立体几何存在性问题
立体几何中的点的存在性问题
用向量法(坐标法)解决点的存在性问题点的存在问题(即探索性问题)是历年高考的热点,立体几何中,探索满足某个条件的点是否存问题,能很好的考查学生的逻辑推理能力和空间想象能能力,休现了的新课标的要求,故倍受命题人青睐。
下面结合具体例题讲解此类问题的大致类型及解题策略。
例1:如图,在正方体1111ABCD A B C D -中,E 是1DD 的中点,(1)在棱B 1C 1是否存一点G ,使得AG ⊥平面1A BE ;(2)在线段BE 上是否存一点M ,使得M-CD-A 的平面角的余弦值为25. (3)在正方形ABCD 内(含边界线段)否存一点N ,使得C 1N ⊥1A BE点评:立何几何中的点的存在问题通常使用坐标法来进得解答,此方法不需要进行复杂的作图、推理及论证,只需要通过坐标运算进行判断。
解题策略:先假设满足条件的点存在,把要成立的结论当作条件,据此列方程或解方程组,把“是否存在”问题转化为“点的坐标是否在规定范围内有解问题。
命题类型:(1)在与坐标轴平行的线段上寻求一点满点某个条件,此种类型较易,直接设出该点坐标(横、纵,竖三个坐标中,己知两个),据条件得方程即可求解;(2)在与坐标轴不平行的线段上寻求一点满点某个条件,此种类型,此点的横、纵,竖三个坐标,可能己知一个,或者都不清楚,解题时需要根据三点共线进行坐标代换。
比如:在线段AB(AB 与坐标轴不平行)上寻找一点M 满足条件f 。
具体做法:设M (x,y,z)与AM=λAB (01λ≤≤),由坐标相等概念则可将M 点的坐标全部用λ表示M (f(λ),g(λ),φ(λ)),然后根据假设的结论列方程即求得λ。
(3)在某个面上寻求一点满点某个条件,直接列方程组解决。
命题规律:所探求的点一般是线段的中点或三等分点,故此种也可先估计此点的位置,然后进行证明。
专项训练1.(2010马鞍山模拟)如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.(Ⅰ)求二面角B—DE—C的平面角的余弦值;(Ⅱ)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.2,(2010绍兴模拟)如图,在三棱锥S-ABC中,SA=AB=AC=BC=2SB=2SC,O为BC的中点,(1)求证:SO ABC平面;(2)求异面直线SC与AB所成角的余弦值;(3)在线段AB上是否存在一点E,使得二面角B-SC-E的平面角的余弦值为15;5若存在,求BE:BA的值;若不存在,试说明理由。
谈谈求解立体几何问题的思路
立体几何是高考数学的必考内容,且立体几何问题在高考试题中占有较大的比重.这类问题侧重于考查同学们的空间想象和运算能力.下面结合几道例题,来归纳总结一下三类立体几何问题的特点以及解题思路.一、立体几何中的存在性问题立体几何中的存在性问题一般较为复杂,通常要求判断某两条线段的比值、垂直关系、平行关系、点等是否存在.解答这类问题,需首先画出相应的立体几何图形;然后假设要判断的对象存在,并将其看作已知的条件,代入题设中进行推理运算.若得出与题意、相关结论、公式相矛盾的结论,则说明该假设不成立,否则,该假设成立.解题时,要确保推理合理,逻辑严密.例1.如图1,在三棱锥P -ABC 中,PA ⊥平面ABC ,PA =1,AB =1,AC =2,∠BAC =60°.那么在线段PC 上是否存在一点M ,使得BM ⊥AC ?若存在,求MCPM的值,若不存在,请说明理由.解:假设在线段PC 上存在点M ,使得BM ⊥AC ,此时MCPM=3.如图1,过点M 作MN //PA ,交AC 于点N ,连接BN ,BM ,因为PA ⊥平面ABC ,AC ⊂平面ABC ,故PA ⊥AC ,MN ⊥AC .由MN //PA 可知:AN NC =PM MC =13,则AN =12.在ΔABN 中,BN 2=AB 2+AN 2-2AB ⋅AN cos∠BAC =34,所以AN 2+BN 2=AB 2,即AC ⊥BN .由于BN ⋂MN =N 且BN ,MN ⊂面MBN ,故AC ⊥平面MBN ,因为BM ⊂面MBN ,所以AC ⊥BM .我们先假设在线段PC 上存在点M ,使得BM ⊥AC ,并据此得出相应的结论;然后根据题意和几何图形添加合适的辅助线,根据线面垂直的性质定理、相似三角形的性质、勾股定理证明AC ⊥BN ;再根据线面垂直的判定定理证明AC ⊥平面MBN ,得出AC ⊥BM ,即可说明该假设成立.需要注意的是,在假设要判断的对象存在后,需用相关的性质、定理验证该假设是否满足题意.二、立体几何图形折叠问题立体几何图形折叠问题对同学们的空间想象力有较高的要求.在解题时,需明确折叠前后几何图形中的点、线、面的位置及其关系,通过观察图形,根据折叠图形的性质找出其中不变的量,抓住这些不变的量的特征来建立关系式.也可以将折叠后的几何体投影到平面上,利用平面几何知识进行研究、分析.例2.如图2,在等腰直角三角形PAD 中,∠A =90°,AD =8,AB =3,B ,C 分别是PA ,PD 上的点,且AD //BC ,M ,N 分别为BP ,CD 的中点.现将ΔBCP 沿BC 折起,得到四棱锥P -ABCD ,连接MN ,如图3.(1)证明:MN //平面PAD(2)在翻折的过程中,当PA =4时,求二面角B -PC -D 的余弦值.图2图3解:(1)证明过程略;(2)由题意可知BC ⊥AB ,BC ⊥PB ,∴BC ⊥平面PAB .又BC //AD ,∴AD ⊥平面PAB ,∴AD ⊥PA .∵AD ⊥AB ,AB ⊥PA ,以点A 为坐标原点,分别以AB ,AD ,AP 为x 轴,y 轴,z 轴建立如图4所示的空间直角坐标系A -xyz .得A (0,0,0),B (3,0,0),C (3,5,0),P (0,0,4),D (0,8,0),所以 PB =(3,0,-4), PC =(3,5,-4),PD =(0,8,-4),图147设m =(x 1,y 1,z 1)为平面PBC 的一个法向量,则ìíî m ⋅ PC =0, m ⋅ PB =0,即ìíî3x 1-4z 1=0,3x 1+5y 1-4z 1=0,令x 1=4,则y 1=0,z 1=2,m =(4,0,3).设n=(x 2,y 2,z 2)为平面PCD 的一个法向量,则ìíîm ⋅PC =0, m ⋅PD =0,即ìíî8y 2-4z 2=0,3x 2+5y 2-4z 2=0,令y 2=1,则x 2=1,z 2=2,n =(1,1,2).设二面角B -PC -D 的大小为α,由向量的夹角公式可得:cos α=-|cos< m ,n >|=-|m ⋅n || m |⋅|n |=所以二面角B -PC -D 的余弦值为解答本题,需先明确ΔPAD 的特点、性质,以及其中各点、线段的位置关系,知晓折叠前后ΔBCP 以及梯形ABCP 中的改变量与不变量;然后根据直线与平面垂直的性质定理和判定定理证明AB 、AP 、AD 三条直线两两互相垂直,据此建立空间直角坐标系,利用向量法求得二面角B -PC -D 的余弦值.解答立体几何图形折叠问题,要熟悉折叠图形的性质:折叠前后图形的形状、面积、边长、角度均不改变.三、立体几何中的作图问题立体几何中的作图问题比较常见.