交直流调速试验报告 Microsoft Word 文档
交直流调速实验报告

交直流调速实验报告一、实验目的通过实验掌握交直流调速的原理和方法,了解调速装置的控制原理和运行特性。
二、实验原理三、实验仪器和材料1.可控硅整流装置2.直流电动机3.变频器4.示波器5.接线板及电源线6.实验台四、实验步骤1.将可控硅整流装置、直流电动机和变频器依次连接。
2.将电源线插入电源插座,打开电源开关。
3.使用示波器测量可控硅的触发脉冲信号。
4.调节变频器的频率和输出电压,观察直流电动机的转速变化。
5.记录不同频率和电压下的转速和触发脉冲信号。
五、实验结果和讨论在实验中,我们分别记录了不同频率和电压下直流电动机的转速和可控硅的触发脉冲信号。
通过分析实验数据,我们可以得出以下结论:1.频率对直流电动机的转速有较大影响。
在实验中,当频率较小时,转速相对较低;频率较高时,转速较高。
2.电压对直流电动机的转速也有一定影响。
当电压较低时,转速相对较低;电压较高时,转速较高。
3.可控硅的触发脉冲宽度对转速有直接影响。
脉冲宽度越大,转速越高;脉冲宽度越小,转速越低。
六、实验总结通过本次实验,我们深入了解交直流调速的原理和方法。
同时,我们学会了如何使用可控硅整流装置和变频器进行调速,并通过实验数据分析得出结论。
这对于我们今后的工程实践具有重要的指导意义。
七、存在问题和改进措施在本次实验中1.实验数据的采集和处理方法还不够准确和科学。
2.实验过程中,设备操作和接线方面可能还存在一定的不规范之处。
为了进一步提高实验的准确性和可靠性,我们可以采取以下改进措施:1.在实验中增加数据采集的次数,提高实验的重复性。
2.在实验之前提前做好设备检查,确保设备状态良好。
3.学习更多相关理论知识,加深对实验原理的理解。
交流调速实验报告

实验一单闭环不可逆直流调速系统实验一、实验目的(1)了解单闭环直流调速系统的原理、组成及各主要单元部件的原理。
(2)掌握晶闸管直流调速系统的一般调试过程。
(3)认识闭环反馈控制系统的基本特性。
二、实验所需挂件及附件序号型号备注1 DJK01电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。
2 DJK02 晶闸管主电路3 DJK02-1三相晶闸管触发电路该挂件包含“触发电路”,“正桥功放”,“反桥功放”等几个模块。
4 DJK04电机调速控制实验I 该挂件包含“给定”,“电流调节器”,“速度变换”,“电流反馈与过流保护”等几个模块。
5 DJK08可调电阻、电容箱6 DD03-2电机导轨﹑测速发电机及转速表或者“DD03-3电机导轨﹑光码盘测速系统及数显转速表”7 DJ13-1直流发电机8 DJ15直流并励电动机9 D42 三相可调电阻10 慢扫描示波器自备11 万用表自备225三、实验线路及原理为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。
对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。
按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。
在单闭环系统中,转速单闭环使用较多。
在本装置中,转速单闭环实验是将反映转速变化的电压信号作为反馈信号,经“速度变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移相控制电压U Ct,用作控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。
电机的转速随给定电压变化,电机最高转速由速度调节器的输出限幅所决定,速度调节器采用P(比例)调节对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI(比例积分)调节。
这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围内变化。
直流电动机调速原理及调速特性-报告(20100316修改)

机械工程基础实验
直流电动机调速原理及调速特性
实验报告书
班级:
专业方向:
学号:
姓名:
实验时间:月日,第大节
实作情况:
成绩:
教师签名:
重庆工学院汽车学院
实践教学及技能培训中心
2009年3月
【实验结果分析】
1、查看电动机铭牌,填写下表
2、填写下表,根据下表绘制直流电机机械特性曲线图,并说明电动机转速
与和负载转矩之间的关系。
根据上表绘制机械特性曲线图
3、填写下表,根据下表绘制调节特性曲线图,并说明电动机速度和电枢(供
电)电压之间的关系。
注:该表中电动机速度是测速计所测实际速度。
根据上表绘制调节特性曲线图
【思考题】
1、说明直流电机的机械结构特点,以及应用场合。
2、说明直流电机调速与交流电机调速的区别。
3、什么叫PWM?简述其工作原理。
4、什么是直流电动机的机械特性和调节特性,在实际工程中有何意义?
5、简述直流电动机的机械特性测试方法。
附录:课堂数据记录表
1、
2、
3、
学生学号:学生姓名:教师确认:实验时间:。
交直流调速实验指导书

交直流调速实验指导书中科腾达(北京)科技发展有限公司2014年8月目录实验一晶闸管直流调速系统各主要单元的调试1实验二电压单闭环不可逆直流调速系统调试4实验三带电流截止负反馈的转速单闭环直流调速系统调试8实验四电压、电流双闭环不可逆直流调速系统调试12实验五转速、电流双闭环不可逆直流调速系统调试16实验六模拟式直流调速装置514C实验21实验七数字式直流调速装置6RA70实验23实验八交流调速装置MM420实验27实验九矢量控制交流调速装置(CUVC)单机实验32实验一晶闸管直流调速系统各主要单元的调试一、实验目的(1) 熟悉直流调速系统各主要单元部件的工作原理。
(2) 掌握直流调速系统各主要单元部件的调试步骤和方法。
二、实验所需挂件及附件三、实验内容(1)调节器Ⅰ的调试(2)调节器Ⅱ的调试(3)反号器的调试(4)零电平检测的调试(5)转矩极性鉴别的调试(6)逻辑控制的调试四、实验方法(1)“调节器Ⅰ”的调试①调零将PMT-04中“调节器Ⅰ”所有输入端接地,再将比例增益调节电位器RP1顺时针旋到底,用导线将“5”、“6”两端短接,使“调节器Ⅰ”成为P (比例)调节器。
调节面板上的调零电位器RP2,用万用表的毫伏档测量调节器Ⅰ“7”端的输出,使调节器的输出电压尽可能接近于零。
②调整输出正、负限幅值把“5”、“6” 两端短接线去掉,此时调节器Ⅰ成为PI (比例积分)调节器,然后将给定输出端接到调节器Ⅰ的“3”端,当加一定的正给定时,调整负限幅电位器RP4,观察输出负电压的变化,当调节器输入端加负给定时,调整正限幅电位器RP3,观察调节器输出正电压的变化。
③测定输入输出特性再将反馈网络中的电容短接(将“5”、“6”端短接),使调节器Ⅰ为P(比例)调节器,在调节器的输入端分别逐渐加入正、负电压,测出相应的输出电压,直至输出限幅,并画出曲线。
④观察PI特性拆除“5”、“6”两端短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律。
zlj交直流调速实训报告

