数学建模(整数规划)

合集下载

整数规划和动态规划-数学建模

整数规划和动态规划-数学建模
在遵守这些约束的前提下使两辆车装箱总厚度之和尽可能大,即
(1.13), (1.14)
max z = ∑ (0.487xi1 + 0.520 xi2 + 0.613 xi3 + 0.720 xi 4 + 0.487 xi 5 + 0.520 xi 6 + 0.640 xi 7 )
i =1
2
于是成为一个有 13 个不等式约束 14 个自然条件的整数线性规划模型,目标是函数 的最大化. (3)问题求解 1) 此模型可用分枝定界法,割平面法求最优解,但用部分枚举法比较便当. 部分枚举法————隐枚举法(Implicit Enumeration) 2) 用 Lingo 软件求解 max=0.487*x11+0.520*x12+0.613*x13+0.720*x14+0.487*x15+0.520*x16+0.640*x17+ 0.487*x21+0.520*x22+0.613*x23+0.720*x24+0.487*x25+0.520*x26+0.640*x27; x11+x21<=8; x12+x22<=7; x13+x23<=9; x14+x24<=6; x15+x25<=6; x16+x26<=4; x17+x27<=8; 2*x11+3*x12+x13+0.5*x14+4*x15+2*x16+x17<=40;
西安理工大学理学院
王秋萍
x13 + x23 ≤ 9 x14 + x24 ≤ 6 x15 + x25 ≤ 6 x16 + x26 ≤ 4 x17 + x27 ≤ 8

数学建模中的整数规划与混合整数规划

数学建模中的整数规划与混合整数规划

数学建模作为一种解决实际问题的方法,旨在从实际问题中抽象出数学模型,并运用数学方法来对模型进行分析和求解。

在数学建模过程中,整数规划与混合整数规划是两种常用的数学工具,适用于解决许多实际问题。

整数规划是指在约束条件下,目标函数为整数变量的线性规划问题。

而混合整数规划是在整数规划的基础上,允许部分变量为实数,部分变量为整数。

这两种规划方法可以广泛应用于许多领域,如物流、生产规划、资源分配等。

整数规划的一个经典问题是背包问题。

假设有一个容量为C的背包,有n个物品,每个物品有自己的重量w和价值v。

目标是在不超过背包容量的情况下,选择装入背包的物品,使得背包中的物品总价值最大化。

这个问题可以用整数规划的方式进行建模和求解,将每个物品视为一个二进制变量,表示是否选择该物品,目标函数为物品价值的总和,约束条件为背包容量不能超过C。

通过对目标函数和约束条件的线性化处理,可以得到整数规划模型,并利用整数规划算法进行求解,得到最优解。

混合整数规划在实际问题中更为常见。

一个典型的实际问题是运输网络设计问题。

假设有一组供应地和一组需求地,需要建立供需之间的运输网络,以满足需求地对各种商品的需求,同时要考虑供给地的产能限制和运输成本。

这个问题可以用混合整数规划的方法进行建模和求解。

将供需地视为节点,建立连通性矩阵表示供需之间的运输路径,将路径的运输量作为决策变量,目标函数可以是运输成本的最小化,约束条件可以包括供给地产能限制和需求地需求量的满足。

通过对目标函数和约束条件的线性化处理,可以得到混合整数规划模型,并利用相应的求解算法进行求解,得到最优的运输网络设计方案。

整数规划与混合整数规划在数学建模中起着重要的作用。

它们既具备一般整数规划问题的优点,可以提高问题的精度和可行性,又具备一般线性规划问题的优点,可以通过线性规划算法来求解。

同时,整数规划与混合整数规划也存在一些挑战,如求解时间长、难以处理大规模问题等。

对于这些问题,研究者们一直在不断提出新的算法和优化方法,以提高整数规划与混合整数规划的求解效率。

数学建模——混合整数规划

数学建模——混合整数规划

实验四 混合整数规划一、问题重述某开放式基金现有总额为15亿元的资金可用于投资,目前共有8个项目可供投资者选择,每个项目可重复投资。

根据专家经验,对每个项目投资总额不能太高,应有上限。

这些项目所需要的投资额已知,一般情况下投资一年后各项目所得利润也可估算出来,如表1所示。

请帮该公司解决以下问题:(1) 就表1提供的数据,应该投资哪些项目,使得第一年所得利润最高?(2) 在具体投资这些项目时,实际还会出现项目之间互相影响的情况。

公司咨询有关专家后,得到以下可靠信息:同时投资项目A 1,A 3,它们的年利润分别是1005万元,1018.5万元;同时投资项目A 4,A 5,它们的年利润分别是1045万元,1276万元;同时投资项目A 2,A 6,A 7,A 8,它们的年利润分别是1353万元,840万元,1610万元,1350万元,该基金应如何投资? 其中M 为你的学号后3位乘以10。

(3) 如果考虑投资风险,则应如何投资,使收益尽可能大,而风险尽可能小。

投资项目总体风险可用投资项目中最大的一个风险来衡量。

专家预测出各项目的风险率,如表2所示。

二、符号说明i A ::投资额;i b :i A 个项目所获得的年利润;i C :第i A 个项目投资所获得的利润; 'i C :第i A 个项目同时投资所获得的利润;i m :投资i A 的上限; i y :表示0—1变量;i p :投资第i A 个项目的投资风险;三、模型的建立 对于问题一目标函数:81max i i i c x ==∑s.t. 150000i i i i i ib x b x m ⎧≤⎪⎨⎪≤⎩∑对于问题二 设定0—1变量131130...,1...,A A y A A ⎧⎨⎩项目不同时投资项目同时投资 452450...,1...,A A y A A ⎧⎨⎩项目不同时投资项目同时投资 2678326780...,,1...,,A A A A y A A A A ⎧⎨⎩,项目不同时投资,项目同时投资 目标函数:''''11133111332445524455''''322667788322667788max ()(1)()()(1)()()(1)()y x c x c y x c x c y x c x c y x c x c y x c x c x c x c y x c x c x c x c =++-++++-++++++-+++s.t. 11313124545232678267831500001000i i i i i ib x k y x xx x y ky x x x x y k y x x x x x x x x y kb x m ⎧≤⎪⎪=⎪⎪≤⎪⎪≥⎪⎪≤⎨⎪⎪≥⎪⎪≤⎪⎪≥⎪⎪≤⎩∑对于问题三:目标函数:max min max()i iii i i c x b x p =∑s.t. 150000i i i i i ib x b x m ⎧≤⎪⎨⎪≤⎩∑对于问题三模型的简化固定投资风险,优化收益,设a 为固定的最大风险。

