七年级数学上册数轴同步练习
人教版七年级上册数学数轴同步练习
人教版七年级上册数学1.2.2 数轴同步练习一、单选题1.如图,已知纸面上有一数轴,折叠纸面,使﹣3表示的点与1表示的点重合,则与﹣5表示的点对应的点表示的数是( )A .3B .4C .5D .﹣1 2.实数a b ,在数轴上的对应点的位置如图所示,下列结论中正确的是( )A . 2a -<B .1b <C .a b >D .a b -> 3.实数a ,b 在数轴上对应点的位置如图所示,则a ,b 的大小关系为( )A .a b >B .a b <C .a b =D .无法确定 4.实数a ,b 在数轴上的对应点的位置如图所示,若实数c 满足b c a <<,则c 的值可以是( )A .-3B .-2C .2D .3 5.一只蚂蚁沿数轴从原点向右移动了3个单位长度到达点A ,则点A 表示的数是( )A .3B .-3C .0D .3± 6.如图,数轴上点A 、点B 所表示的数分别为m 、n ,则mn 的值可以是( )A .1-B .1C .2-D .2 7.如图,A ,B ,C 是数轴上的三个点,点A ,B 表示的数分别是1,3,点C 在点B 的右侧,若BC =2AB ,则点C 表示的数是( )A .5B .6C .7D .98.在数轴上,点A ,B 表示的数分别是2-3和2,则线段AB 的中点表示的数是( ) A .23B .43C .34D .13二、填空题9.数轴上一点A 表示的数为-7,当点A 在数轴上滑动2个单位后所表示的数是_________.10.已知数轴上的点A ,B 表示的数分别为2-,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.11.数轴上到表示数2的点距离为3的点表示的数是________.12.数轴上点A 表示的数是9.8,点B 在点A 的左侧,AB =10,那么点B 表示的数是_______.13.在数轴上,点A 在点B 的左侧,分别表示数a 和数b ,将点B 向左平移4个单位长度得到点C .若C 是AB 的中点,则a ,b 的数量关系是_________. 14.在数轴上,与原点距离为152的点表示的数是______. 15.在直线上向右为正方向,负数都在0的_______边,也就是负数都比0_____,正数都比0_____.16.数轴上点A 表示数﹣1,点B 表示数2,该数轴上的点C 满足条件CA =2CB ,则点C 表示的数为_____.三、解答题17.(1)在数轴上表示下列各数:113,2,,0,1,223--- (2)如图所乐,指出点A 、B 、C 、E 、F 所表示的数.18.已知x 是整数,并且34x -<<,在数轴上表示x 可能取的所有数值.19.操作探究:已知在纸面上有一数轴(如图所示).(1)操作一:折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;(2)操作二:折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;①若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,则A点表示的数是.。
人教版七年级数学上册《1.2.2数轴》同步练习含答案
1.2.2 数轴01 基础题知识点1 数轴的概念及画法知识提要:在数学中,用一条直线上的点表示数,这条直线叫做数轴.数轴的三要素为:原点、正方向、单位长度.1.关于数轴,下列说法最准确的是(D )A .一条直线B .有原点、正方向的一条直线C .有单位长度的一条直线D .规定了原点、正方向、单位长度的直线2.(东莞月考)下列数轴的画法正确的是(C )知识点2 数轴上的点与有理数的关系知识提要:一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度.若a ,b ,c 在数轴上的位置如图所示,则a 是负数,b 是正数,c 是正数.(填“正”或“负”)3.如图,数轴上点A 表示的数是(A )A .-2B .2C .±2D .04.如图,数轴上表示-2.75的点是(D )A .E 点B .F 点C .G 点D .H 点 5.(南宁月考)在数轴上表示-5,0,3,12的点中,在原点右边的点有(B ) A .1个B .2个C .3个D .4个6.数轴上表示-152的点在(B ) A .-6与-7之间 B .-7与-8之间C .7与8之间D .6与7之间7.(东莞月考)数轴上表示-5的点与原点的距离是5.8.指出数轴上点A ,B ,C ,D 表示的数.解:A 点表示0,B 点表示1.5,C 点表示-2,D 点表示3.9.画数轴,并在数轴上表示下列各数:2,-2.5,0,13,-4. 解:02 中档题10.下列各数在数轴上的位置是在-2的左边的是(A )A .-3B .-2C .-1D .0 11.数轴上原点及原点左边的点表示(C )A .正数B .负数C .非正数D .非负数12.在数轴上,表示-1与-4两点之间有理数的点有(D )A .3个B .2个C .1个D .无数个13.点A 为数轴上表示-2的点,当点A 沿数轴移动4个单位长度到点B 时,点B 所表示的数为(C )A .2B .-6C .2或-6D .不同于以上答案14.如图,点A 表示的数是-4.(1)在数轴上表示出原点O ;(2)指出点B 表示的数;(3)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示什么数? 解:(1)如图,原点O 在点A 的右侧距A 点4个单位长度.(2)点B 表示3.(3)点C 表示1或5.15.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A ,再向右爬了2个单位长度到达点B ,然后又向左爬了10个单位长度到达点C.(1)画出数轴并标出A 、B 、C 三点在数轴上的位置;(2)写出A 、B 、C 三点表示的数;(3)根据点C 在数轴上的位置,C 点可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?解:(1)如图:(2)A、B、C三点表示的数分别为4、6、-4.(3)C点可以看作是蚂蚁从原点出发,向左爬了4个单位长度得到的.03综合题16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是-1,0,1;②从-2到2有5个整数,分别是-2,-1,0,1,2;③从-3到3有7个整数,分别是-3,-2,-1,0,1,2,3;④从-200到200有401个整数.(2)根据以上事实,请直接写出:从-2.9到2.9有5个整数,从-10.1到10.1有21个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为1 000厘米的线段AB,直接写出线段AB能盖住的整数点的个数.视频讲解解:1 000个或1 001个.。
人教版数学七年级上学期同步练习 1.2.2 数轴
1.2.2 数轴一.选择题1.在数轴上,点A,B在原点O的同侧,分别表示数a,1,将点A向左平移3个单位长度,得到点C.若点C与点B互为相反数,则a的值为()A.3B.2C.﹣1D.02.点A在数轴上,点A所对应的数用2a+1表示,且点A到原点的距离等于3,则a的值为()A.﹣2或1B.﹣2或2C.﹣2D.13.数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4B.﹣4或10C.﹣10D.4或﹣104.如图,数轴上点C对应的数为c,则数轴上与数﹣2c对应的点可能是()A.点A B.点B C.点D D.点E5.如图,有理数a,b,c在数轴上的位置,则下列选项正确的是()A.a<b<0<c B.a<c<0<b C.b<0<a<c D.c<a<0<b 6.点A为数轴上表示﹣2的点,将A点沿着数轴向右移动7个单位后,再向左移动3个单位到点B,则点B表示的数为()A.2B.3C.4D.57.数轴上,点A、B分别表示﹣1、7,则线段AB的中点C表示的数是()A.2B.3C.4D.58.如图,数轴上顺次有A,B,C三个整数点(即各点均表示整数)且BC=2AB.若A,C 两点所表示的数分别是﹣3和3,则点B所表示的数是()A.2B.1C.0D.﹣19.在数轴上,点A,B分别表示数a,3,点A关于原点O的对称点为点C.如果C为AB 的中点,那么a的值为()A.﹣3B.﹣1C.1D.310.如图,点A所对应的数是﹣6,点B所对应的数是2,AB的中点所对应的数是()A.﹣3B.1C.﹣2D.211.如图,点A、B、C、D四个点在数轴上表示的数分别为a、b、c、d,则下列结论中,错误的是()A.a+b<0B.c﹣b>0C.ac>0D.12.在数轴上,点A表示的数是﹣2,点B表示的数是6,则线段AB的中点表示的数是()A.1B.2C.3D.413.数轴上点C是A、B两点间的中点,A、C分别表示数﹣1和2,则点B表示的数()A.2B.3C.4D.5二.填空题14.如图,已知A,B两点在数轴上,点A表示的数为﹣10,点B表示的数为30,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动,其中点M、点N同时出发,经过秒,点M、点N分别到原点O的距离相等.15.已知数轴上点A,B分别对应数a,b.若线段AB的中点M对应着数15,则a+b的值为.16.在数轴上,点A表示数﹣4,距A点3个单位长度的点表示的数是.17.点A,B,C在同一条数轴上,且点A表示的数为﹣1,点B表示的数为5.若BC=2AC,则点C表示的数为.三.解答题18.如图1,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为﹣5,b,4.某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对应刻度1.8cm,点C对齐刻度5.4cm.(1)在图1的数轴上,AC=个长度单位;数轴上的一个长度单位对应刻度尺上的cm;(2)求数轴上点B所对应的数b;(3)在图1的数轴上,点Q是线段AB上一点,满足AQ=2QB,求点Q所表示的数.19.已知,如图A,B分别为数轴上的两点,点A对应的数是﹣20,点B对应的数为80.(1)请直接写出AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇.请解答下面问题:①试求出点C在数轴上所对应的数;②何时两只电子蚂蚁在数轴上相距15个单位长度?20.某公路检修小组早上从A地出发,沿东西方向的公路上检修路面,晚上到达B地,如果规定向东行驶为正,向西行驶为负,一天行驶记录如下(单位:千米):﹣5,﹣3,+6,﹣7,+9,+8,+4,﹣2.(1)请你确定B地位于A地的什么方向,距离A地多少千米?(2)距A地最远的距离是多少千米?(3)若每千米耗油0.2升,问这个小组从出发到收工共耗油多少升?21.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:,B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使A点与﹣3表示的点重合,则B点与数表示的点重合;(4)若数轴上M、N两点之间的距离为2019(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M:,N:.参考答案一.选择题1.B.2.A.3.D.4.D.5.B.6.A.7.B.8.D.9.B.10.C.11.C.12.B.13.D.二.填空题14.2或10.15.30.16.﹣7或﹣1.17.﹣7或1.三.解答题18.解:(1)AC=4﹣(﹣5)=9(个长度单位),数轴上的一个长度单位对应刻度尺上的5.4÷9=0.6(cm);故答案为:9;0.6.(2)依题意有1.8=0.6(b+5),解得b=﹣2,即数轴上点B所对应的数b为﹣2;(3)设点Q所表示的数是x,依题意有x﹣(﹣5)=2(﹣2﹣x),解得x=﹣3.故点Q所表示的数是﹣3.19.解:(1)AB的中点M所对应的数为=30(2)①如图1,设点C所表示的数为x,则AC=x+20,BC=80﹣x,由题意得,=,解得,x=40,答:点C在数轴上所表示的数为40;②分两种情况进行解答,设运动的时间为t秒Ⅰ)如图2,相遇前相距15个单位长度,则3t+2t=80﹣(﹣20)﹣15,解得,t=17(秒),Ⅱ)如图3,相遇后相距15个单位长度则3t+2t=80﹣(﹣20)+15,解得,t=23(秒)答:当两只蚂蚁运动17秒或23秒时,两只电子蚂蚁在数轴上相距15个单位长度.20.解:(1)∵﹣5﹣3+6﹣7+9+8+4﹣2=10,答:B地在A地的东边10千米;(2)∵路程记录中各点离出发点的距离分别为:|﹣5|=5(千米);|﹣5﹣3|=8(千米);|﹣5﹣3+6|=2(千米);|﹣5﹣3+6﹣7|=9(千米);|﹣5﹣3+6﹣7+9|=0(千米);|﹣5﹣3+6﹣7+9+8|=8(千米);|﹣5﹣3+6﹣7+9+8+4|=12(千米);|﹣5﹣3+6﹣7+9+8+4﹣2|=10(千米);12>10>9>8>5>2>0,∴最远处离出发点12千米;(3)这一天走的总路程为:|﹣5|+|﹣3|+|+6|+|﹣7|+|+9|+|+8|+|+4|+|﹣2|=44(千米),应耗油44×0.2=8.8(升),答:问这个小组从出发到收工共耗油8.8升.21.解:(1)A:1,B:﹣2.5.故答案为:1,﹣2.5;(2)观察数轴,与点A的距离为4的点表示的数是1﹣4=﹣3或1+4=5.故答案为:﹣3或5;(3)将数轴折叠,使A点与﹣3表示的点重合,则对称点是﹣1,则B点与数0.5表示的点重合.故答案为:0.5;(4)由对称点为﹣1,且M、N两点之间的距离为2019(M在N的左侧)可知,M点表示数﹣1010.5,N点表示数1008.5.故答案为:﹣1010.5、1008.5.。
人教版七年级上册数学数轴同步训练