交直流调速实训报告一.实训题目:双闭环直流调速系统的MATLAB建模与仿真二.实训目的:1.了解双闭环直流调速系统2.掌握MATLAB软件的使用方法3.使用MATLAB构建双闭环调速系统的仿真模型4.绘制出电流、转速波形曲线三.电机参数:额定电压U=220V 额定电流I=136A 转速n=1500r/min晶闸管装置放大倍数Ks=62.5 电枢回路总电阻Ra=0.863电流反馈系统=0.028V/A 转速反馈系统=0.0041V/(r/min)电流调节器参数Kc=1.15 c=0.028s转速调节器参数Ks=20.12 s=0.092s双闭环直流调速系统与单闭环直流调速系统的区别也是针对控制电路和控制参数。
双闭环直流调速系统包括电流反馈环和转速反馈环两个闭环系统,它比单闭环直流调速系统又增加了一个电流反馈环部分,实现电动机对电流的调节作用。
电流转速双闭环直流调速系统分别采用两个有限幅的PI调节器进行电流环和转速环的调节。
控制电路由给定信号、转速PI调节器、电流PI调节器、限幅器、偏置、反向器、转速反馈、电流反馈等环节构成。
本例中给定值设置为120rad/s。
转速反馈系数设为1,转速PI调节器的比例系数设为40,积分系数设为0.01。
电流反馈系数设为0.25,电流PI调节器的比例系数设为10,积分系数设为0.1 。
四、实验内容:1. 双闭环系统的组成调速系统中设置了两个调节器,分别调节转速和电流。
结构原理图如图1所示,图中符号的意义分别为:ASR-转速调节器;ACR-电流调节器;TG-测速发电机;TA-电流互感器;UPE-电力电子变换器U*n;-转速给定电压;Un-转速反馈电压;U*i-电流给定电压;Ui-电流反馈电压。
2. 转速、电流双闭环调节系统的特点在双闭环调速系统中,若将转速反馈和电流反馈信号同时引入一个调节器的输入端,则两种反馈量会互相牵制,不可能获得理想效果,因此在系统中设置了两个调节器,分别控制转速和电流,并且将两个调节器实行串级连接。
交直流调速系统实验三(直流PWM)

七、实验方法
1.主控屏设置 打开总电源,调速电源选择开关置于“直流调速”。
2.DK03组件挂箱调试 (1)FBS调试 连接速度反馈,将RP1调至中间位置。 (2)ASR调试 “4”端接DZS板上的“3”端,FBS输出接 “1”端,Ug接输入端“2”,C9接人4μF电容,通过RP4调 零,调节RP1及RP2使限幅为±2.5V。 (3)AR调试 调节RP1使输出为1:1,AR “1”端接TA“9”端 输出。
n(r/ 正 min) 转 Ug(
V)
n(r/ 反 min) 转 Ug(
V)Байду номын сангаас
n(r/min) 1400
电 机
Id(A)
正 转 n(r/min) 800
Id(A)
n(r/min) -
1400
电 机
Id(A)
反 转 n(r/min) -800
Id(A)
6.动态波形观测 (1)给定值阶跃变化 正向启动正向停车、反向 启动反向停车、正向启动反向停车、反向启动正 向停车时的id、n动态波形; (2)电机稳定运行于1500r/min,Ug不变,突加、 突减负载(20%Ied~100%Ied)时的id、n动态波形; (3)改变ASR、ACR参数,观测动态波形变化。
五、预习要求
1.复习电机控制(直流调速系统)教材中有关 双闭环可逆直流PWM调速系统、闭环反馈控制 系统的内容;
2.学习教材中有关内容,掌握双闭环可逆直流 PWM调速系统各环节的工作原理; 3.根据图4-5-1,画出实验系统的详细接线图, 并理解各控制单元在调速系统中的作用。
六、思考题
1.双闭环可逆直流PWM调速系统中开通延迟环 节的作用是什么? 2.比较直流PWM调速系统与晶闸管直流调速系 统的特点。
实验报告

生产实习实验报告(交直流调速、PLC)同组人:于潮115212牛少雄115362李子康115326张振宇096026实验三不可逆单闭环直流调速系统静特性的研究一.实验目的1.研究晶闸管直流电动机调速系统在反馈控制下的工作。
2.研究直流调速系统中速度调节器ASR 的工作及其对系统静特性的影响。
3.学习反馈控制系统的调试技术。
二.预习要求1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。
2.弄清不可逆单闭环直流调速系统的工作原理。
三.实验线路及原理见图1-7。
四.实验设备及仪表1.教学实验台主控制屏。
2.NMCL—33 组件3.NMEL—03 组件4.NMCL—18 组件5.电机导轨及测速发电机(或光电编码器)、直流发电机M01 6.直流电动机M03 7.双踪示波器8.万用表五.注意事项1.直流电动机工作前,必须先加上直流激磁。
2.接入ASR 构成转速负反馈时,为了防止振荡,可预先把ASR 的RP3 电位器逆时针旋到底,使调节器放大倍数小,同时,ASR 的“5”、“6”端接入可调电容(预置7μF)。
3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。
4.三相主电源连线时需注意,不可换错相序。
5.系统开环连接时,不允许突加给定信号Ug起动电机。
6.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。
7.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。
六.实验内容1.移相触发电路的调试(主电路未通电)(a)用示波器观察NMCL—33 的双脉冲观察孔,应有双脉冲,且间隔均匀,幅值相同;观察每个晶闸管的控制极、阴极电压波形,应有幅值为1V~2V 的双脉冲。
(b)触发电路输出脉冲应在30°~90°范围内可调。
可通过对偏移电压调节单位器及ASR输出电压的调整实现。
例如:使ASR 输出为0V,调节偏移电压,实现α=90°;再保持偏移电压不变,调节ASR 的限幅电位器RP1,使α=30°。
直流电动机调速实验报告

