中考数学找规律题

合集下载

中考数学复习专题——找规律(含答案)

中考数学复习专题——找规律(含答案)

中考数学试复习专题——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 第2个图 第3个图 …6、如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子枚(用含有n的代数式表示,并写成最简形式).○○○○○○○○○○○○○●●○○●●●○○●○○●●○○●●●○○○○○○○○○●●●○○○○○○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需根火柴棒。

8、将正整数按如图5所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.9、如图2,用n表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n的关系是10、观察图4的三角形数阵,则第50行的最后一个数是()1-2 3-4 5 -67 -8 9 -10。

11、下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第n个图案中白色正方形的个数为.12、观察下列各式:3211=332123+=33221236++=33332123410+++=……猜想:333312310++++=.第一个第二个第三个……第n个第一排第二排第三排第四排6┅┅10 9 8 73 2154答案解析:1解析:1时,5.n再每增加一个数时,m就增加3个数.解答:根据所给的具体数据,发现:8=5+3,11=5+3×2,14=5+3×3,….以此类推,第n个圈中,5+3(1)=32.2解析:分析可得:第1幅图中有1×2-1=1个,第2幅图中有2×2-1=3个,第3幅图中有3×2-1=5个,…,故第n幅图中共有21个3解析:在4的基础上,依次多3个,得到第n个图中共有的棋子数.观察图形,发现:在4的基础上,依次多3个.即第n个图中有4+3(1)=31.当6时,即原式=19.故第6个图形需棋子19枚4解析:此题只要找出截取表一的那部分,并找出其规律即可解.解答:解:表二截取的是其中的一列:上下两个数字的差相等,所以15+3=18.表三截取的是两行两列的相邻的四个数字:右边一列数字的差应比左边一列数字的差大1,所24+25-20+1=30.表四中截取的是两行三列中的6个数字:18是3的6倍,则c应是4的7倍,即28.故选D.认真观察表格,熟知各个数字之间的关系:第一列是1,2,3,…;第二列是对应第一列的2倍;等三列是对应第一列的3倍5解析:据给出的四个图形的规律可以知道,组成大正方形的每个小正方形上有一个完整的圆,因此圆的数目是大正方形边长的平方,每四个小正方形组成一个完整的圆,从而可得这样的圆是大正方形边长减1的平方,从而可得若这样铺成一个10×10的正方形图案,则其中完整的圆共有102+(10-1)2=181个.解答:解:分析可得完整的圆是大正方形的边长减1的平方,从而可知铺成一个10×10的正方形图案中,完整的圆共有102+(10-1)2=181个.点评:本题难度中等,考查探究图形的规律.本题也只可以直接根据给出的四个图形中计数出的圆的个数,找出数字之间的规律得出答案.6解析:解:第1个正方形图案有棋子共32=9枚,其中黑色棋子有12=1枚,白色棋子有(32-12)枚;第2个正方形图案有棋子共42=16枚,其中黑色棋子有22=4枚,白色棋子有(42-22)枚;…由此可推出想第n个图案的白色棋子数为(2)22=4(1).故第n个图案的白色棋子数为(2)22=4(1).点评:根据图形提供的信息探索规律,是近几年较流行的一种探索规律型问题.解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论7解析:根据题意分析可得:搭第1个图形需12根火柴;搭第2个图形需12+6×1=18根;搭第3个图形需12+6×2=24根;…搭第n个图形需12+6(1)=66根.解答:解:搭第334个图形需6×334+6=2010根火柴棒8解析:寻找规律,然后解答.每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.解答:解:观察图表可知:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.实数15=1+2+3+4+5,则17在第6排,第5个位置,即其坐标为(6,5).故答案填:(6,5).对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9解析:根据题意分析可得:第n行有n个小圆圈.故f(n)和n的关系是ƒ(n)= (n2).10解析:根据题意可得:第n行有n个数;且第n行第一个数的绝对值为+1,最后一个数的绝对值为;奇数为正,偶数为负;故第50行的最后一个数是1275.解答:解:第n行第一个数的绝对值为+1,最后一个数的绝对值为,奇数为正,偶数为负,第50行的最后一个数是1275第一个图中白色正方形的个数为3×3-1;第二个图中白色正方形的个数为3×5-2第三个图中白色正方形的个数为3×7-3;…当其为第n个时,白色正方形的个数为3(21)5312解析:根据所给的等式,可以发现右边的底数是前边的底数的和,指数是平方,则最后的底数是1+2+310=5×11=55,则原式=552.解答:解:根据分析最后的底数是1+2+310=5×11=55,则原式=552.故答案552。

中考数学材料题找规律练习题

中考数学材料题找规律练习题

中考数学找规律练习题1.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 282.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 283.按一定规律排列的单项式:x3,−x5,x7,−x9,x11,……,第n个单项式是()A. (−1)n+1x2n−1B. (−1)n x2n−1C. (−1)n+1x2n+1D. (−1)n x2n+14.观察下列各式及其展开式(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……请你猜想(2x−1)8的展开式中含x2项的系数是()A. 224B. 180C. 112D. 485.观察下列各式(x−1)(x+1)=x2−1(x−1)(x2+x+1)=x3−1(x−1)(x3+x2+x+1)=x4−1……根据规律计算:的值为()A. 22019−1B. −22019−1C. 22019−13D. 22019+136.图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是()A. 15B. 25C. 36D. 497.如图,周长为4个单位长度的圆上4等分点为P,Q,M,N,点P落在数轴上的2的位置,将圆在数轴上沿负方向滚动,那么圆上落在数轴上−2020的点是()A. MB. NC. PD. Q8.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=√14[a2b2−(a2+b2−c22)2].现已知△ABC的三边长分别为1,2,√5,则△ABC的面积为______.9.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例,它是我国古代数学家杨辉最早发现的。

2022年中考数学专题复习 找规律题(含解析)

2022年中考数学专题复习 找规律题(含解析)

2022年中考数学专题复习:找规律1.以下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).假设圈出的9个数中,最大数与最小数的积为192,那么这9个数的和为【】.A.32 B.126 C.135 D.144【答案】D。

【考点】分类归纳〔数字的变化类〕,一元二次方程的应用。

【分析】由日历表可知,圈出的9个数中,最大数与最小数的差总为16,又最大数与最小数的积为192,所以设最大数为x,那么最小数为x-16。

∴x〔x-16〕=192,解得x=24或x=-8〔负数舍去〕。

∴最大数为24,最小数为8。

∴圈出的9个数为8,9,10,15,16,17,22,23,24。

和为144。

应选D。

2.某单位要组织一次篮球联赛,赛制为单循环形式〔每两队之间都赛一场〕,方案安排10场比赛,那么参加比赛的球队应有【】A.7队B.6队C.5队D.4队【答案】C。

【考点】分类归纳〔数字的变化类〕,一元二次方程的应用。

【分析】设邀请x个球队参加比赛,那么第一个球队和其他球队打〔x-1〕场球,第二个球队和其他球队打〔x-2〕场,以此类推可以知道共打〔1+2+3+…+x-1〕= x(x1)2-场球,根据方案安排10场比赛即可列出方程:x(x1)102-=,∴x2-x-20=0,解得x=5或x=-4〔不合题意,舍去〕。

应选C。

3.观察以下一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ . 【答案】2k2k+1。

【考点】分类归纳〔数字的变化类〕。

【分析】根据得出数字分母与分子的变化规律:分子是连续的偶数,分母是连续的奇数,∴第k 个数分子是2k ,分母是2k +1。

∴这一组数的第k 个数是2k2k+1。

4. 填在以下各图形中的三个数之间都有相同的规律,根据此规律,a 的值是 ▲ .【答案】900。

找规律练习题及答案

找规律练习题及答案

找规律练习题一.数字排列规律题1. 4、10、16、22、28……,求第n位数 ;2. 2、3、5、9,17增幅为1、2、4、8. 第n位数3. 观察下列各式数:0,3,8,15,24,……;试按此规律写出的第100个数是----,第n个数是---------;4. 1,9,25,49, , ,的第n项为 ,5: 2、9、28、65.....:第n位数6:2、4、8、16...... 第n位数.7:2、5、10、17、26……,第n位数.8 : 4,16,36,64,,144,196,…第一百个数9、观察下面两行数2,4,8,16,32,64, ...15,7,11,19,35,67...2根据你发现的规律,取每行第十个数,求得他们的和;10、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的11. =8 =16 =24 ……用含有N的代数式表示规律12. 12,20,30,42,127,112,97,82,3,4,7,12, ,2813 . 1,2,3,5, ,1314. 0,1,1,2,4,7,13,15 .5,3,2,1,1,16. 1,4,9,16,25, ,4917. 66,83,102,123, ,18. 1,8,27, ,12519; 3,10,29, ,12720, 0,1,2,9,21; ;则第n项代数式为:22 , 2/3 1/2 2/5 1/3 ; 则第n项代数式为23 , 1,3,3,9,5,15,7,24. 2,6,12,20,25. 11,17,23, ,35;26. 2,3,10,15,26, ;27. : 1,8,27,64,28. :0,7,26,63 ,29. -2,-8,0,64,30. 1,32,81,64,25,31. 1,1,2,3,5, ;32. 4,5, ,14,23,3733. 6,3,3, ,3,-334.1,2,2,4,8,32,35 ;2,12,36,80,36. 3/2, 2/3, 3/4,1/3,3/837.观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方…按此规律(1)试猜想:1+3+5+7+…+2005+2007的值2推广:1+3+5+7+9+…+2n-1+2n+1的和是多少38、下面数列后两位应该填上什么数字呢2 3 5 8 12 17 __ __39.请填出下面横线上的数字;1 123 5 8 ____ 2140、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么41、有一串数字3 6 10 15 21 ___ 第6个是什么数42、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是 .A.1 B.2 C.3 D.443、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为_________个.二.几何图形变化规律题44、观察下列球的排列规律其中●是实心球,○是空心球:●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.45、观察下列图形排列规律其中△是三角形,□是正方形,○是圆,□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是填图形名称.46. 2005年大连市中考题在数学活动中,小明为了求的值结果用n表示,设计如图a所示的图形;1请你利用这个几何图形求的值为 ;2请你利用图b,再设计一个能求的值的几何图形;年河北省中考题观察下面的图形每一个正方形的边长均为1和相应的等式,探究其中的规律:1写出第五个等式,并在下边给出的五个正方形上画出与之对应的图示;2猜想并写出与第n个图形相对应的等式;48; 右图是一回形图,其回形通道的宽与OB的长均为1,回形线与射线OA交于点A1,A2,A3,…;若从O点到A1点的回形线为第1圈长为7,从A1点到A2点的回形线为第2圈,……,依此类推;则第10圈的长为 ;49.瑞士中学教师巴尔末成功地从光谱数据,,,,……,中得到巴尔末公式,从而打开了光谱奥妙的大门;请你按这种规律写出第七个数据是 ;50、计算类2005年陕西省中考题观察下列等式:,……则第n个等式可以表示为 ;51.2005年哈尔滨市中考题观察下列各式:,,,……根据前面的规律,得: ;其中n为正整数52. 2005年耒阳市中考题观察下列等式:观察下列等式:4-1=3,9-4=5,16-9=7,25-16=9,36-25=11,……这些等式反映了自然数间的某种规律,设nn≥1表示了自然数,用关于n的等式表示这个规律为 ;53、图形类 2005年淄博市中考题在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点;观察图中每一个正方形实线四条边上的整点的个数,请你猜测由里向外第10个正方形实线四条边上的整点共有个;54、 2005年宁夏回自治区中考题“”代表甲种植物,“”代表乙种植物,为美化环境,采用如图所示方案种植;按此规律,第六个图案中应种植乙种植物株;55. 2005年呼和浩特市中考题如图,是用积木摆放的一组图案,观察图形并探索:第五个图案中共有块积木,第n个图案中共有块积木;56.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面-层有一个圆圈,以下各层均比上-层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n= .如果图1中的圆圈共有12层,1我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;2我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数-23,-22,-21,…,求图4中所有圆圈中各数的绝对值之和.57.例如、观察下列数表:根据数列所反映的规律,第行第列交叉点上的数应为______ .58; 要抓题目里的变量例如,用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第3个图形中有黑色瓷砖块,第个图形中需要黑色瓷砖块用含的代数式表示.海南省2006年初中毕业升考试数学科试题课改区这一题的关键是求第个图形中需要几块黑色瓷砖59.云南省2006年课改实验区高中中专招生统一考试也出有类似的题目:“观察图l至4中小圆圈的摆放规律,并按这样的规律继续摆放,记第n个图中小圆圈的个数为m,则,m= 用含 n 的代数式表示.”60.譬如,日照市2005年中等学校招生考试数学试题“已知下列等式:① 13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102;…………由此规律知,第⑤个等式是.”61、要善于寻找事物的循环节有譬如,玉林市2005年中考数学试题:“观察下列球的排列规律其中●是实心球,○是空心球:●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个;”62、你喜欢吃拉面吗拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示;这样捏合到第次后可拉出64根细面条;63.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是.–4 –3 –2 -10 1 2 4 564. 现有黑色三角形“▲”和“△”共200个,按照一定规律排列如下:▲▲△△▲△▲▲△△▲△▲▲……则黑色三角形有个,白色三角形有个;三、数、式计算规律题65、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是.66、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.67. 观察下列算式:,,,,请你在察规律之后并用你得到的规律填空:, 第n个式子呢___________________68. 一张长方形桌子可坐6人,按下列方式讲桌子拼在一起;①2张桌子拼在一起可坐______人;3张桌子拼在一起可坐____人,n张桌子拼在一起可坐______人;②一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐______人;③若在②中,改成每8张桌子拼成1张大桌子,则共可坐_________人;69 观察下列数据,按某种规律在横线上填上适当的数:1,,,,, ,…70. 平面内两两相交的6条直线,其交点个数最少为m个,最多为n个,则m+n= .71. 观察图1-27中有几个三角形由此你发现三角形的个数有什么规律呢一个三角形 3个三角形 ______个三角形 ______个三角形_________个三角形n个点归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是1通过对几个特例的分析,寻找规律并且归纳;2猜想符合规律的一般性结论;3验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方…按此规律(2)试猜想:1+3+5+7+…+2005+2007的值2推广:1+3+5+7+9+…+2n-1+2n+1的和是多少2、下面数列后两位应该填上什么数字呢2 3 5 8 12 17 __ __3、请填出下面横线上的数字;1 123 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么5、有一串数字3 6 10 15 21 ___ 第6个是什么数6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是.A.1 B.2 C.3 D.47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个.二、几何图形变化规律题1、观察下列球的排列规律其中●是实心球,○是空心球:●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律其中△是三角形,□是正方形,○是圆,□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是填图形名称.三、数、式计算规律题1、已知下列等式:①13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 .2、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n =观察下面三个特殊的等式 将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯ 读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221⑵()()=++++⨯⨯+⨯⨯21432321n n n⑶()()=++++⨯⨯+⨯⨯21432321n n n4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ 参考答案:一、1、11004的平方2n+1的平方2、23 30;数列中每两个相邻数字间的差分别是1,2,3,4,5,6,7;3、13;这一数列后面一个数是前面相邻两个数的和;4、34 ;考虑时,可以从第一个数开始,每3个数加一个括号1,2,3,2,3,4,3,4,5,……一共加了33个括号,剩下的一个必是第100个;每个括号的第一个数分别是1,2,3,……因此第100个数必然是34;5、28;3+3=6 6+4=10 10+5=15 15+6=21 21+7=28, 所以第6个是28;其实一般这类的规律题无非就是在数的基础上加减乘除,有些麻烦点的就是一个数乘上倍数后在加1或减1;6、A7、33二、 1、602 2、圆三、1、2333331554321=++++2、100003、 ⑴343400 或10210110031⨯⨯⨯ ⑵()()2131++n n n ⑶()()()32141+++n n n n 4、109.。