解答此类题目,往往要先通过观察,明确题意,确定图形中的点、直线、平面之间的位置关系,灵活运用简单几何体的性质寻找一些垂直、平行的关系,据此发现一些特殊的点、位置,以确定要求作的点、直线、平面的位置,进而作出完整的图形.例3.如图5,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为棱B 1C 1的中点,F ,G 分别是棱CC 1,BC上的动点(不与顶点重合),请作出平面A 1DG 与平面CBB 1C 1的交线,并说明理由.图5解:如图5,连接DG ,并延长交AB 的延长线于点P ,连接A 1P ,交BB 1于Q ,连接GQ ,则GQ 所在的直线即为作出的平面A 1DG 与平面CBB 1C 1的交线.理由如下:∵ABCD -A 1B 1C 1D 1为正方体,∴平面CBB 1C 1//平面ADD 1A 1,而平面CBB 1C 1⋂平面A 1DG =GQ ,平面ADD 1A 1⋂平面A 1DG =A 1D ,∴A 1D //GQ .要画出平面A 1DG 与平面CBB 1C 1的交线,需根据平面的延展性、正方体的性质,以及平行平面的性质:若两个平行平面被第三个平面所截,则其交线平行.在平面CBB 1C 1内寻找与A 1D平行的直线GQ 即可.例4.某几何体的正视图与侧视图均为边长为1的正方形,则下面四个图形中,可能是该几何体俯视图的个数为().A.1B.2C.3D.4解:俯视图从左到右依次记为:图6图7图8图9如果几何体为棱长为1的正方体,则俯视图如图6;如果几何体为圆柱,它的底面直径为1,高为1,则俯视图如图9;如果几何体为从棱长为1的正方体中挖去直径为2,高为1的圆柱的,则俯视图如图7;以图8为俯视图的几何体的正视图不是正方形.故选C.本题主要考查三视图的定义的应用以及画三视图的方法.画三视图要注意几个要点:(1)主视图和俯视图的长要相等;(2)主视图和左视图的高要相等;(3)左视图和俯视图的宽要相等;(4)看不到的线画虚线.虽然立体几何题目的命题形式较多,其解法也各不相同,但是同学们在解题时只要结合立体图形及其特征明确各个点、线、面的位置及其关系;然后将问题与相关的定理、性质、公式相关联,添加合适的辅助线,灵活利用相关的定理、性质、公式进行推理、运算,就能顺利求得问题的答案.(作者单位:江苏省启东市汇龙中学)图448。
立体几何中存在性问题教案
训练学生如何说明结论不成立
引发学生思考直线是怎么寻找到的,探索问题的本质
总结归纳解题思路及方法
当 数量关系变化时,如何找到点 的位置,检查学生对刚学习的解题方法的掌握程度。
提示学生并非所有的存在性问题结论都是肯定的,渗透分析法与反证法的思想,让学生去思考解决存在性问题的思路,巩固面面平行的判定与线面平行的性质
总结归纳解题思路及方法
巩固基础知识和基本思想方法,提高基本技能
检查学生对知识方法的掌握情况
四、课堂小结
通过这节课的复习,请同学们从知识与方法方面回顾一下,学习过程中遇到了什么问题需要注意哪些方面
五、作业布置
学案上的练习题
教学背景分析
教学
内容
分析
立体几何中常出现点的存在性和位置待定的问题,以“是否存在”、“是否有”、“在何位置”
等形式设问,以示结论有待于确定. 文科主要涉及到平行与垂直的位置关系的考查,其中渗透反证法与分析法的解题思路,也是高考中的常见题型。2012年北京市高考文科就考查了有关线面垂直的存在性问题,2016年北京市高考文科就考查了有关线面平行的存在性问题。
问题4:这些直线是怎么找到的
总结问题的类型及解决问题的方法:
问题5:若将题目中的已知条件 改为 ,你能判断在棱 上是否存在一点 使得 ∥平面 , 若存在,请指出 点位置,并证明;若不存在,请说明理由.
问题6:在棱 上(除 点外)是否存在一点 使得 ∥平面 ,若存在,请指出 点位置,并证明;若不存在,说明理由.
总结问题的类型及解决问题的方法:
练习:如图,在四棱锥 中,底面 是平行四边形, 是 中点, 为线段 上一点.试确定点 在线段 上的位置,使
检测题:1、如图,在四棱锥 中,底面 是梯形, ∥ , .在棱 上是否存在一点 使得 ∥平面 ,若存在,求出 点位置,并证明;若不存在,说明理由.
立体几何存在性问题
5.(1)证明见解析;(2) .
【解析】分析:〔1〕推导出 BE⊥CD,AB⊥CD,从而 CD⊥平面 ABE,由此能证明平面 ABE⊥平 面 ACD; 〔2〕取 BD 的中点 G,连接 EG,那么 EG∥BC.推导出 BC⊥平面 ABD,从而 EG⊥平面 ABD, 由此能求出线段 AE 的长.
详解:〔1〕证明:因为
的体积.
4.如图 2,在四棱锥
中,平面
平面 ,底面 为矩形.
〔1〕求证:平面
平面 ;
〔2〕假设
1 / 14
,试求点 到平面 的距离.
5.如图,三棱锥 点.
的三条侧棱两两垂直,
, , 分别是棱 , 的中
〔1〕证明:平面
平面 ;
〔2〕假设四面体 的体积为 ,求线段 的长.
6.如图,在四棱锥
中,
,
,
,
.
7.〔1〕见解析;〔2〕
【解析】分析:〔1〕先利用直角三角形和线线平行的性质得到线线垂直,再利用线面垂直的 判定定理和性质得到线面垂直和线线垂直;〔2〕分析四棱锥的各面的形状,利用相关面积公 式进展求解. 详解:〔1〕因为∠C=90°,即 AC⊥BC,且 DE∥BC,
所以 DE⊥AC,那么 DE⊥DC,DE⊥DA1, 又因为 DC∩DA1=D,所以 DE⊥平面 A1DC. 因为 A1F⊂ 平面 A1DC,所以 DE⊥A1F. 又因为 A1F⊥CD,CD∩DE=D,所以 A1F⊥平面 BCDE, 又因为 BE⊂ 平面 BCDE,所以 A1F⊥BE. 〔2〕由 DE∥BC,且 DE=BC,得 D,E 分别为 AC,AB 的中点,
折起到 的位置,如图 2 所示.
图1图2 〔Ⅰ〕求证:
平面 ;
〔Ⅱ〕证明:平面
向量法探索立体几何中的存在性问题
C£ =4 . 5o
一
所 以 A _ 面 P D. Bj平 A 又A Bc平 面 P B, 以平 面 P BJ平 面 P D A 所 A _ A.
( 以 A为坐标原点 , Ⅱ) 建立空 间直角坐标 系 A— y ( xz 如
图)
在平 面 A C 内, C /A BD 作 E / B交 A 于 点 E, C D 则 E ̄A D.
在 R AC E 中 , E=C ・ o 5 =1 t D D D cs 。 , 4
C E=C ・ i 5 :l A A D s 4 。 设 B= P=t则 B( , 0 , 0 n , t 0, ) P( ,
0t ,)
一
由A A 4得A : B+ D= , D 4一t所 以 E( 3一t0 , 13 , 0, , ) C( ,
t0 , o, tO , , )o( 4一 ,)
:
(一110 , , ,)
:( , 0 4一£ 一t , )
面
( ) 平 面 P D 的法 向量 为 n=( yz , i设 C , ,)
5‘
(i在线段 A i ) D上是否存 在一个 点 G, 得点 G到点 P, 使
,
c, D的距离都相 等?说 明理 由. 分析 : 题 目中 的四棱锥 能够 找到三 条两两 垂直 的棱 , 从
因此 , 可考虑建立空间直角坐标 系 , 利用向量表 示相关元素 , 然后利用 向量 的运算求解结论.