直流电动机调速实验报告摘要:本次实验通过对直流电动机调速系统的设计与搭建,探索了采用不同控制方法对电动机进行调速的效果与特性。
通过实验验证,得出了电流调速和电压调速方法在直流电动机调速中的应用特点和优缺点。
一、引言直流电动机是一种广泛应用于工业生产中的电动机,其具有调速范围广、响应快、工作可靠等特点。
直流电动机调速是工业自动控制系统中的常见问题,其调速性能直接影响到生产设备的工作效率和质量。
因此,对直流电动机调速系统进行研究与实验具有重要的意义。
二、实验目的1.熟悉直流电动机的基本结构和工作原理;2.掌握电流调速和电压调速在直流电动机调速中的应用特点;3.进行实验验证,分析电流调速和电压调速的优缺点。
三、实验原理直流电动机的调速方法主要包括电流调速和电压调速两种。
电流调速通过改变电机的输入电流来调节电机的转速,而电压调速则是通过改变电机的输入电压来调节电机的转速。
电流调速适用于负载变化较大的场合,而电压调速适用于负载稳定的场合。
四、实验设备与材料1.直流电动机;2.调速器;3.控制器;4.多用表;5.实验电路板等。
五、实验步骤1.搭建电流调速实验电路,连接电动机、调速器和控制器;2.按照实验要求调节控制器的参数;3.打开电源,设置控制器的输入信号;4.在实验过程中记录电机的转速、电流和输出功率等参数;5.将实验数据整理并进行分析。
六、实验结果与讨论根据实验数据,绘制了电流调速和电压调速的转速-负载特性曲线。
分析实验数据发现,电流调速方法在负载变化较大时,保持了较稳定的转速,且响应速度较快。
而电压调速方法在负载较稳定时能够保持较好的速度稳定性,但对于负载变化较大的情况,则转速会有较大波动。
七、结论通过本次实验研究发现,电流调速和电压调速方法在直流电动机调速中具有不同的应用特点和优缺点。
电流调速适用于负载变化较大的场合,能够保持转速的稳定性和响应速度;而电压调速适用于负载较稳定的场合,能够保持较好的转速稳定性。
交直流调速系统实验五(交流串级)

六、实验报告
1.根据实验数据,画出开环、闭环系统静特性 n=f(Iβ),并进行比较。 2.根据动态波形,分析系统的动态过程。
七、注意事项
1.实验过程中应确保β在30°~90°的范围内变 化,不得超过此范围。
2.逆变变压器为三相组式变压器,其副边三相 电压应对称。 逆变变压器原边A、B、C分别接 A2、B2、C2,X、Y、Z短接;Xm、Ym、Zm接 逆变桥,xm、ym、zm短接。
0
0.3
500
0.35 0.4 .
n1=1000r/m
Iβ n
0
0.3
500
0.35 0.4
相关图形
n1
n2
Iβ
Iβ
4.双闭环系统调试 (1)速度反馈系数,电流反馈系数的整定: 承上开环系 统时,增大U给定使n=1000r/m测U给定,调FBS板上RP1 电位器,并使其2端输出等于U给定,同时调整电压极性为 负;保持U给定,调RG增大负载,使Iβ=0.4,测FBC板上2 端子输出电压,使其等于6V (2)ASR整定:承上,分断主电路,将ASR输出负限幅 值设定为6V。 (3)系统调试:将系统接成双闭环串接调速系统如图, 系统中ASR、ACR接成PI调节器,其中C=0.7~1uf。 U给 定=0,合上主电路,再增大U给定升速,测n1=500r/m, n2=1000r/m时的静特性,并记录(表格同开环)。 (4)动态特性测试:用示波器扫描观察并记录n=500r/m 时系统突加给定起动电机时的转速n(t),定子电流I(t) 动态波形。
系统原理图
四、实验设备及仪器
1.主控制屏DK01 2.三相绕线式异步电动机-直流发电机-测速发电 机组
3.DK02、DK03挂箱 4.DK14三相组式变压器挂箱 5.滑线电阻器 6.DK15可调电容挂箱 7.TD4651双踪慢扫描示波器 8.万用表
直流调速电机实验报告