中考数学规律探索题中考找规律题目有答案

中考数学规律探索题中考找规律题目有答案

中考规律探索1以下为全部整理类型,规律探索共两套试题,供参考学习使用一.选择题1.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187… 解答下列问题:3+32+33+34…+32013的末位数字是A .0B .1C .3D .72. 把所有正奇数从小到大排列,并按如下规律分组:1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,…,现用等式A M =i,j 表示正奇数M 是第i 组第j 个数从左往右数,如A 7=2,3,则A 2013= A .45,77 B .45,39 C .32,46 D .32,233.下表中的数字是按一定规律填写的,表中a 的值应是 .1 2 3 5 8 13 a (2)358132134…4.下列图形都是由同样大小的矩形按一定的规律组成,其中第1个图形的面积为2cm 2,第2个图形的面积为8 cm 2,第3个图形的面积为18 cm 2,……,第10个图形的面积为A .196 cm 2B .200 cm 2C .216 cm 2D . 256 cm 25.如图,动点P 从0,3出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为A 、1,4B 、5,0C 、6,4D 、8,36.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是A . M=mnB . M=nm+1C .M=mn+1D .M=mn+17.我们知道,一元二次方程12-=x 没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“”,使其满足12-=i 即方程12-=x 有一个根为,并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有,1i i =12-=i ,,).1(23i i i i i -=-=⋅=.1)1()(2224=-==i i 从而对任意正整数n,我们可得到,.)(.4414i i i i i i n n n ===+同理可得,1,,143424=-=-=++n n n i i i i 那么,20132012432i i i i i i +⋅⋅⋅++++的值为A .0B .1C .-1D .8.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为A .51B .70C .76D .81二.填空题1.观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有的个数为 用含n 的代数式表示.2.如图,在直角坐标系中,已知点A ﹣3,0、B 0,4,对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为 .3.如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形A 1B 1C 1D 1,由顺次连接正方形A 1B 1C 1D 1四边的中点得到第二个正方形A 2B 2C 2D 2…,以此类推,则第六个正方形A 6B 6C 6D 6周长是 .图① 图②图③···第8题图4.直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点.5.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是.6 .如图,是用火柴棒拼成的图形,则第n个图形需根火柴棒.7.观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2013的值是.8.如图12,一段抛物线:y=-xx-30≤x≤3,记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P37,m在第13段抛物线C13上,则m =_________.9.直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点. 10.观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…………请猜测,第n个算式n为正整数应表示为____________________________.11.将连续的正整数按以下规律排列,则位于第7行、第7列的数x是__ __.12、如下图,每一幅图中均含有若干个正方形,第①幅图中含有1个正方形;第②幅图中含有5个正方形;……按这样的规律下去,则第6幅图中含有 个正方形;13.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆, 第2个图形有10个小圆, 第3个图形有16个小圆, 第4个图形有24个小圆, ……,依次规律,第6个图形有 个小圆.14.已知一组数2,4,8,16,32,…,按此规律,则第n 个数是 . 15、我们知道,经过原点的抛物线的解析式可以是y =ax 2+bxa ≠0 1对于这样的抛物线:当顶点坐标为1,1时,a =__________;当顶点坐标为m ,m ,m ≠0时,a 与m 之间的关系式是__________;2继续探究,如果b ≠0,且过原点的抛物线顶点在直线y =kxk ≠0上,请用含k 的代数式表示b ;3现有一组过原点的抛物线,顶点A 1,A 2,…,A n 在直线y =x 上,横坐标依次为1,2,…,n 为正整数,且n ≤12,分别过每个顶点作x 轴的垂线,垂足记为B 1,B 2,…,B n ,以线段A n B n 为边向右作正方形A n B n C n D n ,若这组抛物线中有一条经过D n ,求所有满足条件的正方形边长.16.如图,所有正三角形的一边平行于x 轴,一顶点在y 轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A 、2A 、3A 、4A 、…表示,其中12A A 与x 轴、底边12A A 与45A A 、45A A 与78A A 、…均相距一个单位,则顶点3A 的坐标是 ,22A 的坐标是 .xy A 9A 6A 3A 8A 7A 5A 4A 2A 1O第16题图••••••①② ③17.如图,已知直线l :y=33x ,过点A 0,1作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;……按此作法继续下去,则点A 2013的坐标为 .18、如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 10,1,A 21,1,A 31,0,A 42,0,…那么点A 4n +1n 为自然数的坐标为 用n 表示19.当白色小正方形个数n 等于1,2,3…时,由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.用n 表示,n 是正整数20. 2013衢州4分如图,在菱形ABCD 中,边长为10,∠A=60°.顺次连结菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1;顺次连结四边形A 1B 1C 1D 1各边中点,可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点,可得四边形A 3B 3C 3D 3;按此规律继续下去….则四边形A 2B 2C 2D 2的周长是 ;四边形A 2013B 2013C 2013D 2013的周长是 .21.一组按规律排列的式子:a2,43a ,65a ,87a ,….则第n 个式子是________22.观察下面的单项式:a,﹣2a 2,4a 3,﹣8a 4,…根据你发现的规律,第8个式子是 .23.如图,已知直线l:y=x,过点M2,0作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x 轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为.24.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第n图,需用火柴棒的根数为.答案:选择题:1、C 2、C 3、21 4、B 5、D 6、D 7、D 8、 C填空题:1、n+122、8052,03、4、160975、516、2n+17、10140498、 29、16097 10、10n-1+52=100nn-1+25 11、85 12、91 13、46 14、2n15、1-1;a =-1m或am +1=0; 2解:∵a ≠0∴y =ax 2+bx =ax +2b a2-24b a∴顶点坐标为-2ba,-24b a∵顶点在直线y =kx 上∴k -2ba=-24b a∵b ≠0∴b =2k3解:∵顶点A n 在直线y =x 上 ∴可设A n 的坐标为n ,n ,点D n 所在的抛物线顶点坐标为t ,t由12可得,点D n 所在的抛物线解析式为y =-1tx 2+2x∵四边形A n B n C n D n 是正方形∴点D n 的坐标为2n ,n ∴-1t2n 2+2×2n =n∴4n =3t∵t 、n 是正整数,且t ≤12,n ≤12∴n =3,6或9∴满足条件的正方形边长为3,6或916、0,31-,-8,-8. 17、()()201340260,40,2或注:以上两答案任选一个都对18、2n,1 19、n 2+4n 20、20;21、221na n n 为正整数22、-128a 823、884736,0 24、6n+2规律探索21、 我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码又叫数字:0,1,2,3,4,5,6,7,8,9;在电子数字计算机中用的是二进制,只要两个数码:0和1;如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 ;2、 从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数即当最后一个奇数是19时,它们的和是 ; 3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入 (1)2345… 输出…2152 103 174 265…那么,当输入数据是8时,输出的数据是A 、618B 、638C 、658D 、6784、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了 块石子6、如下图是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:1第四、第五个“上”字分别需用 和 枚棋子;2第n 个“上”字需用 枚棋子;7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗.(1)(2)(3)第4题第7题图12 348、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有 个点,第n 个图形中有 个点;9、下面是按照一定规律画出的一列“树型”图:经观察可以发现:图2比图1多出2个“树枝”;图3比图2多出5个“树枝”;图4比图3多出10个“树枝”;照此规律,图7比图6多出 个“树枝”;10、观察下面的点阵图和相应的等式,探究其中的规律:1在④和⑤后面的横线上分别写出相应的等式;2通过猜想写出与第n 个点阵相对应的等式_____________________;11、用边长为1cm 的小正方形搭成如下的塔状图形,则第n 次所搭图形的周长是_______________cm 用含n 的代数式表示;12、如图,都是由边长为1的正方体叠成的图形;例如第1个图形的表面积为6个平方单位,第2个图形的表面积为18个平方单位,第3个图形的表面积是36个平方单位;依此规律;则第5个图形的表面积 个平方单位13、图1是一个水平摆放的小正方体木块,图2、3是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第…………①1=12; ②1+3=22;③1+3+5=32;④ ;⑤ ;第1次 第2次 第3次 第4次 ······⑴ ⑵ ⑶14题七个叠放的图形中,小正方体木块总数应是A 25B 66C 91D 12014、如图是由大小相同的小立方体木块叠入而成的几何体,图⑴中有1个立方体,图⑵中有4个立方体,图⑶中有9个立方体,……按这样的规律叠放下去, 第8个图中小立方体个数是 .15、图1是棱长为a 的小正方体,图2、图3由这样的小正方体摆放而成.按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…、第n 层,第n 层的小正方体的个数为s .解答下列问题:1按照要求填表:2写出当n =10时,s= .16、如图用火柴摆去系列图案,按这种方式摆下去,当每边摆10根时即10 n 时,需要的火柴棒总数为 根;17、用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律下去,搭n 个三角形需要S 支火柴棒,那么用n 的式子表示S 的式子是 _______ n 为正整数.18、如图所示,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,请观察下图:则第n 个图形中需用黑色瓷砖 ____ 块.用含n 的代数式表示n 1 2 3 4 … s136…(1)(2)(3)图1 图2 图3A B C D19题图19、如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当黑色瓷砖为20块时,白色瓷砖为 块;当白色瓷砖为n 2n 为正整数块时,黑色瓷砖为 块.20、观察下列由棱长为1的小立方体摆成的图形,寻找规律:如图1中:共有1 个小立方体,其中1个看得见,0个看不见;如图2中:共有8个小立方体,其中7个看得见,1个看不见;如图3中:共有27个小立方体,其中有19个看得8个看不见;……,则第6个图中,看不见的小立方体有 个;21、下面的图形是由边长为l 的正方形按照某种规律排列而组成的.1观察图形,填写下表:图形 ① ② ③ 正方形的个数 8 图形的周长182推测第n 个图形中,正方形的个数为________,周长为______________都用含n 的代数式表示.22、观察下图,我们可以发现:图⑴中有1个正方形;图⑵中有5个正方形,图⑶中共有14个正方形,按照这种规律继续下去,图⑹中共有_______个正方形;23、某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛阴影部分使花坛面积是园地面积的一半,以下图中设计不合要求....的是第22题图 第23题图24、如下图中的四个正方形的边长均相等,其中阴影部分面积最大的图形是25、如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是 A. <1>和<2> B. <2>和<3>C. <2>和<4>D. <1>和<4>ADCB第18题图26、某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图1;第2次把第1次铺的完全围起来,如图2;第3次把第2次铺的完全围起来,如图3;…依此方法,第n 次铺完后,用字母n 表示第n 次镶嵌所使用的木块块数为 . n 为正整数27、用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:⑴ 第4个图案中有白色地面砖 块; ⑵ 第n 个图案中有白色地面砖 块;28、分析如下图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.29、将一圆形纸片对折后再对折,得到图2,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是30.如图1,小强拿一张正方形的纸,沿虚线对折一次得图2,再对折一次得图3,然后用剪刀沿图3中的虚线剪去一个角,再打开后的形状是A B C DABCD图3图231、用一条宽相等的足够长的纸条,打一个结,如图1所示,然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE,其中∠BAC=度.32、如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星正五边形对角线所构成的图形.则∠OCD等于A.108° B.144° C.126° D.129°33、如图,把一个正方形三次对折后沿虚线剪下则得到的图形是A B C D 第35题图34、将一张长方形的纸对折,如图5所示可得到一条折痕图中虚线. 继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到条折痕 .如果对折n次,可以得到_____________条折痕 ;35、观察图形:图中是边长为1,2,3 …的正方形:当边长n=1时,正方形被分成2个大小相等的小等腰直角三角形;当边长n=2时,正方形被分成8个大小相等的小等腰直角三角形;当边长n=3时,正方形被分成18个大小相等的小等腰直角三角形;以此类推:当边长为n时,正方形被分成大小相等的小等腰直角三角形的个数是 ;36、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面.则“祝”、“你”、“前”分别表示正方体的___________________._沿虚线剪开祝D SAC SA图1DE BA图237、如图是一块长方形ABCD的场地,长AB=102m,宽AD=51m,从A、B两处入口的中路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪面积为A5050m2 B4900m2C5000m2D4998m238、读一读,想一想,做一做:国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘,图中的“皇后Q”能控制图中虚线所经过的每一个小方格.①在如图乙的小方格棋盘中有一“皇后Q”,她所在的位置可用“2,3”来表示,请说明“皇后Q”所在的位置“2,3”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q”所控制的四个位置.②如图丙也是一个4×4的小方格棋盘,请在这个棋盘中放入四个“皇后Q”,使这四个“皇后Q”之间互不受对方控制在图丙中的某四个小方格中标出字母Q即可.3412甲3123行列乙3412丙参考答案1、132、1003、C4、1795、 3n+1-3+nn+1或n+12+2n-16、118、22 24n+27、278、31,n2-n-19、8010、1+3+5+7=42;1+3+5+7+9=52;1+3+5+……+2n-1=n2 11、 4n 12、9013、C 14、64 5、110 21+2+3+……+n=nn+1/2 16、16517、s=2n+1 18、4n+6 19、16,4n+420、125 21、113、18;28、38; 25n+3,10n+8 22 、9123、B 24、B 25、A 26、8n-6 27、118 ;24n+2 28、29、C 30、C 31、 36 32、A 33、C34、15 ;2n-1 35、 2n2 36、后面、上面、左面 37、C38、1 1,1,3,1,4,2,4,4;2。

中考数学规律题及答案解析

中考数学规律题及答案解析

中考数学规律题及答案解析1、(绵阳市2013年)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式AM=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=( C )A.(45,77)B.(45,39)C.(32,46)D.(32,23)[解析]第1组的第一个数为1,第2组的第一个数为3,第3组的第一个数为9,第4组的第一个数为19,第5组的第一个数为33……将每组的第一个数组成数列:1,3,9,19,33…… 分别计作a1,a2,a3,a4,a5……an, an表示第n 组的第一个数,a1 =1a2 = a1+2a3 = a2+2+4×1a4 = a3+2+4×2a5 = a4+2+4×3……an = an-1+2+4×(n-2)将上面各等式左右分别相加得:a n =1+2(n-1)+4(n-2+1)(n-2)/2=2n2-4n+3 (上面各等式左右分别相加时,抵消了相同部分a1 + a2 + a3 + a4 + a5 + …… + a n-1),当n=45时,a n = 3873 > 2013 ,2013不在第45组当n=32时,a n = 1923 < 2013 ,(2013-1923)÷2+1=46,A2013=(32,46).如果是非选择题:则2n2-4n+3≤2013,2n2-4n-2010≤0,假如2013是某组的第一个数,则2n2-4n-2010=0,解得n=1+ 1006 ,31<1006 <32,32(注意区别an和An)2、(2013济宁)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为( )A. cm2B. cm2C. cm2D. cm2考点:矩形的性质;平行四边形的性质.专题:规律型.分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.解答:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S= ,…,依此类推,平行四边形AO4C5B的面积= = =cm2.故选B.点评:本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键.3、(2013年武汉)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有( )A.21个交点B.18个交点C.15个交点D.10个交点答案:C解析:两条直线的最多交点数为:×1×2=1,三条直线的最多交点数为:×2×3=3,四条直线的最多交点数为:×3×4=6,所以,六条直线的最多交点数为:×5×6=15,4、(2013•资阳)从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征( )A. B. C. D.考点:规律型:图形的变化类分析:根据图形的对称性找到规律解答.解答:解:第一个图形是轴对称图形,第二个图形是轴对称也是中心对称图形,第三个图形是轴对称也是中心对称图形,第四个图形是中心对称但不是轴对称,所以第五个图形应该是轴对称但不是中心对称,故选C.点评:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并发现其中的规律.5、(2013•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是( )A. 502B. 503C. 504D. 505考点:规律型:图形的变化类.分析:根据正方形的个数变化得出第n次得到2013个正方形,则4n+1=2013,求出即可.解答:解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,解得:n=503.故选:B.点评:此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.6、(2013泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是( )A.0B.1C.3D.7考点:尾数特征.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C.点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.7、(2013• 德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为( )A. (1,4)B. (5,0)C. (6,4)D. (8,3)考点:规律型:点的坐标.专题:规律型.分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.解答:解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.8、(2013•呼和浩特)如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需( )根火柴.A. 156B. 157C. 158D. 159考点:规律型:图形的变化类.3718684分析:根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n 个图案需n(n+3)+3根火柴,再把11代入即可求出答案.解答:解:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);故选B.点评:此题主要考查了图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.9、(2013•十堰)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是( )A. 8B. 9C. 16D. 17考点:规律型:图形的变化类.3718684分析:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,进而得出即可.解答:解:由图可知:第一个图案有三角形1个.第二图案有三角形1+3=5个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12第五个图案有三角形1+3+4+4+4=16故选:C.点评:此题主要考查了图形的变化规律,注意由特殊到一般的分析方法.这类题型在中考中经常出现.10、(2013•恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171 .考点:规律型:数字的变化类.分析:根据第6列数字从31开始,依次加14,16,18…得出第8行数字,进而求出即可.解答:解:由图表可得出:第6列数字从31开始,依次加14,16,18…则第8行,左起第6列的数为:31+14+16+18+20+22+24+26=171.故答案为:171.点评:此题主要考查了数字变化规律,根据已知得出没行与每列的变化规律是解题关键.11、(2013•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是51 .考点:规律型:图形的变化类.专题:规律型.分析:计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.解答:解:∵5﹣1=4,12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第4个五边形数是22+13=35,第5个五边形数是35+16=51.故答案为:51.点评:本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.12、(2013•绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC 上.考点:规律型:图形的变化类.分析:根据规律得出每6个数为一周期.用2013除以3,根据余数来决定数2013在哪条射线上.解答:解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.点评:此题主要考查了数字变化规律,根据数的循环和余数来决定数的位置是解题关键.13、(2013•常德)小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是10200 .考点:规律型:数字的变化类.3718684分析:根据3,8,15,24的变化规律得出第100行左起第一个数为1012﹣1求出即可.解答:解:∵3=22﹣1,8=32﹣1,15=42﹣1,24=52﹣1,…∴第100行左起第一个数是:1012﹣1=10200.故答案为:10200.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.14、(2013年河北)如图12,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m =_________.答案:2解析:C1:y=-x(x-3)(0≤x≤3)C2:y=(x-3)(x-6)(3≤x≤6)C3:y=-(x-6)(x-9)(6≤x≤9)C4:y=(x-9)(x-12)(9≤x≤12)┉C13:y=-(x-36)(x-39)(36≤x≤39),当x=37时,y=2,所以,m=2。

