x264学习笔记(1)-函数调用流程

x264学习笔记(1)-函数调用流程
x264学习笔记(1)-函数调用流程

微分算子法典型例题讲解

高阶常微分方程的微分算子法 高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。但是有一个例外:常系数线性微分方程。我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐 次方程的特解。本节主要讨论微分算子法。 1.求方程230y y y ''''''--=的通解. 解 记()n n y D y =,将方程写成 32230D y D y Dy --= 或32(23)0D D D y --= 我们熟知,其实首先要解特征方程 32230D D D --= 得0,1,3D =-故知方程有三特解31,,x x e e -,由于此三特解为线性无关,故立得通解 3123x x y C C e C e -=++ 注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是 1111()()()()() n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---=++++= 其中系数1(),,()n a x a x 是某区间(,)a b 上的连续函数,上述方程又可写成 1 1()(()())n n n L y D a x D a x y -≡+++ ()f x = 可以把上面括号整体看作一种运算,常称为线性微分算子。本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。 2.求解 61160y y y y ''''''-+-= 解 写成 32(6116)0D D D y -+-= 从特征方程 3 2 06116D D D =-+- (1)(2)(3)D D D =--- 解得 1,2,3D =共三实根,故可立即写成特解 23123x x x y C e C e C e =++ 3.求解 39130y y y y ''''''-++= 解 写成 32(3913)0D D D y -++= 或 2(1)(413)0D D D y +-+= 特征方程 2(1)(413)0D D D +-+=有根 1,23D i =-±,故对应的特解是x e -,2cos3x e x , 2sin3x e x 从而通解是 22123cos3sin3x x x y C e C e x C e x -=++ 4.求(4)45440y y y y y ''''''-+-+=之通解. 解 写成 432(4544)0D D D D y -+-+= 或 22(2)(1)0D D y -+= 特征根是2,2,D i =±,对应的特解应是 22,,cos ,sin x x e xe x x ,故写成通解 21234()()cos sin x y x e C C x C x C x =+++ 5.求1(cos )y y x -''+=的通解 解 本题为非齐次方程,先求出对应的齐次方程 0y y ''+=的通解,写成2(1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+ 设原方程有特解形为 *12()cos ()sin y C x x C x x =+ 其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组 121 12()cos ()sin 0 ()(cos )()(sin )(cos ) C x x C x x C x x C x x x -?''+=??''''+=?? 或 121 12()cos ()sin 0()sin ()cos (cos ) C x x C x x C x x C x x x -?''+=??''-+=?? (方程组右端为原方程非齐次项1(cos )x -),解得 1s i n ()cos x C x x '=-,2()1C x '= 或 1()ln cos C x x =,2()C x x = 最后得通解为 1*()()()y x y x y x =+ 12cos sin cos ln cos sin C x C x x x x x =+++

幂函数题型归纳

幂函数知识点归纳及题型总结 一、 幂函数定义:对于形如:() x f x α=,其中α为常数.叫做幂函数 定义说明: 1、 定义具有严格性,x α系数必须是1,底数必须是x 2、 α取值是R . 3、 《考试标准》要求掌握α=1、2、3、?、-1五种情况 二、 幂函数的图像 幂函数的图像是由α决定的,可分为五类: 1)1α>时图像是竖立的抛物线.例如:()2x f x = 2)=1α时图像是一条直线.即() x f x = 3)01α<< 时图像是横卧的抛物线.例如()1 2x f x = 4)=0α时图像是除去(0,1)的一条直线.即() 0x f x =(0x ≠) 5)0α<时图像是双曲线(可能一支).例如() -1 x f x = 具备规律: ①在第一象限内x=1的右侧:指数越大,图像相对位置越高(指大图高) ②幂指数互为倒数时,图像关于y=x 对称 ③结合以上规律,要求会做出任意一种幂函数图像 三、幂函数的性质 幂函数的性质要结合图像观察,随着α取值范围的变化,性质有所不同。 1、 定义域、值域与α有关,通常化分数指数 幂为根式求解 2、 奇偶性要结合定义域来讨论 3、 单调性:α>0时,在(0,+∞)单调递 增:α=0无单调性;α<0时,在(0,+∞)单调递减 4、 过定点:α>0时,过(0,0)、(1,1)两

点;α≤0时,过(1,1) 5、 由 ()0 x f x α=>可知,图像不过第四象限 一、幂函数解析式的求法 1. 利用定义 (1)下列函数是幂函数的是 ______ ①21()y x -= ②22y x = ③21(1)y x -=+ ④0 y x = ⑤1y = (2(3 2 3 1. (1)、函数3 x y =的图像是( ) (2)右图为幂函数y x α =在第一象限的图像,则,,,a b c d 的大小关系是 ( )