一、实验目的1. 理解直流调速电机的工作原理和调速方法。
2. 掌握直流调速电机的调速性能指标及其测试方法。
3. 熟悉直流调速电机的驱动电路和控制系统。
4. 培养实验操作技能和数据分析能力。
二、实验仪器与设备1. 直流调速电机:一台2. 可调直流电源:一台3. 电机转速测量仪:一台4. 电流表:一台5. 电压表:一台6. 实验台:一套三、实验原理直流调速电机是通过改变电枢电压或励磁电流来调节电机转速的。
本实验采用改变电枢电压的方式来实现调速。
四、实验内容与步骤1. 实验一:直流调速电机调速性能测试(1)连接实验电路,确保接线正确无误。
(2)将可调直流电源输出电压调至一定值,启动电机。
(3)使用电机转速测量仪测量电机转速。
(4)改变可调直流电源输出电压,重复步骤(3),记录不同电压下的电机转速。
(5)绘制电机转速与电压的关系曲线。
2. 实验二:直流调速电机驱动电路与控制系统测试(1)连接实验电路,确保接线正确无误。
(2)启动电机,观察电机正反转及转速。
(3)调整驱动电路中的PWM波占空比,观察电机转速变化。
(4)改变PWM波频率,观察电机转速变化。
(5)绘制电机转速与PWM波占空比、频率的关系曲线。
五、实验结果与分析1. 实验一结果分析根据实验一的数据,绘制电机转速与电压的关系曲线。
分析曲线,得出以下结论:(1)电机转速与电枢电压成正比关系。
(2)电机转速存在最大值和最小值,分别为电机空载转速和堵转转速。
2. 实验二结果分析根据实验二的数据,绘制电机转速与PWM波占空比、频率的关系曲线。
分析曲线,得出以下结论:(1)电机转速与PWM波占空比成正比关系。
(2)电机转速与PWM波频率成反比关系。
(3)PWM波频率过高或过低都会导致电机转速不稳定。
六、实验总结1. 通过本次实验,掌握了直流调速电机的工作原理和调速方法。
2. 熟悉了直流调速电机的调速性能指标及其测试方法。
3. 掌握了直流调速电机的驱动电路和控制系统。
交流转直流实验报告(3篇)

第1篇一、实验目的本次实验旨在通过搭建交流转直流电路,验证交流电到直流电转换的原理,并了解整流、滤波、稳压等电路元件在转换过程中的作用。
二、实验原理交流电(AC)与直流电(DC)的主要区别在于电流的方向和大小随时间的变化。
交流电的方向和大小随时间周期性变化,而直流电则保持恒定。
将交流电转换为直流电的过程称为整流,常用的整流方法有半波整流、全波整流和桥式整流等。
本实验采用桥式整流电路,将交流电转换为脉动的直流电。
桥式整流电路由四个二极管组成,当交流电压为正半周时,二极管D1和D3导通,电流从电源正极流向负载;当交流电压为负半周时,二极管D2和D4导通,电流从电源负极流向负载。
经过整流后的脉动直流电通过滤波电路(通常为电容滤波)去除交流成分,得到较为平滑的直流电。
最后,通过稳压电路(如三端稳压器)进一步稳定输出电压。
三、实验器材1. 交流电源:220V,50Hz2. 交流电压表3. 直流电压表4. 桥式整流电路板5. 滤波电容(1000uF,25V)6. 三端稳压器(7824)7. 负载电阻(10Ω,1W)8. 连接线9. 电源插座四、实验步骤1. 将交流电源接入桥式整流电路板。
2. 将交流电压表并联在整流电路板的输入端,测量交流电压。
3. 将直流电压表并联在整流电路板的输出端,测量整流后的脉动直流电压。
4. 在整流电路板的输出端接入滤波电容,观察滤波后的直流电压。
5. 在滤波电容后接入三端稳压器,观察稳压后的直流电压。
6. 在稳压电路后接入负载电阻,观察负载电阻上的电压和电流。
五、实验数据1. 交流电压:220V2. 整流后脉动直流电压:约310V3. 滤波后直流电压:约280V4. 稳压后直流电压:24V5. 负载电阻上的电压:24V6. 负载电阻上的电流:2.4A六、实验结果与分析1. 实验结果与理论分析基本一致,桥式整流电路能将交流电转换为脉动直流电,滤波电容和稳压器能进一步平滑和稳定输出电压。
调速器试验报告范文

调速器试验报告范文一、实验目的1.了解调速器的基本原理和结构。
2.熟悉调速器的安装和调试。
3.掌握调速器的工作性能和调整方法。
二、实验仪器与设备1.调速器及其配件一套。
2.凸轮轴及其配件一套。
3.示波器一台。
4.测试电机一台。
三、实验原理调速器是控制发动机转速的装置,主要由调速器本体和凸轮轴组成。
凸轮轴上设有调速器控制机构和作动机构。
调速器控制机构是调整凸轮轴转速的装置,作动机构是实现调速器控制机构运动的装置。
四、实验步骤1.将调速器与凸轮轴组装在一起,确保连接牢固。
2.将示波器与调速器连接,调节示波器的参数,使其能够正确显示调速器输出信号。
3.连接测试电机与调速器,调节测试电机的转速。
4.将示波器的显示结果与测试电机的转速进行对比,观察调速器的工作性能和调整方法。
五、实验数据分析1.测试电机转速与示波器显示结果对比表测试电机转速(rpm),示波器显示结果----------------------,---------------1000,9852000,19803000,29654000,39525000,49382.调速器的工作性能分析根据实验数据可得,调速器的输出信号与测试电机的转速基本一致,说明调速器具有较好的工作性能,能够准确控制发动机的转速。
3.调整方法分析通过对示波器的参数进行调节,可以获得更精确的调速器输出信号。
同时,可以通过调节凸轮轴的位置和速度,来调整调速器的工作性能。
六、实验结论调速器是一种能够准确控制发动机转速的装置,具有良好的工作性能和调整能力。
实验结果表明,调速器的输出信号与测试电机的转速基本一致,能够满足实际需求。
七、实验总结通过本次实验,我们深入了解了调速器的基本原理和结构,并通过实验掌握了调速器的安装和调试方法。
通过对示波器的显示结果进行分析,我们进一步了解了调速器的工作性能和调整方法。
这对我们的学习和实践具有重要意义,为今后的研究和应用奠定了基础。
pwm直流电机调速实验报告