人教版七年级上册数学1.2.2数轴同步训练一、单选题1.如图示,数轴上点A 所表示的数为( )A .﹣2B .2C .±2D .以上均不对2.如右图,数轴上A 、B 两点所表示的两个数分别是m 、n ,把m n m n --、、、按从小到大顺序排列,排列正确的是( )A .m n m n -<-<<B .m n m n <<-<-C .m n m n <-<-<D .m n n m <-<<-3.如图,数轴上点A 对应的数是32,将点A 沿数轴向右移动2个单位至点B ,则点B对应的数是( )A .72B .3-C .92D .12-4.如图,数轴上点D 对应的数为d ,则数轴上与数﹣3d 对应的点可能是( )A .点AB .点BC .点DD .点E5.如图,A ,B ,C ,D ,E 为某未标出原点的数轴上的五个点,且AB =BC =CD =DE ,则点C 所表示的数是( )A .2B .7C .11D .126.如图,在数轴上,用①,①,①,①注明了四段的范围,若某段上有两个整数,则这段是( )A .①B .①C .①D .①7.如图,点A 在数轴上对应的数为﹣3,点B 对应的数为2,点P 在数轴上对应的是整数,点P 不与A 、B 重合,且P A +PB =5.则满足条件的P 点对应的整数有几个()A.1个B.2个C.3个D.4个8.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和﹣1,若△ABC 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1;则翻转2018次后,点B所对应的数是()A.2017B.2016.5C.2015.5D.2015二、填空题9.数轴上两个点表示的数,右边的总比左边的____;正数大于____,负数小于____,正数大于一切____.10.数轴的概念:规定了______、_____、______的直线叫做数轴.11.在数轴上点A表示-2,则与点A相距3个单位长度的点B表示___________.12.在数轴上,如果点A表示的数是1,那么距点A5个单位,且在原点左侧的点B所表示的数是______.13.数轴上点A表示的数是2,那么与点A相距3个单位长度的点表示的数是______.14.已知数轴上两点A、B对应的数分别是-1和2,M从A出发以每秒2个单位长度的速度向左运动,N从B出发以每秒6个单位长度的速度向左运动,假设点M、N同时出发,经过_____________秒后,M、N之间的距离为2个单位.15.在数轴上,点A、B表示的数分别为132,13,则A、B间的距离为______16.A,B,C,D,E,F是数轴上从左到右的六个点,并且AB=BC=CD=DE=EF.点A所表示的数是-5,点F所表示的数是11,那么与点C所表示的数最接近的整数是______.三、解答题17.判断下面所画数轴是否正确,并说明理由18.在数轴上表示出下列各有理数:﹣2,132-,0,3,12.19.如图,在数轴上,点A在原点左侧,到原点的距离为9;点B在原点右侧,到原点的距离为6,M、N分别是线段AO和AB的中点.(1)求点M、N表示的有理数;(2)求线段MN的长度.20.观察画好的数轴,思考以下问题:(1)原点表示什么数?(2)原点右方表示什么数?原点左方表示什么数?(3)+3,14-,-1.5,0分别在数轴的什么位置?。
人教版七年级上册数学数轴 同步精练
1.2.2 数轴同步精练一.选择题1.下列各数在数轴上与﹣1最近的为()A.﹣5B.6C.3D.﹣42.如图,将一刻度尺放在数轴上,(数轴的单位长度是1cm),刻度尺上0cm对应数轴上的数3,那么刻度尺上5.5cm对应数轴上的数为()A.6B.﹣6C.﹣2.3D.﹣2.53.数轴上,表示数a的点在表示数b的点的左侧,则下列说法正确的是()A.a≤0,b>0B.b>a C.a≥0,b<0D.a≥b4.在数轴上,点A表示﹣4,从点A出发,沿数轴移动4个单位长度到达点B,则点B表示的数是()A.﹣8B.﹣4C.0D.﹣8或05.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN =NP=PR=2.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=6,则原点是()A.M或N B.N或P C.M或R D.P或R二.填空题6.点A、点B在数轴上表示的数分别是﹣3,2022,则线段AB的长为.7.数轴上表示﹣1.5的点到原点的距离是.8.在数轴上,将表示4的点沿数轴向左移动个单位长度得到的点表示的数是2.9.如图,把一个直径为1个单位长度的圆片上的点A放在表示﹣1的点处,并把圆片沿数轴正方向无滑动地滚动1周,点A到达点A'的位置,则点A'表示的数是.10.如图,在数轴上有A、B两点,点A、点B都在2的左边,小李在做作业时不小心在作业本上染了一滴墨水,已知点A表示的数为,那么点B表示的数为.11.如图,数轴上A,B两点对应的数分别为﹣1,2,若数轴上的点C满足AC+BC=5,则点C表示的数为.12.已知如图,点A表示的数是﹣2,点B表示的数是8,现将该数轴折叠,使得点A与点B重合,若点C表示的数是9,则折叠后与点C重合的点表示的数为.三.解答题13.画数轴,并在数轴上表示下列各数.14.如图,给出了未来一周中每天的最高气温和最低气温,其中最低气温是多少?最高气温呢?请先将这七天中每天的最低气温在数轴上表示出来,再按从低到高的顺序排列.15.如图,在一条不完整的数轴上从左到右有点A,B,C.其中AB=2,BC=1.设点A,B,C三点所表示的数的和为P,若以点B为原点,写出A,C两点所表示的数并计算出P的值.16.一辆流动早餐车从A站沿着一条笔直的南北方向的马路来回售卖早点,行驶的路程情况如下(向南行驶为正,单位:km):+2,﹣5,+6,+5,﹣3,﹣3,﹣6,﹣3,﹣3,+9.(1)当早餐车完成上述行程后共行驶了多少km?(2)当早餐车完成上述行程后,在A站的哪侧?距离A站有多少km?17.数轴上从左到右的三个点A,B,C所对应的数分别为a,b,c.其中AB=2021,BC=1000,如图所示.(1)若以B为原点,则a+b﹣c的值为;(2)若O是原点,且OB=21,求a+b﹣c的值.18.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣,﹣3,观察数轴,与点A的距离为3的点表示的数是.(2)若将数轴折叠,使得A点与C点重合,则求出与B点重合的点表示的数是什么数.(3)在(2)的情况下,若此数轴上E,F两点之间的距离为2020(E在F的左侧),且当A点与C点重合时,E点与F点也恰好重合,则求出E、F两点表示的数.(4)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P,Q(用含m,n的式子表示这两个数).。
苏教版七年级数学上册 2.3 数轴 同步练习(含答案解析)
2.3数轴一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•溧水区期末)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.3 B.2 C.0 D.﹣12.(2020•丰县模拟)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.﹣1 B.0 C.3 D.43.(2019秋•东海县期末)在数轴上与表示﹣2的点相距5个单位长度的点所表示的数是()A.3 B.﹣7 C.7 D.3或﹣74.(2019秋•云龙区期末)点M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位到点N,则点N 表示的数是()A.3 B.5 C.﹣7 D.3或﹣75.(2019秋•阜宁县期末)在数轴上与表示﹣2的点距离等于3的点所表示的数是()A.1 B.5 C.1或5 D.1或﹣56.(2019秋•泗阳县期末)数轴上表示整数的点称为整点,某数轴的单位长度为1cm,若在数轴上画出一条长2015cm的线段AB,则AB盖住的整点个数是()A.2015或2016 B.2014或2015 C.2016 D.20157.(2019秋•仪征市校级期末)在数轴上距离原点2个单位长度的点所表示的数是()A.2 B.﹣2 C.2或﹣2 D.1或﹣18.(2019秋•贵港期末)数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣29.(2019秋•建湖县期中)如图,将刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.8cm”对应数轴上的数为()A.5.8 B.﹣2.8 C.﹣2.2 D.﹣1.810.(2019秋•南京月考)北京等5个城市的当地时间(单位:时)可在数轴上表示如下:如果将两地时间的差简称为时差,那么()A.汉城与多伦多的时差为13小时B.汉城与纽约的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在横线上)11.(2019秋•秦淮区期末)数轴上到原点的距离等于2个单位长度的点表示的数是.12.(2019秋•栖霞区期末)点A、B在数轴上对应的数分别为﹣2和5,则线段AB的长度为.13.(2019秋•黄冈期末)若点A、B是数轴上的两个点,点A表示的数是﹣4,点B与点A的距离是2,点B表示的数是.14.(2019秋•宿州期末)数轴上的点A所对应的有理数是2,那么在数轴上与A点相距5个单位长度的点所对应的有理数.15.(2019秋•苏州期末)在数轴上,与﹣3表示的点相距4个单位的点所对应的数是.16.(2020春•南岗区期末)在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是.17.(2019秋•织金县期末)一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是.18.(2019秋•琅琊区期末)写出一个在和1之间的负整数:.19.(2019秋•邗江区校级期中)数轴上点M表示的有理数是﹣3,将点M向右平移2个单位长度到达点N,则N表示的有理数为.20.(2019秋•宿豫区期中)如图,把半径为1的圆形纸片放在数轴上,圆形纸片上的A点对应2,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是.三、解答题(本大题共4小题,共40分.解答时应写出文字说明、证明过程或演算步骤)21.(2019秋•洪泽区期末)数轴上,点M表示﹣2,现从M点开始先向右移动3个单位到达P点,再从P 点向左移动5个单位到达Q点.(1)点P、Q各表示什么数?(2)到达Q点后,再向哪个方向移动几个单位,才能回到原点?22.(2019秋•建邺区期中)已知数轴上的点A、B、C、D分别表示﹣3、﹣1.5、0、4.(1)请在数轴上标出A、B、C、D四个点;(2)B、C两点之间的距离是;(3)如果把数轴的原点取在点B处,其余条件都不变,那么点A、C、D分别表示的数是.23.(2019秋•鄂城区期中)邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行7km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村多远?(3)邮递员一共骑行了多少千米?24.(2019秋•兴化市期中)小明骑车从家出发,先向东骑行4km到达A村,继续向东骑行3km到达B村.然后向西骑行10km到达C村,最后回到家.(1)以家为原点.以向东方向为正方向.用lcm表示1km.画出数轴.并在数轴上表示出A.B.C三个村庄的位置.(2)小明一共行了多少km?答案解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•溧水区期末)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.3 B.2 C.0 D.﹣1【分析】由题意得AB=5,即﹣2+5即为点B表示的数.【解析】﹣2+5=3,故选:A.2.(2020•丰县模拟)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.﹣1 B.0 C.3 D.4【分析】根据数轴的单位长度为1,点B在点A的右侧距离点A5个单位长度,直接计算即可.【解析】点B在点A的右侧距离点A有5个单位长度,∴点B表示的数为:﹣2+5=3,故选:C.3.(2019秋•东海县期末)在数轴上与表示﹣2的点相距5个单位长度的点所表示的数是()A.3 B.﹣7 C.7 D.3或﹣7【分析】分点在﹣2的左边和右边两种情况讨论求解.【解析】若点在﹣2的左边,则﹣2﹣5=﹣7,若点在﹣2的右边,则﹣2+5=3,所以,在数轴上与表示﹣2的点相距5个单位长度的点所表示的数是﹣7或3.故选:D.4.(2019秋•云龙区期末)点M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位到点N,则点N 表示的数是()A.3 B.5 C.﹣7 D.3或﹣7【分析】根据在数轴上平移时,左减右加的方法计算即可求解.【解析】由M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位到点N可列:﹣2+5=3,故选:A.5.(2019秋•阜宁县期末)在数轴上与表示﹣2的点距离等于3的点所表示的数是()A.1 B.5 C.1或5 D.1或﹣5【分析】根据数轴上到一点距离相等的点有两个,位于该点的左右,可得答案.【解析】数轴上与表示﹣2的点距离等于3的点所表示的数是﹣5或1,故选:D.6.(2019秋•泗阳县期末)数轴上表示整数的点称为整点,某数轴的单位长度为1cm,若在数轴上画出一条长2015cm的线段AB,则AB盖住的整点个数是()A.2015或2016 B.2014或2015 C.2016 D.2015【分析】某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2015厘米的线段AB,则线段AB盖住的整点的个数可能正好是2016个,也可能不是整数,而是有两个半数那就是2015个.【解析】依题意得:①当线段AB起点在整点时覆盖2016个数,②当线段AB起点不在整点,即在两个整点之间时覆盖2015个数,综上所述,盖住的点为:2015或2016.故选:A.7.(2019秋•仪征市校级期末)在数轴上距离原点2个单位长度的点所表示的数是()A.2 B.﹣2 C.2或﹣2 D.1或﹣1【分析】分点在原点左边与右边两种情况讨论求解.【解析】①在原点左边时,∵距离原点2个单位长度,∴该点表示的数是﹣2;②在原点右边时,∵距离原点2个单位长度,∴该点表示的数是2.综上,距离原点2个单位长度的点所表示的数是﹣2或2.故选:C.8.