高考数学 题型全归纳:数列在生活中的应用(含答案)
高考数学题型全归纳:数列在生活中的应用(含答案)
数列在生活中的应用在实际生活和经济活动中、很多问题都与数列密切相关。
如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析、从而予以解决。
与此同时,数列在艺术创作上也有突出的作用! 数学家华罗庚曾经说过:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、日用之繁、无处不用数学。
这是对数学与生活关系的精彩描述。
首先, 我重点分析等差数列、等比数列在实际生活和经济活动中的应用。
(一)按揭货款中的数列问题随着中央推行积极的财政政策、购置房地产按揭货款(公积金贷款)制度的推出、极大地刺激了人们的消费欲望、扩大了内需、有效地拉动了经济增长。
众所周知、按揭货款(公积金贷款)中都实行按月等额还本付息。
这个等额数是如何得来的、此外若干月后、还应归还银行多少本金、这些人们往往很难做到心中有数。
下面就来寻求这一问题的解决办法。
若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有:a1=a0(1+p)-a,a2=a1(1+p)-a,a3=a2(1+p)-a,......an+1=an(1+p)-a,.........................(*)将(*)变形、得(an+1-a/p)/(an-a/p)=1+p.由此可见、{an-a/p}是一个以a1-a/p为首项、1+p为公比的等比数列。
日常生活中一切有关按揭货款的问题、均可根据此式计算。
(二)有关数列的其他经济应用问题数列知识除在个人投资理财方面有较为广泛的应用外、在企业经营管理上也是不可或缺的。
一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题、但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。
因此、解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。
(三)数列在艺术中的广泛应用把一条线段分割为两部分、使其中一部分与全长之比等于另一部分与这部分之比。
数列在日常生活中的应用
数列在日常生活中的应用储蓄与人们的日常生活密切相关,它对支援国家建设、安排好个人与家庭生活具有积极意义。
数列的知识在解决活期储蓄、分期存款及分期付款等问题时,充分体现了数列在生活中的广泛应用。
一、关于数列的理论数列是按一定的次序排成的一列数,数列中的每一个数都叫做数列的项。
如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就是等差数列。
德国著名数学家高斯在十岁时就已经用等差数列的思想解答了1+2+3+…+99+100=5050这个问题。
假设等差数列的首项为a1,第n项为an,那么数列前n项的和为Sn=n(a1+an)/2或者Sn=na1+n(n-1)d/2(其中d是等差数列的公差)。
二、数列在日常生活中的应用我们的生活离不开储蓄,计算储蓄所得利息的基本公式是:利息=本金×存期×利率。
根据国家的规定,个人取得储蓄存款利息应依法纳税,计算公式为:应纳税额=利息全额×税率。
其中的税率为20%。
1、差数列在分期存款中的应用分期存款是分期存入后一次取出的一种储蓄方式。
一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一出生就在孩子每年生日那天到银行储蓄5000元一年定期,若年利率为0.2%保持不变,当孩子十八岁上大学时,将所有存款(含利息)全部取回,那么取回的钱的总数是多少?第一期存款利息:a1=5000×0.2%×18;第二期存款利息:a2=5000×0.2%×17;……第十七期存款利息:a17=5000×0.2%×2;第十八期存款利息:a18=5000×0.2%×1。
于是,应该得的全部利息就是上面各期利息的和,因为a1至a18构成一个等差数列,所以把各期利息加起来就是:S18=a1+a2+……+a17+a18。
根据等差数列前n项和的公式Sn=n(a1+an)/2可知:S18=18×(5000×0.2%×18+5000×0.2%×1)×1/2=1710(元)。
高考数学专题复习:数列在日常生活中的应用
高考数学专题复习:数列在日常生活中的应用一、单选题1.某房屋开发商出售一套50万元的住宅,可以首付5万元,以后每过一年付5万元,9年后共10次付清,也可以一次付清(此后一年定期存款税后利率设为2%,按复利计算)并优惠%a ,为鼓励购房者一次付款,问优惠率应不低于多少?( )(a 取整数,计算过程中参考以下数据:910111.02 1.195,1.02 1.219,1.02 1.243===) A .8%B .9%C .11%D .19%2.某顾客在2020年1月1日采用分期付款的方式购买一辆价值2万元的家电,在购买一个月后2月1日第一次还款,且以后每个月1日等额还款一次,如果一年内还清全部贷款(12月1日最后一次还款),月利率为0.5%.按复利计算,则该顾客每个月应还款多少元?(精确到1元,参考值101.005 1.05=,111.005 1.06=)( ) A .1767B .1818C .1923D .19463.假设一个蜂巢里只有1只蜜蜂,第1天它飞出去找回了2个伙伴:第2天,3只蜜蜂飞出去,各自找回了2个伙伴……如果这个找伙伴的过程继续下去,则到第4天所有蜜蜂都归巢后,蜂巢中全部蜜蜂的只数是( ). A .1B .3C .9D .814.某车间王师傅、张师傅因工种不同上班规律如下,王师傅休息一天后连续两天上班,再休息一天,张师傅休息一天后连续四天上班,再休息一天,在第一天,王师傅、张师傅都休息,从第1个星期到第15个星期内,记第n 个星期王师傅上班天数为()f n ,张师傅上班天数为()g n ,用a ,b ,c ,d 分别表示()()g n f n -等于2,1,0,1-的个数,则(a ,b ,c ,d )=( )A .(4,7,4,0)B .(3,7,4,1)C .(3,7,5,0)D .(3,8,4,0)5.某人从2015年起,每年1月1日到银行新存入a 元(一年定期),若年利率为r 保持不变,且每年到期存款均自动转为新的一年定期,到2020年1月1日将之前所有存款及利息全部取回,他可取回的钱数(单位为元)( ) A .5(1)a r + B .5(1)(1)ar r r⎡⎤+-+⎣⎦ C .6(1)a r +D .6(1)(1)a r r r ⎡⎤+-+⎣⎦6.某家庭打算为子女储备“教育基金”,计划从2021年开始,每年年初存入一笔专用存款,使这笔款到2027年底连本带息共有40万元收益.如果每年的存款数额相同,依年利息2%并按复利计算(复利是一种计算利息的方法,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息),则每年应该存入约( )万元.(参考数据:781.02 1.149, 1.02 1.172≈≈) A .5.3B .4.6C .7.8D .67.某养猪场2021年年初猪的存栏数1200,预计以后每年存栏数的增长率为8%,且在每年年底卖出100头.设该养猪场从今年起每年年初的计划存栏数依次为123,,,a a a .则2035年年底存栏头数为(参考数据:1415161.08 2.9,1.08 3.2,1.08 3.4≈≈≈)( ) A .1005 B .1080C .1090D .1105二、双空题8.某公司为一个高科技项目投入启动资金2000万元,已知每年可获利20%,但由于竞争激烈,每年年底需从利润中取出200万元资金进行科研、技术改造,方能保持原有利润的增长率,则第三年年初该项目的资金为________万元,该公司经过________年该项目的资金可以达到或超过翻一番(即原来的2倍)的目标.(lg 20.30≈,lg30.48≈)9.某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下第k 棵树种植在点()k k k P x y ,处,其中11x =,11y =,当2k ≥时,11121555{1255k k k k k k x x T T k k y y T T --⎡⎤--⎛⎫⎛⎫=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦--⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,.()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=.按此方案,第6棵树种植点的坐标应为________.第2008棵树种植点的坐标应为________. 10.