立体几何解答题最全归纳总结
立体几何解答题最全归纳总结【题型归纳目录】题型一:非常规空间几何体为载体题型二:立体几何存在性问题题型三:立体几何折叠问题题型四:立体几何作图问题题型五:立体几何建系繁琐问题题型六:两角相等(构造全等)的立体几何问题题型七:利用传统方法找几何关系建系题型八:空间中的点不好求题型九:创新定义【典例例题】题型一:非常规空间几何体为载体例1.如图,P为圆锥的顶点,O为圆锥底面的圆心,圆锥的底面直径AB=4,母线PH=22,M是PB的中点,四边形OBCH为正方形.(1)设平面POH∩平面PBC=l,证明:l∥BC;(2)设D为OH的中点,N是线段CD上的一个点,当MN与平面PAB所成角最大时,求MN的长.例2.如图所示,圆锥的底面半径为4,侧面积为162π,线段AB为圆锥底面⊙O的直径,C在线段AB上,且BC=3CA,点D是以BC为直径的圆上一动点;(1)当CD=CO时,证明:平面PAD⊥平面POD(2)当三棱锥P-BCD的体积最大时,求二面角B-PD-A的余弦值.例3.如图,圆锥PO 的母线长为6,△ABC 是⊙O 的内接三角形,平面PAC ⊥平面PBC .BC =23,∠ABC =60°.(1)证明:PA ⊥PC ;(2)设点Q 满足OQ =λOP ,其中λ∈0,1 ,且二面角O -QB -C 的大小为60°,求λ的值.例4.如图,D 为圆锥的顶点,O 为圆锥底面的圆心,AB 为底面直径,C 为底面圆周上一点,DA =AC =BC =2,四边形DOAE 为矩形,点F 在BC 上,且DF ⎳平面EAC .(1)请判断点F 的位置并说明理由;(2)平面DFO 将多面体DBCAE 分成两部分,求体积较大部分几何体的体积.例5.如图,在直角△POA 中,PO ⊥OA ,PO =2OA ,将△POA 绕边PO 旋转到△POB 的位置,使∠AOB =90°,得到圆锥的一部分,点C 为AB的中点.(1)求证:PC ⊥AB ;(2)设直线PC 与平面PAB 所成的角为φ,求sin φ..例6.如图,四边形ABCD 为圆柱O 1O 2的轴截面,EF 是该圆柱的一条母线,EF =2EA ,G 是AD 的中点.(1)证明:AF ⊥平面EBG ;(2)若BE =3EA ,求二面角E -BG -A 的正弦值.例7.例7.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求证BP ⊥BE ;(2)当AB =3,AD =2时,求二面角E -AG -C 的大小.例8.如图,四边形ABCD 是一个半圆柱的轴截面,E ,F 分别是弧DC ,AB 上的一点,EF ∥AD ,点H 为线段AD 的中点,且AB =AD =4,∠FAB =30°,点G 为线段CE 上一动点.(1)试确定点G 的位置,使DG ⎳平面CFH ,并给予证明;(2)求二面角C -HF -E 的大小.例9.坐落于武汉市江汉区的汉口东正教堂是中国南方唯一的拜占庭式建筑,象征着中西文化的有机融合.拜占庭建筑创造了将穹顶支承于独立方柱上的结构方法和与之相呼应的集中式建筑形制,其主体部分由一圆柱与其上方一半球所构成,如图所示.其中O 是下底面圆心,A ,B ,C 是⊙O 上三点,A 1,B 1,C 1是上底面对应的三点.且A ,O ,C 共线,AC ⊥OB ,C 1E =EC ,B 1F =13FB ,AE 与OF 所成角的余弦值为36565.(1)若E 到平面A 1BC 的距离为233,求⊙O 的半径.(2)在(1)的条件下,已知P 为半球面上的动点,且AP =210,求P 点轨迹在球面上围成的面积.例10.如图,ABCD 为圆柱OO 的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若AB =BC =6,当三棱锥B -DEF 的体积最大时,求二面角B -DF -E 的正弦值.例11.如图,O1,O分别是圆台上、下底的圆心,AB为圆O的直径,以OB为直径在底面内作圆E,C为圆O的直径AB所对弧的中点,连接BC交圆E于点D,AA1,BB1,CC1为圆台的母线,AB=2A1B1=8.(1)证明;C1D⎳平面OBB1O1;(2)若二面角C1-BC-O为π3,求O1D与平面AC1D所成角的正弦值.例12.某市在滨海文化中心有滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体ABCD-A1B1C1D1中,AB=4,AD=AA1=2,圆台下底圆心O为AB的中点,直径为2,圆与直线AB交于E,F,圆台上底的圆心O1在A1B1上,直径为1.(1)求A1C与平面A1ED所成角的正弦值;(2)圆台上底圆周上是否存在一点P使得FP⊥AC1,若存在,求点P到直线A1B1的距离,若不存在则说明理由.题型二:立体几何存在性问题例13.如图,三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥A-PBC的体积;(2)在线段PC上是否存在一点M,使得BM⊥AC?若存在,求MCPM的值,若不存在,请说明理由.例14.已知四棱锥P-ABCD中,底面ABCD是矩形,且AD=2AB,△PAD是正三角形,CD⊥平面PAD,E、F、G、O分别是PC、PD、BC、AD的中点.(1)求平面EFG与平面ABCD所成的锐二面角的大小;(2)线段PA上是否存在点M,使得直线GM与平面EFG所成角的大小为π6,若存在,求出PMPA的值;若不存在,说明理由.例15.已知三棱柱ABC-A1B1C1中,∠ACB=90°,A1B⊥AC1,AC=AA1=4,BC=2.(1)求证:平面A1ACC1⊥平面ABC;(2)若∠A1AC=60°,在线段AC上是否存在一点P,使二面角B-A1P-C的平面角的余弦值为34若存在,确定点P的位置;若不存在,说明理由.例16.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD⎳BC,AD⊥CD,且AD=CD,BC=2CD,PA=2AD.(1)证明:AB⊥PC;(2)在线段PD上是否存在一点M,使得二面角M-AC-D的余弦值为1717,若存在,求BM与PC所成角的余弦值;若不存在,请说明理由.例17.如图,△ABC是边长为6的正三角形,点E,F,N分别在边AB,AC,BC上,且AE=AF=BN=4,M 为BC边的中点,AM交EF于点O,沿EF将三角形AEF折到DEF的位置,使DM=15.(1)证明:平面DEF⊥平面BEFC;(2)试探究在线段DM上是否存在点P,使二面角P-EN-B的大小为60°?若存在,求出DPPM的值;若不存在,请说明理由.例18.图1是直角梯形ABCD ,AB ⎳CD ,∠D =90∘,AB =2,DC =3,AD =3,CE =2ED ,以BE 为折痕将△BCE 折起,使点C 到达C 1的位置,且AC 1=6,如图2.(1)求证:平面BC 1E ⊥平面ABED ;(2)在棱DC 1上是否存在点P ,使得C 1到平面PBE 的距离为62?若存在,求出二面角P -BE -A 的大小;若不存在,说明理由.例19.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,E 为棱AA 1上的点,且AE =12.(1)求证:BE ⊥平面ACB 1;(2)求二面角D 1-AC -B 1的余弦值;(3)在棱A 1B 1上是否存在点F ,使得直线DF ∥平面ACB 1?若存在,求A 1F 的长;若不存在,请说明理由.例20.如图,在五面体ABCDE中,已知AC⊥BD,AC⊥BC,ED⎳AC,且AC=BC=2ED=2,DC=DB =3.(1)求证:平面ABE⊥与平面ABC;(2)线段BC上是否存在一点F,使得平面AEF与平面ABE夹角余弦值的绝对值等于54343,若存在,求BFBC的值;若不存在,说明理由.题型三:立体几何折叠问题例21.如图1,在边上为4的菱形ABCD中,∠DAB=60°,点M,N分别是边BC,CD的中点,AC∩BD=O1,AC∩MN=G.沿MN将△CMN翻折到△PMN的位置,连接PA,PB,PD,得到如图2所示的五棱锥P -ABMND.(1)在翻折过程中是否总有平面PBD⊥平面PAG?证明你的结论;(2)当四棱锥P-MNDB体积最大时,求直线PB和平面MNDB所成角的正弦值;(3)在(2)的条件下,在线段PA上是否存在一点Q,使得二面角Q-MN-P余弦值的绝对值为1010若存在,试确定点Q的位置;若不存在,请说明理由.例22.如图,在等腰直角三角形PAD中,∠A=90°,AD=8,AB=3,B、C分别是PA、PD上的点,且AD⎳BC,M、N分别为BP、CD的中点,现将△BCP沿BC折起,得到四棱锥P-ABCD,连接MN.(1)证明:MN⎳平面PAD;(2)在翻折的过程中,当PA=4时,求二面角B-PC-D的余弦值.例23.如图1,在平面四边形PDCB中,PD∥BC,BA⊥PD,PA=AB=BC=2,AD=1.将△PAB沿BA 翻折到△SAB的位置,使得平面SAB⊥平面ABCD,如图2所示.(1)设平面SDC与平面SAB的交线为l,求证:BC⊥l;(2)点Q在线段SC上(点Q不与端点重合),平面QBD与平面BCD夹角的余弦值为66,求线段BQ的长.例24.如图,在平面五边形PABCD 中,△PAD 为正三角形,AD ∥BC ,∠DAB =90°且AD =AB =2BC =2.将△PAD 沿AD 翻折成如图所示的四棱锥P -ABCD ,使得PC =7.F ,Q 分别为AB ,CE 的中点.(1)求证:FQ ∥平面PAD ;(2)若DE PE=12,求平面EFC 与平面PAD 夹角的余弦值.例25.如图,在平行四边形ABCD 中,AB =3,AD =2,∠A =60°,E ,F 分别为线段AB ,CD 上的点,且BE =2AE ,DF =FC ,现将△ADE 沿DE 翻折至△A 1DE 的位置,连接A 1B ,A 1C .