数学建模线性规划和整数规划实验

数学建模线性规划和整数规划实验

1、线性规划和整数规划实验1、加工奶制品的生产计划(1)一奶制品加工厂用牛奶生产A1, A2两种奶制品,1桶牛奶可以在甲车间用12小时加工成3千克A1产品,或者在乙车间用8小时加工成4千克A2 产品.根据市场需求,生产的A1、A2产品全部能售出,且每千克A1产品获利24元,每千克A2产品获利16元.现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且甲车间的设备每天至多能加工100 千克A1产品,乙车间的设备的加工能力可以认为没有上限限制.试为该厂制订一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题: (i)若用35元可以买到1桶牛奶,是否应作这项投资?若投资,每天最多购买多少桶牛奶?(ii)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?(iii)由于市场需求变化,每千克A1产品的获利增加到30元,是否应改变生产计划?(2)进一步,为增加工厂获利,开发奶制品深加工技术.用2小时和3元加工费,可将1千克A1加工成0.8千克高级奶制品B1,也可将1千克A2加工成0.75千克高级奶制品B2,每千克B1可获44元,每千克B2可获32元.试为该厂制订一个生产销售计划,使每天获利最大,并进一步讨论以下问题:(i)若投资30元可增加供应1桶牛奶,投资3元可增加1小时劳动时间,是否应作这项投资?若每天投资150元,或赚回多少?(ii)每千克高级奶制品B1, B2的获利经常有10%的波动,对制订的生产销售计划有无影响?若每千克B1的获利下降10%,计划是否应作调整?解:由已知可得1桶牛奶,在甲车间经过十二小时加工完成可生产3千克的A1,利润为72元;在乙车间经八小时加工完成可生产四千克的A2,利润为64元。

利用lingo软件,编写如下程序:model:max=24*3*x1+16*4*x2;s.t.12*x1+8*x2≤480;x1+x2≤50;3*x1≤100;X1≥0,x2≥0end求解结果及灵敏度分析为:Objective value: 3360.000Total solver iterations: 2Variable Value Reduced CostX1 20.00000 0.000000X2 30.00000 0.000000Row Slack or Surplus Dual Price1 3360.000 1.0000002 0.000000 2.0000003 0.000000 48.000004 40.00000 0.000000Objective Coefficient RangesCurrent Allowable Allowable Variable Coefficient Increase DecreaseX1 72.00000 24.00000 8.000000X2 64.00000 8.000000 16.00000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 480.0000 53.33333 80.000003 50.00000 10.00000 6.6666674 100.0000 INFINITY 40.00000 分析结果:1)从结果可以看出在供应甲车间20桶、乙车间30桶的条件下,获利可以达到最大3360元。

数学建模线性规划与整数规划

数学建模线性规划与整数规划

数学建模线性规划与整数规划数学建模是一门将实际问题转化为数学问题,并利用数学方法解决的学科。

线性规划和整数规划是数学建模中常用的两种模型,它们在实际问题中有着广泛的应用。

本文将重点介绍线性规划和整数规划的概念、模型形式以及求解方法。

一、线性规划(Linear Programming)线性规划是一种在约束条件下求解线性目标函数最优解的数学模型,它的基本形式可以表示为:Min(或Max):C₁X₁ + C₂X₂ + ... + CₙXₙSubject to:A₁₁X₁ + A₁₂X₂ + ... + A₁ₙXₙ ≤ b₁A₂₁X₁ + A₂₂X₂ + ... + A₂ₙXₙ ≤ b₂...Aₙ₁X₁ + Aₙ₂X₂ + ... + AₙₙXₙ ≤ bₙX₁, X₂, ... , Xₙ ≥ 0在上述模型中,C₁,C₂,...,Cₙ为目标函数的系数,Aᵢₙ为不等式约束条件的系数,bᵢ为不等式约束条件的右端常数,X₁,X₂,...,Xₙ为决策变量。

线性规划的求解可以通过单纯形法或内点法等算法实现。

通过逐步优化决策变量的取值,可以得到满足约束条件并使目标函数达到最优的解。

二、整数规划(Integer Programming)整数规划是在线性规划基础上增加了决策变量必须取整的要求,其模型形式为:Min(或Max):C₁X₁ + C₂X₂ + ... + CₙXₙSubject to:A₁₁X₁ + A₁₂X₂ + ... + A₁ₙXₙ ≤ b₁A₂₁X₁ + A₂₂X₂ + ... + A₂ₙXₙ ≤ b₂...Aₙ₁X₁ + Aₙ₂X₂ + ... + AₙₙXₙ ≤ bₙX₁, X₂, ... , Xₙ ≥ 0X₁,X₂,...,Xₙ为整数整数规划在实际问题中常用于需要求解离散决策问题的情况,如装配线平衡、旅行商问题等。

然而,由于整数规划问题的整数约束,其求解难度大大增加。

求解整数规划问题的方法主要有分支定界法、割平面法、遗传算法等。

数学建模常用的30个常用算法(python代码)

数学建模常用的30个常用算法(python代码)