(完整版)基本初等函数图像及其性质表

函数名 一次函数 二次函数 反比例函数 指数函数 解析式 )0()(≠+=a b ax x f )0()(≠= k x k x f 图像 定义域 R R {}0|≠x x R 值域 R ) ,(∞+0 必过点 )(b ,0 ) ,(c 0 ) 1,(1,--k k ) ( ) (1,0 周期性 不是周期函数 不是周期函数 不是周期函数 不是周期函数 单调性 在R 上单增 )2-a b -∞,(为减 ),2+∞-a b (为增 )为减,(0-∞)为减,(∞+0 为减 为增,101<<>a a 最大最小值 在R 不存在最大最小值 开口向上有最小值 a b a c y 442min -= 不存在最大最小值 在R 上不存在最大最小值 奇偶性 非奇非偶函数 为奇函数00≠=b b 偶函数 为非奇非为偶函数,00≠=b b 奇函数 非奇非偶函数 对称性 为常数。 对称, 函数图像关于直线任何一点对称;关于图像上t t x a y +=1 - 对称 直线函数图像关于 a b x 2-= 函数图像关于原点对称; 对称。 直线和关于 对称,直线图像关于x y x y -== 既不成中心对称也不成轴对称。 渐近线 无 无 . 00==y x 直线或者直线 .0=y 直线 ) 0()(2≠++=a c bx ax x f ) 10()(≠=a a a x f x 且>0>a >a 0 >k ) ,44[ 2 +∞-a b a c ),(),(∞+?∞00-x a y =) 10(<a x y O 1

函数名 对数函数 幂函数的一个例子 双钩函数 含绝对值函数 解析式 ) 10(log ≠>=a a y x a 且 ) 0(≥=x x y b a b x a x y <-+-=设为了研究方便 图像 O 1 y x ) 10(log <<=a y x a ) 1(log >=a y x a O y x x y =1 1 定义域 ()∞+,0 [)∞+,0 0}x |{x ≠ R 值域 R [) ∞+,0 (][) ∞+∞,,ab ab 22--Y [)+∞-,a b 必过点 )(0,1 () 1,1 )2,(2,ab a b ab a b -- )( ) ,(,a b b a b a --)( 周期性 不是周期函数 不是周期函数 不是周期函数 不是周期函数 单调性 单调递减。 单调递增。,, 101<<>a a 为增函数 定义域内 递增。递减,,递减,递增,,???? ??+∞???? ????? ? ? ????? ??∞,00,---a b a b a b a b (][)函数。 上为常值为增函数。 为减函数。 ,],[,-b a b a +∞∞ 最大最小值 无最大最小值 最小值为 0min =y ,无最 大值 无最大最小值 a b y -=min 奇偶性 非奇非偶 非奇非偶 奇函数 对称性 既不是轴对称也不是中心对称 既不是轴对称也不是中心对称 关于原点成中心对称 关 于 直 线 2 b a x += 对称。 渐近线 直线x=0 ax y =和0=x O y x a b a b -ab 2ab 2-O y x a b a b -的情况 只了解中学研究方便通常 ) (00>>+=b a x b ax y 为偶函数0=+b a

指数对数幂函数总结归纳

指数与指数幂的运算 【学习目标】 1.理解有理指数幂的含义,掌握幂的运算. 2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质. 4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指 数型函数、对数型函数进行变形处理. 5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数 与对数函数互为反函数(a >0,a ≠1). 【要点梳理】 要点一、幂的概念及运算性质 1.整数指数幂的概念及运算性质 2.分数指数幂的概念及运算性质 为避免讨论,我们约定a>0,n ,m ∈N *,且 m n 为既约分数,分数指数幂可如下定义: 3.运算法则 当a >0,b >0时有: (1)n m n m a a a +=?; (2)()mn n m a a =; (3)()0≠>=-a n m a a a n m n m ,; (4)()m m m b a ab =. 要点诠释: (1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算; (2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-; (3)幂指数不能随便约分.如2 142 )4()4(-≠-. 要点二、根式的概念和运算法则 1.n 次方根的定义: 若x n =y(n ∈N * ,n>1,y ∈R),则x 称为y 的n 次方根,即x=n y . n 为奇数时, y 的奇次方根有一个,是负数,记为n y ;零的奇次方根为零,记为00=n ; n 为偶数时,正数y 的偶次方根有两个,记为n y ±;负数没有偶次方根;零的偶次方根为零,记为00n =. 2.两个等式 (1)当1n >且*n N ∈时, ()n n a a =; (2)???=)(||) (,为偶数为奇数n a n a a n n 要点诠释: ①计算根式的结果关键取决于根指数n 的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成||a 的形式,这样能避免出现错误. ②指数幂的一般运算步骤 有括号先算括号里的;无括号先做指数运算. 负指数幂化为正指数幂的倒数. 底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数(如 ),先要化成假分数(如15/4),