初中数学中考“找规律”专项练习题

初中数学中考“找规律”专项练习题

初中数学中考“找规律”专项练习题1.按一定观律排列的单项式:a ,–a 2,a 3,–a 4,a 5,–a 6,……,第n 个单项式是( )A .a nB .–a nC .(–1)n+1a n D .(–1) n a n2.如图,在平面直角坐标系中,函数y=x 和y=﹣x 的图象分别为直线l 1,l 2,过点A 1(1,﹣)作x 轴的垂线交11于点A 2,过点A 2作y 轴的垂线交l 2于点A 3,过点A 3作x 轴的垂线交l 1于点A 4,过点A 4作y 轴的垂线交l 2于点A 5,…依次进行下去,则点A 2018的横坐标为 .3.按一定顺序排列的一列数叫做数列,如数列:,,,,, 2011216121则这个数列的前2018个数列的和为_________________. 4.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b )n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b )8的展开式中从左起第四项的系数为( ) A .84B .56C .35D .285.下列图形都是由同样大小的黑色菱形纸片组成,其中第①个图中有3张黑色菱形纸片,第②个图中有5张黑色菱形纸片,第③个图中有7张黑色菱形纸片,..,按此规律排列下去,第⑥个图中黑色菱形纸片的张数为( )A.11B.13C.15D.17 6.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a ,b ,c 的值分别为( )A .a=1,b=6,c=15B .a=6,b=15,c=20C .a=15,b=20,c=15D .c=20,b=15,c=67.如图,小正方形是按一定规律摆放的,下面四个选项中的图片, 适合填补图中空白处的A B C D8.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是 .9.已知a >0,S 1=,S 2=﹣S 1﹣1,S 3=,S 4=﹣S 3﹣1,S 5=,…(即当n 为大于1的奇数时,S n =;当n 为大于1的偶数时,S n =﹣S n ﹣1﹣1),按此规律,S 2018= .10.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .1811.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有 个○.12.下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为【 】.A .32B .126C .135D .144第13.观察下列一组数:32,54,76,98,1110,……,它们是按一定规律排列的,那么这一组数的第k个数是14. 填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是.15.已知2+23=22×23,3+38=32×38,4+415=42×415…,若8+ab=82×ab(a,b为正整数),则a+b= .16.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是()17.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A—B—C-D—A一…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是【】A.(1,-1) B.(-1,1) C.(-1,-2) D.(1,-2)18.如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m= .19. 图中各圆的三个数之间都有相同的规律,据此规律,第n个圆中,m=(用含n的代数式表示).20. 将连续的正整数按下图规律排列,则位于第7行,第7列的数x是 .21.22.观察等式:331=,932=,2733=,8134=,24335=,72936=,218737=……解答下列问题:202143233333+⋯⋯++++的末尾数字是 .23. 如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2012的坐标为.24.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为.25.如图所示:已知点)(0,0A,),(03B,)(1,0C在ABC∆内依次做等边三角形,使一边在X轴上,另一顶点在BC边上,作出的等边三角形分别是:第1个11BAA∆,第2个221BAB∆,第3个332BAB∆,则第n个等边三角形的边长等于 .。

初中数学中考复习专题:找规律专项练习及答案解析(50道)

初中数学中考复习专题:找规律专项练习及答案解析(50道)

初中数学中考复习专题:找规律专项练习及答案解析(50道) 初中数学中考复习专题:找规律专项练习及答案解析(50道)一、选择题1、连结多边形不相邻的两个顶点的线段,叫做多边形的对角线.观察上述图形并阅读相关文字,思考回答问题:显然四边形对角线有2条;五边形的对角线有5条;对于六边形的对角线条数,光靠“数”数,也能数出来,但已感到较麻烦!需寻找规律!从一个顶点A出发,显然有3条,同理从B出发也3条,每个顶点出发都是3条,但从C顶点出发,就有重复线段!用此方法算出六边形的对角线条数为a;且能归纳出n边形的对角线条数的计算方法;若一个n边形有35条对角线,则a和n的值分别为()A.12,20 B.12,15C.9,10 D.9,122、寻找规律计算1 - 2+3 - 4+5 - 6+…+2021 - 2021等于 ( ) A.0 B.- 1 C.- 1008 D.10083、观察下列各式并找规律,再猜想填空:,则______ .4、观察一列数:是(),,,,,……根据规律,请你写出第10个数A.C.B. D.共 20 页,第 1 页二、填空题5、观察一下几组勾股数,并寻找规律:① 3, 4, 5;② 5,12,13;③ 7,24,25;④ 9,40,41;……请你写出有以上规律的第⑤组勾股数:6、找规律填空:……7、已知察上面的计算过程,寻找规律并计算:= .…,观8、观察分析下列数据,寻找规律:0,据应是_________.,,3,2,……那么第10个数9、找规律.一张长方形桌子可坐6人,按下图方式讲桌子拼在一起。

① 2张桌子拼在一起可坐______人;(1分) 3张桌子拼在一起可坐______人;(1分) n张桌子拼在一起可坐______人。

(3分)②一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐______人。

(3分)共 20 页,第 2 页10、观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:_________________.11、找规律填上合适的数:-2,4,-8,16,,64,……………12、用火柴棒按以下方式搭“小鱼”.…………搭1条“小鱼”需用8根火柴棒,搭2条“小鱼”需用14根火柴棒,搭3条“小鱼”需用20根火柴棒……观察并找规律,搭10条“小鱼”需用火柴棒的根数为.13、观察分析下列数据,寻找规律:0,么第10个数据应是.,,3,2,,3,……,那14、填空找规律(结果保留四位有效数字). (1)利用计算器分别求:=________;(2)由(1)的结果,我们发现所得的结果与被开方数间的规律是________; (3)运用(2)中的规律,直接写出结果:=________,=________.=________,=________,=________,15、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a+b+c的值为.共 20 页,第 3 页16、找规律填上合适的数:﹣2,4,﹣8,16,,64,…17、观察下列数据:0,,,,,……,寻找规律,第9个数据应是 .18、观察烟花燃放图形,找规律:依此规律,第9个图形中共有_________个★.19、观察并分析下列数据,寻找规律: 0,,-,3,-2,,-3,……那么第10个数据是___________ ;第n个数据是_______________ .20、观察一下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;……请你写出有以上规律的第⑤组勾股数:______________________.21、寻找规律,根据规律填空:,,,,,,…,第n个数是 .22、找规律,并按规律填上第五个数:.23、阅读下文,寻找规律.计算:(1﹣x)(1+x)=1﹣x,(1﹣x)(1+x+x)=1﹣x,(1﹣x)(1+x+x+x)=1﹣x….(1)观察上式,并猜想:(1﹣x)(1+x+x+…+x)= .(2)根据你的猜想,计算:1+3+3+3…+3= .(其中n是正整数)23n2n42323共 20 页,第 4 页24、找规律,如图有大小不同的平行四边形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n幅图中有个。

中考专题复习-坐标找规律

中考专题复习-坐标找规律

初中数学找规律(5)--坐标类一、选择题1、如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A、(13,13)B、(﹣13,﹣13)C、(14,14)D、(﹣14,﹣14)第2题第1题2、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()【列举找规律】A、(16,16)B、(44,44)C、(44,16)D、(16,44)第n圈0 1 2 3 ……n每圈移动次数 1 3 5 7 2n+1中点所在轴y X Y X总的运动次数为S=1+3+5+7+……+2n+1=(n+1)2,452=2025,n+1=45,n=44,终点落在y 轴上,后退17到2008步。

3、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:(1)、f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);(2)、g(a,b)=(b,a).如:g(1,3)=(3,1);(3)、h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),那么f(h(5,﹣3))等于()A、(﹣5,﹣3)B、(5,3)C、(5,﹣3)D、(﹣5,3)4、在直角坐标系中,一只电子青蛙每次向上或向下或向左或向右跳动一格,现知这只青蛙位于(2,﹣3),则经两次跳动后,它不可能跳到的位置是()A、(3,﹣2)B、(4,﹣3)C、(4,﹣2)D、(1,﹣2)5、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为 (14,8) .6、如图,已知A l (1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),….则点A 2007的坐标为 .【除A1外,四步一循环,一定要和圈数建立函数关系列举A 4n (-n,-n)A 4n-1(-n,n) A 4n-2(n,n),A 4n-3(n,-n+1)】7、已知甲运动方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度.在平面直角坐标系内,现有一动点P 第1次从原点O 出发按甲方式运动到点P 1,第2次从点P 1出发按乙方式运动到点P 2,第3次从点P 2出发再按甲方式运动到点P 3,第4次从点P 3出发再按乙方式运动到点P 4,….依此运动规律,则经过第11次运动后,动点P 所在位置P 11的坐标是 .第100次运动后P 100点的坐标是 第2013点的坐标P 2013【提示:两次合起来结果如何 (x,y) →(x+2,y+1)→(x+2-3,y+1-2) →(x-1,y-1)】8、一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是 (5,0) . 9、如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是 .点P 第2009次跳动至点P 2009的坐标是 (503,1003) . 【跳动四次一变化】P0(1,0) P1(1,1) P2(-1,1) P3(-1,2) P4(2,2) P5(2,3) P6(-2,3) P7(-2,4) P8(3,4) P9(3,5) P10(-3,5) P11(-3,6) P12(4,6) …… ………………P4n-3(n,2n-3)P4n-2(-n,2n-10P4n-1(-n ,2n ) P4n(n+1,2n)第8题 第5题第6题10、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,0)→(1,0)→(1,1)→(2,2)→(2,1)→(2,0)…根据这个规律探索可得,第100个点的坐标是___(13,8)______.11、如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2010的坐标是(503,-503) .【易错】第11题第12题12、电子跳蚤游戏盘为△ABC(如图),AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC边上P0点,BP0=4,第一步跳蚤跳到AC边上P1点,且CP1=CP0;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规定跳下去,第2008次落点为P2008,则点P2008与A点之间的距离为4.13、以0为原点,正东,正北方向为x轴,y轴正方向建立平面直角坐标系,一个机器人从原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2,再向正西方向走9米到达A3,再向正南方向走12米到达A4,再向正东方向走15米到达A5,按此规律走下去,当机器人走到A6时,A6的坐标是.A1(3,0) A2 (3,6) A3 (-6, 6) A4 (-6,-6) A5 (9,-6)A6 (9,12) A7 (-12,12) A8 (-12,-12) A9 (15,-12)……………………A4n-2 (6n-3,6n)A4n-1 (-6n,6n) A4n (-6n,-6n) A4n+1(6n+3,-6n) 14、观察下列有规律的点的坐标:依此规律,A11的坐标为,A12的坐标为.【析:观察图中数据,分下标为奇数和偶数两种情况分析解答.解答:解:观察点的坐标可以得到以下规律:点的横坐标的值就等于对应的点下标的数值;纵坐标,当下标是奇数时是正数,后一偶数项的纵坐标依次比前一偶数项的纵坐标多3,故A11的坐标为(11,16),当下标是偶数时纵坐标是负数,后一偶数项的纵坐标依次为前一偶数项的纵坐标的、、…,故A12的坐标为(12,﹣).故答案分别为:(11,16)、(12,﹣).】15、设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳动1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方案共有种.【注意列举】16、已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.第16题第17题17.(2013•湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是_________,A92的坐标是_________.18在平面直角坐标系中,一动点从原点0出发,按向上,向右,向下,向右的方向不断移动,每次移动一个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),……那么点A(4n﹢1)(n 为自然数)的坐标为什么?19、(2012•泰安)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为第18题【解:根据图形,以最外边的正方形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,】练习1(综合题)如图,在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),若点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点第19题C有若干个.(1)请在坐标系中把所有这样的点C都找出来,画上实心点,这些点用C1,C2,…表示;(2)写出这些点C1,C2,…对应的坐标.【问题解决的大致步骤已经知道,只是想问一下,根据A、B两点的坐标特点,直线AB∥x 轴,则到直线AB的距离为4的点在平行于直线AB的直线上且距离为4,有两条直线,根据直角三角形斜边上的中线等于斜边的一半,以AB的中点为圆心,半径5画弧与两直线的交点即为直角三角形的第三个顶点,这样的作法的理论依据是什么。

中考数学真题分类汇编找规律

中考数学真题分类汇编找规律

一、选择题 1.(2010安徽省中中考)下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。

对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。

当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是…………………………………………( )A )495B )497C )501D )503 【答案】A 2.(2010江苏盐城)填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是A .38B .52C .66D .74 【答案】D3.(2010山东日照)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是(A )15 (B )25 (C )55 (D )1225【答案】D 4.(2010山东烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2010个图案是0 2 8 4 2 4 6 22 4 6 844 m 6【答案】B 5.(2010江苏淮安)观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=A .97×98×99B .98×99×100C .99×100×101D .100×101×102【答案】C 6.(2010 四川绵阳)如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n ,…,请你探究出前n 行的点数和所满足的规律.若前n 行点数和为930,则n =( ).A .29B .30C .31D .32【答案】B7.(2010 山东淄博)如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为(A )6 (B )3 (C )200623 (D )10033231003⨯+x 21输出输入xx +3x 为偶数x 为奇数(第11题)【答案】B 8.(2010广东茂名)用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子A .4n 枚B .(4n -4)枚C .(4n+4)枚D . n 2枚 【答案】A9.(2010广东深圳)观察下列算式,用你所发现的规律得出20102的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8 【答案】B 10.(2010广东湛江)观察下列算式:,65613,21873,7293,2433,813,273,93,1387654321========,通过观察,用你所发现的规律确定20023的个位数字是( )A.3B.9C.7D.1 【答案】B 11.当对应所得分数为132分时,则挪动的珠子数 颗。