(2019秋•贵港期末)数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣2【分析】在数轴上点A到原点的距离为4的数有两个,意义相反,互为相反数.即4和﹣4.【解析】在数轴上,4和﹣4到原点的距离为4.∴点A所表示的数是4和﹣4.故选:C.9.(2019秋•建湖县期中)如图,将刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.8cm”对应数轴上的数为()A.5.8 B.﹣2.8 C.﹣2.2 D.﹣1.8【分析】根据数轴上点的表示方法,直接判断即可.【解析】刻度尺上5.8cm对应数轴上的点距离数轴上原点(刻度尺上表示3的点)的距离为2.8,且该点在原点的左侧,故刻度尺上“5.8cm”对应数轴上的数为﹣2.8.故选:B.10.(2019秋•南京月考)北京等5个城市的当地时间(单位:时)可在数轴上表示如下:如果将两地时间的差简称为时差,那么()A.汉城与多伦多的时差为13小时B.汉城与纽约的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时【分析】理解两地国际标准时间的差简称为时差.根据有理数减法法则计算,减去一个数等于加上这个数的相反数.【解析】汉城与多伦多的时差为9﹣(﹣4)=13小时;汉城与纽约的时差为9﹣(﹣5)=14小时;北京与纽约的时差为8﹣(﹣5)=13小时;北京与多伦多的时差为8﹣(﹣4)=12小时.故选:A.二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在横线上)11.(2019秋•秦淮区期末)数轴上到原点的距离等于2个单位长度的点表示的数是±2.【分析】根据数轴上两点间距离的定义进行解答即可.【解析】设数轴上,到原点的距离等于2个单位长度的点所表示的有理数是x,则|x|=2,解得,x=±2.故答案为:±2.12.(2019秋•栖霞区期末)点A、B在数轴上对应的数分别为﹣2和5,则线段AB的长度为7.【分析】根据数轴上两点距离公式进行计算即可.【解析】AB=|﹣2﹣5|=7,故答案为:7.13.(2019秋•黄冈期末)若点A、B是数轴上的两个点,点A表示的数是﹣4,点B与点A的距离是2,点B表示的数是﹣6或﹣2.【分析】根据题意,分两种情况:(1)点B在点A的左边;(2)点B在点A的右边;求出点B表示的数为多少即可.【解析】(1)点B在点A的左边时,点B表示的数为:﹣4﹣2=﹣6.(2)点B在点A的右边时,点B表示的数为:﹣4+2=﹣2.∴点B表示的数为﹣6,﹣2.故答案为﹣6或﹣2.14.(2019秋•宿州期末)数轴上的点A所对应的有理数是2,那么在数轴上与A点相距5个单位长度的点所对应的有理数﹣3或7.【分析】此题注意考虑两种情况:当点在已知点的左侧;当点在已知点的右侧.【解析】在A点左边与A点相距5个单位长度的点所对应的有理数为﹣3;在A点右边与A点相距5个单位长度的点所对应的有理数为7.故答案为:﹣3或7.15.(2019秋•苏州期末)在数轴上,与﹣3表示的点相距4个单位的点所对应的数是1或﹣7.【分析】根据题意得出两种情况:当点在表示﹣3的点的左边时,当点在表示﹣3的点的右边时,列出算式求出即可.【解析】分为两种情况:①当点在表示﹣3的点的左边时,数为﹣3﹣4=﹣7;②当点在表示﹣3的点的右边时,数为﹣3+4=1;故答案为:1或﹣7.16.(2020春•南岗区期末)在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是﹣1和5.【分析】点A所表示的数为2,到点A的距离等于3个单位长度的点所表示的数有两个,分别位于点A 的两侧,分别是﹣1和5.【解析】2﹣3=﹣1,2+3=5,则A表示的数是:﹣1或5.故答案为:﹣1或5.17.(2019秋•织金县期末)一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是﹣3.【分析】根据向右为“+”、向左为“﹣”分别表示为+5和﹣8,再相加即可得出答案.【解析】点从数轴的原点开始,向右移动5个单位长度,表示为+5,在此基础上再向左移动8个单位长度,表示为﹣8,则到达的终点表示的数是(+5)+(﹣8)=﹣3,故答案为:﹣3.18.(2019秋•琅琊区期末)写出一个在和1之间的负整数:﹣2,﹣1.【分析】把和1之间的负整数在数轴上表示出来,通过观察数轴来解答,正整数、0、负整数统称为整数.【解析】如图所未,通过数轴观察,可以确定出和1之间的负整数为:﹣2,﹣1.故答案为:﹣2,﹣1.19.(2019秋•邗江区校级期中)数轴上点M表示的有理数是﹣3,将点M向右平移2个单位长度到达点N,则N表示的有理数为﹣1.【分析】根据题意画出数轴,借助数轴找出点N的位置即可.【解析】根据题意画图如下:M表示的有理数是﹣3,将点M向右平移2个单位长度到达点N,则N表示的有理数为﹣1;故答案为:﹣1.20.(2019秋•宿豫区期中)如图,把半径为1的圆形纸片放在数轴上,圆形纸片上的A点对应2,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是2﹣2π.【分析】因为圆形纸片从2沿数轴逆时针即向左滚动一周,可知OA′=2π,再根据数轴的特点即可解答.【解析】∵半径为1个单位长度的圆形纸片从2沿数轴向左滚动一周,∴OA′之间的距离为圆的周长=2π,A′点在2的左边,∴A′点对应的数是2﹣2π.故答案是:2﹣2π.三、解答题(本大题共4小题,共40分.解答时应写出文字说明、证明过程或演算步骤)21.(2019秋•洪泽区期末)数轴上,点M表示﹣2,现从M点开始先向右移动3个单位到达P点,再从P 点向左移动5个单位到达Q点.(1)点P、Q各表示什么数?(2)到达Q点后,再向哪个方向移动几个单位,才能回到原点?【分析】(1)利用数轴上点的移动规律:左减右加得出点P、Q各表示什么数即可;(2)根据得出Q点表示的数与原点的位置,回答问题即可.【解析】(1)点M表示﹣2,P点表示﹣2+3=1,Q点表示1﹣5=﹣4;(4)﹣4在原点的左边,距离原点4个单位,所以向右移动4个单位,才能回到原点.22.(2019秋•建邺区期中)已知数轴上的点A、B、C、D分别表示﹣3、﹣1.5、0、4.(1)请在数轴上标出A、B、C、D四个点;(2)B、C两点之间的距离是 1.5;(3)如果把数轴的原点取在点B处,其余条件都不变,那么点A、C、D分别表示的数是﹣1.5,0,1.5,5.5.【分析】(1)在数轴上描出四个点的位置即可;(2)根据两点之间的距离公式可求B、C两点的距离;(3)原点取在B处,相当于将原数加上1.5,从而计算即可.【解析】(1)如图所示:(2)B、C两点的距离=0﹣(﹣1.5)=1.5;(3)点A表示的数为:﹣3+1.5=﹣1.5,点B表示的数为0,点C表示的数为0+1.5=1.5,点D表示的数为4+1.5=5.5.故答案为:1.5;﹣1.5,0,1.5,5.5.23.(2019秋•鄂城区期中)邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行7km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村多远?(3)邮递员一共骑行了多少千米?【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据题意列出算式,即可得出答案;(3)根据数轴把邮递员骑行的路程相加即可求解.【解析】(1)如图所示:(2)C村离A村的距离为2+2=4(km);(3)邮递员一共行驶了2+3+7+2=14(千米).故邮递员一共骑行了14千米.24.(2019秋•兴化市期中)小明骑车从家出发,先向东骑行4km到达A村,继续向东骑行3km到达B村.然后向西骑行10km到达C村,最后回到家.(1)以家为原点.以向东方向为正方向.用lcm表示1km.画出数轴.并在数轴上表示出A.B.C三个村庄的位置.(2)小明一共行了多少km?【分析】(1)画出数轴,然后根据题意标注点A、B、C即可;(2)根据图形列出算式计算即可得解.【解析】(1)A,B,C三个村庄的位置,如图所示;(2)小明一共行:4+3+10+3=20km.。
七年级数学上册《数轴》同步练习题(附答案)
七年级数学上册《数轴》同步练习题(附答案)一、选择题1、如图所示的图形为四位同学画的数轴,其中正确的是( )A .B .C .D .2、如图,数轴上被墨水遮盖的数可能是( )A . 3.2-B .3-C .2-D .0.5-3、如图,在数轴上有A ,B ,C ,D 四个点,对它们表示的数,叙述正确的是( )A .点D 表示的数为﹣2.5B .点C 表示的数为﹣1.5 C .点B 表示的数为0.5D .点A 表示的数为1.254、如图的数轴被墨迹盖住一部分,被盖住的整数点有( )A .7个B .8个C .9个D .10个5、点123,,,,n A A A A (n 为正整数)都在数轴上,点1A 在原点O 的左边,且11A O =;点2A 在点1A 的右边,且212A A =;点3A 在点2A 的左边,且323A A =;点4A 在点3A 的右边,且434A A =;…,依照上述规律,点20182019,A A 所表示的数分别为 ( )A .2018,-2019B .1009,-1010C .-2018,2019D .-1009,1009二、填空题 6、已知在数轴上,位于原点左边的点A 到原点的距离是8,那么点A 所表示的数是______.7、如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是______.8、数轴上,到2这个点的距离等于3的点所表示的数是__________.9、正整数、0、负整数统称__________;正分数和负分数统称____________;整数和分数统称_________.10、画一条______,在直线上取一点表示0,并把这个点叫作_______,选取某一长度作为______,规定直线上向右的方向为_______,就得到_______.11、规定了______、______和_______的______叫数轴.12、在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.13、在数轴上到表示-2的点相距8个单位长度的点表示的数为_____.三、解答题,-0.514、已知下列有理数:-4,2,-3.5,0,-2,312(1)在数轴上标出这些有理数表示的点;(2)设表示-0.5的点为A,那么与A点的距离相差4个单位长度的点所表示的数是多少?15、一辆货车从超市出发,向东走了3千米到达A地,继续向东走25千米到达B地,然后向西走了10千米到达C地,最后回到超市。
_ 2020—2021学年七年级数学上册 2.2--2.3 数轴、相反数、绝对值 同步练习
2.2数轴、相反数、绝对值同步练习一.数轴(共14小题)1.数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣12.下列数轴表示正确的是()A.B.C.D.3.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣34.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣25.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣16.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.107.如图,点A表示的数是a,点B表示的数是b,点O表示的数是0,如果点O是线段AB的中点,并且AB=20,则a的值为()A.10B.5C.﹣10D.﹣58.如图,在一条可以折叠的数轴上,A和B表示的数分别是﹣10和4,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,则C点表示的数是.9.数轴上表示数﹣5和表示数﹣11的两点之间的距离是.10.在数轴上点A表示的数是﹣2,则距离点A4个单位的B表示的数是.11.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为.12.已知数轴上点A,B,C所表示的数分别是﹣3、+7、x,若AC=4,点M是AB的中点,则线段CM的长为.13.已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B在原点右侧且距原点100个单位.(1)点A表示的数是:;点B表示的数是:.(2)A,B两点间的距离是个单位,线段AB中点表示的数是.(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.14.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.二.相反数(共6小题)15.6的相反数是()A.﹣B.C.﹣6D.616.﹣3的相反数是()A.3B.C.﹣3D.﹣17.的相反数是()A.﹣2017B.2017C.D.18.若m是﹣6的相反数,则m的值是.19.﹣8的相反数是.如果﹣a=2,则a=.20.已知m﹣2的相反数是5,那么m3的值等于.三.绝对值(共13小题)21.﹣9的绝对值是()A.9B.﹣9C.D.﹣22.|﹣2|等于()A.2B.﹣2C.D.0 23.当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1B.1C.3D.﹣3 24.|﹣|的相反数等于()A.﹣2B.﹣C.2D.25.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣3 26.下列数中一定比|a|小的是()A.﹣1B.0C.1D.a 27.当x<1时,化简:|x﹣1|=.28.若|x﹣2|=2,则x﹣1=.29.如果|x﹣3|=5,那么x=.30.如果b与5互为相反数,则|b+2|=.31.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.32.已知a是2的相反数,计算|a﹣2|的值.33.已知|a﹣1|=2,求﹣3+|1+a|值.2.2数轴、相反数、绝对值同步练习参考答案与试题解析一.数轴(共14小题)1.