已知桶0A 中盛有2升水,桶0B 中盛有1升水.现将桶0A 中的水的34和桶0B 中的水的14倒入桶1A 中,再将桶0A 与桶0B 中剩余的水倒入桶1B 中;然后将桶1A 中的水的34和桶1B 中的水的14倒入桶2A 中,再将桶1A 与桶1B 中剩余的水倒入桶2B 中;若如此继续操作下去,则桶n A ()n *∈N 中的水比桶n B ()n *∈N 中的水多________升.11.从2017年到2020年期间,某人每年6月1日都到银行存入1万元的一年定期储蓄.若年利率为20%保持不变,且每年到期的存款本息均自动转为新的一年定期储蓄,到2020年6月1日,该人去银行不再存款,而是将所有存款的本息全部取回,则取回的金额为________万元.四、解答题12.银行按规定每经过一定的时间结算存(货)款的利息一次,结算后即将利息并入本金,这种计算利息的方法叫做复利,现在有某企业进行技术改造,有两种方案:甲方案:一次性货款10万元,第一年便可获得利润1万元,以后每年比上年增加30%的利润;乙方案:每年货款1万元,第一年可获得利润1万元,以后每年比前一年多获利5000元.两种方案的期限都是10年,到期一次行归还本息.若银行货款利息均以年息10%的复利计算,试比较两个方案哪个获得纯利润更多?计算精确到千元,参考数据:101.12.594=,101.313.796=)13.某企业2020年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从2021年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n年(2021为第1年)的利润为150012n⎛⎫+⎪⎝⎭万元(n为正整数).(1)设从2021起的前n年,若该企业不进行技术改造的累计纯利润为n A万元,进行技术改造后的累计纯利润为n B万元(须扣除技术改造资金),求n A、n B的表达式;(2)依上述预测,从2021起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?14.小明的父母为了准备小明将来考入大学的学费,于2017年元旦在某银行存入10000元,并在后续每一年的元旦都在该银行存入1200元,直到2022年存入最后一笔钱为止.如果银行的存款年利率为2.75%,且以复利计息,那么小明的父母在2022年底将存款连本带利全部取出时,能取到多少钱?15.放射性元素在t =0时的原子核总数为0N ,经过一年原子核总数衰变为0N q ,常数1q -称为年衰变率.考古学中常利用死亡的生物体中碳14元素稳定持续衰变的现象测定遗址的年代.已知碳14的半衰期为5730年. (1)碳14的年衰变率为多少(精确到610-)(2)某动物标本中碳14含量为正常大气中碳14含量的60%(即衰变了40%),该动物的死亡时间大约距今多少年?16.某牛奶厂2015年初有资金1000万元,由于引进了先进生产设备,资金年平均增长率可达到50%.每年年底扣除下一年的消费基金后,剩余资金投入再生产,这家牛奶厂每年应扣除多少消费基金,才能实现经过5年资金达到2000万元的目标(精确到1万元)?17.假设某银行的活期存款年利率为0.35%某人存10万元后,既不加进存款也不取款,每年到期利息连同本金自动转存,如果不考虑利息税及利率的变化,用n a 表示第n 年到期时的存款余额,求1a 、2a 、3a 及n a .18.某市准备投入资金进行生态环境建设,促进旅游业的发展.计划本年度投入1200万元,以后每年投入均比上年减少20%,本年度旅游业收入估计为400万元,预计今后旅游业收入的年增长率相同. 设本年度为第一年,已知前三年旅游业总收入为1525万元. (Ⅰ)设第n 年的投入为a n 万元,旅游业收入为b n 万元,写出a n ,b n 的表达式; (Ⅱ)至少经过几年,旅游业的总收入才能超过总投入? (参考数据:lg2 ≈0.301,lg3≈ 0.477)参考答案1.B 【分析】设优惠率应不低于%a ,由已知可得,()()()998501%12%5 1.02 1.02 1.021a -+≤⨯++⋅⋅⋅⋅⋅⋅++,解不等式可得答案. 【详解】设优惠率应不低于%a ,由题意可得,()()()998501%12%5 1.02 1.02 1.021a -+≤⨯++⋅⋅⋅⋅⋅⋅++,即1091.0211%0.91610 1.020.02a --≤≈⨯⨯, 解得%8.4%a ≥, 又∵a 取整数, ∴优惠率应不低于9%, 故选:B . 2.A 【分析】设每月还款x 元,每月还款按得利计算,11次还款的本利和等于银行贷款按复利计算的本利和,由此可得. 【详解】设每月还款x 元,共还款11个月, 所以10911(1.005 1.005 1.0051)20000 1.005x ⨯++++=⨯,1111111020000 1.00520000 1.00520000 1.0617671 1.061 1.0051 1.005 1.0050.0051 1.005x ⨯⨯⨯===≈--+++--. 故选:A . 3.D 【分析】先由前几天结束时,蜂巢中的蜜蜂数量观察出其组成了首项为3,公比为3的等比数列,求出通项公式,把4直接代入即可.【详解】 由题意知,第一天所有蜜蜂归巢后,蜂巢中一共有1+2=3只蜜蜂, 第二天所有蜜蜂归巢后,蜂巢中一共有339⨯=只蜜蜂, 第三天所有蜜蜂归巢后,蜂巢中一共有39=27⨯只蜜蜂,第n 天所有蜜蜂归巢后,蜂巢中一共有133=3n n -⨯只蜜蜂, 所以归巢后的蜜蜂数列组成了首项为3,公比为3的等比数列, 所以其通项公式为:3n , 所以,第四天共有4381=只蜜蜂. 故选:D 4.D 【分析】由已知得出每个星期王师傅上班天数和每个星期张师傅上班天数,由此可得出选项. 【详解】每个星期王师傅上班天数依次为4,5,5,4,5,5,…,每个星期张师傅上班天数依次为5,6,5,6,6,5,6,5,6,6,…,因此()()g n f n -依次为1,1,0,2,1,0,2,0,1,2,0,1,1,1,1所以()(3840)a b c d =,,,,,,, 故选:D. 5.D 【分析】根据题意分析得到:到2020年1月1日将之前所有存款为5432(1)(1)(1)(1)(1)a r a r a r a r a r +++++++++,最后根据等比数列求和即可. 【详解】根据题意可得:自2015年1月1日到银行新存入a 元,则到2016年1月1日之前银行存款共(1)a r +,2016年1月1日再存入a 元, 到2017年1月1日之前银行存款2(1)(1)a r a r +++,2017年1月1日再存入a 元, 到2018年1月1日之前银行存款32(1)(1)(1)a r a r a r +++++,2018年1月1日再存入a 元,到2019年1月1日之前银行存款432(1)(1)(1)(1)a r a r a r a r +++++++,2019年1月1日再存入a 元,到2020年1月1日之前银行存款共计5432(1)(1)(1)(1)(1)a r a r a r a r a r +++++++++, 因为5432(1)(1)(1)(1)(1)a r a r a r a r a r +++++++++5432(1)(1)(1)(1)(1)a r r r r r ⎡⎤=+++++++++⎣⎦56(1)1(1)(1)(1)1(1)a r r ar r r r⎡⎤+-+⎣⎦⎡⎤==+-+⎣⎦-+, 故选:D. 6.A 【分析】设每年存入x 万元,分别求出2021年初至2027年初到2027年底的所有本利和,求和即可求解. 【详解】设每年存入x 万元,则2021年初存入的钱到2027年底本利和为()712%x +, 2022年初存入的钱到2027年底本利和为()612%x +, ……2027年初存入的钱到2027年底本利和为()12%x +, 则()()()2712%12%12%40x x x ++++++=,即()71.021 1.02401 1.02x -=-,解得 5.3x ≈.故选:A. 7.C 【分析】依据题意可得每年年初存栏数满足()118%100n n a a -=⨯+-,构造等比数列{}1250n a -,利用等比数列通项公式求得()15018%1250n n a -=-⨯++,问题得解.【详解】由题可得11200a =,()2120018%100a =⨯+-,()3218%100a a =⨯+-,…… 由此下去可得:()118%100n n a a -=⨯+- 令()()118%n n a x a x -+=++ 整理可得()118%0.08n n a a x -=⨯++ 令0.08100x =-,解得1250x =-∴数列{}1250n a -是以50-为首项,公比为18%+的等比数列 ∴()112505018%n n a --=-⨯+∴()15018%1250n n a -=-⨯++则2035年年底存栏头数为()()()1511518%1005018%125018%100a -⎡⎤⨯+-=-⨯++⨯+-⎣⎦50 3.21250 1.081001090≈-⨯+⨯-=故选:C8.2440 6 【分析】设n a 是经过n 年后该项目的资金,则1(120%)200n n a a +=+-,从而可求出经过两年后该项目的资金,构造等比数列{}1000-n a ,求出n a ,根据翻一番(即原来的2倍)的目标建立不等式,解指数不等式,即可求出所求. 