥、圆台,圆柱的侧面积之间的关系
例 1.如下图(1)所示, 三棱锥 P-ABC 的侧棱的长度均为 1, 且侧 棱间的夹角均为 40°, 动点 M 在棱 PB 上移动, 动点 N 在棱 PC 上移动,求 AM+MN+NA 的最小值
例 2. 设计一个正四棱锥形冷水塔塔顶,高是 1m,底面的边长是 2m,制造Байду номын сангаас种塔顶需要 S 多少平方米的铁板?
1
1
O
2
例 3 一个直角梯形上底、下底和高之比 2:4: 5 .将此直角梯形以垂直于底的 腰为轴旋转一周形成一个圆台求这个圆台上底面积、下底面积和侧面积之比.
2x
B
O
C
A
空间几何体的表面积
3.表面积为 3π 的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为 ________.
课外作业——几何体的表面积(2)
姓名:
3
1.用一张长 12cm,宽 8cm 的矩形铁皮围成圆柱形的侧面,求这个 圆柱的底面面积. 2. 正四棱台的高是 12cm ,两底面边长之差为 10cm ,全面积为 512cm2, 求底面的边长.