数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣1【解答】解:由题意得:|m|=|m+2|,∴m=m+2或m=﹣(m+2),∴m=﹣1.故选:C.2.下列数轴表示正确的是()A.B.C.D.【解答】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.3.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣3【解答】解:∵点M表示数m,将点M向右平移1个单位长度得到点P,∴平移后P表示的数是m+1,∵N表示数2,PO=NO,∴m+1与2互为相反数,即m+1=﹣2,∴m=﹣3,故选:D.4.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣2【解答】解:点P表示的数是﹣2+4=2.故选:C.5.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣1【解答】解:因为点A到原点的距离大于点B到原点的距离,且B在原点左边,故A、C错误;B选项为﹣3,大于A的绝对值,故B错误;故选:D.6.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.10【解答】解:AB=4﹣(﹣6)=10.故选:D.7.如图,点A表示的数是a,点B表示的数是b,点O表示的数是0,如果点O是线段AB的中点,并且AB=20,则a的值为()A.10B.5C.﹣10D.﹣5【解答】解:∵点O是线段AB的中点,∴AO=BO,∵AB=20,∴AO=BO=AB=10,根据距离公式|0﹣a|=10,∴a=﹣10,故选:C.8.如图,在一条可以折叠的数轴上,A和B表示的数分别是﹣10和4,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,则C点表示的数是﹣2.【解答】解:设点C表示的数为x,则AC=x﹣(﹣10)=x+10,BC=4﹣x.∵以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,∴AC﹣BC=2.即:x+10﹣(4﹣x)=2.解得:x=﹣2.故答案为:﹣2.9.数轴上表示数﹣5和表示数﹣11的两点之间的距离是6.【解答】解:表示数﹣5和表示数﹣11的两点之间的距离是:|(﹣5)﹣(﹣11)|=6,故答案为:6.10.在数轴上点A表示的数是﹣2,则距离点A4个单位的B表示的数是2,﹣6.【解答】解:数轴上点A表示的数为﹣2,距离点A4个单位长度的点有两个,它们分别是﹣2+4=2,﹣2﹣4=﹣6,故答案为:2,﹣6.11.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为8或﹣2.【解答】解:设B点表示的数为b,则|b﹣3|=5,∴b﹣3=5或b﹣3=﹣5,∴b=8或b=﹣2.故答案为:8或﹣2.12.已知数轴上点A,B,C所表示的数分别是﹣3、+7、x,若AC=4,点M是AB的中点,则线段CM的长为1或9.【解答】解:∵点A表示﹣3,AC=4,∴C表示的数是﹣3+4=1或﹣3﹣4=﹣7,即x=1或x=﹣7,∵A,B所表示的数分别是﹣3、+7,点M是AB的中点,∴M表示的数是(﹣3+7)÷2=2,∴CM=|1﹣2|=1或CM=|﹣7﹣2|=9,故答案为:1或9.13.已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B在原点右侧且距原点100个单位.(1)点A表示的数是:﹣20;点B表示的数是:100.(2)A,B两点间的距离是120个单位,线段AB中点表示的数是40.(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.【解答】解:(1)∵点A在原点左侧且距原点20个单位,∴点A表示的数是﹣20,∵点B在原点右侧且距原点100个单位,∴点B表示的数是100,故答案为:﹣20;100.(2)∵点A表示的数是﹣20,点B表示的数是100,∴A、B两点间的距离为100﹣(﹣20)=120,线段AB中点表示的数是100﹣120÷2=40,故答案为:120;40.(3)设两只蚂蚁经过x秒相遇,4x+6x=120,解得:x=12,﹣20+4x=28,∴点C表示的数是28.14.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.【解答】解:(1)点B向右移动5个单位长度后,点B表示的数为1;三个点所表示的数中最小的数是是点A,为﹣1.(2)点D到A,C两点的距离相等;故点D为AC的中点.D表示的数为:0.5.(3)当点E在A、B时,EA=2EB,从图上可以看出点E为﹣3,∴点E表示的数为﹣3;当点E在点B的左侧时,根据题意可知点B是AE的中点,∴点E表示的数是﹣7.综上:点E表示的数为﹣3或﹣7.二.相反数(共6小题)15.6的相反数是()A.﹣B.C.﹣6D.6【解答】解:相反数指的是两个数符号不同但绝对值相同,所以6的相反数为﹣6.故选:C.16.﹣3的相反数是()A.3B.C.﹣3D.﹣【解答】解:∵互为相反数的两个数相加等于0,∴﹣3的相反数是3.故选:A.17.的相反数是()A.﹣2017B.2017C.D.【解答】解:﹣的相反数为,故选:D.18.若m是﹣6的相反数,则m的值是6.【解答】解:∵m是﹣6的相反数,∴m=6.故答案为:6.19.﹣8的相反数是8.如果﹣a=2,则a=﹣2.【解答】解:﹣8的相反数是8.如果﹣a=2,则a=﹣2.故答案为:8,﹣2.20.已知m﹣2的相反数是5,那么m3的值等于﹣27.【解答】解:∵m﹣2的相反数是5,∴m﹣2=﹣5,解得:m=﹣3,∴m3=(﹣3)3=﹣27.故答案为:﹣27.三.绝对值(共13小题)21.﹣9的绝对值是()A.9B.﹣9C.D.﹣【解答】解:﹣9的绝对值是9,故选:A.22.|﹣2|等于()A.2B.﹣2C.D.0【解答】解:|﹣2|等于2,故选:A.23.当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1B.1C.3D.﹣3【解答】解:∵2<a<3,∴a﹣3<0,2﹣a<0,∴原式=3﹣a+a﹣2=1.故选:B.24.|﹣|的相反数等于()A.﹣2B.﹣C.2D.【解答】解:|﹣|=,的相反数是﹣.故选:B.25.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣3【解答】解:∵|x|=5,|y|=2,∴x=±5,y=±2,∵x<0,y>0,∴x=﹣5,y=2,∴x+y=﹣3.故选:D.26.下列数中一定比|a|小的是()A.﹣1B.0C.1D.a【解答】解:任何数的绝对值都是非负数,所以|a|≥0.故选:A.27.当x<1时,化简:|x﹣1|=1﹣x.【解答】解:∵x<1,∴x﹣1<0,∴原式=﹣(x﹣1)=1﹣x.28.若|x﹣2|=2,则x﹣1=3或﹣1.【解答】解:∵|x﹣2|=2,∴x﹣2=+2,或x﹣2=﹣2,∴x=4或x=0,当x=4时,x﹣1=4﹣1=3,当x=0时,x﹣1=0﹣1=﹣1.故答案为:3或﹣1.29.如果|x﹣3|=5,那么x=8或﹣2.【解答】解:∵|x﹣3|=5,∴x﹣3=±5,解得x=8或﹣2.故答案为:8或﹣2.30.如果b与5互为相反数,则|b+2|=3.【解答】解:∵b与5互为相反数,∴b=﹣5,∴|b+2|=|﹣5+2|=|﹣3|=3.故答案为:3.31.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.【解答】解:(1)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.(2)由题意得:﹣|﹣|﹣(﹣)=.32.已知a是2的相反数,计算|a﹣2|的值.【解答】解:∵a是2的相反数,∴a=﹣2,∴|a﹣2|=4.33.已知|a﹣1|=2,求﹣3+|1+a|值.【解答】解:∵|a﹣1|=2,∴a=3或a=﹣1,当a=3时,﹣3+|1+a|=﹣3+4=1;当a=﹣1时,﹣3+|1+a|=﹣3;综上所述,所求式子的值为1或﹣3。
+1.2.2数轴+同步练习题+++2024-2025学年人教版七年级数学上册
1.2.2数轴一、选择题1.如图,在数轴上点 M 表示的数可能是 ( )A . 1.5B . −1.5C . −2.4D . 2.42.下列各图中,所画出的数轴正确的是( )A .B .C .D .3.在数轴上,一个点从-3开始向左移动1个单位长度,再向右移动5个单位长度后表示的数是( )A .+3B .+1C .-9D .-24.如图,在数轴上表示到原点的距离为 3 个单位的点有 ( )A . D 点B . A 点C . A 点和D 点 D . B 点和 C 点 5.在数轴上的点A 到原点的距离是5,则点A 所表示的数为( )A .5B .﹣5C .2.5D .5或﹣56.在数轴上有A 、B 两点,其中点A 表示的数是﹣3,点A 与点B 间的距离为4,则点B 表示的数是( )A .﹣7B .﹣7或1C .1D .7或﹣17.点A 在数轴上距原点3个单位长度,且位于原点左侧,若一个点从点A 处左移4个单位长度,再右移1个单位长度,此时终点所表示的数是( )A .8-B .6-C .2-D .08.如图,数轴上被墨水遮盖的点表示的数可能是( )A .1-B . 2.1-C .31-.D . 3.5- 二、填空题1.数轴上左边的数比右边的数 .2.数轴上点A表示-3,则在A的右侧与点A相距3个单位长度的点所表示的数为 .3.数轴上与原点距离为2.5个单位长度的点有个,其表示的有理数是.4.一个数在数轴上对应的点在原点的左侧,.且距离原点5个单位长度,则这个数是5.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为.三、解答题1.把下面的直线补充完整,然后在数轴上标出下列各数:−4,+1,2.5,−11,5,最后将2各数用“<”连起来.2.如图,已知A,B为数轴上的两个点,点B表示的数是10.(1)写出线段AB的中点C对应的数;(2)若点D在数轴上,且BD=30,写出点D对应的数;(3)若一只蚂蚁从点A出发,在数轴上每秒向右前进3个单位长度;同时一只毛毛虫从点B出发,它们在点E处相遇,求点E对应的数.3.已知在纸面上有一数轴(如图)折叠纸面.-表示的点与数_____表示的点重合;(1)若1表示的点与1-表示的点重合,则5-表示的点重合,回答以下问题:(2)若1表示的点与5①13表示的点与数_____表示的点重合;②若数轴上A、B两点之间的距离为2024(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?4.某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景区,继续向东走2.5千米到达B景区,然后又回头向西走8.5千米到达C景区,最后回到景区大门.(1) 以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置.(2)A景区与C景区之间的距离是多少?5.数轴上点A对应数-1,一只蚂蚁从A点出发,沿着数轴以每秒4个单位的速度爬行到B点,立即沿原路以原速返回A点,共用5秒钟。
人教版七年级数学上册1.2.2数轴同步练习题含答案
人教版七年级数学上册1.2.2数轴同步练习题1.下列关于数轴的说法正确的是( )A .数轴是一条规定了原点、正方向和单位长度的直线B .数轴的正方向一定向右C .数轴上的点只能表示整数D .数轴上的原点表示有理数的起点 2.下列数轴的画法中,正确的是( )3.(1)将有理数-2,1,0,-212,314在数轴上表示出来;(2)写出数轴上点A ,B ,C 表示的数.4.如图所示,数轴上四点M ,N ,P ,Q 中,表示负整数的点是( ) A .点M B .点N C .点P D .点Q5.有下列一组数:1,4,0,-12,-3,这些数在数轴上对应的点中,不在原点右边的点有( )A .2个B .3个C .4个D .5个6.点A 是数轴上表示-2的点,当点A 沿数轴移动4个单位长度到点B 时,点B 表示的有理数是( )A .-4B .-6C .2或-4D .2或-67.有理数a ,b ,c 在数轴上的位置如图所示,则下列说法正确的是( )A .a ,b ,c 都为正数B .b ,c 为正数,a 为负数C .a ,b ,c 都为负数D .b ,c 为负数,a 为正数 8.如图,点A 表示的数是________.9.如图,小明在写作业时不慎将墨水滴在数轴上,墨迹遮住部分的整数共有________个.10.点A ,B ,C ,D 分别表示-3,-112,0,4.请解答下列问题:(1)在数轴上描出A ,B ,C ,D 四个点;(2)现在把数轴的原点取在点B 处,其余均不变,那么点A ,B ,C ,D 分别表示什么数?11.如图12,上七年级的小贝在一张纸上画了一条数轴,妹妹不知道它有什么用处,就在上面画了一只小猫和一只小狗,于是数轴上标的数字有的看不到了,请根据数轴回答下列问题:(1)被小猫遮住的是正数还是负数?(2)被小狗遮住的整数有几个?(3)此时小猫和小狗之间(即点A,B之间)的整数有几个?图1212.某公交路线经过一条东西向的大街,从西往东设置有公园、书店、学校、小区四个站点,相邻两个站点之间的距离依次为3 km,2 km,1.5 km.如果以学校为原点,向东为正方向,以图上1 cm长为单位长度表示实际距离1 km,请画出数轴,并将四个站点在数轴上表示出来.13.育才路上依次有八中、新华中学和九中三所中学,八中在新华中学东900米处,新华中学在九中东800米处,现小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在八中的什么方向上?距八中有多远?试用画数轴的方法解决此题.14.在正方形的四个顶点处逆时针依次标上“合”“格”“优”“秀”四个字,将正方形放置在数轴上,其中“优”“秀”对应的数分别为-2和-1,现将正方形绕着顶点按顺时针方向在数轴上向右无滑动地翻滚,例如第一次翻滚后“全”所对应的数为0,则连续翻滚后与数轴上数重合的字是( )A.合 B.格 C.优 D.秀15.如图所示,数轴被折成90°,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数将与圆周上的数字________重合.16.