中考数学找规律经典题目

中考数学找规律经典题目

1 11 1 1 1 1 11 1 12 3 3 4 4 5 5 10 a 10 AC 1PC2B 2B 1B 3C 3CB找规律问题1. 阳阳和明明玩上楼梯游戏,规定一步只能上一级或二级台阶,玩着玩着两人发现:当楼梯的台级数为一级、二级、三级、……逐步增加时,楼梯的上法依次为:1,2,3,5,8,13,21,……(这就是著名的斐波拉契数列).请你仔细观察这列数的规律后回答:上10级台阶共有 种上法.2.把若干个棱长为a 的立方体摆成如图形状:从上向下数,摆一层有1个立方体,摆二层共有4个立方体, 摆三层共有10个立方体,那么摆五层共有 个立方体.3.下面由“*”拼出的一列形如正方形的图案,每条边上(包括两个顶点)有n (n>1)个“*”,每个图形“*”的总数是S :n=2,S=4 n=3,S=8 n=4,S=12 n=5,S=16 通过观察规律可以推断出:当n=8时,S= .4.下面由火柴杆拼出的一列图形中,第n 个图形由n 个正方形组成: ……n=1 n=2 n=3 n=4 …… 通过观察发现:第n 个图形中,火柴杆有 根. 5.已知P 为△ABC 的边BC 上一点,△ABC 的面积为a , B 1、C 1分别为AB 、AC 的中点,则△PB 1C 1的面积为4a, B 2、C 2分别为BB 1、CC 1的中点,则△PB 2C 2的面积为163a,B 3、C 3分别为B 1B 2、C 1C 2的中点,则△PB 3C 3的面积为647a,按此规律……可知:△PB 5C 5的面积为 . 6.如图的三角形数组是我国古代数学家杨辉发现的, 称为杨辉三角形.根据图中的数构成的规律可得: 图中a 所表示的数是 . 7.观察下列等式:13+23=32;13+23+33=62;13+23+33+43=102……;根据前面各式规律可得:13+23+33+43+53+63+73+83= .8.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第 1个图案需 7根火柴,第 2 个图案需 13 根火柴,…,依此规律,第 11 个图案需( )根火柴.A. 156B. 157C. 158D. 159* * * * * * * * * * * * * * ** * * * * * * * * * * * ** * * * * ** * ** * * • • • • • •• • •• • • • • • • • • • • • • • • • • • • • • • • •9.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是A . M =mnB . M =n (m +1)C .M =mn +1D .M =m (n +1)10.如图9所示,图中每一个小方格的面积为1,则可根据面积计算得到如下算式:()127531-+⋅⋅⋅++++n = . (用n 表示,n 是正整数)2n -15 12 347 1 1 2 43 3 n图911.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n 个图案中共用小三角形的个数是 .12.当白色小正方形个数n 等于1,2,3…时,由白色小正方形和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于________.(用n 表示,n 是正整数)13.观察下列图形:(3)(2)(1)C 3B 3A 3A 2C 1B 1A 1C B AC 2B 2B 2C 2A B C A 1B 1C 1A 2C 1B 1A 1C B A … 图4它们是按一定规律排列的,依照此规律,第9个图形中共有 个14. 如图4,在图(1)中,A 1、B 1、C 1分别是△ABC 的边BC 、CA 、AB 的中点,在图(2)中,A 2、B 2、C 2分别是△A 1B 1C 1的边B 1C 1、C 1 A 1、 A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数共有 个.15.挪动珠子数(颗)2 3 4 5 6 …… 对应所得分数(分)26122030……则挪动的珠子数为 颗16.如图,菱形ABCD 中,AB =2 ,∠C =60°,菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心O 所经过的路径总长为(结果保留π) .17.如图:已知AB =10,点C 、D 在线段AB 上且AC =DB =2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.318.(6分)观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题:ABD EF GO B C(第16题) lD⑴ 1+8=? 1+8+16=? ⑵⑶ 1+8+16+24=? 第20题图 …… (1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论; (3)求和:211⨯+321⨯+431⨯+…+201020091⨯ . 19. 右图为手的示意图,在各个手指间标记字母A 、B 、C 、D 。