pwm直流电机调速实验报告PWM控制直流电机实验报告PWM控制直流电机实验报告PWM控制直流电机实验一、实验目的1、熟悉PWM调制的原理和运用。
2、熟悉直流电机的工作原理。
3、能够读懂和编写直流电机的控制程序。
二、实验原理:运动控制系统是以机械运动的驱动设备??电机为控制对象,以控制器为核心,以电力电子器件及功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。
这类系统控制电机的转矩、转速和转角,将电能转换为机械能,实现运动控制的运动要求。
可以看出,控制技术的发展是通过电机实现系统的要求,电机的进步带来了对驱动和控制的要求。
电机的发展和控制、驱动技术的不断成熟,使运动控制经历了不同的发展阶段。
1、直流电机的工作原理: 直流电机的原理图图中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。
转动部分有环形铁心和绕在环形铁心上的绕组。
(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的)。
上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。
定子与转子之间有一气隙。
在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。
换向片之间互相绝缘,由换向片构成的整体称为换向器。
换向器固定在转轴上,换向片与转轴之间亦互相绝缘。
在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。
当给电刷加一直流电压,绕组线圈中就有电流流过,由电磁力定律可知导体会受到电磁力作用。
导体处于N极下与电刷A接触电流向里流,产生电磁力矩为逆时针;导体处于S极下与电刷B接触电流向外流,产生电磁力矩仍为逆时针。
转子在该电磁力矩作用下开始旋转。
2、PWM调制原理脉冲宽度调节(PWM)是英文Pulse Width Modulation的缩写,简称脉宽调制。
直流电机PWM 调速实验报告

直流电机PWM调速实验报告学院:专业:机械设计制造及其自动化姓名:班级:学号:指导老师:直流电机PWM调速实验一、实验目的:1、掌握脉宽调制的方法;2、用程序实现脉宽调制,并对直流电机进行调速控制二、实验设备:PC机一台,单片机最小系统,驱动板,直流电机,连接导线等三、实验原理:1、PWM(Pulse Width Modulation)简称脉宽调制。
即,通过改变输出脉冲的占空比,实现对直流电机进行调速控制。
2、实验线路图:四、实验内容:1、利用实验时提供的单片机应用系统及直流电机驱动电路板,编制控制程序,实现直流电机PWM调速控制。
2、连接实验电路,观察PWM调控速度控制,实现的加速、减速等调速控制。
五、实验步骤:1、按系统电路图连线,调试完成;2、开启单片机,按下键盘启动按钮,电机正常旋转;3、按动键盘加速、减速、正转、反转、停止按键,分别实现预定功能。
4、实验完成,收拾实验器械,整理。
六、实验程序:#include<reg51.h>#define TH0_TL0 (65536-1000)//设定中断的间隔时长unsigned char count0 = 50;//低电平的占空比unsigned char count1 = 0;//高电平的占空比bit Flag = 1;//电机正反转标志位,1正转,0反转sbitKey_add=P2 ^ 0; //电机减速sbitKey_dec=P2 ^ 1; //电机加速sbitKey_turn=P2 ^ 2; //电机换向sbit PWM1=P2^6;//PWM 通道1,反转脉冲sbit PWM2=P2^7;//PWM 通道2,正转脉冲unsigned char Time_delay;/************函数声明**************/void Delay(unsigned char x);voidMotor_speed_high(void);voidMotor_speed_low(void);voidMotor_turn(void);void Timer0_init(void);/****************延时处理**********************/void Delay(unsigned char x){Time_delay = x;while(Time_delay != 0);//等待中断,可减少PWM输出时间间隔}/*******按键处理加pwm占空比,电机加速**********/voidMotor_speed_high(void)//{if(Key_add==0)Delay(10);if(Key_add==0){count0 += 5;if(count0 >= 100){count0 = 100;}}while(!Key_add);//等待键松开}}/******按键处理减pwm占空比,电机减速*****/ voidMotor_speed_low(void){if(Key_dec==0){Delay(10);if(Key_dec==0){ count0 -= 5;if(count0 <= 0){count0 = 0; }}while(!Key_dec );}}/************电机正反向控制**************/ voidMotor_turn(void){if(Key_turn == 0){Delay(10);if(Key_turn == 0){Flag = ~Flag; }while(!Key_turn);}/***********定时器0初始化***********/void Timer0_init(void){TMOD=0x01; //定时器0工作于方式1TH0=TH0_TL0/256;TL0=TH0_TL0%256;TR0=1;ET0=1;EA=1;}/*********主函数********************/void main(void){Timer0_init();while(1){Motor_turn();Motor_speed_high();Motor_speed_low();}}/**************定时0中断处理******************/ void Timer0_int(void) interrupt 1 using 1{TR0 = 0;//设置定时器初值期间,关闭定时器TL0 = TH0_TL0 % 256;TH0 = TH0_TL0 / 256 ;//定时器装初值TR0 = 1;if(Time_delay != 0)//延时函数用{Time_delay--;}if(Flag == 1)//电机正转{ PWM1 = 0;if(++count1 < count0){PWM2 = 1;}elsePWM2 = 0;if(count1 >= 100){count1=0; }}else //电机反转{PWM2 = 0;if(++count1 < count0){ PWM1 = 1;}else PWM1 = 0;if(count1 >= 100){ count1=0;}七、实验心得:此次实验,不仅锻炼了我们的独立思考和动手能力。
《交流调速》实验指导书8页word

实验一三相交流调压调速实验一、实验目的1、了解晶闸管三相交流调压电路结构,熟悉掌握工作原理2、熟悉改变异步电动机定子电压进行调速的原理与方法二、实验内容1、三相交流调压器触发电路的调试2、三相交流调压电路带电动机负载三、实验仪器1、ZYDL01 电源控制屏2、ZYDL02 三相变流桥路3、ZYDL03 晶闸管触发电路(单相并联逆变触发电路)4、ZYDL04 给定、负载及吸收电路5、ZYDT13 三相可调电阻900Ω6、ZYDJ11三相鼠笼式异步电动机7、双踪示波器自备8、万用表自备9、测速发电机及转速表四、实验原理图1-1三相交流调压实验线路图交流调压器应采用宽脉冲进行触发。
实验装置中使用后沿固定、前沿可变的宽脉冲链。
实验线路如图1-1所示。
图中晶闸管均在ZYDL02上,其用正桥,三个电阻可利用ZYDT13三相可调电阻接成三相负载,其所用的交流表均在控制屏的面板上。
电路调试完毕后,再把三相可调电阻换成ZYDJ11三相鼠笼式异步电动机,了解改变异步电动机定子电压进行调速的原理与方法。
五、实验注意事项1、双踪示波器有两个探头,可同时观测两路信号,但这两个探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电器短路。
为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。
当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。
2、为了防止过流,启动时将负载电阻调至最大。
实验中触发脉冲从外部接入ZYDL02面板上晶闸管的门极和阴极,此时应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关断开,并将U1f 及U1r悬空,避免误触发。
3、为避免晶闸管意外损坏,应注意:1)在主电路未接通时,首先要调试触发电路,只有触发电路工作正常后,才可接通主电路。
交直流调速实验报告