基本初等函数测试题及答案解析

基本初等函数测试题 一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.有下列各式: ①n a n =a ; ②若a ∈R ,则(a 2-a +1)0 =143 x y +; ④ 6 - 2 = 3 -2. 其中正确的个数是( ) A .0 B .1 C .2 D .3 2.函数y =a |x | (a >1)的图象是( ) 3.下列函数在(0,+∞)上是增函数的是( ) A .y =3-x B .y =-2x C .y =log 0.1x D .y =x 12 4.三个数log 215 ,20.1,2-1 的大小关系是( ) A .log 215<20.1<2-1 B .log 215<2-1<20.1 C .20.1<2-10} B .{y |y >1} C .{y |0y >z B .x >y >x C .y >x >z D .z >x >y 8.函数y =2x -x 2 的图象大致是( )

微分算子法典型例题讲解

高阶常微分方程的微分算子法 3.求解 39130y y y y ''''''-++= 解 写成 32 (3913)0D D D y -++= 或 2 (1)(413)0D D D y +-+= 特征方程 2 (1)(413)0D D D +-+=有根 1,23D i =-±,故对应的特解是x e -,2cos3x e x , 2sin 3x e x 从而通解是 22123cos3sin 3x x x y C e C e x C e x -=++ 4.求(4) 45440y y y y y ''''''-+-+=之通解. 解 写成 432 (4544)0D D D D y -+-+= 或 22 (2)(1)0D D y -+= 特征根是2,2,D i =±,对应的特解应是 22,,cos ,sin x x e xe x x ,故写成通解 21234()()cos sin x y x e C C x C x C x =+++ 5.求1 (cos )y y x -''+=的通解 解 本题为非齐次方程,先求出对应的齐次方程 0y y ''+=的通解,写成2 (1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+ 设原方程有特解形为 *12()cos ()sin y C x x C x x =+ 其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组 121 12()cos ()sin 0()(cos )()(sin )(cos ) C x x C x x C x x C x x x -?''+=??''''+=?? 或 121 12()cos ()sin 0()sin ()cos (cos ) C x x C x x C x x C x x x -?''+=??''-+=?? (方程组右端为原方程非齐次项1 (cos )x -),解得 1sin ()cos x C x x '=-,2()1C x '= 或 1()ln cos C x x =,2()C x x = 最后得通解为 1*()()()y x y x y x =+ 12cos sin cos ln cos sin C x C x x x x x =+++

(完整版)幂函数与指数函数练习题教师版.doc

.. 2016-2017 学年度高一必修一指数函数与幂函数练考卷考试范围:基本不等式;考试时间:100 分钟;命题人:聂老师 题号一二三总分 得分 第 I 卷(选择题) 评卷人得分 一、选择题 1.化简的结果为() A. 5B.C.﹣D.﹣5 【答案】 B 【解析】=== 故选 B 2 .函数 f x a x 0 a 1 在区间 [0 , 2] 上的最大值比最小值大3 ,则a的值为 () A. 1 7 2 B. C. D. 4 3 2 2 2 2 【答案】 C 【解析】试题分析:结合指数函数的性质,当0 a 1 ,函数为减函数.则当 x 0 时, o 1 ,当 x 2 时,函数有最小值 2 2 3 函数有最大值 f (0) a f (2) a ,则1 a , 4 解得 a 2 (负舍) . 2 考点:指数函数的性质. 3.指数函数 f ( x) (a 1)x在R上是增函数,则 a 的取值范围是() A.a 1 B. a 2 C. 0 a 1 D. 1 a 2 【答案】 B 【解析】 试题分析:对于指数函数 x 1 时,函数在R上是增函数,当 0 a 1时,y a ,当 a 函数在 R上为减函数 . 由题意可知:a 1 1 即, a 2 . 考点:指数函数的性质 . 4.若函数f (x) (2m 3)x m23是幂函数,则m的值为()A.1 B.0 C.1 D.2 【答案】 A Word 完美格式