中考数学专题复习找规律问题之周期型模型

中考数学专题复习找规律问题之周期型模型

中考数学专题复习找规律问题之周期型模型学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.如图,一个机器人从坐标原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,…….按此规律走下去,当机器人走到A7点时,它的位置可表示为()(单位长度为1米)A.(-21,18)B.(9,12)C.(-12,12)D.(-21,12)2.如图所示,直线3333y x=+与y轴相交于点D,点A1在直线3333y x=+上,点B1在x轴,且∆OA1B1是等边三角形,记作第一个等边三角形;然后过B1作B1A2∥OA1与直线3333y x=+相交于点A2,点B2在x轴上,再以B1A2为边作等边三角形A2B2B1,记作第二个等边三角形;同样过B2作B2A3∥OA1与直线3333y x=+相交于点A3,点B3在x轴上,再以B2A3为边作等边三角形A3B3B2,记作第三个等边三角形;∥依此类推,则第n个等边三角形的顶点A纵坐标为()A.1n-B.2n-C.1n-3⨯D.2n-3⨯3.下表中的数字是按一定规律填写的,则a b+的值是()1235813a34⋯⋯2358132134b⋯⋯A.55B.66C.76D.1104.如图,下列图形都是由几个黑色和白色的正方形按一定规律组成,图∥中有2个黑色正方形,图∥中有5个黑色正方形,图∥中有8个黑色正方形,图∥中有11个黑色正方形,…,依此规律,图n中黑色正方形的个数是()A.2n B.3n C.21n-D.31n-5.在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是()A.128B.120C.112D.1026.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第∥个图形中一共有4个小圆圈,第∥个图形中一共有10个小圆圈,第∥个图形中一共有19个小圆圈,…,按此规律排列,则第∥个图形中小圆圈的个数为()A.31B.46C.64D.857.观察下列三行数:第一行:2、4、6、8、10、12……第二行:3、5、7、9、11、13……第三行:1、4、9、16、25、36……设x、y、z分别为第一、第二、第三行的第100个数,则22x y z-+的值为()A.9999B.10001C.20199D.200018.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点1(1,1)P,第二次运动到点2(2,0)P,第三次运动到3(3,2)P-,⋯,按这样的运动规律,第2021次运动后,动点2021P的纵坐标是()A.1B.2C.2-D.0评卷人得分二、填空题9.根据表中数字的规律,则代数式()x y x--的值是__.2468512177237228x y10.一列数1a,2a,3a,…,na满足11a=-,2111aa=-,3211aa=-,…,111nnaa-=-,则2a=__________;1232020a a a a++++=__________,1232020a a a a⨯⨯⨯⨯=__________.11.如图,1条直线将平面分成两个部分,2条直线最多可以将平面分成4个部分,3条直线最多可以将平面分成7个部分,4条直线最多可以将平面分成11个部分.现有n 条直线最多可以将平面分成2017个部分,则n的值为______.12.如图,在平面直角坐标系中,等腰直角三角形1OAA的直角边OA在x轴上,点1A 在第一象限,且1OA=,以点1A为直角顶点,1OA为一直角边作等腰直角三角形12OA A,再以点2A为直角顶点,2OA为直角边作等腰直角三角形23OA A⋯依此规律,则点2021A的坐标是__.13.如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等限直角三角OA3A4,…,依此规律,得到等腰直角三角形OA2020A2021,则点A2021的坐标为_____________.14.用棱长相同的小正方体摆成如图所示的几何体,第1层有1个正方体,第2层有3个正方体,第3层有6个正方体,按图中摆放的方法类推,第20层有_________个正方体15.如图,“海春书局”把WIFI密码做成了数学题.小红在海春书局看书时,思索了一会儿,输入密码,顺利地连接到了“海春书局”的网络,那么她输入的密码是__________.16.观察下面一列单项式:2345,2,4,8,16,x x x x x---⋅⋅⋅,根据你发现的规律写出第100个单项式_______.17.定义一种新运算:“⊗”观察下列各式:232339⊗=⨯+=()313318⊗-=⨯-=4443416⊗=⨯+= ()5353312⊗-=⨯-=,则a b⊗=______(用含a、b的代数式表示)18.如图,直线l为3y x=,过点1(1,0)A作11A B x⊥轴,与直线l交于点1B,以原点O 为圆心,1OB长为半径画圆弧交x轴于点2A;再作22A B x⊥轴,交直线l于点2B,以原点O为圆心,2OB长为半径画圆弧交x轴于点3A;⋯⋯,按此作法进行下去,则点nA 的坐标为__.19.观察一列数:12,34-,56,78-,⋯,按此规律,这一列数的第2022个数为__.20.将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第10个数为______,第55个数为______.21.如图,矩形OABC 在平面直角坐标系中,点B 的坐标是(﹣2,1),过点A 作1AB OB ∥,交x 轴于B 1,过点B 1作A 1B 1∥x 轴交直线AC 于A 1,过点A 1作直线121A B AB ∥,交x 轴于B 2,过点B 2作A 2B 2∥x 轴交直线AC 于A 2,……,则A 2021的坐标是 __________________.22.法国著名数学家笛卡尔在蜘蛛戒网的启示下创建了数对与直角坐标系.如图,一只蜘蛛先以O 为起点结六条线OA ,OB ,OC ,OD ,OE ,OF 后,再从线OA 上某点开始按逆时针方向,依次在OA ,OB ,OC ,OD ,OE ,OF ,OA ,OB ,OC ,OD ,…,上结网,若将各线上的结点依次记为1,2,3,4,5,6,7,8,…,那么,第2021个结点在线________上.23.在庆祝建党“100周年”的活动中,某同学用围棋棋子按照某种规律摆成如图所示的“100”字样、如图∥有11个棋子,图∥有16个棋子,按这种规律,则第20个“100”字样的棋子个数是_____.24.一组数1,3,5,7,9,…,用含有n的式子表示这组数中的第n个数:_____.25.已知21=2,22=4,23=8,24=16,25=32,26=64……则22020﹣22019的个位数字是____.26.观察一列有规律的单项式:x,3x2,5x3,7x4,9x5…,它的第n个单项式是______.27.如图,是由一些小圆点组成的图形,第1个图形是由7个小圆点组成,第2个图形是由13个小圆点组成,第3个图形是由19个小圆点组成,…,按照这样的规律,由181个小圆点组成的是第_____个图形.评卷人得分三、解答题28.规律探究:15×15=1×2×100+25=225;25×25=2×3×100+25=625;35×35=3×4×100+25=1225;(1)第4行为;(2)用含n的式子表示规律并证明.29.若干个有规律的数,排列如下:试探究:(1)第2012个数在第几行?这个数是多少?(每行的数都是从左往右数)(2)写出第n行第k个数的代数式;(用含n,k的式子表示)(3)求第2012个数所在行的所有数之和S.30.将连续的奇数1,3,5,7,9,……排成如图所示的数表.(1)写出数表所表示的规律;(至少写出4个)(2)若将方框上下左右移动,可框住另外的9个数.若9个数之和等于297,求方框里中间数是多少?参考答案:1.C 【解析】 【分析】根据题意知:13OA =,1232A A =⨯ ,2333A A =⨯,可得规律:13n n A A n -=,根据规律可以得到A 7的横坐标和纵坐标. 【详解】解:根据题意,得13OA =,1232A A =⨯ ,2333A A =⨯,可得规律:13n n A A n -=,当机器人走到A 7点时,其横坐标为3-9+15-21=-12;纵坐标为6-12+18=12, 故点A7坐标为(-12,12) 故选择:C . 【点睛】本题考查点的坐标变化,根据题意确定横坐标和纵坐标的变化规律是解决问题的关键. 2.D 【解析】 【分析】可设直线与x 轴相交于C 点.通过求交点C 、D 的坐标可求∥DCO =30°.根据题意得△COA 1、△CB 1A 2、△CB 2A 3…都是等腰三角形,且腰长变化有规律.在正三角形中求高即可得解. 【详解】解:设直线与x 轴相交于C 点.令x =0,则y =33;令y =0,则x =-1. ∥OC =1,OD =33.∥tan∥DCO =33OD OC =, ∥∥DCO =30°. ∥∥OA 1B 1是正三角形, ∥∥A 1OB 1=60°. ∥∥CA 1O =∥A 1CO =30°, ∥OA 1=OC =1.∥第一个正三角形的高=1×sin60°=32; 同理可得:第二个正三角形的边长=1+1=2,高=2×sin60°=3; 第三个正三角形的边长=1+1+2=4,高=4×sin60°=23; 第四个正三角形的边长=1+1+2+4=8,高=8×sin60°=43; …第n 个正三角形的边长=2n -1,高=2n -2×3. ∥第n 个正三角形顶点An 的纵坐标是2n -2×3. 故选:D . 【点睛】本题是一次函数综合题型,主要考查了等腰三角形的性质,一次函数图象上点的坐标特征. 3.C 【解析】 【分析】根据表格可以得到每行数字的排列规律,然后算出a 、b 的值,最后代入求出a +b 的值,即可判断选项. 【详解】观察可得:第一行从第三个数开始,每个数都等于前面两个数的和,第二行的规律与第一行相同.∥81321a =+=,213455b =+= ∥215576a b +=+= 故选C . 【点睛】此题为数字型规律探索问题,解题关键是发现数字的变化规律.4.D【解析】【分析】观察图中黑色正方形的个数,1n =对应的个数为231=-;2n =对应的个数为561231=-=⨯-;3n =对应的个数为891331=-=⨯-;4n =对应的个数为11121341=-=⨯-;进而可推导出一般性规律.【详解】解:图∥中有231131=-=⨯-个黑色正方形;图∥中有561231=-=⨯-个黑色正方形;图∥中有891331=-=⨯-个黑色正方形;图∥中有11121341=-=⨯-个黑色正方形;依此规律,图n 中有31n -个黑色正方形故选D .【点睛】本题考查了图形规律的探究.解题的关键在于推导规律.5.A【解析】【分析】观察四个正方形,可得到规律,每个正方形中左上角的数为连续的偶数,右上角的数比左上角的数大3,左下角的数是右上角的数的相反数,右下角的数=右上角的数与左下角的数的绝对值的乘积+左上角的数-1,依此计算即可求解.【详解】解:观察四个正方形,可得到规律:每个正方形中左上角的数为从0开始的连续的偶数,右上角的数比左上角的数大3,左下角的数是右上角的数的相反数,右下角的数=右上角的数与左下角的数的绝对值的乘积+左上角的数-1,∥m =11×11-+8-1=128,故选:A .【点睛】本题考查了数字的变化规律,能够根据所给表格,发现数字之间的规律是解题的关键. 6.C【解析】【分析】先分别观察给出的四个图形中,小圆圈的个数,找到规律:第n 个图形小圆圈个数为:(1)(2)2n n +++n 2,即可求解本题. 【详解】解:通过观察,得到小圆圈的个数分别是:第∥图形小圆圈个数为:(12)22+⨯+12=4, 第∥个图形小圆圈个数为:(13)32+⨯+22=10, 第∥个图形小圆圈个数为:(14)42+⨯+32=19, 第∥个图形小圆圈个数为:(15)52+⨯+42=31, …, 所以第n 个图形小圆圈个数为:(1)(2)2n n +++n 2, 第∥个图形小圆圈个数为(61)(62)2+++62=64; 故选:C .【点睛】 本题考查的是图形与规律,从图形中读取我们需要的数据,并进行规律的探寻是解题的关键.7.C【解析】【分析】总结第∥,第∥,第∥行的变化规律,分别求出x ,y ,z 的值即可计算.【详解】解:观察第∥行:2、4、6、8、10、12、…∥第100个数为100×2=200,即x =200,观察第∥行:3、5、7、9、11、13、…∥第100个数为100×2+1=201,观察第∥行:1、4、9、16、25、36、…∥第100个数是1002=10000,即x =200、y =201、z =10000,∥2x ﹣y +2z =20199,故选:C .【点睛】本题主要考查的是数字的变化规律,总结归纳出变化规律是解题的关键.8.B【解析】【分析】观察图象,结合第一次从原点O 运动到点1(1,1)P ,第二次运动到点2(2,0)P ,第三次运动到3(3,2)P -,⋯,运动后的点的坐标特点,分别得出点P 运动的横坐标和纵坐标的规律,再根据循环规律可得答案.【详解】解:观察图象,结合第一次从原点O 运动到点1(1,1)P ,第二次运动到点2(2,0)P ,第三次运动到3(3,2)P -,⋯,运动后的点的坐标特点,由图象可得纵坐标每6运动组成一个循环:1(1,1)P ,2(2,0)P ,3(3,2)P -,4(4,0)P ,()55,2P ,()66,0P ⋯202163365÷=⋯,∴经过第2021次运动后,动点P 的坐标与5P 坐标相同,为(5,2),故经过第2021次运动后,动点P 的纵坐标是2.故选:B .【点睛】本题考查了规律型点的坐标,数形结合并从图象中发现循环规律是解题的关键. 9.-398【解析】【分析】根据图中的规律可得8(1)x y +=,求出x 与y 可得答案.【详解】解:2521=+,12522=⨯+;21741=+,721744=⨯+;23761=+,2283766=⨯+;28165x ∴=+=,6588528y =⨯+=,()65(52865)398x y x --=--=-.故答案为:398-.【点睛】考查了规律型:数字的变化类,关键是由图形得到第二行左边的数比第一行数的平方大1,第二行右边的数=第二行左边的数×第一行的数+第一行的数.10. 12 201721 【解析】【分析】根据题意,可以求出前几项的值,从而发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当11a =-时,2111111(1)2a a ===---, 321121112a a ===--,43111112a a ===---, …∥2020÷3=673…1,∥123202012017(12)673(1)22a a a a ++++=-++⨯+-=, 67312320201[(1)2](1)12a a a a ⨯⨯⨯⨯=-⨯⨯⨯-=. 故答案为:12,20172, 1. 【点睛】 本题考查了数字的变化类,明确题意,发现数字的变化特点是解题的关键.11.63【解析】【分析】n 条直线最多可将平面分成()11123112S n n n =+++⋯+=++,依此可得等量关系:n 条直线最多可将平面分成2017个部分,列出方程求解即可.【详解】解:依题意有:()11120172n n ++=, 整理得,240320n n +-=,所以()()64630n n +-=,解得164(n =-不合题意舍去),263n =.答:n 的值为63,故答案为:63.【点睛】本题考查了规律型:图形的变化类,解一元二次方程,得到分成的最多平面数的规律是解决本题的难点.12.()101010102,2--【解析】【分析】首先根据图形的变化得出OAn 的变化规律,判断出点A 2021的所在象限,再求出其坐标即可.【详解】解:由已知,点A 每次旋转转动45°,则转动一周需转动360845︒=︒(次), 而22111=2OA =+, ()()()222222=2=2OA =+, ()322322=22=2OA =+,…,()=2nn OA (n 为正整数), 即每次转动点A 到原点的距离变为转动前的2倍,202125285=⨯+,∴点2021A 的在第三象限的角平分线上,∥20212021(2)OA =,设点A 2021(x ,x ),其中x <0,∥()22021222x x ⎡⎤+=⎢⎥⎣⎦, ∥2202122x =,∥220202x =,∥10102x =-,∥点A 2021的坐标是()101010102,2--【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意各个象限内点的坐标符号.13.(0,﹣21010)【解析】【分析】根据题意,利用等腰直角三角形的性质,勾股定理,坐标系中点与象限的关系,确定一部分点的坐标,从坐标中寻找规律,再按规律计算即可.【详解】解:∥等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1, ∥A 1(0,1),A 2(1,1);根据勾股定理得:OA 2=2211=2+,∥OA 3=2OA 2=2,∥A 3(2,0),A 4(2,﹣2),根据勾股定理得:OA 4=2222=22+,∥OA 5=2OA 4=4,∥A 5(0,﹣4),∥A 6(﹣4,﹣4),根据勾股定理得:OA 6=2OA 5=42,∥OA 7=2OA 6=8,∥A 7(﹣8,0),A 8(﹣8,﹣8),根据勾股定理得:OA 8=2OA 7=82,∥OA 9=2OA 8=16,∥A 9(0,16),∥坐标的循环节为8,∥2021÷8=252…5,∥A 2021的坐标与A 5(0,﹣4)的规律相同,∥﹣4=﹣22=5122--,∥A 2021的纵坐标为2021122--=﹣21010,∥A 2021的坐标为(0,﹣21010),故答案为:(0,﹣21010).【点睛】本题考查了坐标系中坐标的变化规律,等腰直角三角形的性质,勾股定理,坐标的特点熟练掌握等腰直角三角形的性质,勾股定理灵活运用一般与特殊的思想,构造幂运算是解题的关键.14.210【解析】【分析】根据层数与正方体个数推导一般规律,第n 层有()1231n n +++⋅⋅⋅+-+个正方体,代值计算求解即可.【详解】解:第1层有1个正方体;第2层有123+=个正方体;第3层有12+36+=个正方体;依次类推,可知第n 层有()1231n n +++⋅⋅⋅+-+=(1)2n n +个正方体; ∥第20层有123192200(2021201)+++⋅⋅⋅++=⨯+=个正方体 故答案为:210.【点睛】本题考查了图形下的数字类规律的探究.解题的关键在于总结一般规律.15.167288【解析】【分析】根据前面三个等式,寻找规律解决问题.【详解】解:由三个等式,得到规律: 635⊕⊗=301545,可知:6×5 3×5 (6+3)×5,276⊕⊗=124254,可知:2×6 7×6 (2+7)×6,834⊕⊗=321244,可知:8×4 3×4 (8+3)×4,∥298⊕⊗=2×8 9×8 (2+9)×8=167288.故答案为:167288.【点睛】本题考查数字的变化规律,能够根据所给的式子,探索出数字之间的联系是解题的关键. 16.991002x【解析】【分析】根据符号的规律:n 为奇数时,单项式为负号,n 为偶数时,单项式为正号;系数的绝对值的规律:第n 个对应的单项式的系数的绝对值是2n −1;指数的规律:第n 个对应的单项式的x 指数是n ,据此解答即可.解:根据题干单项式,可知:n为奇数时,单项式为负号,n为偶数时,符号为正号,所以第100个单项式为正号;系数的绝对值的规律:第n个对应的单项式的系数的绝对值是2n−1,所以第100个单项式对应的系数的绝对值是299;指数的规律:第n个对应的单项式的x指数是n,所以第100个单项式对应的x指数是100,故第100个单项式是299x100.故答案为:299x100.【点睛】本题考查了单项式表示规律,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.17.3a+b【解析】【分析】根据所给算式总结规律解答即可.【详解】⊗=⨯+=,解:∥232339()⊗-=⨯-=,313318⊗=⨯+=,4443416()⊗-=⨯-=,5353312∥a b⊗=3a+b,故答案为:3a+b.【点睛】本题考查了规律型-数字的变化类,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.n-18.1(2,0)【解析】依据直线l 为3y x =,点1(1,0)A ,11A B x ⊥轴,可得2(2,0)A ,同理可得,3(4,0)A ,4(8,0)A ,…,依据此规律可得点n A 的坐标为()12,0n -.【详解】解:直线l 为3y x =,点1(1,0)A ,11A B x ⊥轴,∴当1x =时,3y =,即1(1,3)B ,11tan 3A OB ∴∠=,1160AOB ∴∠=︒,1130A B O ∠=︒,1122OB OA ∴==,以原点O 为圆心,1OB 长为半径画圆弧交x 轴于点2A ,2(2,0)A ∴,同理可得,3(4,0)A ,4(8,0)A ,⋯,∴点n A 的坐标为1(2,0)n -,故答案为:1(2,0)n -.【点睛】本题主要考查了一次函数图象上点的坐标特征,以及点的坐标的规律性,解题时注意:直线上任意一点的坐标都满足函数关系式()0y kx b k =+≠,在找规律时,A 点的横坐标的指数与A 所处的位数容易搞错,应注意.19.40434044- 【解析】【分析】根据前几个数的变化规律得到第n 个数为121(1)()2n n n+--,据此即可解答. 【详解】解:观察一列数:12,34-,56,78-,⋯,可得变化规律为:第n 个数为121(1)()2n n n+--, ∥第2022个数是40434044-, 故答案为:40434044-. 【点睛】 本题考查数字类规律探究,仔细观察,找到数字变化规律是解答的关键.20. 120 3486【解析】【分析】首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为(1)2n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第10和55个能被3整除的数所在组为原数列中的个数,代入计算即可.【详解】第∥个图形中的黑色圆点的个数为:1,第∥个图形中的黑色圆点的个数为:2(21)32⨯+=, 第∥个图形中的黑色圆点的个数为:3(31)62⨯+=, 第∥个图形中的黑色圆点的个数为:4(41)102⨯+=, ……第n 个图形中的黑色圆点的个数为(1)2n n ⨯+, ∥这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,∥其中每3个数中,都有2个能被3整除,10÷2=5(组),∥第10个能被3整除的数为原数列中的个数为5×3=15(个),∥15(151)2⨯+=120, ∥55÷2=27(组)……1,∥第55个能被3整除的数为原数列中的个数为27×3+2=83(个)∥83(831)2⨯+=3486, 故答案为:120,3486【点睛】此题考查了图形类的规律变化,通过归纳与总结,得到其中的规律是解题关键. 21.(22020﹣2,22021)【解析】【分析】根据平行四边形的性质及判定可得四边形AB 1OB 是平行四边形,从而推出B 1O =CO =AB =2,再根据直线之间的垂直和平行关系以及相似三角形的判定定理得到∥AOC ∥∥A 1B 1C ,∥AOB 1∥∥A 1B 1B 2,∥A 1B 1C ∥∥A 2B 2C ,利用相似三角形的性质解得A 1B 1=2,B 1B 2=4,A 2B 2=4,再根据点的坐标特征寻找出规律,最后运用即可解答.【详解】解:∥四边形OABC 是矩形∥AB =CO ,且AB CO ∥,又∥1AB OB ∥,∥四边形AB 1OB 是平行四边形,∥B 1O =AB ,∥点B 的坐标是(﹣2,1),∥B 1O =CO =AB =2,∥A 1B 1∥x 轴,∥11A B AO ∥,∥∥AOC ∥∥A 1B 1C ,∥111AO CO A B CB =,即11124A B =,解得A 1B 1=2, ∥点A 1坐标为(22﹣2,2),又∥11A B AO ∥,∥∥AOB 1∥∥A 1B 1B 2,∥11211OB AO B B A B ==12, ∥B 1B 2=4,∥A 2B 2∥x 轴,∥2211A B A B ∥,∥∥A 1B 1C ∥∥A 2B 2C ,∥111222A B CB A B CB =48, ∥A 2B 2=4,∥点A 2(23﹣2,22),以此类推...,A 2021的坐标为(22020﹣2,22021),故答案为:(22020﹣2,22021).【点睛】本题主要考查了矩形的性质、平行四边形的性质与判定、相似三角形的判定与性质以及坐标规律等知识点,根据坐标特征、总结坐标规律成为解答本题的关键.22.OE【解析】【分析】根据点在射线上的排布顺序发现规律“射线上的数字以6为周期循环”,依此规律即可得出结论.【详解】解:根据数的排布发现:1在OA 上,2在OB 上,3在OC 上,4在OD 上,5在OE 上,6在OF 上,7在OA 上,…,射线上的数字以6为周期循环,∥2021÷6=336……5,∥2021与5在同一条射线上,即2021在射线OE 上.故答案为:OE .【点睛】本题考查了规律型中的数字的变化类,解题的关键是找出规律“射线上的数字以6为周期循环”.本题属于基础题,难度不大,解决该题型题目时,根据射线上数字的排布找出规律是关键.23.106【解析】找出规律:“1”的规律是:最先3个棋子,以后每次加1,第20个“100”中的“1”有:3+19=22(个)棋子;“0”的规律是:最先4个棋子,以后每次加2个,第20个“100”中的“0”有:4+19×2=42(个)棋子,从而可求得总的棋子数.【详解】由题意得:(3+19)+2×(4+19×2)=106(个)故答案为:106【点睛】本题考查了图形的规律,找出规律是本题的关键.24.21n -##-1+2n【解析】【分析】根据题意得:第1个数为1,第2个数为3221=⨯-,第3个数为5231=⨯-,第4个数为7241=⨯-,第5个数为9251=⨯-,……,由此发现规律,即可求解.【详解】解:根据题意得:第1个数为1,第2个数为3221=⨯-,第3个数为5231=⨯-,第4个数为7241=⨯-,第5个数为9251=⨯-,……,由此发现,第n 个数为21n -.故答案为:21n -【点睛】本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.25.8【解析】【分析】通过观察可知每运算四次个位数循环一次,由此可知22020﹣22019的个位数与23的尾数相同.解:∵21=2,22=4,23=8,24=16,25=32,26=64,∴每运算四次个位数循环一次,∵22020﹣22019=22019(2﹣1)=22019,∵2019÷4=504…3,∴22020﹣22019的个位数与23的尾数相同,∴22020﹣22019的个位数字是8,故答案为:8.【点睛】本题考查数字的变化规律,能够通过所给数对个位数的特点,确定个位数的循环规律是解题的关键.26.()21nn x - 【解析】【分析】根据单项式的系数与次数的变化,探索个数与系数、次数的关系的一般性规律即可.【详解】 解:第1个单项式x 中,系数为1,次数为1;第2个单项式23x 中,系数为3,341221=-=⨯-,次数为2;第3个单项式35x 中,系数为5,561321=-=⨯-,次数为3;第4个单项式47x 中,系数为7,781421=-=⨯-,次数为4;第5个单项式59x 中,系数为9,9101521=-=⨯-,次数为5;依次类推,可知第n 个单项式的系数为21n -,次数为n ,单项式为()21nn x - 故答案为:()21nn x -. 【点睛】本题考查了单项式,数字规律的探究.解题的关键在于总结一般性规律.27.30【解析】【分析】首先分析题意,找到规律,并进行推导得出答案.解:观察分析可得:第1个图形有7个小圆点,7=6+1,第2个图形有13个小圆点,13=6×2+1,第3个图形有19个小圆点,19=6×3+1,…,第n个图形小圆点的个数为6n+1,所以6n+1=181,解得:n=30.故答案为:30【点睛】本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.28.(1)45×45=4×5×100+25=2025(2)(10n+5)2=100n(n+1)+25,证明见解析【解析】【分析】(1)从给出的数据分析得,这些得出的结果最后两位都为25,百位以上2=1×2,6=2×3,12=3×4,…,依此类推得出规律:百位为n×(n+1).(2)直接利用已知数据变化规律进而得出符合题意的公式.(1)解:根据数据可分析出规律,个位数位5的整数的平方运算结果的最后2位一定是25,百位以上结果则为n×(n+1),∥第4个算式应为45×45=4×5×100+25=2025.(2)规律:(10n+5)2=100n(n+1)+25,证明:∥左边=100n2+100n+25,右边=100n2+100n+25,∥左边=右边,∥(10n+5)2=100n(n+1)+25.【点睛】本题考查规律型中的数字变化问题,本题的规律为个位数位5的整数的平方运算结果的最后2位一定是25,百位以上结果则为n×(n+1),难度一般.29.(1)第63行,这个数为358;(2)(﹣1)n+13k﹣1;(3)63312-.【解析】【分析】每一行的数的个数和行数都是相同的,奇数行的数字都是3n﹣1,偶数行的数字都是(﹣3)n﹣1,统一为(﹣1)n+13n﹣1;(1)设第2012个数在第n行,则1+2+3+…+n=(1)2n n+,估算得出答案即可;(2)有以上分析直接写出即可;(3)写出第2012个数所在行的所有数,进一步求和即可.(1)解:∥每一行的数的个数和行数都是相同的,奇数行的数字都是3n﹣1,偶数行的数字都是(﹣3)n﹣1,设行数为n,数字个数为k,k=1+2+3+…+n=(1)2n n+,当n=62时,62+2⨯(621)=1953;当n=63时,63+2⨯(631)=2016;∥62+2⨯(621)=1953<2012<63+2⨯(631)=2016,所以第2012个数在第63行,从左往右数第2012﹣1953=59个,这个数为358;(2)解:由以上分析可直接写出为(﹣1)n+13k﹣1;(3)解:∥S=1+3+32+ (362)∥3S=3+32+…+362+363∥由∥﹣∥得2S=363﹣1∥S =1+3+32+…+362=63312- . 【点睛】此题考查数字的变化规律,找出数字之间的联系,得出规律,解决问题.30.(1)见解析(2)方框里中间数是33【解析】【分析】(1)观察所给的数表即可得;(2)设方框里中间数为x ,则另外8个数为2x -,2x +,10x -,10x +,12x -,12x +,8x -,8x +,由题意得,221010121288297x x x x x x x x x -+-+-+++-+++-+++= 进行计算即可得.(1)解:规律有:∥第一列个位数都是1,∥每行只有5个奇数,∥每行相邻两个数的和是2的倍数,∥每列相邻的两个数相差10.(2)解:设方框里中间数为x ,则另外8个数为2x -,2x +,10x -,10x +,12x -,12x +,8x -,8x +,由题意得,221010121288297x x x x x x x x x -+-+-+++-+++-+++=9297x =,33x =,则方框里中间数是33.【点睛】本题考查了数字规律,一元一次方程,解题的关键是理解题意,掌握一元一次方程的应用.。