【详解】设n a 是经过n 年后该项目的资金,则1(120%)200n n a a +=+-, 所以12000(120%)2002200a =+-=, 22200(120%)2002440a =+-=,所以经过两年后该项目的资金为2440万元; 因为1(120%)200n n a a +=+-,设1(120%)()n n a p a p ++=++,则1000p =-, 即11000(120%)(1000)n n a a +-=+-,所以{}1000-n a 是以1.2为公比,1200为首项的等比数列, 所以11200 1.210001000 1.21000n n n a -=⨯+=⨯+, 由已知得1000 1.210004000n ⨯+≥,lg3lg36lg 6lg5lg312lg 2n=≈--+,即该公司经过6年该项目的资金可以达到或超过翻一番(即原来的2倍)的目标. 故答案为:①2440;②6. 9. (1,2) (3, 402) 【详解】 T组成的数列为1,0,0,0,0,1, 0,0,0,0,1, 0,0,0,0,1……(k =1,2,3,4……).一一代入计算得数列为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5……;数列为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4…….因此,第6棵树种在 (1,2),第2008棵树种在(3, 402). 10.12n. 【分析】根据题意,得到n A ,n B 之间的关系,然后用数列知识求解. 【详解】根据题意可得,11313,44n n n n n A B A A B --+==+, ∴1113113(3)4424n n n n A A A A ---=+-=+, ∴1313()222n n A A --=-,即数列32n A ⎧⎫-⎨⎬⎩⎭是以1003313124424A A B -=+-=为首项,12为公比的等比数列,∴1131112422n n n A -+-=⋅=⇒13122n n A +=+, ∴131322n n n B A +=-=-,∴*1112()22n n n n A B n N +-=⨯=∈.故答案为:12n11.4.368【分析】分别求出2017年、2018年、2019年这三年每一年存入的1万元取出时的本息,再计算他们的和即可求解. 【详解】2017年存入1万元到2020年取回的本息为()33120% 1.2+=万元, 2018年存入1万元到2020年取回的本息为()22120% 1.2+=万元, 2019年存入1万元到2020年取回的本息为()1120% 1.2+=万元,所以取回的金额为3321.2(1 1.2)1.2 1.2 1.2 4.3681 1.2-++==-万元,故答案为:4.368. 12.答案见解析. 【分析】由题意可知,甲方案中增长利率是定值,所以每年利润数是以1为首项,以1.3为公比的等比数列,再由等比数列的前n 项和公式求出10年利润总数;乙方案中每年增长的利润是一定值,所以每年利润数是以1为首项,以0.5为公差的等差数列,再由等差数列的前n 项和公式求出10年利润总数,然后比较两种情况的数值. 【详解】解:甲方案10年获利润是每年利润数组成的数列的前10项的和:10291.311(130%)(130%)(130%)42.621.31-+++++++==-(元), 到期时银行的本息和为()10110%1010 2.59425.94⨯+=⨯=(万元), ∴甲方案扣除本息后的净获利为:42.6225.9416.7-≈(万元), 乙方案:逐年获利成等差数列,前10年共获利:10(1 5.5)1(10.5)(120.5)(190.5)32.502+++++⨯+++⨯==(万元) 贷款的本利和为:1091.111.11(110%)(110%) 1.117.531.11-⎡⎤+++++=⨯=⎣⎦-(万元), ∴乙方案扣除本利后的净获利为:32.5017.5315.0-=(万元), 所以,甲方穿的获利较多. 13.(1)249010n A n n =-,n B =5005001002nn --;(2)至少经过4年. 【分析】(1)利用等差数列的求和公式可求得n A ,利用分组求和法可求得n B ; (2)作差得出25010102n n n B A n n ⎛⎫-=+-- ⎪⎝⎭,令25010102n n c n n ⎛⎫=+-- ⎪⎝⎭,分析数列{}n c 的单调性,可得出340c c <<,由此可得出结论.【详解】(1)依题设,()()()()2201500205004050020500490102n n n A n n n n +=-+-+⋅⋅⋅+-=-=-, 2111111500225001116005005001001222212n n n n B n n ⎡⎤⎛⎫- ⎪⎢⎥⎡⎤⎛⎫⎛⎫⎛⎫⎝⎭⎢⎥=++++⋅⋅⋅++-=+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦-⎢⎥⎣⎦; (2)()225005050010049010101022n n n n B A n n n n n ⎛⎫-=----=+-- ⎪⎝⎭, 令25010102n n c n n ⎛⎫=+-- ⎪⎝⎭,则数列{}n c 为单调递增数列, 且32510204c ⎛⎫=-< ⎪⎝⎭,425101608c ⎛⎫=-> ⎪⎝⎭,所以,当且仅当4n ≥时,n n B A >.至少经过4年,该企业进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润. 14.18281.21元 【分析】根据复利计算即可得出答案. 【详解】由题意得,小明的父母在2022年底将存款连本带利全部取出的钱数为: ()()()()65411000010.027*******.027*******.027*******.0275++++++++()()()()()56120010.0275110.027********.0275110.0275+-+=++-+18281.21≈(元)即能取到18281.21元.15.(1)0.999879;(2)4221.【分析】(1)根据题意,生物体死亡n 年后,体内每克组织中的碳14的残留量为n a ,则可判断出{}n a 是一个等比数列,由题意列出通项公式,解出q 即可; (2)由题意,利用等比数列的通项公式列方程,解出n. 【详解】(1)设生物体死亡时,体内每克组织中的碳14的含量为1,每年的衰变率为q ,n 年后的残留量为n a ,则{}n a 是一个等比数列.由碳14的半衰期为5730,则 57305730112n a a qq===,解得:157301()0.9998792q =≈. 即碳14的年衰变率为0.999879;(2)设动物约在距今n 年前死亡,由0.6n a =,得10.9998790.6n n n a a q ===,解得4221n ≈,所以动物约在距今4221年前死亡. 16.424万元 【分析】设这家牛奶厂每年应扣除x 万元消费基金,则由规律可得第五年剩余资金为:5234333331000()[1()()()]22222x ⨯-++++,由题意知,5234333331000()[1()()()]200022222x ⨯-++++=,即可求得x 的值. 【详解】解:设这家牛奶厂每年应扣除x 万元消费基金,则: 第一年剩余资金为:31000(150%)10002x x +-=⨯-,第二年剩余资金为:23333(1000)1000()(1)2222x x x ⨯-⨯-=⨯-+, ⋯⋯以此类推,第五年剩余资金为:5234333331000()[1()()()]22222x ⨯-++++,由题意知,5234333331000()[1()()()]200022222x ⨯-++++=,即553()132[]1000()20003212x -=⨯--,解得:424x ≈,故这家牛奶厂每年应扣除424万元消费基金.17.110.035a ,210.070a ,310.105a ,1010.35%nn a . 【分析】本题可根据活期存款年利率的计算方式得出结果. 【详解】11010.35%10.035a ,221010.35%10.070a ,331010.35%10.105a ,1010.35%nna .18.(Ⅰ)1412005n n a -⎛⎫=⋅ ⎪⎝⎭,154004n n b -⎛⎫=⋅ ⎪⎝⎭;(Ⅱ)6年.