数学建模常用的30个常用算法(python代码) 数学建模中使用的算法涉及多个领域,包括优化、统计、机器学习等。

以下是一些在数学建模中常用的30个算法的简要说明和Python代码示例。

请注意,这只是一小部分,具体应用场景和需求可能需要使用其他算法。

1.线性规划(Linear Programming):from scipy.optimize import linprog2.整数规划(Integer Programming):from scipy.optimize import linprog3.非线性规划(Nonlinear Programming):from scipy.optimize import minimize4.蒙特卡洛模拟(Monte Carlo Simulation):import numpy as np5.差分方程(Difference Equations):import numpy as np6.梯度下降法(Gradient Descent):import numpy as np7.贪心算法(Greedy Algorithm):def greedy_algorithm(values, weights, capacity):n = len(values)ratio = [(values[i] / weights[i], i) for i in range(n)]ratio.sort(reverse=True)result = [0] * ntotal_value = 0current_weight = 0for _, i in ratio:if weights[i] + current_weight <= capacity: result[i] = 1current_weight += weights[i]total_value += values[i]return result, total_value8.动态规划(Dynamic Programming):def dynamic_programming(weights, values, capacity): n = len(values)dp = [[0] * (capacity + 1) for _ in range(n + 1)]for i in range(1, n + 1):for w in range(capacity + 1):if weights[i - 1] <= w:dp[i][w] = max(dp[i - 1][w], values[i - 1] + dp[i - 1][w - weights[i - 1]])else:dp[i][w] = dp[i - 1][w]return dp[n][capacity]9.遗传算法(Genetic Algorithm):import numpy as np10.模拟退火算法(Simulated Annealing):import numpy as np11.马尔可夫链(Markov Chains):import numpy as np12.蒙特卡洛树搜索(Monte Carlo Tree Search):import numpy as np13.K均值聚类(K-means Clustering):from sklearn.cluster import KMeans14.主成分分析(Principal Component Analysis):from sklearn.decomposition import PCA15.支持向量机(Support Vector Machine):from sklearn.svm import SVC16.朴素贝叶斯分类器(Naive Bayes Classifier):from sklearn.naive_bayes import GaussianNB17.决策树(Decision Tree):from sklearn.tree import DecisionTreeClassifier18.随机森林(Random Forest):from sklearn.ensemble import RandomForestClassifier19.K最近邻算法(K-Nearest Neighbors):from sklearn.neighbors import KNeighborsClassifier20.多层感知器(Multilayer Perceptron):from sklearn.neural_network import MLPClassifier21.梯度提升机(Gradient Boosting):from sklearn.ensemble import GradientBoostingClassifier22.高斯混合模型(Gaussian Mixture Model):from sklearn.mixture import GaussianMixture23.时间序列分析(Time Series Analysis):import statsmodels.api as sm24.马尔科夫链蒙特卡洛(Markov Chain Monte Carlo):import pymc3 as pm25.局部最小二乘回归(Local Polynomial Regression):from statsmodels.nonparametric.kernel_regression import KernelReg26.逻辑回归(Logistic Regression):from sklearn.linear_model import LogisticRegression27.拉格朗日插值法(Lagrange Interpolation):from scipy.interpolate import lagrange28.最小二乘法(Least Squares Method):import numpy as np29.牛顿法(Newton's Method):def newton_method(f, df, x0, tol=1e-6, max_iter=100):x = x0for i in range(max_iter):x = x - f(x) / df(x)if abs(f(x)) < tol:breakreturn x30.梯度下降法(Gradient Descent):def gradient_descent(f, df, x0, learning_rate=0.01, tol=1e-6, max_iter=100):x = x0for i in range(max_iter):x = x - learning_rate * df(x)if abs(df(x)) < tol:breakreturn x以上代码只是简单示例,实际应用中可能需要根据具体问题进行调整和扩展。

integer programming 教材

integer programming 教材

integer programming 教材整洁美观、通顺流畅的文字,这是每一位写作者都力求追求的目标。

下面是关于integer programming(整数规划)的教材。

整数规划教材第一章:整数规划导论1.1 整数规划的背景和应用领域整数规划作为线性规划的一种扩展形式,在现实生活和工业领域中具有广泛的应用,如物流优化、供应链管理、排产问题等。

1.2 整数规划的基本概念和特点整数规划是在决策变量中引入整数要求的线性规划问题。

与线性规划相比,整数规划的求解更加困难,但也具有更高的实用性和准确性。

第二章:整数规划的数学建模2.1 整数规划模型的建立步骤整数规划的数学建模是解决实际问题的关键步骤。

本节介绍整数规划建模的具体步骤,包括确定决策变量、建立目标函数和约束条件等。

2.2 整数规划的常见模型介绍了整数规划中常见的模型,如整数线性规划、混合整数规划、整数非线性规划等,并以实际案例进行详细说明和分析。

第三章:整数规划的求解方法3.1 精确求解方法介绍了整数规划精确求解方法,如分支定界法、割平面法等,并比较其优缺点和适用范围。

3.2 启发式求解方法介绍了整数规划启发式求解方法,如遗传算法、模拟退火算法等,并以实际案例进行了具体应用和分析。

第四章:整数规划的应用案例4.1 物流优化问题通过实际案例,介绍了整数规划在物流优化中的应用,如配送路径优化、仓库选址等问题。

4.2 生产排产问题以实例为基础,介绍了整数规划在生产排产问题中的应用,如工序调度、资源优化等。

第五章:整数规划的软件工具5.1 整数规划求解软件的选择介绍了目前常用的整数规划求解软件,并对其特点和适用范围进行了分析和比较。

5.2 整数规划求解软件的使用以具体案例为基础,讲解了整数规划求解软件的使用方法,包括数据输入、模型建立和结果分析等。

总结:整数规划作为一种重要的决策分析工具,在实际应用中发挥着广泛的作用。

通过本教材的学习,读者可以熟悉整数规划的基本概念和特点,掌握整数规划的建模方法和求解技巧,实现实际问题的优化和决策。

整数规划(数学建模)

整数规划(数学建模)

整数规划(数学建模)-16-第⼆章整数规划§1 概论1.1 定义规划中的变量(部分或全部)限制为整数时,称为整数规划。

若在线性规划模型中,变量限制为整数,则称为整数线性规划。

⽬前所流⾏的求解整数规划的⽅法,往往只适⽤于整数线性规划。

⽬前还没有⼀种⽅法能有效地求解⼀切整数规划。

1.2 整数规划的分类如不加特殊说明,⼀般指整数线性规划。

对于整数线性规划模型⼤致可分为两类: 1o变量全限制为整数时,称纯(完全)整数规划。

2o 变量部分限制为整数的,称混合整数规划。

1.2 整数规划特点(i )原线性规划有最优解,当⾃变量限制为整数后,其整数规划解出现下述情况:①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解⼀致。