【解析】 试题分析:由题意,得 2m 3 1 m 1 ,解得 . 考点:幂函数的解析式. 5.若幂函数 y (m 2 3m 3) x m 2 的图象不过原点,则( ) A . 1 m 2 B . m 1 m 2 或 C . m 2 D . m 1 【答案】 B 【解析】 试题分析: y (m 2 3m 3)x m 2 是幂函数,则必有 m 2 3m 3 1,得 m 1 1, m 2 2 , 又函数图象不过原点,可知其指数 m 2 0 , m 1 1, m 2 2 均满足满足,故正确选项 为 B. 考点:幂函数的概念 . 【思路点睛】首先清楚幂函数的形式 f (x) x a , a 为常数,说明幂的系数必须为 1,即 可得含有 m 的方程;其次幂函数的图象不过原点,说明指数为负数或者零,即可得含 有 m 的不等式 . 在此要注意, 00 是不存在的, 也就是说指数为零的幂函数图象不过原点 . 6.设 2, 1, 1 ,1,2,3 ,则使幂函数 y x a 为奇函数且在 (0, ) 上单调递增的 a 2 值的个数为 ( ) A . 0 B . 1 C . 2 D . 3 【答案】 C 【解析】 试题分析:因为 a y x 是奇函数,所以 a 应该为奇数,又在 (0, ) 是单调递增的,所 以 a 0 则只能 1,3 .考点:幂函数的性质 . 7.已知函数 ,若 ,则实数 ( ) A . B . C . 2 D . 9 【答案】 C 【解析】因为 , 所以 .

HALCON 算子函数 整理 1-19章

halcon算子中文解释 comment ( : : Comment : ) 注释语句 exit ( : : : ) 退出函数 open_file ( : : FileName, FileType : FileHandle ) 创建('output' or 'append' )或者打开(output )文本文件 fwrite_string ( : : FileHandle, String : ) 写入string dev_close_window ( : : : ) 关闭活跃的图形窗口。 read_image ( : Image : FileName : ) ;加载图片 get_image_pointer1 ( Image : : : Pointer, Type, Width, Height ) 获得图像的数据。如:类型(= ' 字节',' ' ',uint2 int2 等等) 和图像的尺寸( 的宽度和高度) dev_open_window( : :Row,Column,WidthHeight,Background :WindowHandle ) 打开一个图形的窗口。 dev_set_part ( : : Row1, Column1, Row2, Column2 : ) 修改图像显示的位置 dev_set_draw (’fill’)填满选择的区域 dev_set_draw (’margin’)显示的对象只有边缘线, dev_set_line_width (3) 线宽用Line Width 指定 threshold ( Image : Region : MinGray, MaxGray : ) 选取从输入图像灰度值的g 满足下列条件:MinGray < = g < = MaxGray 的像素。 dev_set_colored (number) 显示region 是用到的颜色数目 dev_set_color ( : : ColorName : ) 指定颜色 connection ( Region : ConnectedRegions : : ) 合并所有选定像素触摸相互连通区 fill_up ( Region : RegionFillUp : : ) 填补选择区域中空洞的部分 fill_up_shape ( Region : RegionFillUp : Feature, Min, Max : ) select_shape ( Regions : SelectedRegions : Features, Operation, Min, Max : ) 选择带有某些特征的区域,Operation 是运算,如“与”“或” smallest_rectangle1 ( Regions : : : Row1, Column1, Row2, Column2 ) 以矩形像素坐标的角落,Column1,Row2(Row1,Column2) 计算矩形区域( 平行输入坐标轴) 。 dev_display ( Object : : : ) 显示图片 disp_rectangle1 ( : : WindowHandle, Row1, Column1, Row2, Column2 : ) 显示的矩形排列成的。disp_rectangle1 显示一个或多个矩形窗口的产量。描述一个矩形左上角(Row1,Column1) 和右下角(Row2,Column2) 。显示效果如图1. texture_laws ( Image : ImageT exture : FilterTypes, Shift, FilterSize : ) texture_laws 实行纹理变换图像FilterTypes: 预置的过滤器Shift :减少灰度变化FilterSize :过滤的尺寸 mean_image ( Image : ImageMean : MaskWidth, MaskHeight : ) 平滑图像, 原始灰度值的平均数MaskWidth: 过滤器的宽度面具 bin_threshold ( Image : Region : : ) 自动确定阈值 Region: 黑暗的区域的图像 dyn_threshold ( OrigImage, ThresholdImage : RegionDynThresh : Offset, LightDark : ) 比较两个像素的图像像素RegionDynThresh(Out) 分割区域Offset: 减少噪音引起的问题LightDark 提取光明、黑暗或类似的地方? dilation_circle ( Region : RegionDilation : Radius : ) 扩张有一个圆形结构元素的地区Radius 圆半径 complement ( Region : RegionComplement : : ) 返还补充的区域 reduce_domain ( Image, Region : ImageReduced : : ) 减少定义领域的图像