中考数学专题复习找规律问题之固定累加型

中考数学专题复习找规律问题之固定累加型

中考数学专题复习找规律问题之固定累加型学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、单选题1.下面由火柴棒拼出的一列图形中,第1个图形有4根火柴棒,第2个图形有7根火柴棒,第3个图形有10根火荣棒…,则第7个图形有( )根火柴棒.A .16B .22C .15D .212.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为()1,0,点D 的坐标为()0,2,延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C ,…按这样的规律进行下去,第2021个正方形的面积为( )A .2020352⎛⎫⨯ ⎪⎝⎭B .2021352⎛⎫⨯ ⎪⎝⎭C .4040352⎛⎫⨯ ⎪⎝⎭D .4042352⎛⎫⨯ ⎪⎝⎭3.一组按规律排列的多项式:233547,,,,,a b a b a b a b +-+-其中第n (n 为正整数)个式子的次数是( ) A .nB .21n -C .31n -D .2n4.用同样大小的黑色棋子按如图所示的规律摆放:第一个图中有6枚棋子,第二个图中有9枚棋子,第三个图中有12枚棋子,第四个图中有15枚棋子,…若第n 个图中有2019枚棋子,则n 的值是( ). A .670 B .671C .672D .6735.电子跳蚤在数轴上的点K处,第一步从K向右跳1个单位到1K,第二步由1K向左跳2个单位到2K,第三步由2K向右跳3个单位到3K,第四步由3K向左跳4个单位到4K,…按以上规律跳了50步时电子跳蚤落在数轴上的点50K处,若50K所表示的数是-26.5,则电子跳蚤的初始位置点K所表示的数是()A.0B.-1C.-1.5D.1.56.已知2021个整数a1,a2,a3,…,a2020满足下列条件:a1=1,a2=﹣|a1+1|,a3=﹣|a2+1|,……a2020=﹣|a2019+1|,则a1+a2+a3+…+a2021的值为()A.0B.﹣1009C.﹣1011D.﹣20217.按一定规律排列的单项式a,222a-,333a,48a-,…,第n(n为正整数)个单项式是()A.(1)n nn na-B.1(1)n nn na+-C.(1)(1)n nn na-+D.1(1)(1)n nn na+-+8.给定一列按规律排列的数:4381,,,,325,则这列数的第9个数是()A.910B.95C.169D.20119.如图,图形都是由形状、大小完全相同的“●”按一定规律所组成,其中图①共有6个黑点,图①共有9个黑点,图①共有12个黑点…,按此规律排列,则图①中黑点的个数为()A.21B.24C.27D.30评卷人得分二、填空题10.根据表中数字的规律,则代数式()x y x--的值是__.2468512177237228x y11.某休闲广场的地面中间是1块正六边形地砖,周围是用正方形和正三角形地砖按如图方式依次向外铺设10圈而成,其中第1圈有6块正方形和6块正三角形地砖,则铺设该广场共用地砖__________块.12.用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第21个图案需要棋子_______枚.13.观察下列的“蜂窝图”2021个图案中的“”的个数是_______.14.观察下列图形:它们是按一定规律排列的,依照此规律,第n(n 为正整数)个图形中共有的点数是__________.15.将图中①的正方形剪开得到图①,图①中共有4个正方形﹔将图中一个正方形剪开得到图①.图①中共有7个正方形;将图①中一个正方形剪开得到图①,图①中共有10个正方形;…;如此下去.则图①中共有______________个正方形.16.如图,将n个边长都为1的正方形按如图所示摆放,点A 1,A 2,…,An 分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为_____.17.一列数6,8,10,12,14,16…,则第n 个数为 _______.18.如图,在平面直角坐标系中,将ABO 绕点A 顺时针旋转到11AB C △的位置,点B 、O 分别落在点1B 、1C 处,点1B 在x 轴上,再将11AB C △绕点1B 顺时针旋转到112A B C 的位置,点2C 在x 轴上,将112A B C 绕点2C 顺时针旋转到222A B C △的位置,点2A 在x 轴上,依次进行下去……若点3,02A ⎛⎫⎪⎝⎭,()0,2B ,则点2022B 的坐标为________.19.如图,①是一个三角形,分别连接这个三角形三边中点得到图①,再连接图①中间小三角形三边的中点得到图①,按这样的方法进行下去,第n 个图形中共有4005个三角形,则n 的值是_____________.20.如图是一组有规律的图案,第1个图形(如图1)由4个▲组成,第2个图形(如图2)由7个▲组成,第3个图形(如图3)由10个▲组成,第4个图形(如图4)由13个▲组成,……,则第6个图形由_____个▲组成,第n (n 为正整数)个图形由______个▲组成.21.如图,在平面直角坐标系中,点123,,,A A A ,都在x 轴正半轴上,点123,,,B B B ,都在直线y kx =上,1130B OA ∠=︒,112223334,,,A B A A B A A B A ∆∆∆,都是等边三角形,且11OA =,则点6B 的横坐标是_______.22.观察下列各式: (x ﹣1)(x +1)=x 2﹣1; (x ﹣1)(x 2+x +1)=x 3﹣1; (x ﹣1)(x 3+x 2+x +1)=x 4﹣1;……根据这一规律计算:22020+22019+22018+…+22+2+1的结果是___________________. 23.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位,依次得到点P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,﹣1),P 5(2,﹣1),P 6(2,0),…,则点P 60的坐标是________.24.如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依次为2,4,6,8,…顶点依次用A 1,A 2,A 3,A 4…表示,则顶点A 2021的坐标是________.评卷人得分三、解答题 25.把2100个连续的正整数1、2、3、…、2100,按如图方式排成一个数表,如图用一个正方形框在表中任意框住4个数,设左上角的数为x .(1)另外三个数用含x 的式子表示出来,从小到大排列是 ; (2)被框住4个数的和为416时,x 值为多少?(3)能否框住四个数和为324?若能,求出x 值,若不能,说明理由;(4)从左到右,第1至第7列各数之和分别为a 1、a 2、a 3、a 4、a 5、a 6、a 7,求7个数中最大的数与最小的数之差. 26.用火柴棒按下图中的方式搭图形.(1)按图示规律填空: 图形符号① ① ① ① ①火柴棒根数(2)按照这种方式搭下去,搭第n 个图形需要 根火柴棒? 27.请观察下列等式,找出规律并回答以下问题.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯,…… (1)按照这个规律写下去,第5个等式是:______;第n 个等式是:______.(2)①计算:1111 1223344950⨯⨯⨯⨯++++.①若a为最小的正整数,30b-=,求:()()()()()()()()111111122339797ab a b a b a b a b+++++++++++++.28.下列是用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题:(1)第5个图中共有___________根火柴;(2)第n个图形中共有___________根火柴(用含n的式子表示);(3)请计算第2021个图形中共有多少根火柴?29.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯.(1)猜想并写出:1n(n1)+=.(2)直接写出下列各式的计算结果:①111112233420152016++++⨯⨯⨯⨯=;①111124466820142016++++⨯⨯⨯⨯=.(3)探究并解决问题:如果有理数a,b满足|a﹣2|+|1﹣b|=0,试求:1111(1)(1)(2)(2)(2015)(2015)ab a b a b a b++++++++++的值.30.亮亮和同学观察下面一列数,探求其规律:111111,,,,,,23456---,并解决了下面的问题,相信你也能解决这些问题.(1)写出这列数的第7,8,9,10四个数;(2)第2020个数是什么?(3)如果这一列数无限排列下去,与哪一个数越来越近?参考答案:1.B 【解析】 【分析】根据变化规律,后一个图形比前一个图形多3根火柴棒,然后写出第n 个图形的表达式从而可得结论. 【详解】解:第1个图形中有4根火柴棒; 第2个图形中有4+3=7根火柴棒; 第3个图形中有4+3×2=10根火柴棒; …第n 个图形中火柴棒的根数有4+3×(n -1)=(3n +1)根火柴棒 当n =7时,3n +1=21+1=22 故选:B 【点睛】本题是对图形变化规律的考查,比较简单,观察出后一个图形比前一个图形多3根火柴棒是解题的关键. 2.C 【解析】 【分析】先利用勾股定理求出AB =BC =AD ,再用三角形相似得出212253,()522A B A B ==,找出规律2021202120213()52A B =,即可求出第2021个正方形的面积. 【详解】解:①点A 的坐标为(1,0),点D 的坐标为(0,2), ①OA =1,OD =2,BC =AB =AD =5, ①正方形ABCD ,正方形A 1B 1C 1C , ①①OAD +①A 1AB =90°,①ADO +①OAD =90°, ①①A 1AB =①ADO , ①①AOD =①A 1BA =90°,①①AOD ①①A 1BA , ①1AO ODA B AB =, ①1125A B =, ①152A B =, ①1111352A B AC A B BC ==+=, 同理可得,222935()542A B ==, 同理可得,3333()52A B =,同理可得,2020202020203()52A B =, ①第2021个正方形的面积=2202114040335522-⎡⎤⎛⎫⎛⎫⨯=⨯⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.故选:C . 【点睛】此题考查正方形的性质,坐标与图形性质,相似三角形的判定与性质,解题关键在于找到规律. 3.B 【解析】 【分析】根据根据第1个多项式为a b + ,第2个多项式为222132a b a b ⨯-=--,第3个多项式为332351a b a b ⨯-++=,第4个多项式为442471a b a b ⨯---=,第5个多项式为595251a b a b ⨯-+=+, 由此得到规律,即可求解.【详解】解:第1个多项式为211a b a b ⨯-+=+ 第2个多项式为222132a b a b ⨯-=-- 第3个多项式为332351a b a b ⨯-++= 第4个多项式为442471a b a b ⨯---= 第5个多项式为595251a b a b ⨯-+=+由此得到第n 个多项式为21n n a b -+第n (n 为正整数)个式子的次数是21n - . 故选:B 【点睛】本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键. 4.C 【解析】 【分析】仔细观察,可以发现,每一个图形中的棋子数比前一个图形多3个,根据这一规律得出第n 个图形中的棋子数与n 的关系,然后代入数值解方程即可求解. 【详解】解:观察发现:每一个图形中的棋子数比前一个图形多3个,所以第n 个图形中的棋子数为3+3n ,由3+3n =2019得:n =672, 故选:C . 【点睛】本题考查探索图形的变化规律、解一元一次方程,解答的关键是发现第n 个图形中棋子个数与n 的关系. 5.C 【解析】 【分析】根据题意,每跳动2次,向左平移1个单位,跳动50次,相当于在原数的基础上减了25,相应的等量关系为:原数字-25=-26.5. 【详解】解:设0K 点所对应的数为x ,由题意得:每跳动2次,向左平移1个单位,跳动50次,相当于在原数的基础上减了25, 则x -25=-26.5, 解得:x =-1.5.即电子跳蚤的初始位置0K 点所表示的数为-1.5. 故选C【点睛】本题考查了数轴、图形的变化规律,得到每跳动2次相对于原数的规律是解决本题的突破点.6.C【解析】【分析】根据题意,可以分别求得这列数的各项的数值,从而可以求得从a 3开始2个一循环,本题即可求解.【详解】解:①a 1=1,a 2=﹣|a 1+1|,a 3=﹣|a 2+1|,……a 2020=﹣|a 2019+1|,①a 2=-2,a 3=-1,a 4=0,a 5=-1,a 6=0,a 7=-1,……,a 2020=0,a 2021=-1,①从a 3开始2个一循环,①a 1+a 2+a 3+…+a 2021=(1-2)+(-1+0)×1009+(-1)=-1011.故选:C .【点睛】本题考查了绝对值,解题的关键是得到这列数从a 3开始2个一循环的规律. 7.B【解析】【分析】根据每一项的系数、字母指数的变化规律得出答案.【详解】解:a =(−1)2×1×1a 1,222a -=(−1)3×2×2 a 2,333a =(−1)4×3×3 a 3,48a -=(−1)5×4×4 a 4,…,第n (n 为正整数)为1(1)n n n na +-故选:B .【点睛】本题考查算术平方根,数字的变化美,探索和发现每一项的系数、字母指数的变化规律是得出正确答案的关键.8.B【解析】【分析】把数列4381,,,,325变2468,,,,2345,分别观察分子和分母的规律即可解决问题.【详解】解:把数列4381,,,,325变2468,,,,2345,可知分子是从2开始的连续偶数,分母是从2开始的连续自然数,则第n个数为21nn+所以这列数的第9个数是189105=,故选:B.【点睛】本题考查了数字类规律探索,将原式整理为2468,,,,2345,分别得出分子分母的规律是解本题的关键.9.B【解析】【分析】观察图形,找到图形中圆形个数的规律:第n个图形有3(n+1)个●,然后代入n=7求解即可.【详解】解:观察图形得:第1个图形有3+3×1=6个●,第2个图形有3+3×2=9个●,第3个图形有3+3×3=12个●,…第n个图形有3+3n=3(n+1)个●,当n=7时,3×(7+1)=24,即第7个图形中●的个数为24,故选:B .【点睛】本题考查了图形的变化类问题,解题的关键是仔细的读题并找到图形变化的规律,难度不大.10.-398【解析】【分析】根据图中的规律可得8(1)x y +=,求出x 与y 可得答案. 【详解】解:2521=+,12522=⨯+;21741=+,721744=⨯+;23761=+,2283766=⨯+;28165x ∴=+=,6588528y =⨯+=,()65(52865)398x y x --=--=-.故答案为:398-.【点睛】 考查了规律型:数字的变化类,关键是由图形得到第二行左边的数比第一行数的平方大1,第二行右边的数=第二行左边的数×第一行的数+第一行的数.11.661【解析】【分析】由题意得:从里向外的第1圈有6块正方形和6块正三角形地砖,第二圈有有6块正方形和18块正三角形地砖,此后每一圈都比前一圈多12个正三角形,再列式计算即可得到答案.【详解】解:由题意得:从里向外的第1圈有6块正方形和6块正三角形地砖,第二圈有有6块正方形和18块正三角形地砖,此后每一圈都比前一圈多12个正三角形,所以第10圈含有的正三角形的个数有6129114(个),所以铺设该广场共用地砖:6+6+12+6+122++6+129+610+1 61830425466789010211461661(块)故答案为:661【点睛】本题考查的是图形类的规律探究,掌握“从具体到一般的探究方法”是解本题的关键. 12.65【解析】【分析】图案1中,黑色棋子个数为5;图案2中,黑色棋子个数为53+;图案3中,黑色棋子个数为533++;得出规律,进而求解出图案21中,黑色棋子个数.【详解】解:图案1中,黑色棋子个数为5;图案2中,黑色棋子个数为5353153(21)+=+⨯=+⨯-;图案3中,黑色棋子个数为53353253(31)++=+⨯=+⨯-;得出规律为图案n 中,黑色棋子个数为53(1)n +⨯-; 当21n =时,黑色棋子个数为53(1)53(211)65n +⨯-=+⨯-=故答案为:65.【点睛】本题主要考察了总结规律.解题的关键在于是否能够根据数据的特征推导出规律. 13.6064【解析】【分析】 通过分析前面4个,可以发现后一个图形比前一个图形中的“”的个数多3个,利用此规律,即可出第2021个图案中的“”的个数. 【详解】解:通过观察可以发现:第1个有4个,第2个有7个,第3个有10个,第4个有13个,由此可知,后一个图形比前一个图形要多三个“”, 故第n 个图形中的“”的个数为:43(1)31n n +-=+个.当2021n =时,有3202116064⨯+=个.故答案为:6064.【点睛】本题主要是考查了图形类的规律问题,通过观察前几个图形,找到对应规律,进而求得第n 个图形对应的个数,这是解决此类问题的重点.14.61n -##-1+6n【解析】【分析】根据第1个图形中的点数为561=- ;第2个图形中的点数为11621=⨯- ;第3个图形中的点数为17631=⨯- ;发现规律,即可求解.【详解】解:第1个图形中的点数为561=- ;第2个图形中的点数为11621=⨯- ;第3个图形中的点数为17631=⨯- ;由此发现规律:第n (n 为正整数)个图形中的点数为61n -.故答案为:61n -【点睛】本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.15.25【解析】【分析】根据图形的变化发现规律即可求解.【详解】解:图①中的正方形剪开得到图①,图①中共有3×1+1=4个正方形;将图①中一个正方形剪开得到图①,图①中共有3×2+1=7个正方形;将图①中一个正方形剪开得到图①,图①中共有3×3+1=10个正方形;……发现规律:第n 个图中共有正方形的个数为:3(n -1)+1=3n -2;则图①中共有正方形的个数为3×9-2=25.故答案为:25.【点睛】本题考查了规律型:图形的变化类,解决本题的关键是观察图形的变化寻找规律并利用规律.16.14n - 【解析】【分析】根据题意可得,阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n 个这样的正方形重叠部分即为(n -1)个阴影部分的和.【详解】解:由题意可得一个阴影部分面积等于正方形面积的14,即是14, n 个这样的正方形重叠部分(阴影部分)的面积和为:()11144n n -⨯-=. 故答案为:14n -. 【点睛】本题考查了正方形的性质,解题的关键是得到n 个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.17.2n +4【解析】【分析】观察题目所给数字可以发现这一系列数字都是连续的正的偶数,只需要利用偶数的表示方法进行表示即可.【详解】解:观察题目可知:这列数是从6开始的连续的正的偶数,①第n 个数为2(n +2)=2n +4.故答案为:2n+4.【点睛】本题主要考查了数字类规律,解题的关键在于能够准确根据题意观察出数字间的规律.18.()6066,2【解析】【分析】由勾股定理可计算出AB的长,其周长为p=6,①AOB经过3次旋转后点B2的横坐标为OA+AB+OB=p=6,即为三角形的周长,纵坐标为2,即B2(6,2);再经过3次旋转后点B4的横坐标为2(OA+AB+OB)=2p=12,即为三角形的周长2倍,纵坐标为2,即B4(12,2);再经过3次旋转后点B6的横坐标为3(OA+AB+OB)=3p=18,即为三角形的周长的3倍,纵坐标为2,即B6(18,2);…;一般地,①AOB经过3n次旋转后点B2n的横坐标为n (OA+AB+OB)=np=6n,即为三角形的周长的n倍,纵坐标为2,B2n(6n,2).从而根据规律可求得B2022的坐标.【详解】①3,02A⎛⎫⎪⎝⎭,()0,2B①3,22OA OB==在Rt①AOB中,由勾股定理得:222235222 AB OA OB⎛⎫=+=+=⎪⎝⎭①①AOB的周长为35++2622p==①AOB经过3次旋转后点B2的横坐标为OA+AB+OB=p=6,即为三角形的周长,纵坐标为2,即B2(6,2);①AOB再经过3次旋转后点B4的横坐标为2(OA+AB+OB)=2p=12,即为三角形的周长2倍,纵坐标为2,即B4(12,2);再经过3次旋转后点B6的横坐标为3(OA+AB+OB)=3p=18,即为三角形的周长的3倍,纵坐标为2,即B6(18,2);…;一般地,经过3n次旋转后点B2n的横坐标为n(OA+AB+OB)=np=6n,即为三角形的周长的n倍,纵坐标为2,即B2n(6n,2).①2022是偶数①B2022(6066,2)6066,2故答案为:()【点睛】本题是平面直角坐标系中坐标规律探索问题,先由特殊情况出发,得出一般性规律,再回到特殊情况,体现了数学中的归纳思想,这是问题的关键.注意数形结合.19.1002【解析】【分析】分别数出图①、图①、图①中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图①中三角形的个数为9=4×3-3.按照这个规律即可求出第n个图形中有多少三角形,列方程可解决问题.【详解】解:分别数出图①、图①、图①中的三角形的个数,图①中三角形的个数为1=4×1-3;图①中三角形的个数为5=4×2-3;图①中三角形的个数为9=4×3-3;… 可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,第n个图形中共有三角形的个数为4n-3,即4n-3=4005,n=1002,故答案是1002.【点睛】本题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律.20.19(3n+1)##(1+3n)【解析】【分析】仔细观察图形可知:第一个图形有3×2-3+1=4个三角形;第二个图形有3×3-3+1=7个三角形;第三个图形有3×4-3+1=10个三角形,据此进一步代入求得答案即可.【详解】解:观察发现:第一个图形有3×2-3+1=4个三角形;第二个图形有3×3-3+1=7个三角形;第三个图形有3×4-3+1=10个三角形;…第n 个图形有3(n +1)-3+1=3n +1个三角形;当n =6时,3n +1=3×6+1=19,故答案为:19;(3n +1).【点睛】此题考查了规律型:图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.21.48【解析】【分析】设①1n n n B A A +的边长为n a ,根据直线的解析式得出30n n A OB ∠=︒,再结合等边三角形的性质及外角的性质即可得出30n n OB A ∠=︒,190n n OB A +∠=︒,从而得出13n n n B B a +=,由点1A 的坐标为(1,0),得到11a =,2112a =+=,31214a a a =++=,412318a a a a =+++=,⋯,12n n a ,即可解决问题. 【详解】解:过1B 作1B C x ⊥轴于C ,过2B 作2B D x ⊥轴于D ,过3B 作3B E x ⊥轴于E ,如图所示:设①1n n n B A A +的边长为n a ,则121212AC A C A A ==,232312A D A D A A ==,⋯, 1132B C a ∴=,2232B D a =,3332B E a =,⋯, 13(2B ∴,3)2, 点1B ,2B ,3B ,⋯是直线y kx =上的第一象限内的点, 33k ∴=, 30n n A OB ∠=︒,又①1n n n A B A +为等边三角形, 160n n n B A A +∴∠=︒, 30n n OB A ∴∠=︒,190n n OB A +∠=︒, 13n n n n B B OB a +∴==, 11OA =,∴点1A 的坐标为(1,0), 11a ∴=,2112a =+=,31214a a a =++=,412318a a a a =+++=,⋯, 12n n a , 632a ∴=,∴点6B 的横坐标为633324822a =⨯=, 故答案为:48.【点睛】本题考查了一次函数的性质、等边三角形的性质、规律型、以及三角形外角的性质等,解题的关键是找出规律13n n n n B B OB a +==.22.22021﹣1【解析】【分析】观察一系列等式得到一般性规律,利用得出的规律(x ﹣1)(xn +xn -1+…+x +1)=xn +1﹣1,把x =2,n =2020代入计算即可,【详解】解:根据题意得:(x ﹣1)(xn +xn -1+…+x +1)=xn +1﹣1,把x =2,n =2020代入得,22020+22019+22018+…+22+2+1=(2﹣1)(22020+22019+22018+…+22+2+1),=22021﹣1.故答案为:22021﹣1.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.23.(20,0)【解析】【分析】根据P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,﹣1),P 5(2,﹣1),P 6(2,0),…,可得到规律:P 3n (n ,0),据此即可得到答案.【详解】解:①P 3(1,0),P 6(2,0),P 9(3,0),…,①P 3n (n ,0),①当n=20时,P 60(20,0).故答案为:(20,0) .【点睛】本题是平面直角坐标系中点的规律问题,观察数据,找到规律是解题的关键.24.(-506,-506)【解析】【分析】根据正方形的性质找出部分A n点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数)”,依此即可得出结论.【详解】解:观察发现:A1(-1,-1),A2(-1,1),A3(1,1),A4(1,-1),A5(-2,-2),A6(-2,2),A7(2,2),A8(2,-2),A9(-3,-3),…,①A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),①2021=505×4+1,①A2021(-506,-506),故答案为:(-506,-506).【点睛】本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),”解决该题型题目时,根据点的坐标的变化找出变化规律是关键.25.(1)x+1、x+7、x+8;(2)x值为100;(3)不存在用正方形框出的四个数的和为324,见解析;(4)7个数中最大的数与最小的数之差为1800【解析】【分析】(1)根据数表的排列,可用含x的代数式表示出其它三个数;(2)根据四个数之和为416,可得出关于x的一元一次方程,解之即可得出x的值,再由x不在第7列即可得出结论;(3)根据四个数之和为324,可得出关于x的一元一次方程,解之即可得出x的值,再由x在第7列即可得出不存在用正方形框出的四个数的和为324;(4)根据数表的排布,可得出总共300行其每行最右边的数比最左边的数大6,用其×300即可得出结论.【详解】解:(1)观察数表可知:另外三个数分别为x+1、x+7、x+8.故答案为:x+1、x+7、x+8.(2)设正方形框出的四个数中最小的数为x,根据题意得:x+(x+1)+(x+7)+(x+8)=416,解得:x=100.①100=14×7+2,①100为第2列的数,符合题意.答:被框住4个数的和为416时,x值为100.(3)设正方形框出的四个数中最小的数为x,依题意得根据题意得:x+(x+1)+(x+7)+(x+8)=324,解得:x=77,①77=11×7,①77为第7列的数,不符合题意,①不存在用正方形框出的四个数的和为324.(4)本数表共2100个数,每行7个数,共排300行,即有7列,每列共300个数,①每一行最右边的数比最左边的数大6,①a7﹣a1=6×(2100÷7)=1800.答:7个数中最大的数与最小的数之差为1800.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,解题的关键是:(1)根据数表中数的规律找出其它三个数;(2)由四个数之和为416,列出一元一次方程;(3)由四个数之和为324,列出一元一次方程;(4)根据数表中数的规律,找出每行最右边数比最左边数大6.26.(1)4;6;8;10;12;(2)(2+2n)【解析】【分析】(1)由图形发现,后面的图形都比前面相邻的图形多2根火柴棒,由此计算得出答案即可;(2)利用表中的规律得出一般的规律即可.【详解】解:(1)填表如下:图形符号① ① ① ① ① 火柴棒根数4 6 8 10 12(2)搭第n 个图形需要(2n +2)根火柴.故答案为:(2n +2)【点睛】此题考查图形的变化规律,找出图形之间的数字运算规律,进一步利用规律解决问题. 27.(1)1115656=-⨯,()11111n n n n =-⨯++;(2)①4950;①1465119800 【解析】【分析】(1)根据规律可得第5个算式;根据规律可得第n 个算式;(2)①根据运算规律可得结果.①利用非负数的性质求出a 与b 的值,代入原式后拆项变形,抵消即可得到结果.【详解】 (1)根据规律得:第5个等式是1115656=-⨯,第n 个等式是()11111n n n n =-⨯++; (2)①11111223344950⨯⨯⨯⨯++++, 111111111223344950=-+-+-++-, 1150=-, 4950=; ①a 为最小的正整数,30b -=,1a ,3b =,原式111111324354698100=+++++⨯⨯⨯⨯⨯, 11111111111111(1)()()+()()23224235246298100=⨯-+⨯-+⨯-⨯-++⨯-, 1111111111(1)2324354698100=⨯-+-+-+-++-,1111(1)2299100=⨯+--, 1465119800=. 【点睛】本题主要考查了数字的变化规律,发现规律,运用规律是解答此题的关键.28.(1)16;(2)31n +;(3)6064【解析】【分析】(1)观察图形发现规律:每个图形比前一个图形多3根火柴,进而求解;(2)根据每个图形比前一个图形多3根火柴,总结规律即可;(3)将2021n =代入(2)中代数式求解即可.【详解】(1)根据图案可知,每个图形比前一个图形多3根火柴,第4个图案中火柴有13根,∴第5个图案中火柴有13316+=(根);故答案为:16;(2)当1n =时,火柴的根数是3114⨯+=;当2n =时,火柴的根数是3217⨯+=;当3n =时,火柴的根数是33110⨯+=;,所以第n 个图形中火柴有31n +,故答案为:31n +;(3)当2021n =时,3202116064⨯+=,所以第2021个图形中共有6064根火柴.【点睛】本题考查了规律型-图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.29.(1)111n n -+;(2)①20152016;①10074032;(3)20162017. 【解析】(1)根据题目中的等式,可以写出相应的猜想;(2)①利用(1)中的结论得到原式=1-12+12-13+13-14+…+12015-12016,然后合并即可;①每个分数提14,然后利用(1)中的结论计算;;(3)根据|ab-2|+|1-b|=0,可以得到a、b的值,然后即可求得所求式子的值.【详解】解:(1)111 (1)1n n n n=-++;(2)①原式=1-12+12-13+13-14+…+12015-12016=1-12016=20152016;①原式=14(112⨯+123⨯+134⨯+…+110071008⨯)=14(1-12+12-13+13-14+…+11007-11008)=14(1-11008)=1007 4032;(3)①|a-2|+|1-b|=0,①a-2=0,1-b=0,解得a=2,b=1,①1111(1)(1)(2)(2)(2015)(2015) ab a b a b a b ++++++++++=1111... 21324320172016 ++++⨯⨯⨯⨯=1-12+12-13+13-14+…+12016-12017=1-1 2017=2016 2017.【点睛】本题考查了数字的变化类、非负数的性质、有理数的混合运算,解答本题的关键是明确题意题意,发现式子的特点,求出相应的值.30.(1)1111,,,78910--;(2)12020-;(3)0【解析】(1)根据题目中的数字,可以发现奇数个数都是负数,偶数个数都是正数,第几个数分母就是几,从而可以写出第7个,第8个,第9个,第10个数;(2)根据题目中的数字的特点,可以写出第2020个数;(3)根据分子都是1,分母越来越大,即可得到这列数无限排列下去,越来越接近哪一个数.【详解】(1)一列数为:111111,,,,,,23456---,第7、8、9、10四个数分别为:1111 ,,, 78910--;(2)一列数为:11111 1,,,,,,23456---,∴第2020个数是1 2020 -;(3)如果这一列数无限排列下去,越来越近0.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,写出相应的数字.。