【分析】(Ⅰ)由题意知{a n },{b n }均为等比数列,根据条件中的数列{a n }的首项和公比直接写出通项公式,设数列{b n }的公比为 q ,根据三年内旅游业总收入求得q ,从而求得{b n }的通项公式;(Ⅱ)设至少经过 n 年,旅游业的总收入才能超过总投入.分别计算出经过 n 年,总投入和旅游业总收入,根据不等关系列出表达式,解得n 的最小值即可. 【详解】解:(Ⅰ)由题意知{a n },{b n }均为等比数列,数列{a n }的首项为1200,公比为4120%5-=,所以1412005n n a -⎛⎫=⋅ ⎪⎝⎭,设数列{b n }的公比为 q ,显然 q > 0 , q ≠ 1. 所以三年内旅游业总收入为()3400115251q q-=-,即261116q q ++=, 所以21616450q q +-=,解得 54q =或49q =-(舍去), 所以 154004n n b -⎛⎫=⋅ ⎪⎝⎭.(Ⅱ)设至少经过 n 年,旅游业的总收入才能超过总投入.则经过 n 年,总投入为 41200154600014515n n⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,经过n 年,旅游业总收入为5400145160015414nn⎡⎤⎛⎫-⎢⎥⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=-⎢⎥⎪⎝⎭⎢⎥⎣⎦-,所以54160016000145n n⎡⎤⎡⎤⎛⎫⎛⎫->-⎢⎥⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,化简得4515419054n n⎛⎫⎛⎫+->⎪ ⎪⎝⎭⎝⎭设4(01)5nt t⎛⎫=<<⎪⎝⎭,代入上式得2151940t t-+>,解此不等式,得t >1(舍去)或t <415,即44515n⎛⎫<⎪⎝⎭,解得454lg42lg2(lg3lg5)3lg2lg3115log 5.94152lg2lg53lg21lg5n-+-->===≈--由此得n≥6 .所以至少经过6 年,旅游业的总收入才能超过总投入.。
浅析数列在日常生活中的应用
浅析数列在日常生活中的应用在实际生活和经济活动中, 很多问题都与数列密切相关.如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决. 与此同时,数列在艺术创作上也有突出的作用. 数学家华罗庚曾经说过:"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学. " 这是对数学与生活关系的精彩描述. 下面笔者将举几个生活中的小例子来浅谈一下数列在日常生活中的运用.一、在生产生活中在给各种产品的尺寸划分级别时, 当其中的最大尺寸与最小尺寸相差不大时, 常按照等差数列进行分级. 若为等差数列, 且有an=m,am=n. 则a(m+n)=0.其实等差数列生活中处处可见, 关键是发现它, 并用以解决实际问题. 在路灯的排列、银行的按揭贷款、银行的利息结算等等.例如1 台电脑售价为1 万元, 如果采取分期付款, 在1 年内将款全部还清的前提下,商家还提供下表所示的几种付款方案(月利率为1%). 假定你的父母为给你创建更好的学习条件,打算买台电脑,除一次性付款外商家还提供三种分期付款方式. 你能帮他们参谋选择一下吗?方案分几次付清付款方法每期所付款额方案1.分6 次付清. 购买后2 个月第1次付款, 再过2 个月第2 次付款……购买后12 个月第6 次付款方案2.分12 次付清. 购买后1 个月第1次付款, 再过1 个月第2 次付款……购买后12 个月第12 次付款方案3.分3 次付清. 购买后4 个月第1次付款,再过4 个月第2 次付款,再过4 个月第3 次付款分析:思路1: 本题可通过逐月计算欠款来处理,根据题意,到期还清即第12 个月的欠款数为0 元.设每次应付x 元,则:二、细胞分裂中的数列自然界是由许许多多的细胞组成的,细胞分裂产生新的生命, 人的孕育也是由细胞分裂开始的. 以某种细胞为例我们一起来分析一下细胞是如何分裂的.某种细胞每过30 分钟便由 1 个分裂成 2 个,经过 5 小时,这种细胞由 1 个分裂成几个?经过N 小时,细胞由1 个能分裂成几个?该细胞分裂数是公比为2 的等比数列方式增加.显然不用减去那最初的一个母细胞了,因为题目问的是:"经过5 小时, 这种细胞由一个分裂成几个,"当然是1024 了,又不是问由一个分裂"出"几个,那就要减去最初的母细胞了.显然N 时后,该细胞会由一个分裂"成"2(k-1)个(k为自然数,k=2N+1)即:N 时后,会有22N个细胞,(其中N 表示整时,单位为时,N=0,1,2,3,……)因此,经过N 时后,细胞由一个分裂成22N个(N=0,1,2,3,…)三、爬楼梯小明同学在小的时候喜欢爬楼梯, 不为什么,只是觉得这种阶梯状的建筑非常好玩,等到他长大了,可以一次跨上一级,也可以跨两级,所以,他想知道,有多少种不同的上到楼梯顶端的方案.首先假设楼梯只有一级,那么小明只有一种爬法;如果有 2 级,那么小明可以一级一级地往上爬,也可以一次就上两级,用算式表示为1+1 或2, 说明他上 2 级楼梯有 2 种不同的爬法;如果有 3 级,小明的第一步可以上一级,也可以上二级. 如果上一级,那么还剩下 2 级, 上面已经讨论过了有 2 种不同的爬法;如果上二级,那么还剩下 1 级,上面也已经讨论过了,只有 1 种爬法;合计起来就有2+1=3 种不同的爬法. 有算式表示为3=1+2(2 种不同的爬法)=2+1(1 种不同的爬法);如果有4 级,小明的第一步可以上一级,也可以上二级. 如果上一级, 那么还剩下3级,上面已经讨论过了有3 种不同的爬法;如果上二级,那么还剩下 2 级,上面也已经讨论过了,有 2 种不同的爬法;合计起来就有3+2=5 种不同的爬法. 用算式表示为4=1+3(3种不同的爬法)=2+2(2 种不同的爬法);……照这样推下去, 可以得一串斐波那契数列:1,2,3,5,8,13,21,34,55,89,……由此可知,爬上有10 级台阶的楼梯,一共有89 种不同的爬法.随着科学的进步,数学学科在我们的生活中扮演着一个不可忽视的重要角色,作为跨世纪的中学生, 我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题,这样才能更好地适应社会的发展和需要. 数学既不严峻,也不遥远,它既和所有的人类活动有关,又对每一个真正感兴趣的人有益. 数学研究、科学研究从身边的活动做起. 让我们从一个小小的数列开始,多思考,找规律,相信任何问题都可以迎刃而解的.。
数列在日常生活中的应用
运输成本控制
利用数列分析,可以精确 计算运输成本,为企业制 定合理的价格策略提供依 据。
运输安全保障
通过数列分析,可以发现 运输过程中的安全隐患, 采取有效措施保障运输安 全。
04
CATALOGUE
医学与健康
医学研究
疾病预测
药物研发
建筑材料
混凝土的配合比设计
混凝土是建筑工程中常用的建筑材料之一,其配合比设计对工程质量有着至关重要的影响。通过数列 的方法进行配合比设计,可以更加准确地确定各种材料的比例关系,提高混凝土的强度和耐久性。
钢材的规格与数列
在建筑工程中,钢材也是必不可少的建筑材料之一。不同规格的钢材具有不同的力学性能和适用范围 ,通过数列的方法可以对各种规格的钢材进行分类和排列,便于工程中选用合适的钢材规格。
药物副作用监测
通过收集和分析患者的用药数据,可以及时发现 药物的副作用和不良反应,保障患者安全。
05
CATALOGUE
教育与培训
课程设计
数学课程
数列是数学教育中的重要内容,用于教授学生数列的基本概念、 性质和计算方法。
编程课程
在编程中,数列常用于算法设计和数据结构,如数组和链表等。
经济学课程
在经济学中,数列用于描述经济数据的变化趋势和规律,如时间序 列分析。
物流管理
01
02
03
库存管理
利用数列表示不同商品的 销售量,可以预测商品的 库存需求,避免库存积压 和浪费。
配送路线优化
通过数列分析,可以找到 最优的配送路线,降低物 流成本和提高配送效率。
物流数据分析
利用数列分析,可以对物 流数据进行挖掘和可视化 ,帮助企业做出更科学的 决策。
《数列在日常经济生活中的应用》
100×12 + 0.5×12×13×0.165%×100
= 1212.87(元 ) 答:他可取出1212.87元。
一般地,设每月月初存入银行金额A,连存 n 次,每月的利率 都是 p , 那么到第 n 个月月末
本金共有:
各月的利息是
___ 差 数 列
期 次
1 2 …
0.36% 则日利率: 0.001% 360
计息公式:利息=本金×存期×日利率
整存整取定期储蓄
这是指一次存入本金,完成约定存期后一次取出本金 及其利息的一种储蓄。中国邮政银行在近期内规定的这 种储蓄的年利率如下.