部编新人教版高一数学必修一基本初等函数解析.doc

基本初等函数 一.【要点精讲】 1.指数与对数运算 (1)根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根。即若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n ②性质:1)a a n n =)(;2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 。 (2).幂的有关概念 ①规定:1)∈???=n a a a a n (ΛN * ;2))0(10 ≠=a a ; n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ); 2)r a a a s r s r ,0()(>=?、∈s Q ); 3)∈>>?=?r b a b a b a r r r ,0,0()( Q )。 (注)上述性质对r 、∈s R 均适用。 (3).对数的概念 ①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b =,那么数b 称以a 为底N 的对数,记作,log b N a =其中a 称对数的底,N 称真数 1)以10为底的对数称常用对数,N 10log 记作N lg ; 2)以无理数)71828.2(Λ=e e 为底的对数称自然对数,N e log ,记作N ln ; ②基本性质: 1)真数N 为正数(负数和零无对数);2)01log =a ;

HALCON 算子函数

HALCON 算子函数(十二) HALCON 算子函数——Chapter 12 : OCR 12.1 Hyperboxes 1. close all ocrs功能:删除所有光字符,释放存储空间,但会丢失所有的测试数据。 2. close ocr_功能:重新分配拥有OcrHandle数目的分级器的存储,但所有相应的数据会丢失,不过这些数据可由write ocr事先保存。 3. create ocr class box功能:创建新的OCR分级器。 4. do ocr multi功能:给每一个Character(字符)分配一个类。 5. do ocr single功能:给一些Character(字符)分配一些类。 6. info ocr class box功能:反馈ocr的有关信息。 7. ocr change char功能:为字符建立新的查阅表。 8. ocr get features功能:计算给定Character(字符)的特征参数。 9. read ocr功能:从文件的FileName(文件名)读取OCR分级器。 10. testd ocr class box功能:测试给定类中字符的置信度。 11. traind ocr class box功能:通过一幅图像的特定区域直接测试分级器。 12. trainf ocr class box功能:根据指定测试文件测试分级器的OCRHandle。 13. write ocr功能:将OCR分级器的OCRHandle写入文件的FileName(文件名)。 12.2 Lexica 1.clear_all_lexica功能:清除所有的词汇(词典),释放它们的资源。 2. clear lexicon功能:清除一个词汇(词典),释放相应的资源。 3. create lexicon功能:根据一些Words(单词)的元组创建一个新的词汇(词典)。4.Import lexicon功能:通过FileName(文件名)选定的文件中的一系列单词创建一个新

幂函数中档题(含答案)

3.3 幂函数中档题 一.选择题(共4小题) 1.若幂函数f(x)的图象经过点(3,),则函数g(x)=+f(x)在[,3]上的值域为() A.[2,]B.[2,]C.(0,]D.[0,+∞) 2.已知指数函数f(x)=a x﹣16+7(a>0且a≠1)的图象恒过定点P,若定点P在幂函数g (x)的图象上,则幂函数g(x)的图象是() A.B.C. D. 3.函数f(x)=(m2﹣m﹣1)x是幂函数,对任意x1,x2∈(0,+∞),且x1≠x2,满足>0,若a,b∈R,且a+b>0,ab<0,则f(a)+f(b)的值 () A.恒大于0 B.恒小于0 C.等于0 D.无法判断 4.已知,若0<a<b<1,则下列各式中正确的是() A.B. C.D. 二.填空题(共1小题)

5.已知幂函数f(x)的图象经过点(,),P(x1,y1),Q(x2,y2)(x1<x2)是函数图象上的任意不同两点,给出以下结论:①x1f(x1)>x2f(x2);②x1f(x1)<x2f(x2); ③>;④<.其中正确结论的序号是. 三.解答题(共13小题) 6.已知幂函数f(x)=(m﹣1)2x在(0,+∞)上单调递增,函数g(x)=2x﹣ k. (Ⅰ)求m的值; (Ⅱ)当x∈[1,2]时,记f(x),g(x)的值域分别为集合A,B,若A∪B=A,数k的取值围. 7.已知函数f(x)=(a﹣1)x a(a∈R),g(x)=|lgx|. (Ⅰ)若f(x)是幂函数,求a的值并求其单调递减区间; (Ⅱ)关于x的方程g(x﹣1)+f(1)=0在区间(1,3)上有两不同实根x1,x2(x1<x2), 求a++的取值围. 8.已知函数f(x)=(a﹣1)x a(a∈R),g(x)=|lgx|. (Ⅰ)若f(x)是幂函数,求a的值; (Ⅱ)关于x的方程g(x﹣1)+f(1)=0在区间(1,3)上有两不同实根x1,x2(x1<x2), 求的取值围. 9..已知幂函数的图象关于y轴对称,且在区间(0,+∞)上 是减函数, (1)求函数f(x)的解析式; (2)若a>k,比较(lna)0.7与(lna)0.6的大小. 10.已知幂函数g(x)=(m2﹣2)x m(m∈R)在(0,+∞)为减函数,已知f(x)是对数函数且f(﹣m+1)+f(﹣m﹣1)=. (1)求g(x),f(x)的解析式; (2)若实数a满足f(2a﹣1)<f(5﹣a),数a的取值围. 11.函数f(x)=是偶函数. (1)试确定a的值,及此时的函数解析式; (2)证明函数f(x)在区间(﹣∞,0)上是减函数; (3)当x∈[﹣2,0]时,求函数f(x)=的值域. 12.如图,点A、B、C都在幂函数的图象上,它们的横坐标分别是a、a+1、a+2又A、B、C在x轴上的射影分别是A′、B′、C′,记△AB′C的面积为f(a),△A′BC′的面积为g(a)