如图,将一刻度尺贴放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“8 cm”分别对应数轴上的-3和x,那么x的值为( )A.8 B.7 C.6 D.517.如图,把一根木棒放在数轴上,数轴的1个单位长度为1 cm,木棒的左端点与数轴上的点A重合,右端点与点B重合.(1)若将木棒沿数轴水平向右移动,则当它的左端点移动到点B处时,它的右端点在数轴上所对应的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A处时,它的左端点在数轴上所对应的数为5,由此可得到木棒的长为________cm.(2)图中点A表示的数是________,点B表示的数是________.(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题:一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了.1.A 2.D3.解:(1)如图所示.(2)点A表示-3,点B表示-1,点C表示4.4.A5.B .6.D7.D8.-29.710.解:(1)如图所示:(2)点A 表示-112,点B 表示0,点C 表示112,点D 表示512.11.解:(1)被小猫遮住的是负数.(2)被小狗遮住的整数有12,13,14,15,16,17,18,共7个.(3)小猫和小狗之间的整数有-16,-15,-14,…,-1,0,1,2,…,10,11,共28个. 12.解:如图所示:13.解:数轴画法不唯一,示例如下:由题意得三所中学在数轴上的位置如图所示:通过数轴,能看出小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在新华中学的东边,且距离新华中学200米处,即小明在八中的西边,距离八中有700米.14.C . 15.3 . 16.D17.解:(1)由数轴观察知三根木棒的长是20-5=15(cm),则此木棒的长为15÷3=5(cm).故答案为5.(2)10 15(3)借助数轴,B 表示爷爷的年龄,A 表示小红的年龄,把小红与爷爷的年龄差看作木棒AB . 当爷爷的年龄是小红现在的年龄时,即将B 向左移与A 重合,此时小红的年龄是-40岁;当小红的年龄是爷爷现在的年龄时,即将A 向右移与B 重合,此时爷爷的年龄为125岁,所以可知爷爷比小红大(125+40)÷3=55(岁),所以爷爷现在的年龄为125-55=70(岁).。
人教版七年级数学上册《1-2-2 数轴》作业同步练习题及参考答案
1.2.2 数轴1.在数轴上,原点及原点右边的点表示的数是( )A.正数B.整数C.非负数D.非正数2.如图,在数轴上表示到原点的距离为3 个单位长度的点是( )A.点DB.点AC.点A 和点DD.点B 和点C3.如图,分别用数轴上的点A,B,C,D 表示数,正确的是( )A.点D 表示-2.5B.点C 表示-1.25C.点B 表示1.5D.点A 表示1.254.若数轴上表示-1 和3 的两点分别是点A 和点B,则点A 和点B 之间的距离是( )A.-4B.-2C.2D.45.点A 为数轴上表示-1 的点,将点A 沿数轴向右平移3 个单位长度到点B,则点B 所表示的数为( )A.3B.2C.-4D.2 或-46.下列说法正确的是( )A.有原点、正方向的直线是数轴B.数轴上两个不同的点可以表示同一个有理数C.只有部分有理数能在数轴上表示出来D.任何一个有理数都可以用数轴上的点表示7.在数轴上表示数-6,2.1,-1,0,-41,3,-3 的点中,在原点左边的点有个, 表示的点与原点2 2的距离最远.8.数轴上与原点距离小于4 的整数点有个.9.画出数轴,并在数轴上标出下列各数:-3,2,0,-3.5,-1.5.10.一个点从数轴的原点开始,先向右移动2 个单位长度到达点A,再向左移动3 个单位长度到达点B,A,B 两点表示的数分别是多少?11.已知数轴上表示整数的点称为整点,某数轴的单位长度为1 cm,若在这个数轴上任意画一条长为100 cm 的线段AB,则线段AB 所覆盖的整点个数为( )A.101 或102B.100 或101C.99 或100D.98 或99★12.如图,数轴上一动点A 向左移动2 个单位长度到达点B,点B 再向右移动5 个单位长度到达点C. 若点C 表示的数为1,则点A 表示的数为( )A.7B.3C.-3D.-213.在数轴上,与-2 所对应的点距离3 个单位长度的点所表示的数是.14.有几滴墨水滴在数轴上,根据图中标出的数值,写出墨迹盖住的整数.15.如图,数轴上的点A,B,C,D 分别表示-3,-11,0,4,请解答下列问题:2(1)在数轴上描出A,B,C,D 四个点;(2)B,C 两点间的距离是多少?A,D 两点间的距离是多少?(3)如果把数轴的原点取在点B 处,其余都不变,那么点A,B,C,D 分别表示什么数?16.小明家、小强家、学校与小丽家依次位于一条东西走向的大街上,小明家位于学校西边30 m 处,小丽家位于学校东边100 m 处,小明从学校沿这条大街向东走了40 m,接着向西走了100 m 到达小强家.试用数轴表示出小明家、学校、小丽家、小强家的位置.★17.如图,一只蚂蚁从原点出发,先向右爬行2 个单位长度到达点A,再向右爬行3 个单位长度到达点B,最后向左爬行9 个单位长度到达点C.(1)写出A,B,C 表示的数;(2)实际上,蚂蚁最终是从原点出发向什么方向爬行了几个单位长度?★18.利用数轴解答,有一座三层楼房不幸起火,一名消防员搭梯子爬往三楼去抢救物品.当他爬到梯子正中1 级时,二楼窗口喷出火来,他就往下退了3 级,等到火势过去了,他又向上爬了7 级,这时屋顶有两块砖掉下来,他又后退了2 级,幸好没打着他,他又向上爬了8 级,这时他距离梯子最高层还有一级, 问这个梯子共有几级?答案与解析夯基达标1.C 在数轴上,原点及原点右边的点表示的数是0 和正数,即非负数.2.C 在数轴上到原点的距离为3 个单位长度的点有2 个,分别是点A 和点D,注意不要漏解.3.C4.D5.B6.D7.4 -68.7 符合条件的点有-3,3,-2,2,-1,1,0,共7 个.9.分析画数轴时要有原点、正方向及适当的单位长度;描点时应在数轴上描出并标上各数.解10.解A,B 两点表示的数分别为2,-1.培优促能11.B12.D 由题图可知,点B 向右移动5 个单位长度到点C,点C 对应的数为1,所以点B 对应的数为-4,点A 向左移动2 个单位长度到达点B,所以点A 表示的数为-2.故选D.13.-5 或1 画出数轴(图略),找出-2 对应的点,与该点距离3 个单位长度的点有两个,分别表示-5,1.14.分析从题图中可见墨迹盖住两段,一段在-8~-3 之间,另一段在4~9 之间.解-8~-3 之间的整数有-4,-5,-6,-7;4~9 之间的整数有5,6,7,8.15.解(1)如图,(2)B,C 两点间的距离是0.5+1=1.5,A,D 两点间的距离是3+4=7.(3)点A,B,C,D 分别表示 1 1 1-12,0,12,52.16.解创新应用17.解(1)A 表示2,B 表示5,C 表示-4.(2)实际上,蚂蚁最终是从原点出发向左爬行了4 个单位长度.18.解设梯子正中1 级为原点,向上爬的级数为正,后退的级数为负,答案为23 级.。
人教版七年级数学上册1.2.2 数轴同步练习(含答案)
数轴一、单选题1.下列选项中正确表示数轴的是( )A .B .C .D .2.如图,数轴的单位长度为1,如果点B 表示的数是2,那么点A 表示的数是( )A .0B .-1C .-2D .-33.数轴上的点A 到原点的距离是8,则点A 表示的数为( )A .8或8-B .8C .8-D .6或6- 4.已知2a =,3b =,且在数轴上表示有理数b 的点在a 的左边,则a b -的值为( ) A .1- B .5- C .1-或5- D .1或5 5.在数轴上表示a 、b 两个实数的点的位置如图所示,则下列结果为正数的是( )A .a +bB .a -bC .b -aD .a b6.若数轴上的点A 向左移动2个单位长度,再向右移动3个单位长度,正好对应-5这个点,那么原来A 对应的数是( ).A .-4B .2C .-6D .07.已知在数轴上A 、B 、C 三点对应的数分别是-2、2、x ,若相邻两点的距离相等,则x 的值为( )A .6B .-6C .0D .以上三个值都满足 8.在数轴上,点A B ,在原点O 的同侧,分别表示数1,a ,将点A 向左平移3个单位长度,得到点C ,点C 与点B 所表示的数互为相反数,则a 的值为( )A .3B .2C .1-D .09.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B10.在数轴上,一只蚂蚁从原点出发,它第一次向右爬行了1个单位长度,第二次接着向左爬行了2个单位长度,第三次接着向右爬行了3个单位长度,第四次接着向左爬行了4个单位长度,如此进行了2020次,问蚂蚁最后在数轴上什么位置?( )A .1010B .﹣1010C .﹣505D .-505二、填空题11.点,,,A B C D 在数轴上的位置如图,中表示1-的相反数的点是 ________.12.已知a 是一个正数,b 是一个负数,∣a ∣<∣b ∣,用“<”把-a ,-b ,a ,b 连接起来________ . 13.在数轴上,点A 表示的数是3x +,点B 表示的数是3x -,且,A B 两点的距离为8,则x =_________.14.如图,在数轴上点A表示1,现将点A沿x轴做如下移动:第一次点A向左移动3个单位长度到达点1A,第二次将点1A向右移动6个单位长度到达点2A,第三次将点2A向左移动9个单位长度到达点3A,按照这种移动规律移动下去,则线段1314A A的长度是.三、解答题15.画数轴,并在数轴上表示下列各数.3,-92,0,-2,1.516.在一条数轴上从左到右有点A,B,C三点,其中AC=5,BC=2,设点A,B,C所对应数的和是p.(1)若以B为原点,则点A,C所对应的数分别为,p的值为;(2)若以A为原点,求p的值;(3)若原点O在数轴上点C的右边,且OB=15,求p的值.17.(1)画出数轴,并在数轴上表示下列各数: 3.5,0,-5,-(-2);(2)数轴上表示2和-5的两点之间的距离是 .(3)若数轴上A 点表示的数为x ,B 点表示的数为-1,则AB 之间的距离为 . (4)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围是 .18.已知数轴上的A 、B 两点分别对应数字a 、b ,且a 、b 满足 |4a-b|+(a-4)2=0. (1)直接写出a 、b 的值.=时,求P (2)P从A点出发,以每秒3个单位长度的速度沿数轴正方向运动,当PA PB运动的时间和P表示的数.(3)数轴上还有一点C对应的数为36,若点P从A出发,以每秒3个单位长度的速度向点C运动,同时点Q从点B出发,以每秒1个单位长度的速度沿数轴向正方向运动,点P运PQ=时,求P点对应的数.动到点C立即返回再沿数轴向左运动.当10答案1.D 2.C 3.A 4.D 5.C 6.C 7.D 8.B 9.B10.B11.A点12.b<−a<a<−b13.414.42.15.解:根据题意数轴如图所示:16.解:(1)∵以B为原点,AC=5,BC=2,∴点A,C所对应的数分别为-3、2,p的值为-3+2+0=-1;故答案为:﹣3、2,﹣1;(2)若以A为原点,则A点表示的数为0,由AC=5,BC=2可知,B点表示的数为3,C点表示的数为5,p=0+3+5=8.答:p的值为8;(3)由题意知:B点表示的数为-15,C点表示的数为-15+2= -13,A点表示的数为-15-3= -18,p=-15+(-13)+(-18)=-46,17.解:(1)作图如下:(2)数轴上表示2和表示-5的两点之间的距离是|2-(-5)|=7;(3)数轴上A 点表示的数为x ,B 点表示的数为-1,则AB 之间的距离为|x+1|. (4)当x <-3时,|x-2|+|x+3|=2-x-(3+x )=-2x-1,此时最小值大于5;当-3≤x≤2时,|x-2|+|x+3|=2-x+x+3=5;当x >2时,|x-2|+|x+3|=x-2+x+3=2x+1,此时最小值大于5;所以|x-2|+|x+3|的最小值为5,取得最小值时x 的取值范围为-3≤x≤2.故答案为:7;|x+1|;5,-3≤x≤2.18.(1)24(4)0a b a -+-=,∴40,40a b a -=-=,解得:4,16a b ==.(2)设P 点运动的时间为t ,由题意得,∴t 秒时,点P 在数轴上对应的数为:43t +,∴3,16(43)123PA t PB t t ==-+=-,PA PB =,∴3123t t =-,解得:2t =,∴4310t +=,故P 运动时间为2秒,P 点对应的数为10.(3)P 运动到点C 的时间为:3643233-=,∴当3203t <<时,P 点在数轴上对应数为43t +, 点Q 在数轴上对应的数为:16t +,∴16(43)122PQ t t t =+-+=-,10PQ =,∴12210t -=,解得:1t =秒,代入可得:347t +=,此时点P 对应的数为:7,当P 从C 点返回沿数轴向左运动时,设P 、Q 运动的时间为1t ,由题意可得:1t 秒时,点P 在数轴上表示的数为:1363t -,点Q 在数轴上表示的数为:1803t +, ∴1180363103t t +-+=, 解得:1296t =, 代入可得:1433632t -=, ∴此时点P 对应的数为:432, ∴综上,当10PQ =时,P 点对应的数为7或432。
人教版数学七年级上册《1.2.2 数轴》 同步培优练习卷