②整数规划⽆可⾏解。

例1 原线性规划为21min x x z +=0,0,5422121≥≥=+x x x x 其最优实数解为:45min ,45,021===z x x 。

③有可⾏解(当然就存在最优解),但最优解值变差。

例2 原线性规划为21min x x z +=0,0,6422121≥≥=+x x x x 其最优实数解为:23min ,23,021===z x x 。

若限制整数得:2min ,1,121===z x x 。

(ii )整数规划最优解不能按照实数最优解简单取整⽽获得。

1.3 求解⽅法分类:(i )分枝定界法—可求纯或混合整数线性规划。

(ii )割平⾯法—可求纯或混合整数线性规划。

(iii )隐枚举法—求解“0-1”整数规划:①过滤隐枚举法;②分枝隐枚举法。

(iv )匈⽛利法—解决指派问题(“0-1”规划特殊情形)。

(v )蒙特卡洛法—求解各种类型规划。

下⾯将简要介绍常⽤的⼏种求解整数规划的⽅法。

§2 分枝定界法对有约束条件的最优化问题(其可⾏解为有限数)的所有可⾏解空间恰当地进⾏系统搜索,这就是分枝与定界内容。

通常,把全部可⾏解空间反复地分割为越来越⼩的⼦集,称为分枝;并且对每个⼦集内的解集计算⼀个⽬标下界(对于最⼩值问题),这称为定界。

数学建模-数学规划模型

数学建模-数学规划模型
建立数学模型
将决策变量、目标函数和约束条件用数学方程表示出来,形成线性规划模型。
线性规划的求解方法
单纯形法
单纯形法是线性规划最常用的求解方法,它通过不断迭代和调整决策 变量的值,逐步逼近最优解。
对偶法
对偶法是利用线性规划的对偶性质,通过求解对偶问题来得到原问题 的最优解。
分解法
分解法是将一个复杂的线性规划问题分解为若干个子问题,分别求解 子问题,最终得到原问题的最优解。
混合法
将优先级法和权重法结合起来,既考虑目标的优先级又考虑目标的 权重,以获得更全面的优化解。
多目标规划的求解方法
约束法
通过引入约束条件,将多目标问题转化为单目标问题求解。常用的约束法包括线性约束 、非线性约束等。
分解法
将多目标问题分解为若干个单目标问题,分别求解各个单目标问题,然后综合各个单目 标问题的解得到多目标问题的最优解。
特点
多目标规划问题通常具有多个冲突的目标, 需要权衡和折衷不同目标之间的矛盾,因此 求解难度较大。多目标规划广泛应用于经济 、管理、工程等领域。
多目标规划的建模方法
优先级法
根据各个目标的重要程度,给定不同的优先级,然后结合优先级 对目标进行优化。
权重法
给定各个目标的权重,将多目标问题转化为加权单目标问题,通过 求解加权单目标问题得到多目标问题的最优解。
数学建模-数学规划 模型
目录
• 数学规划模型概述 • 线性规划模型 • 非线性规划模型 • 整数规划模型 • 多目标规划模型
01
CATALOGUE
数学规划模型概述
定义与分类
定义
数学规划是数学建模的一种方法,通 过建立数学模型描述和解决优化问题 。
分类

数学建模方法详解三种最常用算法

数学建模方法详解三种最常用算法

数学建模方法详解三种最常用算法数学建模是指将实际问题转化为数学模型,并通过数学方法进行求解和分析的过程。

在数学建模中,常用的算法有很多种,其中最常用的有三种,分别是线性规划、整数规划和动态规划。

一、线性规划线性规划是一种优化方法,用于在给定的约束条件下,寻找目标函数最大或最小值的一种方法。

它的数学形式是以线性约束条件为基础的最优化问题。

线性规划的基本假设是目标函数和约束条件均为线性的。

线性规划通常分为单目标线性规划和多目标线性规划,其中单目标线性规划是指在一个目标函数下找到最优解,而多目标线性规划则是在多个目标函数下找到一组最优解。

线性规划的求解方法主要有两种:单纯形法和内点法。

单纯形法是最常用的求解线性规划问题的方法,它的核心思想是通过不断迭代改进当前解来达到最优解。

内点法是一种相对较新的求解线性规划问题的方法,它的主要思想是通过从可行域的内部最优解。

二、整数规划整数规划是线性规划的一种扩展形式,它在线性规划的基础上增加了变量必须取整数的限制条件。

整数规划具有很强的实际应用性,它能够用于解决很多实际问题,如资源分配、生产优化等。

整数规划的求解方法通常有两种:分支定界法和割平面法。

分支定界法是一种常用的求解整数规划问题的方法,它的基本思想是通过将问题划分为若干个子问题,并通过求解子问题来逐步缩小解空间,最终找到最优解。

割平面法也是一种常用的求解整数规划问题的方法,它的主要思想是通过不断添加线性割平面来修剪解空间,从而找到最优解。

三、动态规划动态规划是一种用于求解多阶段决策问题的数学方法。

多阶段决策问题是指问题的求解过程可以分为若干个阶段,并且每个阶段的决策都受到之前决策的影响。

动态规划的核心思想是将问题划分为若干个相互关联的子问题,并通过求解子问题的最优解来求解原始问题的最优解。

动态规划通常分为两种形式:无后效性和最优子结构。

无后效性是指一个阶段的决策只与之前的状态有关,与之后的状态无关。

最优子结构是指问题的最优解能够由子问题的最优解推导而来。

数学建模-整数规划

数学建模-整数规划
数学建模
整数规划
Integer Programming
数信学院 任俊峰
2012-4-15
数学建模之整数规划
整数规划模型(IP)
如果一个数学规划的某些决策变量或全部决策 变量要求必须取整数,则称这样的问题为整数规 划问题,其模型称为整数规划模型。 如果整数规划的目标函数和约束条件都是线性 的,则称此问题为整数线性规划问题.
松弛问题最优解满足整数要求,则该最优解为整数 规划最优解;
数学建模之整数规划
整数线性规划的求解方法
从数学模型上看整数规划似乎是线性规划的 一种特殊形式,求解只需在线性规划的基础上,通 过舍入取整,寻求满足整数要求的解即可。 但实际上两者却有很大的不同,通过舍入得到
的解(整数)也不一定就是最优解,有时甚至不能
1 xj 0
选中第j个项目投资 不 选中第j个项目投资
max Z 160 x 1 210 x 2 60 x 3 80 x 4 180 x 5 210 x 1 300 x 2 150 x 3 130 x 4 260 x 5 600 x x2 x3 1 1 x3 x4 1 x x 1 5 x1 , x 2 , x 3 , x 4 , x 5 0 或 1
1 2
14 x1 9 x 2 51 6 x1 3 x 2 1 x1 , x 2 0
数学建模之整数规划
用图解法求出最优解 x1=3/2, x2 = 10/3 且有 z = 29/6 现求整数解(最优解): 如用“舍入取整法”可得到4 个点即(1,3) (2,3) (1,4) (2,4)。显然,它们都不可能 是整数规划的最优解。
数学建模之整数规划
例5 固定费用问题