(1)若点G 为线段A 1B 上一点,且A 1G =3GB ,求证:FG ⎳平面A 1DE ;(2)当三棱锥C -A 1DE 的体积达到最大时,求二面角B -A 1C -D 的正弦值.例26.如图1,四边形ABCD是边长为2的正方形,四边形ABEF是等腰梯形,AB=BE=12EF,现将正方形ABCD沿AB翻折,使CD与C D 重合,得到如图2所示的几何体,其中D E=4.(1)证明:AF⊥平面AD E;(2)求二面角D -AE-C 的余弦值.例27.如图,在梯形ABCD中,AD∥BC,AB=BC=2,AD=4,现将△ABC所在平面沿对角线AC翻折,使点B翻折至点E,且成直二面角E-AC-D.(1)证明:平面EDC⊥平面EAC;(2)若直线DE与平面EAC所成角的余弦值为12,求二面角D-EA-C的余弦值.例28.如图1,在△ABC 中,∠ACB =90°,DE 是△ABC 的中位线,沿DE 将△ADE 进行翻折,使得△ACE 是等边三角形(如图2),记AB 的中点为F .(1)证明:DF ⊥平面ABC .(2)若AE =2,二面角D -AC -E 为π6,求直线AB 与平面ACD 所成角的正弦值.题型四:立体几何作图问题例29.已知四棱锥P -ABCD 中,底面ABCD 为正方形,O 为其中心,点E 为侧棱PD 的中点.(1)作出过O 、P 两点且与AE 平行的四棱锥截面(在答题卡上作出该截面与四棱锥表面的交线,并写出简要作图过程);记该截面与棱CD 的交点为M ,求出比值DM MC (直接写出答案);(2)若四棱锥的侧棱与底面边长均相等,求AE 与平面PBC 所成角的正弦值.例30..如图,已知底面为平行四边形的四棱锥P-ABCD中,平面MNGH与直线PB和直线AC平行,点E为PD的中点,点F在CD上,且DF:FC=1:2.(1)求证:四边形MNGH是平行四边形;(2)求作过EF作四棱锥P-ABCD的截面,使PB与截面平行(写出作图过程,不要求证明).截面的定义:用一个平面去截一个几何体,平面与几何体的表面的交线围成的平面图形.例31.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱B1C1的中点,F,G分别是棱CC1,BC上的动点(不与顶点重合).(1)作出平面A1DG与平面CBB1C1的交线(要求写出作图过程),并证明:若平面A1DG⎳平面D1EF,则EF⎳A1D;(2)若G为棱BC的中点,是否存在F,使平面D1EF⊥平面DGF,若存在,求出CF的所有可能值;若不存在,请说明理由.例32.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱B1C1的中点,F,G分别是棱CC1,BC上的动点(不与顶点重合).(1)作出平面A1DG与平面CBB1C1的交线(要求写出作图过程),并证明:若平面A1DG⎳平面D1EF,则EF⎳A1D;(2)若F,G均为其所在棱的中点,求点G到平面D1EF的距离.例33.如图多面体ABCDEF中,面FAB⊥面ABCD,△FAB为等边三角形,四边形ABCD为正方形,EF⎳BC,且EF=32BC=3,H,G分别为CE,CD的中点.(1)求二面角C-FH-G的余弦值;(2)作平面FHG与平面ABCD的交线,记该交线与直线AB交点为P,写出APAB的值(不需要说明理由,保留作图痕迹).例34.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,FD⎳EA,且FD =12EA=1.(1)求多面体EABCDF的体积;(2)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.例35.四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠DAB=2π3.AC∩BD=O,且PO⊥平面ABCD,PO=3,点F,G分别是线段PB.PD上的中点,E在PA上.且PA=3PE.(Ⅰ)求证:BD⎳平面EFG;(Ⅱ)求直线AB与平面EFG的成角的正弦值;(Ⅲ)请画出平面EFG与四棱锥的表面的交线,并写出作图的步骤.题型五:立体几何建系繁琐问题例36.如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1⎳MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心.若AO⎳平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.例37.如图,在锥体P-ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=2,PB=2,E,F 分别是BC,PC的中点(1)证明:AD⊥平面DEF(2)求二面角P-AD-B的余弦值.例38.如图,AEC 是半径为a 的半圆,AC 为直径,点E 为AC的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FB =FD =5a ,EF =6a .(1)证明:EB ⊥FD ;(2)已知点Q ,R 为线段FE ,FB 上的点,FQ =23FE ,FR =23FB ,求平面BED 与平面RQD 所成二面角的正弦值.例39.《九章算术》是中国古代的一部数学专著,是《算经十书》中最重要的一部,成于公元一世纪左右.它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志着中国古代数学形成了完整的体系.《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”,已知在三棱锥P -ABC 中,PA ⊥平面ABC .(1)从三棱锥P -ABC 中选择合适的两条棱填空: BC ⊥ ,则三棱锥P -ABC 为“鳖臑”;(2)如图,已知AD ⊥PB ,垂足为D ,AE ⊥PC ,垂足为E ,∠ABC =90°.(ⅰ)证明:平面ADE ⊥平面PAC ;(ⅱ)设平面ADE 与平面ABC 的交线为l ,若PA =23,AC =2,求二面角E -l -C 的大小.例40.已知四面体ABCD,AD=CD,∠ADB=∠CDB=120°,且平面ABD⊥平面BCD.(Ⅰ)求证:BD⊥AC;(Ⅱ)求直线CA与平面ABD所成角的大小.例41.已知四面体ABCD,∠ADB=∠CDB=120°,且平面ABD⊥平面BCD.(Ⅰ)若AD=CD,求证:BD⊥AC;(Ⅱ)求二面角B-CD-A的正切值.题型六:两角相等(构造全等)的立体几何问题例42.如图,在三棱锥A-BCD中,ΔABC是等边三角形,∠BAD=∠BCD=90°,点P是AC的中点,连接BP,DP(1)证明:平面ACD⊥平面BDP;(2)若BD=6,cos∠BPD=-33,求三棱锥A-BCD的体积.例43.如图,在三棱锥A-BCD中,ΔABC是等边三角形,∠BAD=∠BCD=90°,点P是AC的中点,连接BP,DP.(1)证明:平面ACD⊥平面BDP;(2)若BD=6,且二面角A-BD-C为120°,求直线AD与平面BCD所成角的正弦值.例44.如图,四棱锥F-ABCD中,底面ABCD为边长是2的正方形,E,G分别是CD、AF的中点,AF=4,∠FAE=∠BAE,且二面角F-AE-B的大小为90°.(1)求证:AE⊥BG;(2)求二面角B-AF-E的余弦值.例45.如图,四棱锥E-ABCD中,四边形ABCD是边长为2的菱形,∠DAE=∠BAE=45°,∠DAB=60°.(Ⅰ)证明:平面ADE⊥平面ABE;(Ⅱ)当直线DE与平面ABE所成的角为30°时,求平面DCE与平面ABE所成锐二面角的余弦值.例46.如图,在四面体ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,(1)求证:AC⊥BD;(2)若平面ABD⊥平面CBD,且BD=52,求二面角C-AD-B的余弦值.题型七:利用传统方法找几何关系建系例47.如图:长为3的线段PQ与边长为2的正方形ABCD垂直相交于其中心O(PO>OQ).(1)若二面角P-AB-Q的正切值为-3,试确定O在线段PQ的位置;(2)在(1)的前提下,以P,A,B,C,D,Q为顶点的几何体PABCDQ是否存在内切球?若存在,试确定其内切球心的具体位置;若不存在,请说明理由.例48.在四棱锥P-ABCD中,E为棱AD的中点,PE⊥平面ABCD,AD⎳BC,∠ADC=90°,ED=BC= 2,EB=3,F为棱PC的中点.(Ⅰ)求证:PA⎳平面BEF;(Ⅱ)若二面角F-BE-C为60°,求直线PB与平面ABCD所成角的正切值.例49.三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=2,侧面BCC1B1为矩形,∠A1AB=2π3,二面角A-BC-A1的正切值为12.(Ⅰ)求侧棱AA1的长;(Ⅱ)侧棱CC1上是否存在点D,使得直线AD与平面A1BC所成角的正切值为63,若存在,判断点的位置并证明;若不存在,说明理由.例50.如图,在四棱锥P-ABCD中,底面四边形ABCD内接于圆O,AC是圆O的一条直径,PA⊥平面ABCD,PA=AC=2,E是PC的中点,∠DAC=∠AOB(1)求证:BE⎳平面PAD;(2)若二面角P-CD-A的正切值为2,求直线PB与平面PCD所成角的正弦值.例51.如图所示,PA⊥平面ABCD,ΔCAB为等边三角形,PA=AB,AC⊥CD,M为AC中点.(Ⅰ)证明:BM⎳平面PCD;(Ⅱ)若PD与平面PAC所成角的正切值为62,求二面角C-PD-M的正切值.题型八:空间中的点不好求例52.如图,直线AQ⊥平面α,直线AQ⊥平行四边形ABCD,四棱锥P-ABCD的顶点P在平面α上,AB =7,AD=3,AD⊥DB,AC∩BD=O,OP⎳AQ,AQ=2,M,N分别是AQ与CD的中点.