实验报告册专业:班级:姓名:学号:课程:电力传动控制系统实验项目名称: 开环直流调速系统的仿真实验 实验时间:5-13—5-20 同组人:实验报告评分:一、预习报告(实验课前了解实验目的,预习实验原理、实验步骤):1、实验目的(简述):1. 掌握开环直流调速系统的原理;2. 掌握利用simulink 编程进行仿真的方法。
2、实验原理(简述):直流电动机的转速方程为:a aeU RI n C -=Φ (1)从转速方程可以看出,调节电枢供电电压U a 即可实现调速,这种调速方法的优点是既能连续平滑调速,又有较大的调速范围,且机械特性也很硬。
开环直流调速系统的电气原理图如图1.1所示。
三相晶闸管桥式整流电路经平波电抗器L 为直流电动机电枢供电,通过改变触发器移相控制信号U c ,可以调节晶闸管的触发角α,从而改变整流电路的输出电压平均值U d ,实现直流电动机的调速。
1-5 V-M 系统的结构示意图AC~图1.1 开环直流调速系统电气原理图开环直流调速系统数据直流电动机额定参数:U N=220V,I N=136A,n N=1460r/min,四极,R a=0.21Ω,GD2=22.5N·m2。
励磁电压U f=220V,励磁电流I f=1.5A。
三相桥式整流器内阻为R rec=0.5Ω。
平波电抗器L d=20mH。
3、实验步骤:1.掌握直流电动机调压调速的原理。
2.分析三相桥式整流电路中触发角α与输出直流电压平均值之间的关系。
3.根据开环直流调速系统电气原理图,编制Simulink实验程序,上机调试,记录结果。
4.分析实验结果,完成书面实验报告,并完成相应的思考题。
二、实验数据(记录相应的表格或图表):1、实验数据表格:1)设置模块参数①供电电源电压②电动机参数励磁电阻:励磁电感在恒定磁场控制是可取“0”。
电枢电阻:电枢电感由下式估算:电枢绕组和励磁绕组互感:因为所以电动机转动惯量③额定负载转矩④模型参考数见表1—1表1.2直流电动机开环调速系统模型参数2)设置仿真参数:仿真算法ode15a,仿真时间1.5S,电动机空载启动,启动0.5s后加额定负载T L=171.4N.m2、实验图表:1)直流电动机开环调速系统仿真图如下图1.32)启动仿真并观察结果:仿真的结果如图1.3所示。
交直流调速报告

交直流调速系统综合实验报告姓名:班级:学号:设计题目: PWM 直流电源驱动的双闭环直流调速仿真实验时间: 2016年 7月17日综合实验成绩:交直流调系统综合实验课程设计任务书一、基本数据在本实验的双闭环直流调速系统中,直流电机的参数为额定功率(Kw):学生学号*2额定电压:200V额定转速:1000r/min空载转速:1100r/min转动惯量:学号*0.05kg·m2母线电压:300V变流器:采用H桥,双极可逆PWM驱动;开关频率为10KHz;二、计算以下参数已知忽略主电路中除电枢绕组以外的电机电阻和电感;转动惯量: GD2=0.05kg·m*17=0.85kg·m2;飞轮惯量: GD2=0.05kg·m*17*4*9.8=33.32kg·m2;电流滤波器时间常数: Toi=0.4ms;转速滤波器时间常数: Ton=1ms;额定功率: PN =17*2=34KW;额定电压: UN=200V;电磁时间常数: Tl=Ta=0.011s;ASR的限幅值: Uim=10V;ACR的限幅值: Uctm=10V;求得额定电流: IN=934A;反电动势系数: Ce=0.182;转矩系数: CM=9.55*0.182=1.74;电流反馈系数:α=1;转速反馈系数:β=1;电枢绕组电阻: Ra=0.01927 Ω;电枢绕组电感: La=Ra*Tl=0.000212H;整流器平均失控时间:Ts=0.00005s;机电时间常数: Tm=0.00549s;整流器的放大倍数: Ks=17;电流环合并处理: T∑i =Ts+Toi=0.00045s;三、系统框图本仿真实验所涉及的双闭环调速系统的控制系统框图如图1所示。
图1 双闭环调速系统的控制系统框图在控制系统中,转速调节器是调速系统的主导调节器,它使转速n很快地跟随给定电压变化,稳态时可减小转速误差,使用PI调节器,则可实现无静差;对负载变化起抗扰作用;其输出限幅值决定电机允许的最大电流。
关于直流和交流电子的实验报告