1.2.2 数轴一.选择题1.一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4……若按以上规律跳了100次时,它落在数轴上的点P100所表示的数恰好是2019,则这只小球的初始位置点P0所表示的数是()A.1969B.1968C.﹣1969D.﹣19682.如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数﹣2020的点与圆周上表示数字()的点重合.A.0B.1C.2D.33.如图将直径为1个单位长度的圆形纸片上的点A放在数轴的原点上纸片沿着数轴向左滚动一周,点A到达了点A′的位置,则此时点A′表示的数是()A.﹣πB.πC.﹣2πD.2π二.填空题4.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第6次跳动后,该质点到原点O的距离为.5.在数轴上点A对应的数为﹣2,点B是数轴上的一个动点,当动点B到原点的距离与到点A的距离之和为6时,则点B对应的数为.6.动点A,B分别从数轴上表示10和﹣2的两点同时出发,以7个单位长度/秒和4个单位长度/秒的速度沿数轴向负方向匀速运动,秒后,点A,B间的距离为3个单位长度.7.如图,已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动,设t分钟时点P到点M、点N的距离相等,则t的值为.8.如图,在数轴上点A、B表示的数分别为﹣2、4,若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过秒后,M、N两点间的距离为12个单位长度.9.一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹盖住的整数个数是.三.解答题10.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4,表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(请依据此情境解决下列问题)①则数轴上数4表示的点与数表示的点重合.②若点A到原点的距离是6个单位长度,并且A,B两点经折叠后重合,则点B点表示的数是.③若数轴上M,N两点之间的距离为2020,并且M,N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是,则N点表示的数是.11.已知数轴上三点A,O,B对应的数分别为﹣3,0,2,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;。
冀教版数学七年级上册1.2(同步练习)《数轴》
《数轴》同步练习1、下列说法错误的是( )A .所有的有理数都可以用数轴上的点表示B .数轴上的原点表示0C .在数轴上表示-3的点与表示+1的点的距离是2D .数轴上表示-513的点,在原点负方向513个单位2、点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B 所表示的实数是 ( )A 1B -6 C 2或-6 D 不同于以上答案3、下列说法错误的是: ( )A .没有最大的正数,却有最大的负数B .数轴上离原点越远,表示数越大C .0大于一切非负数D .在原点左边离原点越远,数就越小4、下列结论正确的有( )个:① 规定了原点,正方向和单位长度的直线叫数轴 ② 最小的整数是0 ③ 正数,负数和零统称有理数 ④ 数轴上的点都表示有理数A .0B .1C .2D .35、M 点在数轴上表示4-,N 点离M 的距离是3,那么N 点表示( )。
A .1-B .7-C .1-或7-D .1-或16、a ,b 是有理数,它们在数轴上的对应点的位置如下图所示:把a ,-a ,b ,-b 按照从小到大的顺序排列 ( ) A .-b <-a <a <b B .-a <-b <a <b C .-b <a <-a <b D .-b <b <-a <a7、 数轴上表示-2.5与72的点之间,表示整数的点的个数是( )A .3B .4C .5D .68、下列各图中,是数轴的是( )9、在数轴上,离原点距离等于3的数是 。
10、在数轴上0与2之间(不包括0,2),还有___个有理数。
11、指出下图所示的数轴上各点分别表示什么数。
A ,D ,C ,B ,E ,F 分别表示_____,_____,_____,_____,_____,_____。
12、已知有理数a ,b 在数轴上的位置如图所示,那么a ,b ,-a ,-b 的大小关系是 。
(用“>”连结)13、在数轴上,老师不小心把一滴墨水滴在画好的数轴上,如图所示,试根据图中标出的数值判断被墨水盖住的整数,并把它写出来。
同步练习册数学七年级上册答案必备
同步练习册数学七年级上册答案必备七年级上册数学同步练习册参考答案人教版§1.2.2数轴一、1. D 2. C 3. C二、1. 右 5 左 3 2. 3. -3 4. 10三、1. 略 2.(1)依次是-3,-1,2.5,4 (2)1 3. ±1,±3§1.2.3相反数一、1. B 2. C 3. D二、1. 3,-7 2. 非正数 3. 3 4. -9三、1. (1) -3 (2) -4 (3) 2.5 (4) -62. -33. 提示:原式= =§1.2.4绝对值一、1. A 2. D 3. D二、1. 2. 3. 7 4. ±4三、1. 2. 20 3. (1)|0|<|-0.01| (2) >§1.3.1有理数的加法(一)一、1. C 2. B 3. C二、1. -7 2.这个数 3. 7 4. -3,-3.三、1. (1) 2 (2) -35 (3) - 3.1 (4) (5) -2 (6) -2.75;2.(1) (2) 190.七年级上册数学同步练习答案沪教版基础检测:1.2.5,,106; 1, 1.732, 3.14,拓展提高4. 两个,±55. -2,-1,0,1,2,36. 74362, 1 757.-3,-1 8.11.2.3相反数基础检测1、5,-5,-5,5;2、2,2.-3, 0.3.相反4.解:2010年我国全年平均降水量比上年的增长量记作-24㎜2009年我国全年平均降水量比上年的增长量记作+8㎜2008年我国全年平均降水量比上年的增长量记作-20㎜拓展提高:5.B6.C7.-32m ,808.18 22℃9. +5m表示向左移动5米,这时物体离它两次前的位置有0米,即它回到原处。
1.2.1有理数测试基础检测1、正整数、零、负整数;正分数、负分数;正整数、零、负整数、正分数、负分数; 正有理数、零;负有理数、零;负整数、零;正整数、零;有理数;无理数。
数轴 苏科版七年级数学上册同步练习(解析版)
2.3数轴基础过关全练知识点1数轴的概念及画法1.(2022江苏苏州相城月考)如图,表示的数轴正确的是()A B C D2.(2022独家原创)已知点A,B,C,D在未标注原点的数轴上的位置如图所示,且相邻两点之间的距离均为1个单位长度.若点A,B,C,D分别表示数a,b,c,d,且满足A,D到原点的距离相等,则b的值为()A.-1B.-12C.1D.12知识点2数轴上的点与有理数和无理数的关系3.(2022江苏南通期中)一滴墨水洒在数轴上,根据图中标出的数值判断墨迹盖住的整数个数是()A.14B.13C.12D.114.(2022江苏南京鼓楼期中)如图所示,AB是半径为1的圆的直径,将点B放在数轴的原点处,并将圆沿数轴向右滚动(无滑动),当点A第一次落在数轴上时,点A表示的数为.5.(教材P19变式题)在如图所示的数轴上表示下列各数:0,-4.2,312,-2,+7,113.知识点3 利用数轴比较有理数的大小6.如图,将刻度尺放在数轴上,刻度尺上“0 cm”和“2 cm”分别对应数轴上的6和4,那么刻度尺上“5.4 cm”对应数轴上的数为 .7.画一条数轴,然后在数轴上画出表示下列各数的点:-2,312,0,-14,1,-412,512,并用“<”把这些数连接起来.能力提升全练 8.(2021山东滨州中考,1,)在数轴上,点A 表示-2.若从点A 出发,沿数轴的正方向移动4个单位长度到达点B,则点B 表示的数是( ) A.-6 B.-4 C.2 D.49.(2021四州凉山州中考,2,)下列数轴表示正确的是()A B C D10.(2020吉林长春中考,1,)如图,数轴上被墨水遮盖的数可能为()A.-1B.-1.5C.-3D.-4.211.(2020湖南湘潭中考,10,)在数轴上到原点的距离小于4的点表示的整数可以为.(写出一个即可)素养探究全练12.[空间观念]数轴上的一个点表示一个数,当这个点表示的是整数时,我们称它是整数点.如果有一条数轴的单位长度是1厘米,那么将一条2 022米长的线段放在这条数轴上,它可以盖住多少个整数点?13.[抽象能力](2021江苏徐州期中)如图,把一根木棒放在数轴上,数轴的1个单位长度为1 cm,木棒的左端点与数轴上的A点重合,右端点与数轴上的B点重合.(1)若将木棒沿数轴水平向右移动,则当它的左端点移动到点B处时,它的右端点在数轴上表示的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A处时,它的左端点在数轴上所表示的数为5,由此可得木棒的长为cm;(2)图中点A表示的数为,点B表示的数为;(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题:一天,小红问爷爷的年龄,爷爷说:“我若是你现在那么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在的年龄.答案全解全析基础过关全练1.C 选项A 中没有原点和单位长度;选项B 中单位长度不统一;选项C 中数轴的三要素都正确;选项D 中没有正方向.2.B ∵A 与D 到原点的距离相等,∴原点在BC 段的正中间,如图所示,∴b=-12.3.B 在-9.2和3(包括3)之间有-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,共13个整数.4.答案 π解析 当点A 第一次落在数轴上时,点A 表示的数即半圆的长度,因为圆的半径是1,周长为2π,则半圆的长为π,所以A 点表示的数为π. 5.解析 如图所示.6.答案 0.6解析 刻度尺上5.4 cm 对应的数轴上的点距离数轴上原点(刻度尺上6 cm 对应的点)的距离为6-5.4=0.6(cm),且该点在原点的右侧,故刻度尺上“5.4 cm”对应数轴上的数为0.6. 7.解析 如图所示.根据数轴上表示的数,右边的数总是大于左边的数,可知-412<-2<-14<0<1<312<512.能力提升全练8.C由题意,得点B表示的数为2,故选C.9.D根据数轴的三要素以及在数轴上,右边的数总比左边的数大来判断,选项D有原点、正方向、单位长度且右边的数总比左边的数大,故该选项正确.10.C由题中数轴上墨水的位置可知,该数在-4与-2之间,只有选项C 符合题意,故选C.11.答案3(答案不唯一,3,2,1,0,-1,-2,-3中任意一个均可)解析在数轴上到原点的距离小于4的点表示的整数有-3,3,-2,2,-1,1,0,从中任选一个即可.素养探究全练12.解析①当线段的起点在整数点上时,∵2 022米=202 200厘米,∴这条线段可以覆盖202 201个整数点;②当线段的起点不在整数点上,即在两个整数点之间时,∵2 022米=202 200厘米,∴这条线段可以覆盖202 200个整数点.13.解析(1)观察题中数轴可知,三根这样的木棒长为20-5=15(cm),则此木棒长为15÷3=5(cm).(2)题图中点A所表示的数为5+5=10,点B所表示的数为20-5=15.(3)如图:借助数轴,把小红与爷爷的年龄差看作木棒AB,类似地,将爷爷是小红那么大时看作当A点移动到B点时,木棒左端点所表示的数为-40.将小红是爷爷那么大时看作当B点移动到A点时,木棒右端点所表示的数为125.可知爷爷比小红大(125+40)÷3=55(岁),可知爷爷的年龄为125-55=70(岁).故爷爷现在的年龄是70岁.。
初中七年级上册数学122_数轴同步专项练习题含答案
初中七年级上册数学1.2.2 数轴同步专项练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 如图,在数轴上点A表示的数最可能是()A.−2B.−2.5C.−3.5D.−2.92. 下列说法正确的是()A.数轴是一条规定了原点、单位长度和正方向的直线B.数轴一定取向右为正方向C.数轴是一条带箭头的线段D.数轴上的原点表示有理数的起点3. A为数轴上表示−1的点,将A点沿数轴向左移动2个单位长度到B点,则B点所表示的数为()A.−3B.3C.1D.1或−34. 如图,在数轴上,点A,B表示的数分别是a,b;原点用点O来表示,则下列说法正确的有( )①线段AB的长度就是A,B两点之间的距离;②|a|等于线段OA的长度;③ab>0;④a−b>a+b;⑤点A到原点O的距离是线段OA.A.2个B.3个C.4个D.5个5. 如图,数轴上相邻刻度间的线段表示一个单位长度,点A、B、C、D对应的数a、b、c、d,且2a+b+d=−2,那么数轴的原点应是( )A.点AB.点BC.点CD.点D6. 如图,数轴上P,Q,S,T四点对应的整数分别是p,q,s,t,且有p+q+s+t=−2,那么,原点应是点()A.PB.QC.SD.T7. 点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:①−a>b;②−b>−a;③|a|>|b|;④|−b|>|−a|,其中正确的是( )A.①②③B.②③④C.①③④D.①②④8. 有理数a,b在数轴上的位置如图所示,则下列结论不正确的是()A.a−(−b)<0B.a−b<0C.−a−b>0D.−a+b<09. 一只小蚂蚁停在数轴上表示2的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为()A.7或−3B.−7C.+3D.–7或310. 如图,在数轴上有a,b两个有理数,则下列结论中,不正确的是())3>0A.a+b<0B.a−b<0C.a⋅b<0D.(−ab二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 在数轴上的点A表示的数为2.5,则与A点相距3个单位长度的点表示的数是________.12. 如图,在数轴上1,√2的对应点分别是A,B,A是线段BC的中点,则点C所表示的数是________.13. P从数轴上的原点开始,向右移动2个单位,再向左移动5个单位,此时P点所表示的数是________.14. 在数轴上与表示−3的点相距4个单位长度的点所表示的数是________.15. 如图,数轴上有A,B,C,D四点,则所表示的数与5−√11最接近的是_________.16. 数轴上A点表示的数为−2,则A点相距3个单位长度的点表示的数为________.17. 已知点A在数轴上原点左侧,距离原点3个单位长度,点B到点A的距离为2个单位长度,则点B对应的数为________.18. 