存
期
1年
2.25
2年
2.79
3年
3.33
5年
3.6
年利率(%)
计息公式:利息=本金×存期×年利率
整存整取 年利率
分期储蓄
这是指一种分期存入相同金额一次取出的 储蓄方式(即零存整取的储蓄)。现在的 分期储蓄通常指按月存入相同金额。
-----------------------------------------------------------------
例1、某人从一月起,每月第一天存入银行 100元,到12月最后一天取出全部本金及其利 息。已知月利率是0.165%,他可取得多少钱? 解:实际取出 :
数 列 在日常经济生活中的应用
储 蓄 问 题
计息公式:利息=本金×存期×利率
月利率=年利率/12 日利率=年利率/360
本 利 和= 本 金 + 利 息
活期储蓄
这是指存期不定,可以随时存取的一种储蓄。计息时, 按日利率算存期为天数(一年按360天,一个月按30天 计算)。 若活期年利率:0.36 %
数列在生活中的应用1
思考交流:银行整存整取定期储蓄年利率如表所示:
存期
1年
2年
3年
5年
年利率/% 1.98 2.25 2.52 2.79
某公司欲将10万元存入银行5年,可按以下方案办理 (不考虑利息税): (1)直接存入5年定期; (2)先存2年定期,取出本利和后再存3年定期.
问题1:计算出不同存法到期后的本利和,哪种存款方 式更合算? 问题2:你能设计出更好的存款方案吗?
例3.分期付款模型 小华准备购买一台售 价为5000元的电脑,采用分期付款的方式, 并在一年内将款全部付清.商场提出的付款 方式为:购买后2个月第1次付款,再过2个月 第2次付款……购买后12个月第6次付款,每 次付款金额相同,约定月利率为0.8%,每月 利息按复利计算.求小华每期付的金额是多 少?
同理,购买12个月后第6次付款 x 元,此 x 元当月的
本利和为 x1 0.0080 元
又,小华一年后应还给商场的总金额增值为:
50001 0.00812 元
x 11.0082 1.0084 1.00810 50001.00812
5000 1.00812 x 1 1.0082 1.0084 1.00810
数列在日常 经济生活中的应用
单利 单利的计算是仅在原有本金上计算利息,
对本金所产生的利息不再计算利息.其公式为
利息=本金×利率×存期
若以符号P代表本金,n代表存期,r代表利率,S 代表本金和利息和(简称本利和),则有
S=P(1+nr)
复利 把上期末的本利和作为下一期的本金,
在计算时每一期的本金,在计算时每一期的数 额是不同的.复利的计算公式是
例1.零存整取模型 银行有一种叫做零存整 取的储蓄业务,即每月定时存入一笔相同数目 的现金,这是零存;到约定日期,可以取出全部 本利和,这是整取.规定每次存入的钱不计复利 (暂不考虑利息税).
数列在日常生活中的应用
教材P38 例3 分期付款模型 教材 另一解法: 另一解法: 每期付款产生的本利和的累加 = 一年后付款的总额 解:设每期还款x元,则 设每期还款 元 x(1+1.0082+1.0084+…+1.00810)= 5000*1.00812 (
பைடு நூலகம்
3、有若干台型号相同的联合收割机收割小麦,若 、有若干台型号相同的联合收割机收割小麦, 同时投入工作到收割完毕需24小时 小时, 同时投入工作到收割完毕需 小时,但它们是 每隔相同的时间按顺序投入工作的, 每隔相同的时间按顺序投入工作的,每一台投入 工作后都一直工作到小麦收割完毕。 工作后都一直工作到小麦收割完毕。如果第一台 收割时间是最后一台的5倍 收割时间是最后一台的 倍,求用这种方法收割 完毕需多少时间? 完毕需多少时间?
a1 = 5a n a1 a2 an 24n + 24n + ⋯ + 24n = 1
a1=40
1、小王每日节省100元,想以零存整取的方式存入 、小王每日节省 元 银行,攒足 元购买冰箱, 银行,攒足2625元购买冰箱,如果月利率为 元购买冰箱 P=0.0075,问存两年能否够购买冰箱的钱? ,问存两年能否够购买冰箱的钱? 2、现有1万元存入银行,存30年,年利率为 ,利息 、现有 万元存入银行 万元存入银行, 年 年利率为r, 税20%,以下列方式存储,则到期本息共多少? ,以下列方式存储,则到期本息共多少? 定期一年 定期二年 定期三年
1.4数列在日常经济生活中的应用(讲义+典型例题+小练)(原卷版)
1.4数列在日常经济生活中的应用(讲义+典型例题+小练)一、例述数列在生活中的应用数学不仅仅是我们生活中的工具,更大程度上是我们生活中的必需品,并影响着人们的生活。
以生活中的一个常见问题为例:例1:1.为了防止某种新冠病毒感染,某地居民需服用一种药物预防.规定每人每天定时服用一次,每次服用m毫克.已知人的肾脏每24小时可以从体内滤除这种药物的80%,设第n=).次服药后(滤除之前)这种药物在人体内的含量是n a毫克,(即1a mm=,求2a、3a;(1)已知12(2)该药物在人体的含量超过25毫克会产生毒副作用,若人需要长期服用这种药物,求m的最大值.举一反三:1.顾客采用分期付款的方式购买一件5000元的商品,在购买一个月后第一次付款,且每月等额付款一次,在购买后的第12个月将货款全部付清,月利率0.5%.按复利计算,该顾客每月应付款多少元(精确到1元)?二、银行储蓄与分期付款中的数列应用储蓄与贷款与国计民生、社会生活发展息息相关,大到支援国家建设,小到个人家庭的财政支出管理,处处都嵌套着数列的应用。
在人们日常的生活规划中,为未来进行资金储备的零存整取的存储模式是银行储蓄中常见的一种金融计算方式。
下面将以某一常见模式为例,进行数列在储蓄领域应用的解析。
(1)储蓄业务种类①活期储蓄②定期储蓄(整存整取定期储蓄、零存整取定期储蓄、整存零取定期储蓄、存本取息定期储蓄、定活两便储蓄)③教育储蓄④个人通知存款⑤单位协定存款(2)银行存款计息方式:①单利单利的计算是仅在原有本金上计算利息,对本金所产生的利息不再计算利息.其公式为:利息=本金×利率×存期以符号P代表本金,n代表存期,r代表利率,S代表本金和利息和(以下简称本利和),则有②复利把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的.复利的计算公式是(3)零存整取模型例1:1.复利是指一笔资金产生利息外,在下一个计息周期内,以前各计息周期内产生的利息也计算利息的计息方法,单利是指一笔资金只有本金计取利息,而以前各计息周期内产生的利息在下一个计息周期内不计算利息的计息方法.小闯同学一月初在某网贷平台贷款10000元,约定月利率为1.5%,按复利计算,从一月开始每月月底等额本息还款,共还款12次,直到十二月月底还清贷款,把还款总额记为x元.如果前十一个月因故不还贷款,到十二月月底一次还清,则每月按照贷款金额的1.525%,并且按照单利计算利息,这样的还款总额记为y元.则y-x的值为()(参考数据:1.01512≈1.2)A.0B.1200C.1030D.9002.银行有一种叫作零存整取的储蓄业务,即每月定时存入一笔相同数目的现金,这是零存;到约定日期,可以取出全部本利和,这是整取.规定每次存入的钱不计复利(暂不考虑利息税).(1)若每月存入金额为x元,月利率r保持不变,存期为n个月,试推导出到期整取是本利和的公式;(2)若每月初存入500元,月利率为0.3%,到第36个月末整取时的本利和是多少?(3)若每月初存入一定金额,月利率为0.3%,希望到第12个月末整取时取得本利和2000元.那么每月初应存入的金额是多少?举一反三:1.某企业在2013年年初贷款M万元,年利率为m,从该年年末开始,每年偿还的金额都是a万元,并恰好在10年间还清,则a的值为()A.()()1010111M mm++-B.()101Mmm+C.()()1010111Mm mm++-D.()()1010111Mm mm+++2.银行有一种叫作零存整取的储蓄业务,即每月定时存入一笔相同数目的现金,这是零存;到约定日期,可以取出全部本利和,这是整取.规定每次存入的钱不计复利.银行按国家规定到期扣除20﹪的利息税(应纳税额=应纳税利息额×税率).(1)若每月存入金额为x 元,月利率r 保持不变,存期为n 个月,试推导出到期整取时本利和的公式;(2)若每月初存入500元,月利率为0.3%,到第36个月末整取时的本利和是多少?三、 环境资源利用中的数列应用进入21世纪以来,能源的短缺成为困扰人类社会发展的主要问题之一,尤其是不可再生资源的合理有效利用问题,更是人类社会进一步发展需要解决的首要问题。