关于两类解析函数及其积分算子

1引言S 表示在单位圆盘U={z :|z|<1}内解析函数f(z)=z+z 2a 2+…+a n z n +…的全体所成的类.S p (p ∈N)表示在单位圆盘U={z :|z|<1}内解析函数f (z)=z p +∞ n =1Σz p+n a p+n 的全体所成的类.显然 S 1=S.用P(β)(0≤β<1)表示β级正实部函数,S *(β)和K(β)分别表示S 中的β级星象函数类和β级凸象函数类.令 μ(ρ)=f(z)∈S:Re zf'(z)<ρ,ρ>ΣΣ1;η(ρ)=f(z)∈S:Re 1+zf'(z) f'(z) ∈∈ <ρ,ρ>∈Σ 1. 文[1]-[3]中讨论了函数类μ(ρ)和η(ρ)的性质.本文引进两类解析函数:定义1 设λ≥0,ρ>1,若函数f(z)∈S 满足条件 Re (1-λ)z(D τf(z))'+λ1+z(D τf(z))" (D τf(z))'∈∈∈∈ <ρ,τ∈N 0 =N ∪{0}(1)称f(z)属于函数类覬τ(λ,ρ).其中D τf(z)为Salagean 算子[7]: D τ f(z)=z+∞ n =2Σn τa n . 显然覬0(λ,ρ)奂S ,覬0(0,ρ)=μ(ρ),覬0(1,ρ)=η(ρ).定义2 设λ≥0,-1≤β<1,若函数f(z)∈S ,满足条件: (1-λ)z(D τ f(z))'D τ f(z)+λ1+z(D τ f(z))"∈∈∈∈-∈Σ10,f i (z)∈S p ,i=1,2,…,n;则积分算子 F n,α1 ,…,αn (λ;p,τ,z)定义为F n,α1 ,…,αn (λ;p,τ,z)= z 0乙n i =1 仪D τf i (t) ∈∈α(1-λ)i (D τf i (t))'∈ ∈∈∈λαi ∈∈ dt.(3) 从(3)式还得到F n,α1 ,…,αn (0;1,0,z)= z 0乙n i =1仪D τf i (t) ∈∈ λαi (4) F n,α1 ,…,αn (1;1,0,z)= z 0乙n i =1 仪((D τ f i (t))') λαi dt (5) 算子(4)和(5)式为文[3][4][5]中引进并研究的积分算子,算子(3 )修改了[6]中的定义3引进的算子.本文中我们讨论S τ(λ,β)和覬τ(λ,β)上的积分算子F n,α1 ,…,α n (λ;1,τ,z)的性质,修改[1]中的错误.2 主要结果及其证明定理1 设λ≥0,αi >0,f i (z)∈覬τ(λ,ρi )ρi >1,i=1,2,…,n;则积 分算子F n,α1 ,…,αn (λ;1,τ,z)∈η(γ),其中γ=n i =1 Σαi (ρi -1)+1 证明对(3)式两端微分,得到F"n,α1 ,…,αn (λ;1,τ,z) F'n,α1 ,…,αn (λ;1,τ,z) =n i =1 Σαi (1-λ) z(D τ f(z))'D τ f(z)-1z ∈∈+λ(z(D τ f(z))')'(D τ f(z))'-1 z ∈∈ ∈∈(6) 即 zF"n,α1 ,…,αn (λ;1,τ,z) n,α1 ,…,αn 关于两类解析函数及其积分算子 李书海 (赤峰学院 数学学院,内蒙古 赤峰 024000) 摘要:S 表示在单位圆U={z :|z|<1}内解析函数f(z)=z+a 2z 2+…的全体所组成的类.本文引进并研究特殊解析函数类s τ (λ,β)和覬τ(λ, β),讨论两类函数上的积分算子凸性问题.关键词:解析;算子中图分类号:O174.51 文献标识码:A 文章编号:1673-260X (2012)01-0010-02 Vol.28No.1 Jan.2012 第28卷第1期(上) 2012年1月赤峰学院学报(自然科学版)Journal of Chifeng University (Natural Science Edition )10--