电气与电子信息工程学院《控制系统课程设计》课程设计报告名称:直流调速系统设计及仿真和直接转矩控制系统的建模与仿真专业名称:电气工程及其自动化班级:电气工程及其自动化专升本(2)班学号: 201520210238 姓名:金诗琦指导教师:胡学芝、陈学珍设计地点: K2-414、306控制系统设计与仿真成绩评定表指导教师签字:课程设计任务书2016~2017学年第一学期学生姓名: 金诗琦 专业班级: 电气工程及其自动化专升本(2)级 指导教师:胡学芝 、陈学珍 工作部门: 电气学院一、课程设计题目:直流调速系统设计及仿真和直接转矩控制系统的建模与仿真二、设计目的:《控制系统设计与仿真》是继“自动控制系统”课之后开设的实践性环节课程。
由于它是一门理论深、综合性强的专业课,单是学习理论而不进行实践将不利于知识的接受及综合应用。
本课程设计将起到从理论过渡到实践的桥梁作用,通过该环节训练达到下述教学目的:1、通过课程设计,使学生进一步巩固、深化和扩充在交直流调速及相关课方面的基本知识、基本理论和基本技能,达到培养学生独立思考、分析和解决问题的能力。
2、通过课程设计,让学生独立完成一项直流或交流调速系统课题的基本设计工作,使学生熟悉设计过程,了解设计步骤,达到培养学生综合应用所学知识能力、培养学生实际查阅相关设计资料能力的目的、培养学生工程绘画和编写设计说明书的能力。
3、通过课程设计,提高学生理论联系实际,综合分析和解决实际工程问题的能力。
通过它使学生理论联系实际,以实际系统作为实例,对系统进行分析设计,掌握控制系统设计必须遵循的原则、基本内容、设计程序、设计规范、设计步骤方法及系统调试步骤。
通过设计培养学生严肃认真、一丝不苟和实事求是的工作作风。
培养学生的创新意识和创新精神,为今后走向工作岗位从事技术打下良好基础。
三、课程设计内容(含技术指标)1.直流调速系统设计及仿真题目和设计要求:(直流调速系统选项一题)(一)直流调速系统的设计选题1(2)技术数据1.电枢回路总电阻取R=2Ra ;总飞轮力矩:225.2a GD GD =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昆明学院实验报告册专业:电气工程及其自动化班级:15 电二姓名:**学号:************课程:交直流调速控制系统昆明学院自动控制与机械工程学院实验项目名称:开环直流调速系统的仿真实验 实验时间: 同组人: 实验报告评分:一、预习报告(实验课前了解实验目的,预习实验原理、实验步骤):1、实验目的(简述):1. 掌握开环直流调速系统的原理;2. 掌握利用simulink 编程进行仿真的方法。
2、实验原理(简述):直流电动机的转速方程为:a ae U RI n C -=Φ(1)从转速方程可以看出,调节电枢供电电压U a 即可实现调速,这种调速方法的优点是既能连续平滑调速,又有较大的调速范围,且机械特性也很硬。
开环直流调速系统的电气原理图如图1所示。
三相晶闸管桥式整流电路经平波电抗器L 为直流电动机电枢供电,通过改变触发器移相控制信号U c ,可以调节晶闸管的触发角α,从而改变整流电路的输出电压平均值U d ,实现直流电动机的调速。
1-5 V-M 系统的结构示意图AC~图1 开环直流调速系统电气原理图3、实验步骤:1.根据开环直流调速系统电气原理图,编制Simulink 实验程序,上机调试。
2.固定负载,改变触发角α,观察整流器输出直流电压平均值的变化情况,以及电动机输出转速的变化情况。
3.固定触发角α,增加负载扰动,观察电动机输出转速的变化情况。
4.分析实验结果,完成书面实验报告,并完成相应的思考题。
二、实验数据(记录相应的表格或图表,注意图形标注的完整性):1、 绘制不同触发角(30o 和60o )对应的三相桥式整流装置输出电压平均值曲线。
2、绘制相同负载,不同触发角(30o )对应的直流电动机转速曲线。
3、绘制相同触发角(60o ),不同负载转矩对应的直流电动机转速曲线。
4、绘制不同负载转矩对应的直流电动机电枢电流的波形。
time/sU d /Vtime/sUd /Vtime/sn /m i ntime/sn /m i n三、实验思考(完成相应的实验思考题):1、分析输出直流电压平均值U d 随三相桥式整流电路触发角α变化的情况。
由公式可得: 2cos 145.0)cos 1(22)(sin 221222αατττα+=+==⎰U U U U wt wtd d2、分析开环直流调速系统转速n 随三相桥式整流电路输出直流电压平均值U d 变化的情况。
由公式可得:n =U d −I d RK e3、分析开环直流调速系统转速n 随负载转矩T L 变化的情况。
由公式可得:TKK n T KK KU eTee TeesRRn -=-=0γ-K T 电动机在额定磁通下的转矩系数:Φ=N T T C K-n理想空载转速,与电压系数γ成正比:CU nes γ=附:开环直流调速系统数据直流电动机额定参数:U N =220V ,I N =136A ,n N =1460r/min ,四极,R a =0.21Ω,GD 2=22.5N·m 2。
励磁time/sn /m i nT=171.4N/min/stine/sn /m i nT=300N/min电压U f =220V ,励磁电流I f =1.5A 。
三相桥式整流器内阻为R rec =0.5Ω。
平波电抗器L d =20mH 。
实验项目名称:转速闭环控制的直流调速系统仿真实验 实验时间: 同组人: 实验报告评分:一、预习报告(实验课前了解实验目的,预习实验原理、实验步骤):1、实验目的(简述):1. 掌握转速闭环控制的直流调速系统原理; 2. 掌握利用simulink 编程进行仿真的方法。
2、实验原理(简述):1. 直流电动机的调压调速原理从直流电动机的转速方程可以看出,调节电枢供电电压U a 即可实现调速。
2. 晶闸管装置整流原理三相晶闸管桥式整流电路经平波电抗器L 为直流电动机电枢供电,通过改变触发器移相控制信号U c ,可以调节晶闸管的触发角α,从而改变整流电路的输出电压平均值U d ,实现直流电动机的调速。
3. 负反馈控制原理带转速负反馈的直流调速系统稳态结构图如图1所示。
系统由转速比较环节、偏差电压方大环节、电力电子变换器和测速反馈环节构成。
系统在电动机负载增加时,转速下降,转速反馈U n 减小,而转速的偏差△U n 将增加,同时放大器输出控制电压U c 增加,U c 的增加将使得晶闸管的触发角α减小,从而增大整流装置的输出电压平均值,为电动机提供更大的电枢电压U a ,从而增大电动机的电枢电流I a 。