已知在纸面上有一数轴,折叠纸面:(1)若3表示的点与−3表示的点重合,则−4表示的点与数________表示的点重合;(2)若−1表示的点与5表示的点重合,则6表示的点与数________表示的点重合.(3)在(1)的条件之下,重合的两点之间的距离为2016,则这两点表示的数分别为________.19. 数轴上表示6与2的两个点之间的距离是________个单位长度.20. 数轴上与−1距离3个长度的点表示的数是________.三、解答题(本题共计 20 小题,每题 10 分,共计200分,)21. 一辆货车从超市出发,向东走3千米到达小华家,继续走了1.5千米到达小红家,然后向西走了9.5千米到达小明家,最后回到超市.(1)以超市为原点,以向东为正方向,用1个单位长度表示1千米,你能在数轴上表示出小华家、小红家和小明家的位置吗?(2)小明家距小华家多远?(3)若货车耗油量为3升/千米,问共耗油多少升?22. 数轴上的点A 对应的数是−3,一只蚂蚁从点A 出发沿着数轴向右以每秒3个单位长度的速度爬行至B 点.休息2秒后按原路返回A 点,共用了10秒,则蚂蚁爬行了多少个单位长度?点B 对应的有理数是多少?23. 把下面的直线补充成一条数轴,然后在数轴上表示出下列各数:并用"<"把它们连接起来.−3,+1,212,−1.5,6.24. 已知数轴上表示a ,b 两个点的位置,如图所示,试判断下列各式的符号:(1)a +b ,(2)a −b ,(3)b −a ,(4)|a|−b .25. 操作与探究:对数轴上的点P 进行如下操作:先把点P 表示的数乘以2,再把所得数对应的点向右平移1个单位,得到点P 的对应点P ′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A ′B ′,其中点A ,B 的对应点分别为A ′,B ′.(1)如图,若点A 表示的数是−3,则点A ′表示的数是________;(2)若点B ′表示的数是2,则点B 表示的数是________;(3)已知线段AB 上的点E 经过上述操作后得到的对应点E ′与点E 重合,则点E 表示的数是________.26. 在数轴上表示出下列各有理数:−0.7,−3,−213,0,112,2.27. 一只蚂蚁从原点O 出发,它先向左爬行2个单位长度到达A 点,再向左爬行3个单位长度到达B 点,再向右爬行8个单位长度到达C 点.(1)写出A ,B ,C 三点表示的数,并将它们的位置标注在数轴上;(2)根据C 点在数轴上的位置,请回答该蚂蚁实际上是从原点出发向什么方向爬行了几个单位长度?28. 对数轴上的点P 进行如下操作:先把点P 表示的数乘以m(m ≠0),再把所得数对应的点沿数轴向左平移n(n >0)个单位长度,得到点P ′.称这样的操作为点P 的“倍移”,对数轴上的点A ,B ,C 进行“倍移”操作得到的点分别记为A ′,B ′,C ′.(1)当,n =2时,①若点A 表示的数为−6,则它的对应点A ′表示的数为________. ②若点B ′表示的数是3,则点B 表示的数为________.③数轴上点M 表示的数为1,若点M 到点C 和点C ′的距离相等,求点C 表示的数.(2)若点A ′到点B ′的距离是点A 到点B 距离的3倍,求m 的值.29. 点A 、B 在数轴上的位置如图所示:(1)点A 表示的数是________,点B 表示的数是________;(2)在原图中分别标出表示+3的点C 、表示−1.5的点D ;(3)在上述条件下,B 、C 两点间的距离是________,A 、C 两点间的距离是________.30. 请把下面不完整的数轴画完整,并在数轴上标出下列各数:−3,−12,4.31. 画出数轴,并在数轴上表示下列各数:+5,−3.5,12,−112,−4,0,2.5.32. 观察数轴,仔细思考,回答下列问题.(1)有没有最小的正整数?如果有,是什么?如果没有,说明理由;(2)有没有最大的负整数?如果有,是什么?如果没有,说明理由;(3)不超过2的自然数有哪些?33.操作探究:小明在一张长条形的纸面上画了一条数轴(如图所示),操作一:(1)折叠纸面,使1表示的点与−1表示的点重合,则−3表示的点与________表示的点重合;操作二:(2)折叠纸面,使−1表示的点与5表示的点重合,请你回答以下问题:①−3表示的点与数________表示的点重合;②若数轴上A、B两点之间距离为12,其中A在B的左侧,且A、B两点经折叠后重合,则A表示的数是________,B表示的数是________.③已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为14,则m的值的是________.34. 邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行8km,到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置;(2)C村距离A村有多远?(3)邮递员共骑行了多少km?35. 圆通快递公司员工小明骑车从快递公司出发,先向南骑行4km到达A单位,然后向北骑行2km到达B公司,继续向北骑行5km到达C村,最后回到快递公司.(1)以快递公司为原点,向南方向为正方向,用1cm表示1km,画出数轴,并在数轴上表示出A、B、C三地的位置;(2)C学校离A单位有多远?(3)小明一共骑行了多少千米?36. 根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B(点B在−2, −3的正中间)两点的位置,分别写出它们所表示的有理数A:________ B:________(2)在数轴上画出与点A的距离为2的点(用不同于A、B、M、N的其他字母表示),并写出这些点表示的数:________________(3)若经过折叠,A点与−3表示的点重合,则B点与数________表示的点重合;(4)若数轴上M、N两点之间的距离为9(M在N的左侧),且M、N两点经过(5)中折叠后重合,M、N两点表示的数分别是:M:________ N:________37. 观察有理数a、b、c在数轴上的位置并化简:|b−c|+|a+c|.38. 如图,数轴上的点A、B、C、D分别表示−4,−3,2.5,5.回答下列问题:2(1)B、C两点之间的距离是多少?(2)A、C两点之间的距离是多少?(3)A、D两点之间的距离是多少?39. (1)借助数轴,回答下列问题.①从−1到l有3个整数,分别是________;②从−2到2有5个整数,分别是________;③从−3到3有个整数,分别是________;④从−200到200有________个整数;⑤从−n到n(n为正整数)有________个整数; 39.(2)根据以上规律,直接写出:从−2.9到2.9有________个整数,从−10.1到10.1有________个整数;39.(3)在单位长度是1厘米的数轴上随意画出一条长为1000厘米的线段AB,求线段AB 盖住的整点的个数.40. 一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?参考答案与试题解析初中七年级上册数学1.2.2 数轴同步专项练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】数轴【解析】根据数轴上的点表示数的方法得到点A表示的数在−3与−2中间,然后分别进行判断即可.【解答】解:∵点A表示的数在−3与−2中间,∴A、C、D三选项错误,B选项正确.故选:B.2.【答案】A【考点】数轴【解析】根据规定了原点、正方向、单位长度的直线叫做数轴对各选项分析判断后利用排除法求解.【解答】解:A、数轴是一条规定了原点、单位长度和正方向的直线正确,故本选项正确;B、数轴一定取向右为正方向,错误,故本选项错误;C、数轴是一条带箭头的线段,错误,故本选项错误;D、数轴上的原点表示有理数的起点,错误,故本选项错误.故选A.3.【答案】A【考点】数轴【解析】此题借助数轴用数形结合的方法求解.【解答】解:由题意得,把A点向左移动2个单位长度,即是−1−2=−3,故B点所表示的数为−3.故选A.4.【答案】B【考点】数轴【解析】本题考查了数轴、绝对值及数轴上两点间的距离,解题关键是掌握绝对值的几何意义及数轴上两点间的距离等知识.【解答】解:①线段AB的长度就是A,B两点之间的距离,故①正确;②|a|等于线段OA的长度,故②正确;③b<0,a>0,则ab<0,故③错误;④b<0,则−b>0,−b>b,a−b>a+b,故④正确;⑤点A到原点O的距离是线段OA的长度,故⑤错误.即①②④正确,共有3个.故选B.5.【答案】B【考点】数轴【解析】先根据数轴上各点的位置可得到d−c=3,d−b=4,d−a=7,,再分别用d表示出a、b、c,再代入2a+b+d=2,求出d的值即可.【解答】解:由数轴上各点的位置可知d−c=3,d−b=4,d−a=7,故c=d−3,b=d−4,a=d−7,代入2a+b+d=−2得,2(d−7)+d−4+d=−2,解得d=4,故数轴上原点应是B点.故选B.6.【答案】C【考点】数轴【解析】根据数轴可以分别假设原点在P、Q、S、T,然后分别求出p+q+s+t的值,从而可以判断原点在什么位置,本题得以解决.【解答】解:由数轴可得,若原点在P点,则p+q+s+t=10,若原点在Q点,则p+q+s+t=6,若原点在S点,则p+q+s+t=−2,若原点在T点,则p+q+s+t=−14,∵数轴上P,Q,S,T四点对应的整数分别是p,q,s,t,且有p+q+s+t=−2,∴原点应是点S,故选C.7.【考点】数轴【解析】根据a+b<0,a在坐标轴的位置,结合各项结论进行判断即可.【解答】解:①由数轴可得,a>0,|a|<|b|,所以−a>b,故①正确;③错误;②因为a>0,b<0,所以a>b,所以−b>−a,故②正确;④因为|−b|=|b|,|−a|=|a|,|a|<|b|,所以|−b|>|−a|,故④正确,综上可得①②④正确.故选D.8.【答案】B【考点】数轴【解析】观察数轴得:b<0<a|>|a|由此对四个选项依次判断即可.【解答】观察数轴得:b<0<a||b|>|a|选项A,a−(−b)=a+b<0,选项A正确;选项B,a−b>0,选项B错误;选项C,−a−b>0,选项C正确;选项D,−a+b=b−a<0,选项D正确;故选B.9.【答案】A【考点】数轴【解析】分两种情况讨论,分别求出所表示的数,即可解答.【解答】解:向左爬行5个点为,则表示的数为:2+(−5)=−3;向右爬行5个点为,则表示的数为:2+5=7,则表示的数为−3或7.故选A.10.【答案】B【解析】根据a,b在数轴上的位置就可得到a,b的符号,以及绝对值的大小,再根据有理数的运算法则进行判断.【解答】解:根据数轴上的数:右边的数总是大于左边的数,可以得到:b<0<a,且|a|<|b|.∴a<−b,∴a+b<0,故A正确;a−b>0,故B错误;∵a<0,b>0,∴根据有理数的乘法法则得到:a⋅b<0,故C正确;根据有理数除法法则得到(−ab)3>0,故D正确.故选B.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】−0.5或5.5【考点】数轴【解析】根据数轴的特点可知与A点相距3个单位长度的点有两个,一个在点A的左边,一个在右边,从而可以解答本题.【解答】解:∵在数轴上的点A表示的数为2.5,∴与A点相距3个单位长度的点表示的数是:2.5−3=−0.5或2.5+3=5.5.故答案为:−0.5或5.5.12.【答案】2−√2【考点】数轴【解析】设出C点坐标为x,得到x+√22=1,即可求出x的值.【解答】解:设C点坐标为x,根据题意得,x+√2−x2=x+√22=1,解得,x=2−√2.故答案为:2−√2.13.【答案】−3【考点】数轴根据题意(向右为正,向左为负)得出算式0+(+2)+(−5),求出即可.【解答】解:根据题意得:0+(+2)+(−5)=−3,即此时P点所表示的数是−3,故答案为:−3.14.【答案】1或−7【考点】数轴【解析】根据题意得出两种情况:当点在表示−3的点的左边时,当点在表示−3的点的右边时,列出算式求出即可.【解答】解:分为两种情况:①当点在表示−3的点的左边时,数为−3−4=−7;②当点在表示−3的点的右边时,数为−3+4=1;故答案为:1或−7.15.【答案】D点【考点】数轴【解析】此题暂无解析【解答】解:∵9<11<16,∴3<√11<4,∴1<5−√11<2.故答案为:D点.16.【答案】1或−5【考点】数轴【解析】设与A点相距3个单位长度的点表示的数为x,再根据数轴上两点间的距离公式求出x的值即可.【解答】解:设与A点相距3个单位长度的点表示的数为x,则|x+2|=3,解得x=1或x=−5.故答案为:1或−5.17.【答案】−1或−5【考点】数轴【解析】根据在数轴上,点A所表示的数为−3,可以得到到点A的距离等于2个单位长度的点所表示的数是什么,本题得以解决.【解答】解:∵在数轴上,点A所表示的数为−3,∴到点A的距离等于2个单位长度的点所表示的数是:−3+2=−1或−3−2=−5.故答案为:−1或−5.18.【答案】(1)4;(2)−2;(3)−1008;1008【考点】数轴【解析】根据题意,结合数轴确定出所求数字即可.【解答】解:(1)若3表示的点与−3表示的点重合,则−4表示的点与数4表示的点重合;(2)若−1表示的点与5表示的点重合,则6表示的点与数−2表示的点重合.(3)在(1)的条件之下,重合的两点之间的距离为2016,则这两点表示的数分别为−1008;1008,19.【答案】4【考点】数轴【解析】此题暂无解析【解答】解:6−2=4,故答案为:4.20.【答案】−4或2【考点】数轴【解析】此题可借助数轴用数形结合的方法求解.由于点与−1的距离为3,那么应有两个点,记为A1,A2,分别位于−1两侧,且到−1的距离为3,这两个点对应的数分别是−1−3和−1+3,在数轴上画出A1,A2点如图所示.【解答】解:如图,因为点与−1的距离为3,所以这两个点对应的数分别是−1−3和−1+3,即为−4或2.故答案为−4或2.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:(1)如图:.(2)小明家距小华家3−(−5)=8(千米).(3)共耗油3×(|3|+|1.5|+|−9.5|+||−5|)=57(升).【考点】数轴【解析】(1)根据小明,超市,小华,小红的位置画在数轴上即可;(2)列出算式,求出即可;(3)求出共走的距离,再乘以3即可.