人教版高一数学必修一基本初等函数解析(完整资料)

此文档下载后即可编辑 基本初等函数 一.【要点精讲】 1.指数与对数运算 (1)根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根。即若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n ②性质:1)a a n n =)(;2)当n 为奇数时,a a n n =; 3)当n 为偶数时,? ??<-≥==)0() 0(||a a a a a a n 。 (2).幂的有关概念 ①规定:1)∈???=n a a a a n (ΛN * ;2))0(10 ≠=a a ; n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ); 2)r a a a s r s r ,0()(>=?、∈s Q ); 3)∈>>?=?r b a b a b a r r r ,0,0()( Q )。 (注)上述性质对r 、∈s R 均适用。 (3).对数的概念 ①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b =,那么数b 称以a 为底N 的 对数,记作,log b N a =其中a 称对数的底,N 称真数 1)以10为底的对数称常用对数,N 10log 记作N lg ; 2)以无理数)71828.2(Λ=e e 为底的对数称自然对数,N e log ,记作N ln ;

算符函数及其应用介绍

算符函数及其应用 物理与能源学院物理学专业 106012011017 吴敬圣指导教师:林秀敏 【摘要】由于微观粒子具有波粒二象性,导致在量子力学中力学量必须用算符表示,因此研究算符函数具有重要意义。本文首先系统地阐述了算符、算符函数的定义及其在量子力学中的相关应用;接着基于算符代数的非对易特性,介绍算 符和算符函数的几个常用公式;然后以受外场驱动的N个二能级原子与单膜腔场相互作用系统为例,说明如何利用算符函数对一个难以求出本征解的哈密顿量进行变换和简化,从而得到能求出本征解的有效哈密顿量,以此说明算符函数 在处理量子系统问题时的重要作用。 【关键词】算符;算符函数;哈密顿量 1引言 量子力学是描述微观粒子运动规律的一门学科。由于微观粒子具有波粒二象性,所以在量子力学中,微观粒子的状态不能再采用与描述经典粒子相同的方式去描述[1],而必须用波函数描述。如果已知波函数的具体形式,那么粒子在空间各点出现的概率即可求出。同样地,微观粒子的波粒二象性也决定了量子力学中各力学量(如坐标、动量、角动量等)的性质不同于经典物理中的力学量[2]。经典物理中各力学量在一切状态下都具有确定值,但在量子力学中力学量可能有多种可能值,且力学量之间可能存在相互制约关系,如坐标和动量就不可能同时具有确定值。因此,量子力学中力学量的描述方式与经典方式不同,必须采用算符方式描述[3-5]。 算符代数与普通代数之间的最大区别在于:算符的顺序是有意义的,而普通代数的顺序无关紧要,这一点使算符代数有着许多不同的运算性质[6-8]。力学量在量子力学中是用算符表示的,往往是算符函数。因此,量子理论必须采用非对易代数来处理有关问题。众所周知,无论在量子光学还是在量子力学、量子场论、量子信息学中,往往需要求解哈密顿量的本征解,其体系的哈密顿量往往比较复杂,很难用解析的方法求出其本征解。但如果利用算符函数对其进行简化,那么就可以求解简化形式的近似解。如对大多数实际量子体系,其哈密顿算符本征值往往难以求解,我们必须借助算符函数对该哈密顿算符进行变换和化简,得到可以求解出本征值的有效哈密顿量。前人对于算符已经进行了许多讨论,例如算符的运算[9]、量子态的叠加性质[10]、力学量与算符的关系[11]等等。同时,已有许多文献在具体求解时使用了算符函数[12-14]。因此,系统探讨算符函数及其应用对处理量子系统实际问题具有重要的意义。为了更好地体现算符函数在处理实际量子问题的重要作用,本文就利用一个具体的例子,详细阐述如何利用算符函数求解量子系统问题。 2算符 2.1 算符 所谓算符,就是使问题从一种状态变化为另一种状态的手段[15-16]。从数学上看, 算符被定义为由一个函数集向另一个函数集的映射,即指作用在一个函数上得到另一函数的运算符号,其单独存在时并没 有什么意义。如微分算符d dx 作用在函数() u x上就代表对() u x的求微分运算,其数学表达式为 () du x dx 。 2.2 量子力学中的力学量算符及其运算规则 由于微观粒子具有波粒二象性,导致在量子力学中引入算符来表示微观粒子的力学量。众所周知,