数学建模竞赛中的数学模型求解方法

数学建模竞赛中的数学模型求解方法

数学建模竞赛中的数学模型求解方法数学建模竞赛是一项旨在培养学生数学建模能力的竞赛活动。

在竞赛中,参赛者需要利用数学知识和技巧,解决实际问题,并提出相应的数学模型。

然而,数学模型的求解方法却是一个非常关键的环节。

本文将介绍一些常见的数学模型求解方法,帮助参赛者在竞赛中取得好成绩。

一、线性规划线性规划是数学建模中常见的一种模型求解方法。

它的基本思想是将问题转化为一个线性函数的最优化问题。

在线性规划中,参赛者需要确定决策变量、目标函数和约束条件,并利用线性规划模型求解最优解。

常见的线性规划求解方法有单纯形法、内点法等。

这些方法基于数学原理,通过迭代计算,逐步接近最优解。

二、整数规划整数规划是线性规划的一种扩展形式,它要求决策变量取整数值。

整数规划在实际问题中具有广泛的应用,例如货物运输、资源分配等。

在整数规划中,参赛者需要将问题转化为一个整数规划模型,并利用整数规划求解方法求解最优解。

常见的整数规划求解方法有分支定界法、割平面法等。

这些方法通过分解问题、添加约束条件等方式,逐步缩小搜索空间,找到最优解。

三、非线性规划非线性规划是一类目标函数或约束条件中包含非线性项的最优化问题。

在实际问题中,很多情况下目标函数和约束条件都是非线性的。

在非线性规划中,参赛者需要选择适当的数学模型,并利用非线性规划求解方法求解最优解。

常见的非线性规划求解方法有牛顿法、拟牛顿法等。

这些方法通过迭代计算,逐步逼近最优解。

四、动态规划动态规划是一种解决多阶段决策问题的数学方法。

在动态规划中,参赛者需要确定状态、决策和状态转移方程,并利用动态规划求解方法求解最优解。

常见的动态规划求解方法有最优子结构、重叠子问题等。

这些方法通过存储中间结果、利用递推关系等方式,逐步求解最优解。

五、模拟与优化模拟与优化是一种常见的数学模型求解方法。

在模拟与优化中,参赛者需要建立数学模型,并利用计算机模拟和优化算法求解最优解。

常见的模拟与优化方法有蒙特卡洛模拟、遗传算法等。

数学建模中的整数规划与线性规划

数学建模中的整数规划与线性规划

数学建模中的整数规划与线性规划数学建模是指利用数学方法解决实际问题的过程,其中整数规划和线性规划是常用的数学建模技术。

本文将探讨数学建模中的整数规划和线性规划的基本原理、应用领域以及解决实际问题的方法。

一、整数规划整数规划是指在线性规划的基础上,将决策变量限制为整数的优化问题。

在实际问题中,有些变量只能取整数值,而不能取小数值。

整数规划的数学模型可以表示为:$max\{cx:Ax≤b,x\geq0,x为整数\}$其中,c是目标函数的系数向量,A是约束条件的系数矩阵,b是约束条件的常数向量,x是决策变量。

整数规划的应用非常广泛,比如生产调度、资源配置、旅行商问题等。

整数规划不仅可以帮助企业进行生产计划,还可以优化物流配送路线,解决旅行商的最优路径问题等。

二、线性规划线性规划是指目标函数和约束条件均为线性关系的优化问题。

线性规划的数学模型可以表示为:$max\{cx:Ax≤b,x\geq0\}$线性规划在数学建模中是最常用的优化工具之一,广泛应用于生产计划、资源分配、投资组合等领域。

通过线性规划,可以找到目标函数在约束条件下的最优解,从而为决策提供科学依据。

三、整数规划与线性规划的联系整数规划是线性规划的一个特例,即当决策变量限制为整数时,线性规划就变成了整数规划。

因此,整数规划可以通过线性规划来求解,但是整数规划的求解难度要高于线性规划。

在实际问题中,有时候整数规划难以求解,此时可以采用线性规划来近似求解。

例如,可以将决策变量限制为小数,然后通过计算得到的解来指导实际决策。

当然,这种近似解不一定是最优解,但可以提供一种可行的解决方案。

四、整数规划与线性规划的求解方法针对整数规划和线性规划问题,有多种求解方法。

其中,常用的方法包括暴力搜索、分支定界法、割平面法等。

暴力搜索是一种基础的求解方法,通过枚举所有可能的解来寻找最优解。

这种方法的好处是可以找到全局最优解,但计算时间较长,适用于问题规模较小的情况。

数学建模c题常用算法

数学建模c题常用算法

数学建模c题常用算法在数学建模中,常用的算法有:1. 线性规划算法(Linear Programming):通过优化目标函数,同时满足一系列线性约束条件,找到最优解。

2. 非线性规划算法(Nonlinear Programming):通过优化目标函数,同时满足一系列非线性约束条件,找到最优解。

3. 整数规划算法(Integer Programming):在线性规划问题中,将变量限定为整数,并找到最优解。

4. 动态规划算法(Dynamic Programming):通过划分问题为子问题,并通过保存子问题的解来构建整个问题的解。

5. 贪心算法(Greedy Algorithm):通过每一步都选择当前状态下最优的解,最终得到全局最优解。

6. 遗传算法(Genetic Algorithm):通过模拟生物进化过程,通过选择、交叉和变异等操作,优化目标函数,找到最优解。

7. 模拟退火算法(Simulated Annealing Algorithm):通过模拟退火的过程,在每次迭代中接受概率性的向下移动,避免陷入局部最优解。

8. 粒子群算法(Particle Swarm Optimization):通过模拟鸟群或鱼群等生物群体的行为,通过个体之间的合作与竞争,优化目标函数,找到最优解。