(1)求证:MN⎳平面QBC;(2)求二面角M-CB-Q的余弦值.例53.如图,四棱锥S-ABCD中,AB⎳CD,BC⊥CD,侧面SAB为等边三角形.AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB(2)求AB与平面SBC所成角的正弦值.例54.如图,四棱锥S-ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=2,DC=SD=2,点M在侧棱SC上,∠ABM=60°.(Ⅰ)证明:M是侧棱SC的中点;(Ⅱ)求二面角S-AM-B的余弦值.例55.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD为直角梯形,其中AB⎳CD,∠CDA=90°,CD=2AB=2,AD=3,PA=5,PD=22,点E在棱AD上且AE=1,点F为棱PD的中点.在棱AD上且AE=1,点F位棱PD的中点.(1)证明:平面BEF⊥平面PEC;(2)求二面角A-BF-C的余弦值的大小.例56.如图,在四棱锥A-BCFE中,四边形EFCB为梯形,EF⎳BC,且EF=34BC,ΔABC是边长为2的正三角形,顶点F在AC上的射影为点G,且FG=3,CF=212,BF=52.(1)证明:平面F GB⊥平面ABC;(2)求二面角E-AB-F的余弦值.例57.三棱柱ABC-A1B1C1的底面ABC是等边三角形,BC的中点为O,A1O⊥底面ABC,AA1与底面ABC所成的角为π3,点D在棱AA1上,且AD=32,AB=2.(1)求证:OD⊥平面BB1C1C;(2)求二面角B-B1C-A1的平面角的余弦值.例58.如图,将矩形ABCD沿AE折成二面角D1-AE-B,其中E为CD的中点,已知AB+2,BC=1.BD1 =CD1,F1为D1B的中点.(1)求证:CF⎳平面AD1E;(2)求AF与平面BD1E所成角的正弦值.题型九:创新定义例59.蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H-ABC,J-CDE,K-EFA,再分别以AC,CE,EA为轴将△ACH,△CEJ,△EAK分别向上翻转180°,使H,J,K三点重合为点S所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).例如:正四面体在每个顶点有3个面角,每个面角是π3,所以正四面体在各顶点的曲率为2π-3×π3=π.(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱底面边长为1,侧棱长为2,设BH=x(i)用x表示蜂房(图2右侧多面体)的表面积S(x);(ii)当蜂房表面积最小时,求其顶点S的曲率的余弦值.例60.类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA,PB,PC构成的三面角P-ABC,∠APC=α,∠BPC=β,∠APB=γ,二面角A-PC-B的大小为θ,则cosγ=cosαcosβ+sinαsinβcosθ.时,证明以上三面角余弦定理;(1)当α、β∈0,π2(2)如图2,四棱柱ABCD-A1B1C1D1中,平面AA1C1C⊥平面ABCD,∠A1AC=60°,∠BAC=45°,①求∠A1AB的余弦值;②在直线CC1上是否存在点P,使BP⎳平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.例61.(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的平面α1,α2,α3,α4,使得A i ∈αi i=1,2,3,4,且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi i=1,2,3,4,求该正四面体A1A2A3A4的体积.例62.已知a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a ×b )⋅c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,已知四棱锥P -ABCD 中,底面ABCD 是一个平行四边形,AB =(2,-1,4),AD =(4,2,0),AP =(-1,2,1)(1)试计算(AB ×AD )⋅AP 的绝对值的值,并求证PA ⊥面ABCD ;(2)求四棱锥P -ABCD 的体积,说明(AB ×AD )⋅AP 的绝对值的值与四棱锥P -ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )⋅AP 的绝对值的几何意义.。
向量问解:立体几何中的存在性问题
() 2 求二面角D- B A 的大小 ;
高版 ? ? __ 中 十。 擞・曩—_
课 程 解 读
21 0 2年 7月
材 法
足点 ( ) , 在可行域中 , 且使 在
删
cs o(
) =
一
一
.
ቤተ መጻሕፍቲ ባይዱ
1 曰D卜I I / I t
1B : / , , C 、 T 且肘是B D的中点.
( ) 证 :M/ - D ; 1求 E /  ̄ F
又二面角D
B 为锐 角 , 故二面角D- B的大小为6 。 A 0.
( )假设在线段E 上存在一点P,使得C - 晰 成 的角为 3 B P ̄A
本题避 开了讨论 直线斜率一a中。 的符号问题 , 也无 须旋转 直 线束通过数形结合 的方法 找到 目标 函数 +y = 2仅在点 ( , ) 10 处 取得最小值 时 ,直线斜率 的取值 范围 ,从而巧妙解 决 了这类 线性
规 划 问 题.
0
,
—
向上 的射影 I I S , ) C ( 取得最大值 的点在A点 , 以 O 所
解: 因为E - Bj平面A D,B_B 故 VB B A L D, 2 为原点 , 建立如图3 所示的空间直角坐标  ̄B xz由已知可得B 0 00 , 0 2 0 , , -y. ( , , )A( , , )
D ( , , )C ( , 20 , ( , ,、 了 )F ( , ,、 了 )M 3O 0 , 3 一 , )E 0 0 / , 0 1 / ,
I y≤ 2,
立体几何的探索存在性问题
-- ……………………………………装……………………………………订……………………………………线………………………………… ……………………………………装……………………………………订……………………………………线…………………………………第2讲 导数与最值(2) 班级: _________ 姓名: ____________ 小 组:___________ 评价:___________ 【考纲解读】 了解函数单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次);了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次),会求在闭区间函数的最大值、最小值(多项式函数一般不超过三次);会用导数解决某些实际问题. 【课堂六环节】 一、导——教师导入新课。
(7分钟) 探索存在性问题在立体几何综合考查中是常考的命题角度,也是考生感觉较难,失分较多的问题,归纳起来立体几何中常见的探索性问题有:(1)探索性问题与空间角结合;(2)探索性问题与垂直相结合;(3)探索性问题与平行相结合 二、思——自主学习。
学生结合课本自主学习,完成下列相关内容。
(15分钟) 角度一 探索性问题与空间角相结合 1.(2014·哈师大附中模拟)如图,三棱柱ABC -A 1B1C 1的侧棱AA 1⊥底面ABC ,∠A CB =90°,E是棱CC 1上的动点,F是A B的中点,AC =1,BC =2,A A1=4. (1)当E 是棱CC 1的中点时,求证:CF∥平面AEB 1(2)在棱CC 1上是否存在点E ,使得二面角A -EB 1 -B 的余弦值是错误!?若存在,求CE的长,若不存在,请说明理由 解析:(1)证明:取AB 1的中点G,连接EG ,FG .∵F ,G 分别是棱AB ,AB 1的中点,∴FG ∥BB 1,F G=\f(1,2)BB 1,又B 1B 綊C 1C ,EC =12C1C,∴B 1B∥EC,EC=错误!B 1B .∴FG 綊EC .∴四边形FG EC 是平行四边形,∴CF ∥EG.∵C F⊄平面AEB 1,E G⊂平面AEB 1,∴CF ∥平面AEB 1.(2)以C为坐标原点,射线C A,C B,CC 1为x ,y ,z轴正半轴,建立如图所示的空间直角坐标系C-xyz ,则C (0,0,0),A(1,0,0),B 1(0,2,4).设E (0,0,m)(0≤m ≤4),平面AEB 1的法向量n 1=(x ,y ,z).则1AB =(-1,2,4), AE =(-1,0,m).由1AB ⊥n 1,AE ⊥n 1, 得错误!∴CA 是平面EBB 1的一个法向量,令n 2=CA ,∵二面角A -EB 1-B 的余弦值为2\r(17)17, ∴错误!=c os〈n1,n 2〉=错误!=错误!,解得m =1(0≤m ≤4).∴在棱CC 1上存在点E ,符合题意,此时CE =1.角度二 探索性问题与垂直相结合2.(2014·南昌模拟)如图是多面体AB C -A 1B 1C1和它的三视图.(1)线段CC 1上是否存在一点E ,使BE ⊥平面A 1C C1?若不存在,请说明理由,若存在,请找出并证明;(2)求平面C 1A 1C 与平面A 1CA 夹角的余弦值.解:(1)由题意知AA 1,AB,A C两两垂直,建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (-2,0,0),C (0,-2,0),C1(-1,-1,2),则1CC =(-1,1,2),11A C =(-1,-1,0),1AC =(0,-2,-2).