【解答】解:(1)如图:.(2)小明家距小华家3−(−5)=8(千米).(3)共耗油3×(|3|+|1.5|+|−9.5|+||−5|)=57(升).22.【答案】解:∵从A点到B点共用去的时间(10−2)÷2=4秒,∴从A点到B点共有4×3=12个单位长度,∵数轴上点A表示的数是−3,∴点B表示的数是12−3=9.【考点】数轴【解析】先求出从A点到B点所需的时间,故可得出从A点到B点单位长度的个数,再由A点表示的数是−3即可得出B点表示的数.【解答】解:∵从A点到B点共用去的时间(10−2)÷2=4秒,∴从A点到B点共有4×3=12个单位长度,∵数轴上点A表示的数是−3,∴点B表示的数是12−3=9.23.【答案】解:由分析画图如下:<6.所以−3<−1.5<+1<212【考点】数轴【解析】数轴是规定了原点((0点)、方向和单位长的直线,在数轴上原点(0点)的左边是负数,从原点(0点)向左分别是−1、−2、−3−、−4、−5、−6…,右边是正数,从原点(0点)向右分别是+1、+2、+3−、+4、+5、+6…,−3表示原点左边第3个单位的点,把−1到−2这个单位长平均分成2份,−1.5在表示中间的点,+1表示原点右边第所表示正中间的点,6所表示原点右一个单位的点,把2到3这个单位平均分成2份,212边第六个单位的点.【解答】解:由分析画图如下:<6.所以−3<−1.5<+1<21224.【答案】解:从数轴可知:b<0<a,|b|>|a|,∴(1)a+b<0,(2)a−b=a+(−b)>0,(3)b−a=b+(−a)<0,(4)|a|−b=|a|+(−b)>0.【考点】数轴【解析】先根据数轴得出b<0<a,|b|>|a|,再根据有理数的加减法则判断各个算式的符号即可.【解答】解:从数轴可知:b<0<a,|b|>|a|,∴(1)a+b<0,(2)a−b=a+(−b)>0,(3)b−a=b+(−a)<0,(4)|a|−b=|a|+(−b)>0.25.【答案】−51−1【考点】数轴【解析】①根据题目规定,以及数轴上的数向右平移用加法计算即可求出点A′;②设点B表示的数为a,根据题意列出方程求解即可得到点B表示的数;③设点E表示的数为b,根据题意列出方程计算即可得解.【解答】解:(1)点A′:−3×2+1=−5.故答案为:−5.(2)设点B表示的数为a,则2a+1=2,.解得a=12.故答案为:12(3)设点E表示的数为b,则2b+1=b,解得b=−1.故答案为:−1.26.【答案】解:在数轴上表示出各有理数,如下图所示:【考点】数轴【解析】利用数轴表示数的方法画出数轴进行描点即可.【解答】解:在数轴上表示出各有理数,如下图所示:27.【答案】解:(1)∵0−2=−2,−2−3=−5,−5+8=+3,∴A,B,C三点表示的数分别是−2,−5,+3.(2)∵C点表示的数是3,∴该蚂蚁实际上是从原点出发向右爬行了3个单位长度.【考点】数轴【解析】此题暂无解析【解答】解:(1)∵0−2=−2,−2−3=−5,−5+8=+3,∴A,B,C三点表示的数分别是−2,−5,+3.(2)∵C点表示的数是3,∴该蚂蚁实际上是从原点出发向右爬行了3个单位长度.28.【答案】−5,10【考点】数轴【解析】此题暂无解析【解答】此题暂无解答29.【答案】−4,12,7【考点】数轴【解析】(1)根据数轴上点的位置找出A与B表示的点即可;(2)在数轴上找出表示+3与−1.5的两个点C与D即可;(3)找出B、C之间的距离,以及A,C之间的距离即可.【解答】解:(1)点A表示的数是−4,点B表示的数是1;(2)根据题意得:;(3)根据题意得:BC=|3−1|=2,AC=|3−(−4)|=7.30.【答案】解:【考点】数轴【解析】应有原点,正方向和单位长度,进而根据距离原点的距离和正负数的相关位置标出所给数即可.【解答】解:31.【答案】解:如图所示;【考点】数轴【解析】根据正数在原点的右边,负数在原点的左边以及距离原点的距离可得各数在数轴上的位置.【解答】解:如图所示;32.【答案】解:如图:(1)有最小的正整数,是1;(2)有最大的负整数,是−1;(3)不超过2的自然数有0,1,2.【考点】数轴【解析】(1)最小的正整数是1;(2)最大的负整数是−1;(3)不超过2的自然数有0,1,2.【解答】解:如图:(1)有最小的正整数,是1;(2)有最大的负整数,是−1;(3)不超过2的自然数有0,1,2.33.【答案】(1)3(2)解:①7;②7;−4;8;③−5或9.【考点】数轴【解析】此题主要考查了一元一次方程的应用以及数轴的应用,正确利用分类讨论得出是解题关键.(1)直接利用已知得出中点进而得出答案;(2)①利用−1表示的点与5表示的点重合得出中点,进而得出答案;②利用数轴再结合A、B两点之间距离为12,即可得出两点表示出的数据;③利用②中A,B的位置,利用分类讨论进而得出m的值.【解答】解:(1)折叠纸面,使1表示的点与−1表示的点重合,则对称中心是0,∴−3表示的点与3表示的点重合,故答案为3.(2)∵−1表示的点与5表示的点重合,∴对称中心是数2表示的点,①−3表示的点与数7表示的点重合.故答案为7.②若数轴上A、B两点之间的距离为12(A在B的左侧),则点A表示的数是2−6=−4,点B表示的数是2+6=8;故答案为7;−4;8.③当点M在点A左侧时,则8−m−(−4−m)=14,解得:m=−5;当点M在点B右侧时,则m−(−4)+m−8=14,解得:m=9;综上,m=−5或9.故答案为−5或9.34.【答案】解:(1)画出数轴如下:,A村在原点以西2km,B村在A村以西3km,C村在B村以东8km;(2)由(1)可知,C村离A村的距离为2+3=5(km);(3)邮递员一共行驶了2×8=16(km).【考点】数轴【解析】(1)根据已知条件在数轴上表示出来即可;(2)根据题意列出算式,即可得出答案;(3)根据数轴可得邮递员骑行的路程是BC的2倍,据此即可求解.【解答】解:(1)画出数轴如下:,A村在原点以西2km,B村在A村以西3km,C村在B村以东8km;(2)由(1)可知,C村离A村的距离为2+3=5(km);(3)邮递员一共行驶了2×8=16(km).35.【答案】小明一共骑行了14千米.【考点】数轴【解析】(1)根据运动方向,在数轴上标出即可;(2)可直接算出来,也可从数轴上找出这段距离;(3)数轴上这些点的绝对值之和.【解答】解:(1)如图所示,(2)C离A有7km;(3)4+2+5+3=14km,答:小明一共骑行了14千米.36.【答案】(1)根据下面给出的数轴,解答下面的问题:,(2)A:β:−2.5.(3)−1或3;(4)0.5(5)−5.5,3.5;【考点】数轴【解析】(1)【解31J(2)由数轴易得A:1B:−2.5(3)1+2=3或1−2=−1,则与点A的距离为2的点为−1或3;(4)经过折叠,A点与−3表示的点重合,说明中点时−1,则B:−2.5与0.5重合;(5)−1+4.5=3.5,−1−1−4.5=−5.5,故M:−5.5,N:3.5【解答】此题暂无解答37.【答案】解:根据题意得:b−c<0,a+c>0,则原式=c−b+a+c=a−b+2c.【考点】数轴【解析】根据数轴上点的位置确定出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据题意得:b−c<0,a+c>0,则原式=c−b+a+c=a−b+2c.38.【答案】解:(1)∵点B表示−3,点C表示2.5,2∴BC=|−3−2.5|=4;2(2)∵点A表示−4,点C表示2.5,∴AC=|−4−2.5|=6.5;(3))∵点A表示−4,点D表示5,∴BC=|−4−5|=9.【考点】数轴【解析】(1)、(2)、(3)根据两点间的距离公式求解即可.【解答】,点C表示2.5,解:(1)∵点B表示−32∴BC=|−3−2.5|=4;2(2)∵点A表示−4,点C表示2.5,∴AC=|−4−2.5|=6.5;(3))∵点A表示−4,点D表示5,∴BC=|−4−5|=9.39.【答案】−1,0,1,−2,−1,0,1,2,−3,−2,−1,0,1,2,3,401,2n+15,21(3)当线段AB起点在整点时覆盖1001个数;当线段AB起点不在整点,即在两个整点之间时覆盖1000个数.【考点】数轴【解析】(1)①②③根据题意画出数轴,根据数轴上各数的位置即可得出结论;根据①②③中整数的个数,找出规律即可;(2)、(3)根据(1)中的规律即可得出结论.【解答】解:(1)如图所示:①(2)∵从−n到n(n为正整数)有2n+1个整数,∴−2.9到2.9有2×2+1=5个整数;从−10.1到10.1有2×10+1=21个整数.(3)当线段AB起点在整点时覆盖1001个数;当线段AB起点不在整点,即在两个整点之间时覆盖1000个数.40.【答案】解:(1)如图:(2)根据(1)可得:小明家与小刚家相距4−(−5)=9(千米).【考点】数轴【解析】根据数轴的作法可得(1),进而根据在数轴上确定两点的距离方法求得小明家与小刚家相距多远.【解答】解:(1)如图:(2)根据(1)可得:小明家与小刚家相距4−(−5)=9(千米).。
人教版七年级上册数学数轴同步练习(含答案)
人教版七年级上册数学1.2.2数轴同步练习一、单选题1.下列图形表示数轴正确的是()A.B.C.D.2.a,b在数轴上对应的点如图,下列结论正确的是()A.b﹣a<0B.a+b>0C.ab<0D.ab>03.数轴上表示数m和m+4的点到原点的距离相等,则m为()A.﹣2B.﹣1C.2D.14.如图,数轴的单位长度为1,如果点B表示的数是4,那么点A表示的数是()A.1B.0C.-2D.-45.如图,数轴上的两个点分别表示数a和-2,则a可以是()A.-3B.-1C.1D.26.如图,数轴上被阴影盖住的点表示的数可能是()A.3B.0C.-1D.-2=,则点C所对应7.如图,数轴上A,B两点对应的实数分别是3和-1,且AB AC的实数是()A.4B.5C.6D.78.数轴上点A表示的数是-2,将点A在数轴上移动6个单位长度得到点B,则点B表示的数是()A.4B.-4或8C.-8D.4或-8二、填空题9.数轴的概念:规定了______、_____、______的直线叫做数轴.10.如图,在已知的数轴上,表示 1.75的点可能是____.11.数轴上一个点到-2所表示的点的距离为5,那么这个点在数轴上所表示的数是__.12.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的所有整数的和是______.13.数轴上的点A到原点的距离为2,点B到点A的距离是3且在原点的右边,则点B表示的数是为_____.14.在数轴上表示8的点和表示m的点的距离为5,则这个数m=________.15.数轴上表示数﹣14和表示数﹣5的两点之间的距离是_____.16.已知数轴上的点A到原点的距离是2个单位长度,那么数轴上到A点的距离是3个单位长度的点所表示的数有______个.三、解答题17.在数轴上画出表示下列各数的点,并用<连接起来.-412,-4,1,0,21218.点A在数轴上距离原点5个单位长度,且位于原点右侧,若将点A向左移动7个单位长度到点B,求点B表示的数.19.已知,在数轴上,点A到原点的距离为3,点B到原点的距离为5.(1)求点A表示的数;(2)求点B表示的数;(3)利用数轴求A、B两点间的距离为多少?画数轴说明.20.一只电子蚂蚁在数轴上从-3出发向左运动2个单位长度到点A处,再向右运动4个单位长度到点C处.(1)画出数轴标出A、C所表示的数;(2)这只电子蚂蚁一共运动多少个单位长度?参考答案:1.B2.C3.A4.C5.A6.A7.D8.D9.原点正方向单位长度10.B11.3或-712.4-13.5或114.3或1315.916.417.11 4<401222 --<<<18.点B表示的数为-219.(1) 3±(2) 5±(3)8或2,20.6答案第1页,共1页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册数轴同步练习
一·选择题
1. 如图所示的图形为四位同学画的数轴,其中正确的是()
2. 如图所示,点M表示的数是()
A. 2.5
B.
C.
D. 1.5
3. 下列说法正确的是()
A. 有原点·正方向的直线是数轴
B. 数轴上两个不同的点可以表示同一个有理数
C. 有些有理数不能在数轴上表示出来
D. 任何一个有理数都可以用数轴上的点表示
4.数轴上原点及原点右边的点表示的数是()
A. 正数
B. 负数
C. 非负数
D. 非正数
5. 数轴上点M到原点的距离是5,则点M表示的数是()
A. 5
B.
C. 5或
D. 不能确定
6. 在数轴上表示的点中,在原点右边的点有()
A. 0个
B. 1个
C. 2个
D. 3个
二·填空题
7. 最大的负整数是___________;小于3的非负整数有______________________。
8. 从数轴上表示的点开始,向右移动6个单位长度,再向左移动5个单位长度,最后到达的终点所表示的数是___________。
9. 在数轴上表示下列各数,
10. 数轴上与原点的距离是6的点有___________个,这些点表示的数是___________;与原点的距离是9的点有___________个,这些点表示的数是___________。
三·解答题
11. (应用题)
小明在A地东15米,他走了15米,结果离A地还有30米,这是怎么回事?
12. (创新题)数轴上表示整数的点称为整点。
某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()
A. 2002或2003
B. 2003或2004
C. 2004或2005
D. 2005或2006
13. 若向东走8米,记作米,如果一个人从A地出发向东走12米,再走米,又走了
米,你能判断此人这时在何处吗?
14.一只蚂蚁从原点O出发,它先向右爬了2个单位长度到达点A,再向右爬了3个单位长度
到达B点,然后向左爬了9个单位长度到达点C。
(1)写出A·B·C三点的表示数。
(2)根据C点在数轴上的位置回答:蚂蚁实际上是从原点出发,向什么方向爬行了几个单位长度?
【试题答案】
1. D
2. C
3. D
4. C
5. C
6. C
7.
8.0
9. 图略
10. 两个,6和;两个,9或
11.小明向东走了15米
12. C
若线段AB的端点与整点重合,则线段AB盖住2005个点;若端点不与整点重合,则AB 盖住2004个点。
13. 此人这时在A地东13米处
14.提示:画好数轴求答案。