9. 蚁群算法(Ant Colony Optimization):通过模拟蚂蚁找食的行为,通过蚁群中蚂蚁之间的信息交流,优化目标函数,找到最优解。

10. 模型拟合算法(Model Fitting):通过拟合一个合适的数学模型,找到描述观测数据的最佳参数。

这些算法在不同的数学建模问题中都有广泛的应用,根据具体的问题特点和约束条件选择适当的算法进行求解。

数学建模常用算法模型

数学建模常用算法模型

数学建模常用算法模型在数学建模中,常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。

下面将对这些算法模型进行详细介绍。

1.线性规划:线性规划是一种用于求解最优化问题的数学模型和解法。

它的目标是找到一组线性约束条件下使目标函数取得最大(小)值的变量取值。

线性规划的常用求解方法有单纯形法、内点法和对偶理论等。

2.整数规划:整数规划是一种求解含有整数变量的优化问题的方法。

在实际问题中,有时变量只能取整数值,例如物流路径问题中的仓库位置、设备配置问题中的设备数量等。

整数规划常用的求解方法有分支界定法和割平面法等。

3.非线性规划:非线性规划是一种求解非线性函数优化问题的方法,它在实际问题中非常常见。

与线性规划不同,非线性规划的目标函数和约束函数可以是非线性的。

非线性规划的求解方法包括牛顿法、拟牛顿法和全局优化方法等。

4.动态规划:动态规划是一种用于解决决策过程的优化方法。

它的特点是将问题划分为一系列阶段,然后依次求解每个阶段的最优决策。

动态规划常用于具有重叠子问题和最优子结构性质的问题,例如背包问题和旅行商问题等。

5.图论算法:图论算法是一类用于解决图相关问题的算法。

图论算法包括最短路径算法、最小生成树算法、网络流算法等。

最短路径算法主要用于求解两点之间的最短路径,常用的算法有Dijkstra算法和Floyd-Warshall算法。

最小生成树算法用于求解一张图中连接所有节点的最小代价树,常用的算法有Prim算法和Kruskal算法。

网络流算法主要用于流量分配和问题匹配,例如最大流算法和最小费用最大流算法。

6.遗传算法:遗传算法是一种借鉴生物进化原理的优化算法。

它通过模拟生物的遗传、变异和选择过程,不断优化问题的解空间。

遗传算法适用于对问题解空间有一定了解但难以确定最优解的情况,常用于求解复杂的组合优化问题。

总结起来,数学建模中常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。

数学建模中大规模优化问题的求解

数学建模中大规模优化问题的求解

数学建模中大规模优化问题的求解在数学建模领域中,大规模优化问题的求解一直是一个令人困扰的难题。

随着科学技术的进步和数学建模的广泛应用,大规模优化问题的求解变得越来越重要。

本文将探讨大规模优化问题的求解方法,并介绍几种常用的技术。

1. 线性规划(Linear Programming)线性规划是一种经典的大规模优化问题求解方法。

它的目标是将一个线性目标函数最大化或最小化,同时满足一组线性等式或不等式约束条件。

线性规划的求解算法有很多种,其中最著名的是单纯形法(Simplex Method)。

单纯形法通过沿着目标函数增长的方向移动,不断改善解的质量,直到找到最优解。

虽然单纯形法在实践中表现良好,但对于某些特殊的问题,它的效率可能会很低。

2. 非线性规划(Nonlinear Programming)与线性规划不同,非线性规划处理的是目标函数和约束条件中包含非线性项的优化问题。

非线性规划的求解方法有很多种,其中最常用的是梯度法(Gradient Method)。

梯度法通过计算目标函数在当前解处的梯度,沿着梯度下降的方向更新解,直到找到最优解。

然而,非线性规划的求解通常较为困难,因为梯度法可能陷入局部最优解,而无法找到全局最优解。

3. 整数规划(Integer Programming)整数规划是一类特殊的优化问题,它要求变量的取值必须为整数。

与线性规划相比,整数规划更为复杂和困难。

整数规划的求解方法有很多种,其中最常用的是分支定界法(Branch and Bound)。

分支定界法将整数规划问题转化为一系列线性规划问题,并通过剪枝策略来降低问题规模,最终找到最优解。

然而,由于整数规划涉及到离散取值,它的求解通常是一个非常耗时的过程。

4. 蚁群算法(Ant Colony Optimization)蚁群算法是一种基于模拟蚂蚁寻找食物的行为而发展起来的优化算法。

蚁群算法的基本思想是通过模拟蚂蚁在问题空间中的搜索行为,找到最优解。

数学建模中的整数规划问题研究论文

数学建模中的整数规划问题研究论文

XX大学毕业论文数学建模中的整数规划问题研究院系名称:专业:学生姓名:学号:指导老师:XX大学制二〇一年月日1.引言应用数学学科的一项重要任务是从自然科学、社会科学、工程技术以及现代化管理中提出问题和解决问题。

这就要求我们学会如何将实际问题经过分析、简化,转化为一个数学问题,然后用适当的数学方法解决,即建立数学模型。

随着科学技术的发展,特别是计算机技术的发展,数学的应用领域已由传统的物理领域迅速的扩展到非物理领域。

数学在发展高科技、提高生产力水平和实现现代化管理等方面的作用越来越明显。

正是这样的背景下,数学模型这个词汇越来越多的出现在现代化生产、工作和社会生活中。

数学模型的分类方法有很多种,例如按照建模所用的数学方法的不同,可分为:初等模型、运筹学模型、微分方程模型、概率统计模型、控制论模型等。

而运筹学模型中的规划模型又可分为非线性规划模型和线性规划模型,本文通过实例剖析线性规划中整数规划方法在数学模型种的应用2.主要结果2.1数学建模中的整数规划问题在研究线性规划的问题中,一般问题的最优解都是非整数,即为分数或小数,但对于实际中的具体问题的解常常要求必须取整数.例如问题的解表示是人数、机器设备的台数、机械车辆数等都是整数.为了求整数解,我们设想把所求得的非整数解采用“舍人取整”的方法处理,似乎是变成了整数解,但事实上这样得到的结果未必可行.因为取整以后就不一定是原问题的可行解了,或者虽然是可行解,但也不一定是最优解.因此,对于要求最优整数解的问题,需要寻求直接的求解方法,这就是整数规划方法.2.2整数规划的基本概念]1[整数规划的一般模型为:()()()⎪⎩⎪⎨⎧=≥=≥=≤=∑∑==,,,2,1,0,,,2,1),(..,minmax11njxxmibxat sxcjjnjijijnjjjz为整数(2.1)整数规划求解方法总的基本思想是:松弛问题(2.1)中的约束条件(譬如去掉整数约束条件),使构成易于求解的新问题——松弛问题(A),如果这个问题(A)的最优解是元问题(2.1)的可行解,则就是原问题(2.1)的最优解;否则,在保证不改变松弛问题(A)的可行性的条件下,修正松弛问题(A)的可行域(增加新的约束),变成新的问题(B),再求问题(B)的解,重复这一过程直到修正问题的最优解在原问题(2.1)的可行域内为止,即得到了原问题的最优解.2.3整数规划的解法2.3.1整数规划的分枝定界法分枝定界法的基本思想:将原问题(2.1)中的整数约束去掉变为问题(A),求出问题(A)的最优解,如果它不是原问题的可行解,则通过附加线性不等式约束,将问题(A)分枝变为若干子问题(iB)(i=1,2,…,I),即对每一个非整数变量附加两个互相排斥(不交叉)的整型约束,即可得到两个子问题,继续求解定界,重复这一过程,知道得到最优解为止。