数列在现实生活中中的应用及其求解策略
数列在现实生活中的应用及其求解策略云南会泽县第一中学郭兴甫唐孝敬邮编:654200 数列是特殊的函数,其与方程、不等式联系紧密,在现实生活中应用广泛,在利用数列解决现实中的问题时,首先要认真审题,深刻理解问题的实际背景,弄清蕴含在问题中的数学关系,把应用问题转化为数学中的等差数列、等比数列问题,然后求解。
本文举例说明数列在现实生活中的应用及其求解策略,以期对同学们的学习有所帮助!一、方案设计型例1•某企业进行技术改造,有两种方案,甲方案:一次性贷款 10万元,第一年便可获利1万元,以后每年比前一年增加30%的利润;乙方案:每年贷款1万元, 第一年可获利1万元,以后每年比前一年增加5千元;两次方案的使用期都是10 年,到期一次性归还本息。
若银行两种形式的贷款都按年息 5%的复利计算,试比较两种方案中,那种获利更多?(参考数据 1.0510 1.6,1.31013.7,1.51055.6)分析:这是一道比较常见的数列应用问题,方案选择,由于本息与利润是熟知的概念,对甲方案,每年的获利满足等比数列;对乙方案,每年获利构成等差数列,因此只需建立通项公式,求和公式,并运用所学过的公式求解即可.1 310 1解:对甲种方案获利为:1 (1 30%) (1 30%)2(1 30%)942.30.3(万元)银行贷款本息和:10 (1 5%)1016 (万元)故甲种方案纯利:42.3 16 26.3 (万元)对乙种方案获利:1 (1 0.5) (1 2 0.5) (1 9 0.5)10 1 10 90.5 32.5(万元)银行贷款本息和:1.05 [1 (1 5%) (1 5%)2(1 5%)9]1.05 1.0510 10.0512.6 (万元)故乙种方案纯利:32.5-12.6 19.9(万元)综上由26.3 19.9可得,甲方案更好。
二、汽车保有量问题例2.为综合治理交通拥堵状况,缓解机动车过快增长势头,一些大城市出台了“机动车摇号上牌”的新规.某大城市2012年初机动车的保有量为600万辆,预计此后每年将报废本年度机动车保有量的5%,且报废后机动车的牌照不再使用,同时每年投放10万辆的机动车牌号,只有摇号获得指标的机动车才能上牌•经调研,获得摇号指标的市民通常都会在当年购买机动车上牌.(1)问:到2016年初,该城市的机动车保有量为多少万辆;(2)根据该城市交通建设规划要求,预计机动车的保有量少于500万辆时,该城市交通拥堵状况才真正得到缓解•问:至少需要多少年可以实现这一目标.(参考数据:0.9540.81,0.9550.77,|g0.75 0.13,lg 0.95 0.02)分析:(1 )首先将实际问题分析,得到关于各年年初机动车保有量的递推关系,然后结合数列的性质,构造得到等比数列,进而得到其通项公式(2)在第一问的基础上,解关于 n的不等式,进而估算法得到结论(1)设2012年年初机动车保有量为a1万辆,以后各年年初机动车保有量依次为a2万辆,a3万辆,.. ,每年新增机动车10万辆,则a1 600 , a n 1 0.95a n 10 . 又a n 1200 0.95(a n 200),且a1200 600 200 400所以数列{a n 200}是以400为首项,0.95为公比的等比数列.所以a n 200 400 0.95n 1,即a n 400 0.95n 1 200 .所以2016年初机动车保有量为a5 400 0.954 200 524万辆.(2)由(1 )题结论可知,a n 400 0.95n 1 200 500,即0.95n 1 0.75 ,所以n lg M 1 7.5,故至少需要8年时间才能实现目标lg 0.95评注:本试题主要是考查了数列在实际生活中的运用,借助于等比数列的概念,和等比数列的通项公式来表示机动车保有量,然后借助于不等式的相关知识,求解对数不等式,得到结论。
第一章 第四节 数列在日常经济生活中的应用
第四节 数列在日常经济生活中的应用1.某储蓄所计划从2004年起,力争做到每年的吸蓄量比前一年增加8%,则到2007年底该蓄所的吸蓄量比2004年的吸蓄量增加( )A .24%B .32%C .(308.1-1)100%D .(408.1-1)100%2.某工厂1996年至19999年的产量和为100吨,1998年至2001年的产量和为121吨,则该工厂1996年至2001年的年平均增长率为( )A .10%B .21%C .7%D .14%3.在2000年至2003年期间,甲每年6月1日都到银行存入m 元的一年定期储蓄,若年利率为q 保持不变,且每年到期的存款本息自动转为新的一年定期,到2004年6月1日甲去银行不再存款,而是将所有存款的本息全部取回,则取回的金额是( )A 、4)1(q m +元B 、5)1(q m +元C 、q q q m )]1()1[(4+-+元D 、qq q m )]1()1[(5+-+元 4.本金3000元,每月复利一次,一年后得到本利和3380元,月利率是_______.5.用分期付款的方式购买某家用电器,其价格为l150元,购买当天先付150元,以后每月这一天都交付50元,并加付欠款利息,月利率为l%,若交付150元后的第一个月开始算分期付款,全部欠款付清后,买这件家电实际付钱多少元?6.某地现有居民住房的面积为a ㎡,其中需要拆除的旧住房面积占了一半,当地有关部门决定在每年拆除一定数量旧住房的情况下,仍以10%的住房增长率建新住房.(1)如果10年后该地的住房总面积正好比目前翻一番,那么每年应拆除的旧住房总面积r 是多少(可取6.21.110≈)?(2)过10年还未拆除的旧住房总面积占当时住房总面积的百分比是多少(保留到小数点后第1位)?7、某工厂总产值月平均增长率为p ,则年平均增长率为( )A 、pB 、12pC 、12)1(p +D 、1)1(12-+p8、某种产品计划每年降低成本%q ,若三年后的成本是a 元,则现在的成本是 。
数学高考总复习:数列的应用之知识讲解、经典例题及答案
14
( 1)分别求 2007 年底和 2008 年底的住房面积; ( 2)求 2026 年底的住房面积 .(计算结果以万平方米为单位,
且精确到 0.01)
【答案】 ( 1) 2007 年底的住房面积为 1200(1+5%) -20=1240 (万平方米),
2008 年底的住房面积为 1200(1+5%) 2- 20(1+5%) -20=1282 (万平方米), ∴ 2007 年底的住房面积为 1240 万平方米; 2008 年底的住房面积为 1282 万平方米 . ( 2) 2007 年底的住房面积为 [1200(1+5%) - 20]万平方米, 2008 年底的住房面积为 [1200(1+5%) 2- 20(1+5%) - 20]万平方米, 2009 年底的住房面积为 [1200(1+5%) 3- 20(1+5%) 2- 20(1+5%) - 20]万平方米, ………… 2026 年底的住房面积为 [1200(1+5%) 20― 20(1+5%) 19―……― 20(1+5%) ― 20]万平方米 即 1200(1+5%) 20― 20(1+5%) 19― 20(1+5%) 18―……― 20(1+5%) ― 20
,
( 2)求出当 n≥2时的 ,
( 3)如果令 n≥2时得出的 中的 n=1 时有 一个形式, 否则就只能写成分段的形式 .