设E (x ,y,z ),则CE =(x,y +2,z ),设CE =λ1EC ,则错误! 则E 错误!,BE =错误!.由错误!得错误!解得λ=2,所以线段C C1上存在一点E ,CE =21EC ,使BE ⊥平面A 1CC 1. (2)设平面C 1A 1C 的法向量为m =(x,y ,z),则由错误!得错误!取x =1,则y =-1,z =1.故m=(1,-1,1),而平面A1CA 的一个法向量为n =(1,0,0),则cos 〈m ,n 〉=错误!=错误!=错误!,故平面C1A1C与平面A1CA夹角的余弦值为\f(\r(3),3).角度三探索性问题与平行相结合3.(2013·江西模拟)如图,四边形ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成的角为60°.(1)求证:AC⊥平面BDE;(2)求二面角F-BE-D的余弦值;(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.解:(1)证明:∵DE⊥平面ABCD,∴DE⊥AC,∵四边形ABCD是正方形,∴AC⊥BD,又DE∩BD=D,∴AC⊥平面BDE.(2)∵DE⊥平面ABCD,∴∠EBD就是BE与平面ABCD所成的角,即∠EBD=60°.∴\f(ED,BD)=错误!.由AD=3,得DE=3错误!,AF=错误!.如图,分别以DA,DC,DE所在直线为x轴,y轴,z轴建立空间直角坐标系,则A(3,0,0),F (3,0,错误!),E(0,0,3错误!),B(3,3,0),C(0,3,0),∴BF=(0,-3,\r(6)),EF=(3,0,-26).设平面BEF的一个法向量为n=(x,y,z),则错误!即错误!令z=\r(6),则n=(4,2,6).∵AC⊥平面BDE,∴CA=(3,-3,0)为平面BDE的一个法向量,∴cos〈n,CA〉=错误!=错误!=错误!.故二面角F-BE-D的余弦值为1313.(3)依题意,设M(t,t,0)(t>0),则AM=(t-3,t,0),∵AM∥平面BEF,∴AM·n=0,即4(t-3)+2t=0,解得t=2.∴点M的坐标为(2,2,0),此时DM=错误!DB,∴点M是线段BD上靠近B点的三等分点.三、议——学生起立讨论。
《立体几何中的存在性问题》教学设计同步培优
微课堂设计《立体几何中的存在性问题》立体几何中的存在性问题在近几年的全国卷高考中大题第二问一直都有体现,存在性问题也就是探究性问题。
存不存在,存在又如何,我们处理的总的思路是什么?立体几何中的存在问题都是先假设存在,在存在的背景下去完成这个问题。
立体几何中有许多存在性问题,主要是针对直线上是否存在一点(平面内一点)使得满足一定的位置关系(平行、垂直)或一定的角度要求(线面角、二面角)。
存在性问题解决:(1)采用先猜后证,猜中点或三等分点等等然后证明位置关系:平行多用中位线、垂直多用三线合一等;(2)采用先设后求,运用待定系数法和空间向量解决,特别运用三点共线设一般直线上一点。
一.教学目标:掌握处理立体几何中探究性问题的一般思路;二.教学重点:利用先猜后证和先设后求处理探究性问题;三.教学难点:如何猜点及设点;四.教学过程4.1例题讲解例1.如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.【答案】P为AM的中点【解析】当P为AM的中点时,MC∥平面PBD.证明如下:连结AC交BD于O.因为ABCD为矩形,所以O为AC中点.连结OP,因为P为AM中点,所以MC∥OP.MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.【分析】先猜后证,为什么要猜中点?根据已知条件没有比例关系,关键是连接对角线会产生中点,平行多用中位线、垂直多用三线合一。
例2.如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30,求PC 与平面PAM 所成角的正弦值.【解析】(2)以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz - .则(0,0,0),(2,0,0),(0,2,0),(0,2,0),(0,0,23),(0,2,23)O B A C P AP -= 取平面PAC 的法向量(2,0,0)OB =.设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-.设平面PAM 的法向量为(,,)n x y z =.由0,0AP n AM n ⋅=⋅=得2230(4)0y z ax a y ⎧+=⎪⎨+-=⎪⎩ , 可取2(3(4),3,)n a a a =--所以22223(4)cos 23(4)3a OB n a a a -〈⋅〉=-++ .由已知得3cos 2OB n 〈⋅〉= .所以22223|4|3223(4)3a a a a -=-++ . 解得4a =-(舍去),43a = .所以83434,,333n ⎛⎫=-- ⎪ ⎪⎝⎭ .又(0,2,23)PC =- ,所以3cos ,4PC n 〈〉= .所以PC 与平面PAM 所成角的正弦值为34. 【分析】本题关键在于设M 的坐标,由于M 在xoy 平面内,可以放在xoy 平面去设M 坐标,根据M 点在直线BC 上,可以得到BC 方程,从而设出M 坐标。
巧解立体几何中的存在性问题
巧解立体几何中的存在性问题发布时间:2021-04-20T15:13:42.997Z 来源:《教学与研究》2021年第2期作者:唐义志[导读] 在近些年的立体几何试题中,逐渐出现了一类带有探究和开放性的试题唐义志湖南省道县第一中学摘要:在近些年的立体几何试题中,逐渐出现了一类带有探究和开放性的试题,这类试题本身涉及的点带有显著的运动性和不确定性特征,使用传统的解题方式有着较大的难度。
笔者在几何本人工作经历的基础上,分析当下学生解答立体几何存在性问题的状况,并在文后通过立体讲述了一些立体几何存在性问题的解答技巧,以期为今后立体几何的存在性问题教学解答提供借鉴。
关键词:立体几何;存在性问题;解答技巧1、立体几何存在性问题解决现状当下高中阶段的试题中,立体几何占据的比例相对较大,这类试题在学生空间思维等方面的培养上发挥了关键作用,其中又以点的存在性和位置待定的问题设置为主,问题中通常带有是否存在等字眼,以便告知学生结论有待进一步确定,在解答问题的过程中,渗透了反证法和分析法等解题思路,也是高考中的热门题目[1]。
这类问题的设置能够帮助学生进一步体会空间内直线之间、直线与平面之间、平面之间平行的位置关系,并使用相关定理有效解决在线平行中的存在性问题,。
同时,学生需要将空间层面的转化为平面问题,并使用多种方式寻找结论证明所需的点、线、面。
但是,学生在具体的问题解答过程中,因其基本掌握了直线之间、直线与平面之间、平面之间平行的判定及其性质等知识,具备一定的解题思路,但解答存在性问题通常以特殊点猜想的方式为主,并未做到从深层次上意识到这个特殊点寻找的意义,再加之学生复习中忽视反证法的应用,导致在结论证明不存在的情况下,无法有效进行叙述。
2、巧妙解决立体几何存在性问题的技巧2.1肯定性问题解答即证明符合条件的对象一定存在,其中常见的一类是只要求证明符合条件的几何对象存在即可,对存在对象的数量并不作要求.常见的证明方法有综合法、构造法、反证法等[2]。
19题立体几何存在的主要问题
19题立体几何存在的主要问题:
1、线线垂直、线面垂直、面面垂直关系不清晰,垂直判定定理及性质定理理解不透,应用时条件不足。
2、缺乏空间图形平面化的思想,导致在解直角三角形时线段之间的关系平行、垂直和大小混乱
3、计算能力薄弱,写点的坐标和解直角三角形时计算线段长度出错。
4、解题格式不规范:如建立空间直角坐标系没有证明或交代不清楚,没有在图
形上体现,没有养成下结论的习惯。
复习建议:
1、加强空间立体几何有关的基础知识点的训练,尤其是空间角的求解,逐步提
高学生的空间想象、推理论证、抽象概括和运算求解能力,以及熟练运用化归与转化的数学思想方法,另外在复习中要重视三视图在立体几何解答题中的应用。
2、加强对先证明垂直再建系的题型的训练,规范解题格式。
3、加强折叠问题和存在性问题题型的训练,加强学生对基本几何图形认识的训
练。
4、理顺——将模糊的逻辑关系搞明白,将凌乱的逻辑关系理清楚;②补漏——把缺漏或跳步的地方补起来,所谓“跳步”是指需要用到线面平行与垂直的判定与性质定理推理之处而没有推理过程。
办法之一就是让学生把证明“说出来”。
提高求空间几何“角”得分的途径是:用空间向量程序化地求解:①建系——使二面角的某一个面与坐标面平行或在坐标面上;②确定相关点的坐标,确定相关平面上不共线的两个向量;③设法向量,并建立求法向量的方程组;④“解”方程组求出一个法向量;⑤运用空间向量数量积求角。
立体几何中的存在性问题
作业.(2010·浙江·理·T20)如图,平面PAC⊥平面ABC, △ABC是以AC为斜边的等腰直角三角形.E,F,O分 别是PA,PB,AC的中点,AC=16 , PA=PC =10.
证明:在△ABO内存在一点M使得FM⊥平面BOE, 并求点M到OA,OB的距离.
z P
E
F
A
C
M
O
y
x
B
例3.(2011·福建·理·T20)
Hale Waihona Puke 几何方法:通过构造一C
个过点P且与AO垂直
的平面来确定点的Q
B
位置
AB 3 AQ
PO
M A
Q
例2.(2010·湖北·理·T18)如图,在四面体OABC中,OC ⊥ OA , OC ⊥ OB , ∠ AOB=120°,且OA=OB= OC=1,P为AC中点,证明:在AB上存在一点Q,使得 PQ⊥ OA,并计算AB/AQ的值.