电动机的电磁转矩为e T a T C I φ=,运动方程为:2d 375d e L d GD nT T J dt tω-== (1)根据电磁转矩公式和运动方程可知,I a 的增加将使得电磁转矩增大,从而使得转速升高,补偿了负载增加造成的转速降。
3-6 转速负反馈闭环直流调速系统稳态结构图图1 转速反馈闭环控制直流调速系统稳态结构图3、实验步骤:1. 建立转速闭环控制直流调速系统的数学模型;2.根据转速闭环控制直流调速系统结构图,编制Simulink 实验程序,上机调试。
3.采用P 控制,增加负载扰动,观察电动机输出转速的变化情况,跟开环系统做比较。
4.采用I 控制,在给定和负载相同情况下,和P 控制进行稳态误差对比。
5.采用PI 控制,在给定和负载相同情况下,和I 控制进行快速性对比。
6.采用PI 控制,在给定和负载相同情况下,比较不同调节器参数时的动态性能,。
7.分析实验结果,完成书面实验报告,并完成相应的思考题。
二、实验数据(记录相应的表格或图表,注意图形标注的完整性):1、绘制P 控制时直流电动机转速曲线。
2、绘制I 控制时直流电动机转速曲线。
3、绘制PI 控制时固定调节器参数,不同负载下直流电动机转速曲线。
参数保持不变负载变化时time/sn /m i ntime/sn /mi ntine/sn /m i n4、 绘制PI 控制时相同负载,不同调节器参数的直流电动机转速曲线。
负载保持不变参数变化时三、实验思考(完成相应的实验思考题):1、根据所给数据,计算在同样的负载扰动下,转速闭环控制直流调速系统的转速降和开环直流调速系统转速降之间的关系。
由公式可得:∆n d =∆n op1+KK=K p K s K nK e2、在理想空载转速相同的情况下,计算转速闭环控制直流调速系统与开环直流调速系统静差率之间的关系。
time/sn /m i ntime/sn /m i ntime/sn /m i n由公式可得:δcl=δop 1+K3、如果电动机的最高转速都是n N,而对最低速静差率的要求相同,计算转速闭环控制直流调速系统与开环直流调速系统调速范围之间的关系。
由公式可得:D =δn N∆n N(1−δ)4、根据绘制的转速曲线,比较P控制和I控制在稳态性能和动态性能方面的差别。
P调节器:对系统的动态性能影响:Kp加大,将使系统响应速度加快,Kp偏大时,系统振荡次数增多,调节时间加长;;Kp太小又会使系统的响应速度缓慢。
Kp的选择以输出响应产生4:1衰减过程为宜。
(2)对系统的稳态性能影响:在系统稳定的前提下,加大Kp 可以减少稳态误差,但不能消除稳态误差。
因此Kp的整定主要依据系统的动态性能。
按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。
比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。
I调节器:积分时间I对系统性能的影响积分控制通常和比例控制或比例微分控制联合作用,构成PI控制或PID控制。
(1)对系统的动态性能影响:积分控制通常影响系统的稳定性。
TI太小,系统可能不稳定,且振荡次数较多;TI太大,对系统的影响将削弱;当TI较适合时,系统的过渡过程特性比较理想。
(2)对系统的稳态性能影响:积分控制有助于消除系统稳态误差,提高系统的控制精度,但若TI太大,积分作用太弱,则不能减少静差。
使系统消除稳态误差,提高无误差度。
因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。
积分作用的强弱取决于积分时间常数Ti,Ti越小,积分作用就越强。
反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。
积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。
5、根据绘制的转速曲线,比较PI控制和P、I控制在稳态性能和动态性能方面的差别。
采用PI调节的单个转速闭环调节系统可以保证系统稳定的前提下实现转速无静差。
但是,由于转速单闭环无法对电流和转矩实施控制因而存在启动电流限制问题,虽然可以采用电流截止负反馈来限制启动电流,但如果系统的动态性能要求较高的话,单闭环系统就难以满足要求。
这主要是因为在单闭环系统中不能随心所欲的控制电流和转矩的动态过程。
6、根据绘制的转速曲线,比较在PI调节器不同参数时稳态性能和动态性能方面的差别。
比例环节即时成比例的反映控制系统的偏差信号,偏差一旦产生,控制器立即产生控制作用,以减少偏差。
通常随着值的加大,闭环系统的超调量加大,系统响应速度加快,但是当增加到一定程度,系统会变得不稳定。
积分环节主要用于消除静差,提高系统的无差度(型别)。
[1]积分作用的强弱取决于积分常数,越大,积分作用越弱,反之越强。
闭环系统的超调量越小,系统的响应速度变慢。
附:转速闭环控制直流调速系统数据直流电动机额定参数:U N=220V,I N=136A,n N=1460r/min,四极,R a=0.21Ω,GD2=22.5N·m2。
励磁电压U f=220V,励磁电流I f=1.5A。
三相桥式整流器内阻为R rec=0.5Ω。
平波电抗器L d=10mH。
三相电源:相电压130V,频率50Hz,转速反馈系数K n=0.0067,比例放大系数K p=20(可按需要调节),饱和限幅为±10。
实验项目名称:转速电流双闭环控制的直流调速系统仿真实验实验时间:同组人:实验报告评分:一、预习报告(实验课前了解实验目的,预习实验原理、实验步骤):1、实验目的(简述):1.掌握转速电流双闭环控制的直流调速系统原理;2.掌握利用simulink编程进行仿真的方法。
2、实验原理(简述):图1 双闭环直流调速系统的动态结构图转速电流双闭环控制的直流调速系统动态结构图如图1所示。
为了实现转速和电流两种负反馈分别起作用,在系统中设置两个调节器,分别调节转速和电流,两者之间实行嵌套连接。
转速调节器ASR的输出作为电流调节器ACR的输入。
系统由转速比较环节、偏差电压方大环节、电力电子变换器和测速反馈环节构成。
当转速低于给定转速时,转速调节器的输出增加,即电流给定增加,并通过电流环调节使电枢电流上升,电动机将因为电磁转矩增加而加速。