成立, 则最后的通项公式可以统一写成
1
知识点二:常见的由递推关系求数列通项的方法 1.迭加累加法:
,
则
,
, …,
2.迭乘累乘法: ,
则
,
数列日常生活中的应用
数列日常生活中的应用在当今社会经济日益繁荣,人民生活水平日益提高,人民对生活设备的要求也提高了,往往需要购置更多商品,这就要求人们必须懂得合理安排资金,使之得以充分利用。
而当前,随着住房、教育、买车等贷款业务逐渐深入家庭。
我们经常遇到一些分期付款问题。
如何选择付款方式,关系到个人利益,也是一个需要运用数学知识来计算的复杂过程。
做为“热点“的分期付款成为了一种趋势,在今后,更将被广大人民所接受并应用于生活中。
通过研究调查,了解人们对分期付款的认识程.度及应用程度,使资源共享更好地应用于人民,使人们增加对分期付款的了解,并使分期付款更好地服务于人民。
本单元的目的在于让学生通过学习和调查,对分期付款有进一步认识,感受数学在实际生活中应用价值。
一、例述数列在生活中的应用在对某地超市进行统计调查后发现,每天购买甲乙两种蔬菜的人数约为200人,且第一天购买甲种蔬菜的第二天会有20%购买乙种蔬菜,第一天购买乙种蔬菜的第二天会有30%购买甲种蔬菜,则据此推算超市应当如何安排甲乙两种蔬菜的进货量。
解决方案:设第n天购买甲乙两种蔬菜的人数分别为An、Bn,则:An+1=0.8An+0.3Bn;Bn+1=0.2An+0.7Bn;由于An+Bn=200,则可推算得An+1=0.8An+0.3(200-An)=60+0.5An;则An+1-120=0.5(An-120);可得,{An-120}是以A1-120为首项,0.5为公比的等比数列;假设,第一天购买甲种蔬菜的有a人,则An=0.5^(n-1)*(a-120)+120当n趋近于无穷时,易得,An趋近于120且与a的值无关。
则可知,购买甲种蔬菜的人数稳定在120人,购买一种蔬菜的人数稳定在80人。
上述例题,以生活中常见的一类问题为原型,通过理论求解达到了解决实际问题的目的,这是数列在生活中应用的冰山一角。
第二个应用。
例:某客户为购买房屋,向工商银行贷款n万元,采用分期还款的方式进行偿还,共分m期偿还完毕,每一期所偿还的本金数额相同,请计算每一期应当偿还的贷款数额。
最新人教版高中数学必修5第一章数列在日常经济生活中的应用(附答案)
最新⼈教版⾼中数学必修5第⼀章数列在⽇常经济⽣活中的应⽤(附答案)§4 数列在⽇常经济⽣活中的应⽤1.计算机的成本不断降低,若每隔3年计算机的价格降低13,则现在价格为8 100元的计算机,9年后的价格可降为( )A .2 400元B .900元C .300元D .3 600元2.某林⼚年初有森林⽊材存量S ⽴⽅⽶,⽊材以每年25%的增长率⽣长,⽽每年末要砍伐固定的⽊材量x ⽴⽅⽶,为实现经过两次砍伐后的⽊材的存量增加50%,则x 的值是( )A.S 32B.S 34C.S 36D.S 383.某中学的“希望⼯程”募捐⼩组暑假期间⾛上街头进⾏了⼀次募捐活动,共获得捐款1 200元.他们第1天只得到10元,之后采取了积极措施,从第2天起,每⼀天获得的捐款都⽐前⼀天多10元.这次募捐活动⼀共进⾏的天数是( )A .14B .15C .16D .174.某地为了保持⽔⼟资源,实⾏退耕还林.如果2005年退耕8万公顷,以后每年增加10%,那么2010年需退耕多少公顷?(结果保留到个位)答案:1.A 设经过3次降价后,计算机的价格为数列{a n },由条件得{a n }是⼀个等⽐数列,其中a 1=8 100,q =1-13=23,n =4.所以a 4=a 1q 3=8 100×(23)3=2 400(元).2.C ⼀次砍伐后⽊材的存量为S (1+25%)-x ;⼆次砍伐后⽊材存量为[S (1+25%)-x ](1+25%)-x =2516S -54x -x =S (1+50%),解得x =S36.故选C.3.B 由题意可知,每天获得的捐款数组成⼀个等差数列,记作{a n },其中a 1=10,d=10,由10n +n (n -1)2×10=1 200,解得n =15.4.解:设n 年后需退耕a n 万公顷,则{a n }是⼀个等⽐数列,其中a 1=8,q =1+0.1,那么2010年需退耕a 6=a 1·1.15=8×1.15≈13(万公顷).答:2010年需退耕约13万公顷.1.1990年我国⼯农业总产值为a 千亿元,要实现邓⼩平同志提出的到2010年⼯农业总产值翻两番的战略⽬标,年平均增长率⾄少应达到 …( )A .4201-1 B .2201-1C .4211-1D .2211-12.某⼯⼚⽣产总值连续两年的年增长率依次是p%,q%,则这两年的年平均增长率是 …( )A.p%+q%2 B .(p%)·(q%)C.(1+p%)(1+q%)-1D.(1-p%)(1-q%)-13.李先⽣为今年上⾼中的⼉⼦办理了“教育储蓄”,从8⽉1号开始,每个⽉的1号都存⼊100元,存期三年.已知当年“教育储蓄”存款的⽉利率是 2.7‰,问到期时李先⽣⼀次可⽀取本息共多少元?4.某市2007年底有住房⾯积1 200万平⽅⽶,计划从2008年起,每年拆除20万平⽅⽶的旧住房.假定该市每年新建住房⾯积是上年年底住房⾯积的5%.(1)分别求2008年底和2009年底的住房⾯积;(2)求2027年底的住房⾯积(计算结果以万平⽅⽶为单位,且精确到0.01).答案:1.A 已知1990年我国⼯农业总产值为a ,设平均年增长率为p ,则⾃1990年起,每年的⼯农业总产值成等⽐数列.由题意得a 21=4a 即4a =a (1+q )20,解得q =2014-1.2.C 设年增长率为x ,基础值为a ,则a (1+x )2=a (1+p %)(1+q %),∴x =(1+p %)(1+q %)-1.3.解:因为100元存款的⽉利息是100×2.7‰=0.27(元).第1个100元存36个⽉,得利息0.27×36(元),第2个100元存35个⽉,得利息0.27×35(元), ……第36个100元存1个⽉,得利息0.27×1(元),所以到期时李先⽣⼀次可⽀取本息共:100×36+0.27×(36+35+…+1)=3 600+179.82=3 779.82(元). 4.解:(1)2008年底的住房⾯积为 1 200(1+5%)-20=1 240(万平⽅⽶), 2009年底的住房⾯积为1 200(1+5%)2-20(1+5%)-20=1 282(万平⽅⽶).所以2008年底的住房⾯积为1 240万平⽅⽶,2009年底的住房⾯积为1 282万平⽅⽶. (2)2027年底的住房⾯积为1 200(1+5%)20-20(1+5%)19-20(1+5%)18-…-20(1+5%)-20=1 200(1+5%)20-20×1.0520-10.05≈2 522.64(万平⽅⽶),则2027年底的住房⾯积为2 522.64万平⽅⽶.1.某企业在今年初贷款a 万元,每年年利率为r ,从今年末开始,每年年末偿还⼀定的⾦额,预计5年内还清,则每年年末平均偿还的⾦额应是( )A.a(1+r)5(1+r)5-1万元B.ar(1+r)5(1+r)5-1万元C.a(1+r)5(1+r)4-1万元 D.ar (1+r)5万元答案: B2.从盛满m 升的纯酒精的容器⾥倒出n(nA .m(1-n m )kB .m(1-n m )k +1C .n(1-m n )kD .n(1-m n)k +1答案: A 第1次倒出n 升,再加满⽔,容器中有纯酒精m -n 升,浓度为m -nm;第2次倒出n 升,再加满⽔,容器中有纯酒精为(m -n )-m -n m ·n =(m -n )(1-n m )=(m -n )2m升,浓度为(m -n )2m 2;第3次倒出n 升,再加满⽔,容器中有纯酒精(m -n )2m -(m -n )2m 2·n =(m -n )2m (1-nm)=(m -n )3m 2升,浓度为(m -n )3m 3;…,第k 次倒出后,容器中有纯酒精(m -n )k mk -1=m (1-nm )k .3.某种产品三次调价,单价由原来的每克512元降到216元,则这种产品平均每次降价的百分率为________.答案: 25% 原价与三次调价后的价格构成⼀个等⽐数列,设平均每次降价的百分率为x ,原价为a 0,第三次调价后的价格为a 3,则a 3=a 0(1-x )3,即512(1-x )3=216.