A
FG∥EC
D
B
C
例1.如图,在底面是菱形的四棱锥P-ABCD
中,∠ABC=60 °,PA=AC=1,PB=PD= 2 ,点E在PD
上,且PE:ED=2:1.在棱PC上是否存在一点F,使
BF∥平面AEC ?证明你的结论.
P
A B
G E
F
O
C
思考3:若要确定平面
BFG∥平面AEC ,还需要
另一组平行线,你能通
C1
E
点F为C1D1的中点
A
MD
B
C 几何方法
向量方法
练习.(2010·湖南·理·T18)
如图,在正方体ABCD-A1B1C1D1中,E是DD1的中
点,在棱C1D1上是否存在一点F,使B1F∥平面A1BE ?
立体几何中地存在性问题
高中数学 立体几何 存在性问题专题 1.(天津理17) 如图,在三棱柱中, 是形的中心,,平面,且(Ⅰ)求异面直线AC 与A1B1所成角的余弦值;(Ⅱ)求二面角的正弦值;(Ⅲ)设为棱的中点,点在平面,且平面,求线段的长.本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.满分13分.方法一:如图所示,建立空间直角坐标系,点B 为坐标原点.依题意得(I )解:易得, 于是所以异面直线AC 与A1B1所成角的余弦值为(II )解:易知设平面AA1C1的法向量,则即不妨令可得,111ABC A B C -H 11AA B B 122AA =1C H ⊥11AA B B 1 5.C H =111A AC B --N 11B C M 11AA B B MN ⊥11A B C BM (22,0,0),(0,0,0),(2,2,5)A B C -111(22,22,0),(0,22,0),(2,2,5)A B C 11(2,2,5),(22,0,0)AC A B =--=-u u u r u u u u r 1111112cos ,,3||||322AC A B AC A B AC A B ⋅===⋅⨯u u u r u u u u r u u u r u u u u u r u u u r u u u u r 2.3111(0,22,0),(2,2,5).AA AC ==--u u u r u u u u r (,,)m x y z =11100m A C m AA ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r 2250,220.x y z y ⎧--+=⎪⎨=⎪⎩5,x =(5,0,2)m =同样地,设平面A1B1C1的法向量,则即不妨令可得于是从而所以二面角A —A1C1—B 的正弦值为(III )解:由N 为棱B1C1的中点,得设M (a ,b ,0),则由平面A1B1C1,得即解得故 因此,所以线段BM 的长为方法二:(I )解:由于AC//A1C1,故是异面直线AC 与A1B1所成的角. 因为平面AA1B1B ,又H 为形AA1B1B 的中心,(,,)n x y z =11110,0.n A C n AB ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u ur 0,0.⎧-=⎪⎨-=⎪⎩y =n =2cos ,,||||7m n mn m n ⋅===⋅sin ,m n=).222N(,22MN a b =--u u u u r MN ⊥11110,0.MN A B MN AC ⎧⋅=⎪⎨⋅=⎪⎩uu u u r u u uu r u u u u r u u u ur ()(0,2()(()(0.22a a b ⎧-⋅-=⎪⎪⎨⎪-⋅+-⋅=⎪⎩24a b ⎧=⎪⎪⎨⎪=⎪⎩24M BM =u u u u r ||BM =u u u u r 111C A B ∠1C H ⊥11AA C H =可得 因此 所以异面直线AC 与A1B1所成角的余弦值为 (II )解:连接AC1,易知AC1=B1C1,又由于AA1=B1A1,A1C1=A1=C1,所以≌,过点A 作于点R , 连接B1R ,于是,故为二面角A —A1C1—B1的平面角.在中, 连接AB1,在中, ,从而所以二面角A —A1C1—B1的正弦值为(III )解:因为平面A1B1C1,所以取HB1中点D ,连接ND ,由于N 是棱B1C1中点,所以ND//C1H 且. 又平面AA1B1B ,所以平面AA1B1B ,故又所以平面MND ,连接MD 并延长交A1B1于点E , 则 1111 3.AC B C ==22211111111111112cos .23AC A B B C C A B AC A B +-∠==⋅2.311AC A ∆11B C A ∆11AR A C ⊥111B R AC ⊥1ARB ∠11Rt A RB ∆2111112214sin 221().33B R A B RA B =⋅∠=⋅-=1ARB ∆2221111114,,cos 2AR B R AB AB AR B R ARB AR B R +-==∠=⋅27=-135sin .7ARB ∠=35.MN ⊥11.MN A B ⊥1152ND C H ==1C H ⊥ND ⊥11.ND A B ⊥,MN ND N =I 11A B ⊥111,//.ME A B ME AA ⊥故由 得,延长EM 交AB 于点F ,可得连接NE. 在中,所以可得连接BM ,在中,2.(理20) 如图,在三棱锥中,,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC=8,PO=4,AO=3,OD=2(Ⅰ)证明:AP ⊥BC ;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A-MC-B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由。
立体几何中的存在性问题
立体几何中的存在性问题利用空间向量解决探索性问题例3 如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC =2AA 1,∠ABC =90°,D是BC 的中点.(1)求证:A 1B ∥平面ADC 1;(2)求二面角C 1-AD -C 的余弦值;(3)试问线段A1B 1上是否存在点E ,使AE 与DC 1成60°角?若存在,确定E 点位置;若不存在,说明理由.空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.如图,在三棱锥P —ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC⊥AC ,点D 为BC 的中点;(1)求二面角A —PD —B 的余弦值;(2)在直线AB 上是否存在点M ,使得PM 与平面P AD1所成角的正弦值为,若存在,求出点M 的位置;若不存在,说明理由. 6提醒三点:(1)直线的方向向量和平面的法向量所成角的余弦值的绝对值是线面角的正弦值,而不是余弦值.(2)求二面角除利用法向量外,还可以按照二面角的平面角的定义和空间任意两个向量都是共面向量的知识,我们只要是在二面角的两个半平面内分别作和二面角的棱垂直的向量,并且两个向量的方向均指向棱或者都从棱指向外,那么这两个向量所成的角的大小就是二面角的大小.如图所示【上图】.→→→→(3)对于空间任意一点O 和不共线的三点A ,B ,C ,且有OP =xOA +yOB +zOC (x ,y ,z ∈R ) ,四点P ,A ,→→B ,C 共面的充要条件是x +y +z =1. 空间一点P 位于平面MAB 内⇔存在有序实数对x ,y ,使MP =xMA +→→→→→yMB ,或对空间任一定点O ,有序实数对x ,y ,使OP =OM +xMA +yMB .1.如图,在边长为4的菱形ABCD 中,∠DAB =60°. 点E 、F 分别在边CD 、CB 上,点E 与点C 、D 不重合,EF ⊥AC ,EF ∩AC =O . 沿EF 将△CEF翻折到△PEF 的位置,使平面PEF ⊥平面ABFED .(1)求证:→→BD ⊥平面POA ;(2)设点Q 满足AQ =λQP (λ>0),试探究:当PB 取得最小值时,直线OQ 与平面PBD 所π成角的大小是否一定大于 42.如图,AB 为圆O 的直径,点E ,F 在圆上且EF ∥AB ,矩形ABCD 所在平面和圆O 所在平面垂直,已知AB =2,EF =1.(1)求证:平面ADE ⊥平面BCE ;(2)当AD 的长为何值时,二面角D -EF -B 的大小为60°?。
立体几何存在性问题
立体几何存在性问题学校:___________姓名:___________班级:___________考号:___________一、解答题1.在四棱锥P ABCD -中, PD ⊥平面ABC D , AB DC , AB AD ⊥, 1DC AD ==, 2AB =, 45PAD ∠=︒, E 是PA 的中点, F 在线段AB 上,且满足0CF BD ⋅=.(1)求证: DE 平面PBC ;(2)求二面角F PC B --的余弦值; (3)在线段PA 上是否存在点Q ,使得FQ 与平面PFC 所成角的余弦值是在,求出AQ 的长;若不存在,请说明理由.2.如图,已知长方形ABCD 中,, M 为DC 的中点。
将ADM ∆ 沿AM 折起,使得平面ADM ⊥平面ABCM 。
(1)求证:; (2)若点是线段上的一动点,问点E 在何位置时,二面角的余弦值为55。
3.如图,在四棱锥P—ABCD中,底面ABCD为菱形且∠DAB=60°,O为AD中点.(Ⅰ)若PA=PD,求证:平面POB⊥平面PAD;(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,试问在线段PC上是否存在点M,使二面角M—BO—C的大小为60°,如存在,求的值,如不存在,说明理由.4.如图,在四棱锥中,底面ABCD是直角梯形,侧棱底面ABCD,AB垂直于AD和BC,M为棱SB上的点,,.(1)若M为棱SB的中点,求证:平面SCD;(2)当时,求平面AMC与平面SAB所成的锐二面角的余弦值;(3)在第(2)问条件下,设点N是线段CD上的动点,MN与平面SAB所成的角为 ,求当取最大值时点N的位置.5.如图,在直三棱柱中,平面平面,且.(1)求证: ;(2)若直线 与平面 所成的角为 ,求锐二面角 的大小.6.如图,在平行四边形 中, , , ,四边形 为矩形,平面 平面 , ,点 在线段 上运动,且.(1)当 时,求异面直线 与 所成角的大小; (2)设平面 与平面 所成二面角的大小为 ( ),求 的取值范围.7.如图,在四棱锥 中, 平面 ,四边形 是菱形, , , 是 上任意一点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又
, 为 中点,
又
,
面
又 面,
(2)(i)取 中点 ,连接 , ,则 理由如下:
, 即为所作直线 ,
在 中 、 分别为 、 中点
,且
又
,
且
, 四边形 为平行四边形.