幂函数图象规律

幂函数图象有规律 幂函数()n y x n Q = 的图象看似复杂,其实很有规律。假如我们能抓住这些规律,那么幂函数图象问题就可迎刃而解。那么幂函数图象有哪些规律呢? 1.第一象限内图象类型之规律(如图1):1.n >1时,过(0,0)、(1,1)抛物线型,下凸递增。2.n =1时,过(0,0)、(1,1)的射线。 3.0<n <1时,过(0,0)、(1,1)抛物线型,上凸递增。4.n =O 时,变形为y =1(x ≠0),平行于x 轴的射线。 5.n <0时过(1,1),双曲线型,递减,与两坐标轴的正半轴无限接近。 2.第一象限内图象走向之规律(如图1): x ≥1部分各种幂函数图象,指数大的在指数小的上方;O <x <1部分图象反之,此二部分图象在(1,1)点穿越直线y =x 连成一体。 3.各个象限内图象分布之规律:设p n q = ,,p q 互质,,p Z q N 挝。 1.任何幂函数在第一象限必有图象,第四象限必无图象。 2.n =奇数/偶数时,函数非奇非偶,图象只在第一象限(如图1)。 3.n =偶数/奇数时,函数是偶函数、图象在第一、二象限并关于y 轴对称(如图2)。 4.n =奇数/奇数时,函数是奇函数,图象在第一、三象限并关于原点对称(如图3)。 5. 当n<0时,图像与x 轴,y 轴没有交点。 知识点:幂函数的图象特征: (1)任何幂函数在第一象限必有图象,第四象限必无图象. 先根据函数特征画出第一象限图象; ① 所有的幂函数在(0,+∞)都有定义, 并且图象都过点(1,1); ②0>α时,幂函数的图象通过原点, 并且在区间),0[+∞上是增函数. ③0<α时,幂函数的图象在区间),0(+∞上是减 函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴, 当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴. (2)如果幂函数是奇函数,在第 象限内有其中心(坐标原点)对称部分;如果幂函数是偶函数,在第 象限内有其轴(y 轴)对称部分;如果幂函数是非奇非偶函数,则其函数图象只在第一象限内.

初等解析函数及其基本性质

§2 初等解析函数及其基本性质 一、基本初等函数 1.指数函数 ()y i y e z x sin cos exp += 加法定理 ()2121exp exp exp z z z z +=?。 z e z =exp ,即()y i y e e e e e x yi x yi x z sin cos +=?==+。 周期性 z e 是周期为()Z ∈k i k π2的周期函数。 2.对数函数 定义2 满足()0≠=z z e w 的函数()z f w =称为复变量z 的对数函数,记为Lnz w =。关于Lnz w =的表达式: 令θ i re z iv u w =+=,,则πθθk v r e re e e e u i iv u iv u 2,+==?==+, 即Argz v z r u ===,ln ln 。从而 注:Lnz 是多值函数,Argz 是多值函数。 当Argz 取主值z arg 时,Lnz 为单值函数,称其为Lnz 的主值,记为z ln ,即 z i z z arg ln ln += ?i k z Lnz π2ln += 注:当0>=x z 时,x x i x z ln arg ln ln =+=——实对数函数。 例2 证明对数运算性质: ⑴2121Lnz Lnz z Lnz +=?;⑵212 1 Lnz Lnz z z Ln -=。 证明⑴ 由对数定义表达式,

212121ln z iArgz z z z Lnz +=? ()2121ln Argz Argz i z z ++?= 2211ln ln iArgz z iArgz z +++=21Lnz Lnz +=; 同理可证⑵式。 例3 求()??? ? ? ?+--i Ln 232 1 ,3ln 及主值。 解 ( )() i i π+= -+-=- 3ln 2 1 3arg 3ln 3ln ; i k i i i i Ln π22321arg 2321ln 2321+??? ? ??+-++-=???? ??+- i k i k i πππ??? ? ? +=++=3122321ln ; 主值:i i i ππ32 321ln 2321ln =+=??? ? ??+- 。 由Lnz 的表达式,容易知道,有分析性质: Lnz 在除原点及负实轴的平面内连续且解析。 i k z i z Lnz π2arg ln ++=,而z arg 在原点及负实轴上不连续,即 Lnz 在除原点及负实轴的平面内连续。 又 在除原点及负实轴的平面内,z w e z w ln ,==有定义且互为反函数,有求导法则, z e dz z d w dw de w 1 11ln ===.Lnz ∴在除原点及负实轴的平面内解析。 从而,应用对数函数Lnz 时,皆指其除原点及负实轴的平面内的某一分支。 3.复数乘幂b a 及其计算 定义3 复数b a ,构成的乘幂:bLna b e a =,其中0≠a 。 可以分析讨论知道,其取值情况有:

相关文档
最新文档