中考数学找规律练习题(20道-后附答案)

中考数学找规律练习题(20道-后附答案)

中考数学找规律练习题(20道,后附答案)一:数式问题1.已知22223322333388+=⨯+=⨯,,244441515+=⨯,……,若288a ab b+=⨯(a 、b 为正整数)则a b +=.2.有一列数a 1,a 2,a 3,a 4,a 5,…,a n ,其中a 1=5×2+1,a 2=5×3+2,a 3=5×4+3,a 4=5×5+4,a 5=5×6+5,…,当a n =2009时,n 的值等于()A.2010B.2009C.401D.3343.有一组单项式:a 2,-a 32,a 43,-a 54,….观察它们构成规律,用你发现的规律写出第10个单项式为.4.有一列数1234251017--,,,…,那么第7个数是.5.观察下列等式:111122⨯=-,222233⨯=-,333344⨯=-,……(1)猜想并写出第n 个等式;(2)证明你写出的等式的正确性.6.将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置是第行第列.第1列第2列第3列第4列第1行123第2行654第3行789第4行121110……7.将正整数1,2,3,…从小到大按下面规律排列.若第4行第2列的数为32,则①n=;②第i行第j列的数为(用i,j表示).第1列第2列第3列…第n列第1行123…n第2行1+n2+n3+n…n2第3行12+n22+n32+n…n3………………二:定义运算问题8、有一列数1a,2a,3a, ,n a,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a=,则2007a为()A.2007B.2C.12D.1-三:剪纸问题9.如图(9),把一个正方形三次对折后沿虚线剪下则得到的图形是()10题图四:数形结合问题10、已知,A、B、C、D、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是(用含π的代数式表示)11、阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a.根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为.12、如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为.四:图形问题13.如图所示,已知:点(00)A ,,3B ,,(01)C ,在ABC △内依次作yxO P 1P 2P 3P4P 5A 1A 2A 3A 4A 5(第12题图)2y x=第14题图C 2D 2C 1D 1CD AB等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B A B △,…,则第n 个等边三角形的边长等于()14.如图,边长为1的菱形ABCD 中,︒=∠60DAB .连结对角线AC ,以AC 为边作第二个菱形11D ACC ,使︒=∠601AC D ;连结1AC ,再以1AC 为边作第三个菱形221D C AC ,使︒=∠6012AC D ;……,按此规律所作的第n 个菱形的边长为.15.如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则n S =________ABC S △(用含n 的代数式表示).16.用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角O yx(A )A 1C112B A 2A 3B 3B 2B 1第13题图BCAE 1E 2E 3D 4D 1D 2D 3(第15题)(第16题)形,则第n个图案中正三角形的个数为(用含n 的代数式表示).17.如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子枚.18.观察下列图形(每幅图中最小..的三角形都是全等的),请写出第n 个图中最小..的三角形的个数有个.19.观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有个★.五:对称问题20.在平面直角坐标系中,已知3个点的坐标分别为1(11)A ,、2(02)A ,、3(11)A ,.一只电子蛙位于坐标原点处,第1次电子蛙由原点第1个图第2个图第3个图第4个图(第18题图)第17题图图案1图案2图案3……跳到以A为对称中心的对称点1P,第2次电子蛙由1P点跳到以2A为对1称中心的对称点P,第3次电子蛙由2P点跳到以3A为对称中心的对称2点P,…,按此规律,电子蛙分别以1A、2A、3A为对称中心继续跳下3去.问当电子蛙跳了2009次后,电子蛙落点的坐标是P(_______,2009_______).参考答案1、8+63=712、D3、-a11104、-7505、(1)n×=n-;(2)证明见解析.【解析】试题分析:(1)等号左边第一个因数为整数,与第二个因数的分子相同,第二个因数的分母比分子多1;等号右边为等号左边的第一个数式-第二个因数,即n×=n-;(2)把左边进行整式乘法,右边进行通分.试题解析:(1)猜想:n×=n-;(2)证:右边==左边,即n×=n-考点:规律型:数字的变化类.6、670,第三列7、1010(i-1)+j8、D 9、C 10、13π-2611、1012、1/513、14、15、16、2n+217、30218、19、4920、(2,2)。