常用数学建模方法及实例

常用数学建模方法及实例

常用数学建模方法及实例数学建模是将实际问题转化为数学模型,通过数学方法进行求解和分析的过程。

常用的数学建模方法包括线性规划、整数规划、非线性规划、图论、动态规划等。

一、线性规划线性规划是一种用于求解线性约束下目标函数的最优值的方法。

它常用于资源分配、生产计划、供应链管理等领域。

例1:公司有两个工厂生产产品A和产品B,两种产品的生产过程需要使用原材料X和Y。

产品A和产品B的利润分别为10和8、工厂1每小时生产产品A需要1个单位的X和2个单位的Y,每小时生产产品B需要2个单位的X和1个单位的Y。

工厂2每小时生产产品A需要2个单位的X和1个单位的Y,每小时生产产品B需要1个单位的X和3个单位的Y。

公司给定了每种原材料的供应量,求使公司利润最大化的生产计划。

二、整数规划整数规划是线性规划的一种扩展,要求变量的取值为整数。

整数规划常用于离散决策问题。

例2:公司有5个项目需要投资,每个项目的投资金额和预期回报率如下表所示。

公司有100万元的投资资金,为了最大化总回报率,应该选择哪几个项目进行投资?项目投资金额(万元)预期回报率1207%2306%3409%4104%5508%三、非线性规划非线性规划是一种求解非线性目标函数下约束条件的最优值的方法。

它广泛应用于经济、金融和工程等领域。

例3:公司通过降低售价和增加广告费用来提高销售额。

已知当售价为p时,销量为q=5000-20p,广告费用为a时,销售额为s=p*q-2000a。

已知售价的范围为0≤p≤100,广告费用的范围为0≤a≤200,公司希望最大化销售额,求最优的售价和广告费用。

四、图论图论是一种用于研究图(由节点和边组成)之间关系和性质的数学方法,常用于网络分析、路径优化、社交网络等领域。

例4:求解最短路径问题。

已知一个有向图,图中每个节点表示一个城市,每条边表示两个城市之间的道路,边上的权重表示两个城市之间的距离。

求从起始城市到目标城市的最短路径。

五、动态规划动态规划是一种通过将问题划分为子问题进行求解的方法,常用于求解最优化问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整数规划模型实际问题中x x x x f z Max Min Tn "),(),()(1==或的优化模型mi x g t s i ",2,1,0)(..=≤x ~决策变量f (x )~目标函数g i (x )≤0~约束条件多元函数决策变量个数n 和数线性规划条件极值约束条件个数m 较大最优解在可行域学规非线性规划解的边界上取得划整数规划Programming+Integer所有变量都取整数,称为纯整数规划;有一部分取整数,称为混合整数规划;限制取0,1称为0‐1型整数规划。

型整数规划+整数线性规划max(min) nz c x =1j jj n=∑1s.t. (,) 1,2,,ij j i j a x b i m=≤=≥=∑"12 ,,,0 ()n x x x ≥"且为整数或部分为整数+例:假设有m 种不同的物品要装入航天飞机,它们的重量和体积分别为价值为w j 和v j ,价值为c j ,航天飞机的载重量和体积限制分别为W 和V ,如何装载使价值最大化?m1⎧1max j jj c y =∑ 1 0j j y =⎨被装载 s.t. mj j v y V≤∑0j ⎩没被装载1j m=1j j j w y W=≤∑ 0 or 1 1,2,,j y j m=="(Chicago)大学的Linus Schrage教授于1980年美国芝加哥(Chi)Li S h前后开发, 后来成立LINDO系统公司(LINDO Systems Inc.),网址:I)网址htt//li dLINDO: Interactive and Discrete Optimizer (V6.1) Linear(V61) LINGO: Linear Interactive General Optimizer (V8.0) LINDO——解决线性规划LP—Linear Programming,整数规划IP—Integer Programming问题。

LINGO——解决线性规划LP—Linear Programming,非线性规划NLP—Nonlinear Programming,整数规划IP—Integer Programmingg g整划g g g 问题。

1.“>”(或“<”)号与“>=”(或“<=”)功能相同2.甚至回车 但无运算变量与系数间可有空格(甚至车),但算符3.变量名以字母开头,不能超过变量名字母开头,不能超过8个字符4.变量名不区分大小写(包括LINDO 中的关键字)5.目标函数所在行是第一行,第二行起为约束条件6.行号(行名)自动产生或人为定义。

行名以“)”结束7.变量不能出现在一个约束条件的右端变量不能出现在个约束条件的右端8. 表达式中不接受括号“( )”和逗号“,”等任何符号, 例: 400(X1+X2)需写为400X1+400X2 9.表达式应化简,如2X1+3X2‐4X1应写成‐2X1+3X22X13X210.缺省假定所有变量非负;可在模型的“END”语句后用“FREE name”将变量name的非负假定取消11.“END”后对0‐1变量说明:INT n或INT name12.“END”后对整数变量说明:GIN n或GIN12后对整数变量说明name汽车厂生产三种类型的汽车,已知各类型每辆车对钢材、劳动时间的需求,利润及工厂每月的现有量。

材劳动时间的需求利润及工厂每月的现有量。

小型中型大型现有量钢材(吨) 1.5 3 5 600劳动时间(小时)280 250 400 60000利润(万元)2 3 4•制订月生产计划,使工厂的利润最大。

制订月生产计划使工厂的利润最大•如果生产某一类型汽车,则至少要生产80辆,那么最优的生产计划应作何改变?汽车厂生产计划汽车厂产计划模型建立小型中型大型现有量设每月生产小、中、大型模建中钢材1.5 3 5 60060000汽车的数量分别为x 1,x 2,x 3时间280 250 400 利润2 3 4321432x x x zMax ++=线性600535.1..321≤++x x x t s 60000400250280≤++x x x 线规划模型3210,,321≥x x x (LP)模型OBJECTIVE FUNCTION VALUE 求解1)632.2581VARIABLE VALUE REDUCED COST X164.5161290.000000X2167.7419280.000000X30.0000000.946237结果为小数,ROW SLACK OR SURPLUS DUAL PRICES2)0.0000000.7311833)0.0000000.003226怎么办?1)舍去小数:取x 1=64,x 2=167,算出目标函数值z =629,与LP 最优值632.2581相差不大。