(ii)
,
,
又在 中,
,
又
,
面
,
面
,
,
.
:(1)本题主要考查空间平行垂直位置关系的证明,考查空间几何体体积的计算,意
在考查学生对这些基础知识的掌握能力和空间想象转化能力.(2)对于空间平行垂直位置关 系的证明有几何法和向量法两种方法,空间几何体体积的计算有公式法、割补法和体积变换 法三种方法.
2.(Ⅰ)见解析(Ⅱ) 【解析】试题分析:(1)根据面面平行的性质得到
,
,根据平行关系和长度
关系得到点 是 的中点,点 是 的中点;(2)
,因为
,
所以 详解:
,进而求得体积.
(1)因为平面 平面 ,平面
平面
,
平面
平面
,所以
,又因为
,
所以四边形 是平行四边形,所以
,
即点 是 的中点.
因为平面 平面 ,平面
4.(1)见解析;(2) 【解析】分析:(1)由平面
平面 ,根据面面垂直的性质可得 平面 ,由
面面垂直的判定定理可得结论;(2)取 AD 的中点 O,则 平面
,由
,从而利用棱锥的体积公式可得结果.
详解:(1)证明: .
(2)解:取 AD 的中点 O,则 又易知
,
,则
.
,
所以
,解出
.
点睛:解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之
8.(1)见解析;(2) 【解析】分析:(1)由面面垂直的性质定理得到 ⊥平面
,即
,进而得到平面
平面 ,(2)由等体积法求解,
。
详解:(1)证明:∵四边形 是矩形,∴CD⊥BC.
∵平面 PBC⊥平面 ABCD,平面 PBC∩平面 ABCD=BC,CD 平面 ABCD, ∴CD⊥平面 PBC,∴CD⊥PB. ∵PB⊥PD,CD∩PD=D,CD、PD 平面 PCD,∴PB⊥平面 PCD. ∵PB 平面 PAB,∴平面 PAB⊥平面 PCD. (2)取 BC 的中点 O,连接 OP、OE.
面 ,面
面
,
.
故四边形 是正方形,所以
.
在 中,
,∴
.
,
∴
,∴
∴
.
因为
, 平面 , 平面 .
∴ 平面 ,
平面 ,∴平面
平面 .
(2)在线段 上存在点 ,使得 平面
,
,所以 面
在线段 上取点 ,使得
,连接 .
在 中,因为
,所以
与 相似,所以
又 平面 , 平面 ,所以 平面 .
(3)点 到平面 的距离就是点 到平面 的距离,设 到平面 的距离为 ,利用同
,进而得
利用线面平行的判定定理,即可得到 平面 .
详解:(1)在梯形 中,∵
,
,
,
∴四边形 是等腰梯形,且
,
,
平面 ,
∴ 又∵平面
平面
,∴
.
,又平面
平面
,∴ 平面 .
(2)当
时,
平面 ,在梯形
,∵
,而
,∴
∴
,∴四边形
是平行四边形,∴
,∴ 平面 .
中,设 ,
,又∵
,连接 ,则 平面 , 平面
点睛:本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、 几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1) 证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直; (3)证明线线垂直,需转化为证明线面垂直.
∵ 平面 ,∴
,∴
,
∵
,∴
.
∵平面 PBC⊥平面 ABCD,平面 PBC∩平面 ABCD=BC,PO 平面 PBC, ∴PO⊥平面 ABCD,∵AE 平面 ABCD,∴PO⊥AE.∵∠PEA=90O, ∴PE⊥AE. ∵PO∩PE=P,∴AE⊥平面 POE,∴AE⊥OE. ∵∠C=∠D=90O, ∴∠OEC=∠EAD,
∴
,∴
.
∵
,
,
,∴
,
.
点睛:本题主要考查面面垂直,线面垂直,考查三棱锥体积的求法,考察学生分析解决问题 的能力,考查学生的空间想象能力。
9.(1)见解析;(2)
.
【解析】分析:(1)在梯形 中,利用梯形的性质得
,再根据平面
,利用面面垂直的性质定,即可证得 平面 ;
(2)在梯形 中,设
,连接 ,利用比例式得
角相等可得,
,可得 .
点睛:证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法 在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线 面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质, 即两平面平行,在其中一平面内的直线平行于另一平面.
所以 A1C=A1D=4, 因为 DE∥BC,DE⊥平面 A1DC,
,即 F 是 CD 的中点,
所以 BC⊥平面 A1DC,所以 BC⊥A1C,所以
,
在等腰△A1BE 中,底边 A1B 上的高为
,
所以四棱锥 A1—BCDE 的表面积为 S=S1+
+
+
+
=18+ ×3×4+ ×4×2 + ×6×4+ ×2 ×2 =36+4 +2 . 点睛:本题考查空间中的垂直关系的转化、空间几何体的表面积等知识,意在考查学生的空 间想象能力和数学转化能力.
积法
即可求得结果.
详解:(1)在矩形
中,
,
.
又
平面
,
.
,
平面
.
又
平面 , 平面
平面
.
(2) 为棱 上靠近 的三等分点, 为棱 中点,
,所以 的面积
.
于是四棱锥
的体积
. 点睛:求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问 题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法. ①割补法:求一些不 规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积 法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知 条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的 高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接 计算得到高的数值.
6.(1)见解析;(2)见解析, 【解析】分析: (1) 取 中点 ,连接 , ,先证明
面 ,再证明
.(2) (i)取 中
点 ,连接 , ,则
, 即为所作直线 ,的比.
详解:(1)证明:(1)取 中点 ,连接 ,
为平行四边形即得证. (ii)先
, 为 中点,
的体积.
4.如图 2,已知在四棱锥
中,平面
平面 ,底面 为矩形.
(1)求证:平面
平面 ;
(2)若 5.如图,三棱锥 点.
的三条侧棱两两垂直,
,试求点 到平面 的距离. , , 分别是棱 , 的中
(1)证明:平面
平面 ;
(2)若四面体 的体积为 ,求线段 的长.
6.如图,在四棱锥
中,
,
,
,
.
(1)求证:
中,过点作 作
于 ,可得
,所以
,由面
面 ,可得出
,利用线面垂直的判定定理得 平面 ,
进而可得平面
平面 ;(2)在线段 上取点 ,使得
,连接 ,先证明
与 相似,于是得
,由线面平行的判定定理可得结果;(3)点 到平面 的距
离就是点 到平面 的距离,设 到平面 的距离为 ,利用体积相等可得,
,解得 .
详 解 : (1) 因 为 面
的体积为 ,求四棱锥
8.如图,在四棱锥
中,底面 为矩形,平面
平面
的表面积.
,
.
(1)证明:平面
平面 ;
(2)若
, 为棱 的中点,
,
,求四面体
的体积.
9.如图,在梯形 中,
,
,
且平面
平面 ,点 在线段 上.
,四边形 是矩形,
(1)求证: 平面 ;
(2)当 为何值时, 平面 ?证明你的结论.
10.10.如图,已知菱形 的对角线
10.(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ) 和 的中点,证明见解析.
【解析】分析:(Ⅰ)由菱形的性质可得
,又
平面 ,
所以 平面 ;(Ⅱ)先证明四边形 为平行四边形,可得
. 又由(Ⅰ)得,
平面 , 从而得 平面 ,由 平面 可得结论;(Ⅲ)别取 和 的中点
,由三角形中位线定理以及平行四边形的性质可得
平面
,平面
平面
,
所以
,又因为点 是 的中点,所以点 是 的中点,
综上: 分别是
的中点;
(Ⅱ)因为 所以 平面
,所以 ;又因为
,又因为平面 ,
平面 ,
所以
.
点睛:这个题目考查了面面平行的性质应用,空间几何体的体积的求法,求椎体的体积,一
般直接应用公式底乘以高乘以三分之一,会涉及到点面距离的求法,点面距可以通过建立空
立体几何存在性问题
未命名
一、解答题 1.在多面体