数学中考各种规律题+详细讲解

数学中考各种规律题+详细讲解

3 9 3 5 -5 - 5 - 24 20092010 9 B . 5 -4C .2008 4018一、选择题1. (2010安徽,9, 4分)下面两个多位数 1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第 2位上,若积为两位数,则将其个位数字写在第 2位.对第2位数字再进行如上操作得到第 3位数字 ,后面的 每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前 100位的所有数字之和是 ......................... ()A . 495B . 497C . 501D . 503【分析】按上述规律,以 3开头的多位数是:362486248••…,前100位数字中第一个 数字是3,依次为62486248…,共24个6248,最后三位数字是 624,所以前100位数字之 和是 3+ 24 >20 + 12=495【答案】A【涉及知识点】规律探究、自主学习 【点评】规律探究题是近几年中考的热点,本题还带有自主学习的成分,培养学生的自主学习能力应成为今后教学的重点,属于中档题.【推荐指数】★★★【典型错误】选其他答案比较多,如选D精品分类拒绝共享2. 精(2010重庆,8, 4分)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩 形绕其对称中心 O 按逆时针方向进行旋转,每次均旋转 45°第1次旋转后得到图①, 第2次旋转后得到图②, ……,则第10次旋转后得到的图形与图①〜④中相同的是()【分析】规律的归纳:通过观察图形可以看到每转动 4次后便可重合,即 4次以循环, 10韶=2…2,所以应和图②相同.【答案】B【涉及知识点】规律的归纳【点评】本题是规律的归纳题,解决本题的关键是读懂题意,理清题归纳出规律,然后 套用题目提供的对应关系解决问题,具有一定的区分度.【推荐指数】★★★★品分类拒绝共享3.精(2010山东威 海市,12, 3分)在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1 , 0),点D 的坐标为(0, 2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形 A 2B 2C 2C 1…按这样的规律进行下去, 第2010 个正方形的面积为 ()A . 图①tr图④B4个图案1次循环,由于2010- 4=502D•…2 ,因此可判断A【分析】观察图案容易发现每第2010个图案为B.【答案】B【涉及知识点】规律探索•【点评】此题考查探索规律的能力及有理数的简单运算•解题关键是发现图案中的变化规律•【推荐指数】★★A2009B2009 = 5【答案】D【涉及知识点】【点评】本题是正方形面积的规律探究题,应用了勾股定理及相似三角形知识求出几种特殊正方形的边长,长规律,最后得出正方形的面积规律使问题得以解决.【推荐指数】★★★★品分类拒绝共享4. 精(2010山东烟台,8, 4分)如图3,一串有趣的图案按一定规律排列,请仔细观察, 按此规律第2010个图案是()【分析】由题意知, OA = 1 , OD = 2,DA = 5 ,A AB = AD = . 5 ,利用互余关系证得△ DOA s\ ABA1,…DOABOA,••• BA1= 1AB = 15,二A1B1 = A1C = 3AB =工2 2 2 2BA13同理.A2B2 =2A iB i =235,一般地An B n =n 1I 5,第2010个正方形的面积为4018勾股定理相似三角形正方形实质就是正方形边长的规律探究. 本题可先然后归纳出一般正方形的边C则顶点A 55的坐标为()品分类拒绝共享5. ( 2010年江苏盐城,8, 3分)填在下面各正方形中的四个数之间都有相同的规律,根据 此规律,m 的值是2X 4-0=8 ; 4X5-2=22 ; 60-4=44; 8X 10-6=74.【答案】D【涉及知识点】有理数运算找规律【点评】本题属于探究类试题,解答此类试题时,要充分分析试题的特点,各个量之间的 关系,然后得到一般的结论.【推荐指数】★★★★ 精品分类拒绝共享6. ( 2010江苏淮安,8, 3分)观察下列各式:1 1 21 2 3 0 1 23123 -2341233 13 4 3 4 5 2 3 43计算:3X (1 X 2+2X 3+3X 4+…+99X 100)=A . 97 X 98 >99B . 98 X 99 X 00C . 99 X 00 X 01D . 100 X 01 X 02【分析】从材料可以得出 1X2, 2X 3, 3X 4,……可以用式子表示,即原式 =.111 3 - 123 0 1 2- 2 3 4 1 2 3 - 99 100 101 98 99 10033 3= 1 23012234123 99 100 101 98 99 100=99 X100 X 01,所以选择 C.【答案】C【涉及知识点】材料阅读题【点评】对于材料阅读的问题是中考问题中的常见问题,也属于难度较大的问题,这种 问题的规律性比较强,所以找出材料中的规律是解决此类问题的关键.【推荐指数】★★★★ 精品分类拒绝共享7. ( 2010武汉市中考,9,3)如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依次为2, 4, 6, 8,…,顶点依次用A 1, A 2, A J , A 4…表示为,【分析】根据图形所填数字可以看出:A、(13, 13)B、(- 13,—13)C、(14, 14)D、(- 14,—14)【分析】用图中可得,A,A2,A3,A的坐标分别是(1 , 1 ), (- 1 , 1), (- 1 , - 1 ),门,一1);A5 , A6 , A7, A的坐标分别为:(2 , 2), (-2 , 2), (- 2 , - 2), (2, - 2);A , A10 , A11 , A12 的坐标分别是:(3 , 3) (—3 , 3) , (—3, —3), (3, —3);通过这些数可得出规律:每4个数一循环,余数是几就与第几个数的坐标符号是一样的,55十4=13……3所以符号应该与第3个一样,即横、纵坐标都为负数,坐标是13是最后一个数应该为52 ,坐标是14的最后一个数应该为56 ,所以A55的横、纵坐标都应该是14。

(word完整版)中考数学规律探索专题复习

(word完整版)中考数学规律探索专题复习

中考数学规律探索专题复习一、典例精析类型之一 数字规律型例1. (2011丽江)下面是按一定规律排列的一列数:23,45-,87,169-,…那么第n 个数是 . 【简析】根据题意,首先从各个数开始分析,n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;…,即可推出第n 个数为12(1)21nn n +-•+。

【答案】解:∵n=1时,分子:2=(-1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(—1)3•22,分母:5=2×2+1; n=3时,分子:8=(—1)4•23,分母:7=2×3+1;n=4时,分子:﹣16=(-1)5•24,分母:9=2×4+1;…,∴第n 个数为:12(1)21n n n +-•+ 故答案为:12(1)21n n n +-•+. 例2:(2010深圳) 观察下列算式,用你所发现的规律得出22010的末位数字是( )。

21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8【简析】有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解.通过观察可以发现,本题中的数字从第1个到第4个为一个循环节,以此规律总结下来,第2010个图形应该就是一个循环节中的第2个数字,故选B.【答案】B对应练习1。

有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .2.(2011湛江)若:A 32=3×2=6,A 53=5×4×3=60,A 54=5×4×3×2=120,A 64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A 73= (直接写出计算结果),并比较A 103 A 104(填“>”或“<”或“=”) 类型之二 图形规律型例3:(2011•临沂)如图,上面各图都是用全等的等边三角形拼成的一组图形.则在第10个这……样的图形中共有 个等腰梯形.【简析】本题考查了图形的变化,解题的关键是按照一定的顺序依次找到符合条件的等腰梯形,做到不重复不遗漏.由于图②4个=2+1+1,图③8个3+2+2+1+1,图④16=4+3+3+2+2+1+1,由此即可得到第10个图形中等腰梯形的个数为:10+9+9+8+8+7+7+6+6+5+5+4+4+3+3+2+2+1+1=100. 【答案】100.例4: (2011兰州)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表示)
等差
1.(2010 湖北荆州)用围棋子按下面的规律摆图形,则摆第 n 个图形需要围棋子的枚数是

2.(2010 鄂尔多斯)如图,用小棒摆下面的图形,图形(1)需要 3 根小棒,图形(2)需要 3 根小棒,……
照这样的规律继续摆下去,第 n 个图形需要
根小棒(用含 n 的代数式表示)
3.(2010 湖北恩施自治州)如图 3,有一个形如六边形的点阵,它的中心是一个点,作为第一层,
3.(2010
浙江衢州)已知 a≠0, S1 2a , S2
2 S1
, S3
2 S2
,…, S2 010
2 S2 009

则 S2 010
(用含 a 的代数式表示).
4.(2010 四川泸州)在反比例函数 y 10
x
x 0 的图象上,有一系列点 A1 、 A2 、 A3 …、 An 、 An1 ,
制中 101=1×22+0×21+1×20 等于十进制的数 5,10111=1×24+0×23+1×22+1×21+1×20 等于十进
制中的数 23,那么二进制中的 1101 等于十进制的数

2、从 1 开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;
2011 2012
2、观察下面的变形规律:
1 =1- 1 ; 1 = 1 - 1 ; 1 = 1 - 1 ;……
1 2
2 23 2 3 34 3 4
解答下面的问题:
(1)若 n 为正整数,请你猜想 1 =

n(n 1)
(2)证明你猜想的结论;
(3)求和: 1 + 1 + 1 +…+
1
.
1 2 2 3 3 4
个平方单位。
(1)
(2)
(3)
(4)
21、如图是由大小相同的小立方体木块叠入而成的几何体,图⑴中有 1 个立方体,图⑵中有
4 个立方体,图⑶中有 9 个立方体,……
按这样的规律叠放下去,
第 8 个图中小立方体个数是
.



22、图 1 是棱长为 a 的小正方体,图 2、图 3 由这样的小正方体摆放而成.按照这样的方法 继续摆放,由上而下分别叫第一层、第二层、…、第 n 层,第 n 层的小正方体的个数为 s.解 答下列问题:
图中,看不见的小立方体有
若 A1 的横坐标为 2,且以后每点的横坐标与它前一个点的横坐标的差都为 2. 现分别过点 A1 、 A2 、 A3 …、
-3-
An 、 An1 作 x 轴与 y 轴的垂线段,构成若干个矩形如图 8 所示,将图中阴影部分的面积从左到右依次记 为 S1 、 S2 、 S3 、 Sn ,则 S1 ________________, S1 + S2 + S3 +…+ Sn _________________.(用 n 的代数式
表三
8、(2011 深圳市中考模拟五)有边长为 1 的等边三角形卡片若干张,使用这些三角形卡片拼出边长为 2、
3、4……的等边三角形(如图所示),
根据图形推断,每个等边三角形所用的等边三角形所用的卡片数 S 与边长 n 的关系式是
-5-

9、(2004•四川)(规律探究题)某体育馆用大小相同的长方形木块镶嵌地面,第 1 次铺 2 块,如图,第 2 次把第 1 次铺的完全围起来,如图,第 3 次把第 2 次铺的完全围起来,如图;….依此方法,第 n 次铺 完后,用字母 n 表示第 n 次镶嵌所使用的木块数 _________ .
图1
图2
(1)按照要求填表:
图3
-8-
n
1
2
s
1
3
(2)写出当 n=10 时,s=
3 6

4


23、观察下列由棱长为 1 的小立方体摆成的图形,寻找规律:如图 1 中:共有 1 个小立方体,
其中 1 个看得见,0 个看不见;如图 2 中:共有 8 个小立方体,其中 7 个看得见,1 个看不
见;如图 3 中:共有 27 个小立方体,其中有 19 个看得见,8 个看不见;……,则第 6 个
1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从 1 开始,将前 10 个奇数(即
当最后一个奇数是 19 时),它们的和是

14、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:
输入 …
1
2
3
4
5

输出 …
1
2
3
4
5

2
5
10
17
26
那么,当输入数据是 8 时,输出的数据是( )
是正整数)
2.(2010 辽宁丹东市)已知△ABC 是边长为 1 的等腰直角三角形,以 Rt△ABC 的斜边 AC 为直角边,画第
二个等腰 Rt△ACD,再以 Rt△ACD 的斜边 AD 为直角边,画第三个等腰 Rt△ADE,…,依此类
D
CA
G
B
第 15 题图
第二层每边有两个点,第三层每边有三个点,依次类推,如果 n 层六边形点阵的总点数为 331,
则 n等于
.
4、一列数是 1,3,7,13,21,……请问第 n 个数是(

1.(09 深圳 )观察下列各式:0,x,x2,2x3,3x4,5x5,8x6,…….试按此规律写出的第 8 个式子是
_______。
a99

4.观察下列算式,用你所发现的规律得出 22010 的末位数字是
21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,
A.2
B.4
C.6
D.8
5.如图 6,这是由边长为 1 的等边三角形摆出的一系列图形,按这种方式摆下去,则第 n 个图形的周长 是=______________________。
2. (2011 内蒙古乌兰察布,18,4 分)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n
个图形 有
个小圆. (用含 n 的代数式表示)
第 1 个图形
第 2 个图形 第 3 个图形 第 18 题图
第 4 个图形
3. (2011 四川绵阳 18,4)观察上面的图形,它们是按一定规律排列的,依照此规律,第_____个图形共 有 120 个。
O
A1
(1,-1),
A7
A3
A5
x
A2
A3 (0,0),则依图中所示规律, A2012 的坐标为

A6
-6-
13、
如 2639=2×103+6×102+3×101+9×100,表示十进制的数要用 10 个数码(又叫数字):0,1,2,
3,4,5,6,7,8,9。在电子数字计算机中用的是二进制,只要两个数码:0 和 1。如二进
2009 2010
3. (2011 湖南益阳,16,8 分)观察下列算式:
① 1 ×3 - 22 = 3 - 4 = -1
② 2 ×4 - 32 = 8 - 9 = -1
③ 3 ×5 - 42 = 15 - 16 = -1

…… (1)请你按以上规律写出第 4 个算式; (2)把这个规律用含字母的式子表示出来; (3)你认为(2)中所写出的式子一定成立吗?并说明理由. 4.(2011 广东汕头,20,9 分)如下数表是由从 1 开始的连续自然数组成,观察规律并完成各题的解答.
……
图①
图②
图③
11.正方形 A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点 A1,A2,A3,…和点 C1,C2,
C3,…分别
y
A3
B3
在直线 y kx b (k>0)和 x 轴上,
已知点 B1(1,1),B2(3,2), 则 Bn 的坐标是______________.
15 ,…,
观察上面的计算过程,寻找规律并计算 C160

小结:多观察,分析变化与不变化
2、几何变化类
1. (2011 广东肇庆,15,3 分)如图 5 所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的 规律摆下去,则第 n ( n 是大于 0 的整数)个图形需要黑色棋子的个数是 ▲ .
10、(2010 四川眉山)如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个 图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③); 再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有 ________个正三角形.
2.(07 年深圳 )邓老师设计了一个计算程序,输入和输出的数据如下表:
输入数据
1
2
3
4
5
6

-4-
输出数据
1
2
2
3
4
5
6

7
14
23
34
47
那么,当输入数据是 7 时,输出的数据是

3. 已知
a1
1 1 23
1 2
2 3
, a2
1 23
4
1 3
3 8 , a3
3
1 45
1 4
4 15
,...,
依据上述规律,则
中考数学探索题训练—找规律

序数与数据之间的规律
1. )先找规律,再填数:
1 1 1 1 ,1 1 1 1 , 1 1 1 1 , 1 1 1 1 , 1 2 2 3 4 2 12 5 6 3 30 7 8 4 56
相关文档
最新文档