2)试探:如取x 1=65,x 2=167;x 1=64,x 2=168等,计算函数值z ,通过比较可能得到更优的解。

•但必须检验它们是否满足约束条件。

3)模型中增加条件:x 1,x 2,x 3均为整数,重新求解。

整数规划(Integer Programming ,简记IP )IP 可用LINDO 直接求解max 321432x x x z Max ++=模型求解2x1+3x2+4x3st600535.1..321≤++x x x t s 60000400250280321≤++x x x 1.5x1+3x2+5x3<600280x1+250x2+400x3<60000end为非负整数321,,x x x “gin 3”表示“前3个变量为gin 3OBJECTIVE FUNCTION VALUE )IP 结果输出整数”,等价于:gin x1i 21)632.0000VARIABLE VALUE REDUCED COST X164.000000‐2.000000gin x2gin x3 的最解6680最值632X2168.000000‐3.000000X3 0.000000 ‐4.000000IP 的最优解x 1=64,x 2=168,x 3=0,最优值z =632汽车厂生产计划汽车厂产计划•若生产某类汽车,则至少生产80辆,求生产计划。

M 80,0,0321≥==x x x 0,80,0321=≥=x x x 321432x x x z Max ++=600535.1..321≤++x x x t s 80,80,0321≥≥=x x x 60000400250280321≤++x x x x x x =0 ≥80×0,0,80321==≥x x x 0,80,80321=≥≥x x x 方法1:分解为8个LP 子模型1,2,3或其中3个子模型应去掉,然后逐一求解比较目标函数值80,0,80321≥=≥x x x 808080≥≥≥x x x ×逐求解,比较目标函数值,再加上整数约束,得最优解:,,3210,,321=x x x ×x 1=80,x 2= 150,x 3=0,最优值z =610•若生产某类汽车,则至少生产80辆,求生产计划。

方法2:引入0‐1变量,化为整数规划产车产产计M 为大的正数,x 1=0 或≥800}1,0{,80,11111∈≥≤y y x My x 可取1000 x 2=0 或≥80x =0 或≥80}1,0{,80,22222∈≥≤y y x My x }1,0{,80,33333∈≥≤y y x My x LINDO 中对0‐1OBJECTIVE FUNCTION VALUE 1)610.00003变量的限定:int y1VARIABLE VALUE REDUCED COST X180.000000‐2.000000‐最优解同前int y2int y3 X2150.000000 3.000000X30.000000‐4.000000Y1 1.0000000.00000010000000000000解同前Y2 1.0000000.000000Y3 0.000000 0.000000售价4800元/吨汽油甲库存500吨(A ≥50%) 原油A汽油乙市场上可买到不超过售价5600元/吨库存1000吨原油B (A ≥60%)1500吨的原油A :•购买量不超过500吨时的单价为10000元/吨;•购买量超过500吨但不超过1000吨时,超过500吨的8000元/吨;该公司应如何安排原油的采购和加部分•购买量超过1000吨时,超过1000吨的部分6000元/吨。

该公司应如何安排原油的采购和加工?问题•利润:销售汽油的收入A 分析利润销售汽油的收购买原油的支出•难点:原油A 的购价与购买量的关系较复杂决策原油A 的购买量,原油A, B 生产汽油甲,乙的数量变量甲(A ≥50%) A购买x →x 11x 12x 214.8千元/吨目标B 乙(A ≥60%) x 22 5.6千元/吨函数c (x ) ~ 购买原油A 的支出利润(千元))()(6.5)(8.422122111x c x x x x z Max −+++=c (x )如何表述?•目标x ≤500吨单价为10千元/吨;•500吨≤x ≤1000吨,超过500吨的8千元/吨;吨超过吨函数⎧•1000吨≤x ≤1500吨,超过1000吨的6千元/吨。

⎪⎨≤≤+≤≤=1000)(500 1000 8500)(0 10)(x x x x x c 约束⎪⎩≤≤+500)1(1000 30006x x 原油供应条件x x x +≤+5001211购买x ↓Ax 11x 500吨10002221≤+x x B 12x 21x 库存库存1000吨1500≤x 22汽油含原油约束A 的比例限制条件x 115.011≥+x x x 2111x x ≥⇔甲(A ≥50%) Ax 12x 21211112x B 乙(A ≥60%)x 22数中是线数是线划6.02212≥+x x 221232x x ≥⇔¾目标函数中c (x )不是线性函数,是非线性规划;¾,一般的非线性规划软对于用分段函数定义的c (x ),般的非线性规划软件也难以输入和求解;想法将型简用成的软件求解¾想办法将模型化简,用现成的软件求解。

x x x ~以价格10, 8, 6(A 模型求解1 ,2 ,3 价格,,(千元/吨)采购的吨数=+x +x c =+8+6目标x x 1x 2x 3, (x ) 10x 18x 26x 3函数)6810()(6.5)(8.432122122111x x x x x x x z Max ++−+++=y 1, y 2 , y 3=1 ~以价格10, 8, 6(千元/吨)采购A 增108加112500500y x y ≤≤223500500y x y ≤≤x 1 , x 2 , x 3 ~以价格10, 8, 6(千元/吨)采购A 的吨数y =0 →x =0约束33500y x ≤y 1,y 2,y 3 =0或1 x >0 →y =1Max 4.8x11+4.8x21+5.6x12+5.6x22‐10x1‐8x2‐6x3stx11+x12‐x<500x21+x22<100005x1105x21>00.5x11‐0.5x21>00.4x12‐0.6x22>0x ‐x1‐x2‐x3=0‐x1500y1<0x2‐500y2<0x3‐500y3<0‐500y2>0x1500y20x2‐500y3>0endint y1yint y2int y30‐1线性规划模型,可用LINDO求解OBJECTIVE FUNCTION VALUE1)5000.000VARIABLE VALUE REDUCED COSTY1 1.0000000.000000Y2 1.0000002200.000000Y3 1.0000001200.000000X110.0000000.80000000000000800000X210.0000000.800000X121500.0000000.000000X221000.0000000.000000X1500.0000000.000000X2500.0000000.000000X30.0000000.400000X 1000.0000000.00000010000000000000000购买1000吨原油A,与库存的500吨原油A和1000吨原油B 一起,生产2500吨汽油乙,利润为5,000千元。

相关文档
最新文档