解得x =25%.4.某村镇1999年的⼈⼝为1万⼈,⼈均住房⾯积为5 m 2,若该村镇每年⼈⼝的平均增长率为1%,欲使2009年底⼈均住房⾯积达10 m 2,那么每年平均需新建住房⾯积__________m 2.答案: 6 046 依题意,每年年底的⼈⼝数组成⼀等⽐数列,a 1=1(万),公⽐q =1+1%=1.01,n =11,则a 11=1×(1.01)11-1=1.0110≈1.105(万).⼜每年年底的住房⾯积数组成⼀个等差数列,公差为d ,到2009年底⼈均住房⾯积为5+10d 1.0110=10,解得d ≈6 046(m 2),即每年平均新建住房⾯积6 046 m 2. 5.碘131是⼀种放射性物质,在医疗诊断中常会⽤到它,下表是20 g 碘131在4天内问7答案:解:由表可知,碘131每天的剩余量是以18.3420=0.917 0为公⽐的等⽐数列,所以7天后还有20.00×0.917 07=10.904 7>10.所以7天后还有10 g 可⽤于治疗.6.在4⽉份,有⼀新款服装投⼊某商场,4⽉1⽇该服装仅售出10件,第⼆天售出35件,第三天销售60件,每天售出的件数分别递增25件,直到⽇销售量达到最⼤后,每天销售的件数分别递减15件,到⽉底该服装共售出4 335件.(1)问4⽉⼏号该款服装销售件数最多,其最⼤值是多少?(2)按规律,当该商场销售此服装超过2 000件时,社会上就流⾏,⽽⽇销售量连续下降,当低于150件时,则流⾏消失,问该款服装在社会上流⾏是否超过10天?请说明理由.答案:解:(1)4⽉份第n 天销售的件数为10+(n -1)×25=25n -15,则4⽉30⽇销售的件数为(25n -15)-(30-n )×15=40n -465.∴[10n +n (n -1)2×25]+[(30-n )(40n -465)+(30-n )(29-n )2×15]=4 335.解得n =12,即4⽉12⽇的销售量最⼤,其最⼤值为25×12-15=285(件).(2)n =12时,S 12=10×12+12×112×25=1 770<2 000,即未流⾏;n =13时,S 13=S 12+a 13=1 770+270=2 040>2 000,即从4⽉13⽇起,社会上开始流⾏;当n >13时,a n =a 13-(n -13)×15=465-15n ,令a n <150,解得n >21,即从4⽉22⽇起,社会上流⾏消失,故流⾏时间只有9天,不超过10天.7.学数学,能使⼈更聪明,使⼈的思维更缜密.在美国⼴为流传的⼀道数学题⽬是:⽼板给你两种加⼯资的⽅案,⼀是年薪制,每年末再加1 000元;⼆是半年薪制,每半年结束时再加300元,请你选择⼀种.⼀般不擅长数学的,很容易选择前者.根据以上材料,解答下列问题:(1)如果在公司连续⼯作10年,问选择那⼀种⽅案加薪更多?多加薪多少元?(2)如果第⼆种⽅案中的每半年加300元改成每半年加a 元,问a 取何值时总是选择第⼆次⽅案⽐第⼀种⽅案多加薪?答案:解:(1)第10年的年末,依第⼀种⽅案构成⾸项为1 000,公差为1 000的等差数列,故可得1 000×(1+2+…+10)=1 000×10(10+1)2=55 000(元).依第⼆种⽅案,则构成⾸项为300,公差为300的等差数列,可得 300×(1+2+ (20)=300×20(20+1)2=63 000(元).∵63 000-55 000=8 000(元),∴在该公司⼲10年,选择第⼆种⽅案⽐第⼀种⽅案多加薪8 000元.(2)第n 年年末,依第⼀种⽅案可得1 000(1+2+…+n )=1 000×n (n +1)2=500n (n +1).依第⼆种⽅案可得a ·(1+2+3+…+2n )=a ·2n (2n +1)2=an (2n +1).据题意,an (2n +1)>500n (n +1),对任意n ∈N +恒成⽴,即a >500(n +1)2n +1=250+2502n +1对所有正整数n 恒成⽴,只需a >250+2503=1 0003.∴当a >1 0003时,总是选择第⼆种⽅案⽐第⼀种⽅案多加薪.。
数列在日常生活中的应用
例如:某种储蓄规定按月以复利计息,月利率是1%, 若某人存入1000元作为本金,
一个月后
本息和
两个月后
1000 (1+和 … n个月后
本息和
1000 (1+1%)3
1000 (1+1%)n
(整存整取)
1.五一节期间,高二同学杨磊从他回国探亲的舅舅处得到 一笔钱a元,这笔钱是给他明年读大学时用的,距今还有 16个月.于是他决定立刻把这笔钱存入银行,直到明年9月 初全部取出。现在有两家银行供他选择,一家银行是按月 息0.201 %单利计息,另一家银行是按月息0.2 %复利计息, 请大家帮助杨磊同学计算一下,存入哪家银行更合算?
例如:某种储蓄规定按月以单利计息,月利率是1%,若 某人存入1000元作为本金,
一个月后 两个月后 三个月后
本息和 本息和
本息和 …
1000+10 1000+102 1000+10 3
=1010 = 1020
= 1030
n个月后 本息和
1000+10n
利息一般分为单利和复利两种 复利:
指存满一个规定的利息期限后,按照预先指定的利率 计息,在下一个计息期限中,将所得的利息计入到本 金中,作为新的本金。
乙存满5年所得金额:B = (1+2.25%×80%)5
教学重点与难点:
• 重点:根据不同的储蓄方式来计算利 息;
• 难点:将实际问题提炼为数学问题, 建立数学模型,解决实际问题。
利息一般分为单利和复利两种
单利: (等差数列)
指存满一个规定的的利利息息期期限限后后,,按按照照预预先先指指定定的的利利率率 计息,在下一个个计计息息期期限限中中,,利利息息不不计计入入到到本本金金中中。。
生活中的的数学---数列
生活中的的数学----数列(一)以数列知识作为背景的应用题是高中应用题中的常见题型,要正确快速地求解这类问题,需要在理解题意的基础上,正确处理数列中的递推关系。
一、储蓄问题对于这类问题的求解,关键是要搞清:(1)是单利还是复利;(2)存几年。
单利是指本金到期后的利息不再加入本金计算。
设本金为P元,每期利率为r,经过n期,按单利计算的本利和公式为Sn=P(1+nr)。
复利是一种计算利率的方法,即把前一期的利息和本金加在一起做本金,再计算下一期的利息。
设本金为P,每期利率为r,设本利和为y,存期为x,则复利函数式为y=P(1+r)x。
例1、(储蓄问题)某家庭为准备孩子上大学的学费,每年6月30日在银行中存入2000元,连续5年,有以下两种存款的方式:(1)如果按五年期零存整取计,即每存入a元按a(1+n·6.5%)计本利(n为年数);(2)如果按每年转存计,即每存入a元,按(1+5.7%)n·a计算本利(n为年数)。
问用哪种存款的方式在第六年的7月1日到期的全部本利较高?分析:这两种存款的方式区别在于计复利与不计复利,但由于利率不同,因此最后的本利也不同。
解:若不计复利,5年的零存整取本利是2000(1+5×0.065)+2000(1+4×0.065)+…+2000(1+0.065)=11950;若计复利,则2000(1+5%)5+2000(1+5%)4+…+2000(1+5%)≈11860元。
所以,第一种存款方式到期的全部本利较高。
二、等差、等比数列问题等差、等比数列是数列中的基础,若能转化成一个等差、等比数列问题,则可以利用等差、等比数列的有关性质求解。
例2、(分期付款问题)用分期付款的方式购买家用电器一件,价格为1150元。
购买当天先付150元,以后每月这一天都交付50元,并加付欠款的利息,月利率为1%。
若交付150元以后的第一个月开始算分期付款的第一日,问分期付款的第10个月该交付多少钱?全部货款付清后,买这件家电实际花了多少钱?解:购买时付出150元,余欠款1000元,按题意应分20次付清。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列在生活中的应用
在实际生活和经济活动中,很多问题都与数列密切相关。
如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。
与此同时,数列在艺术创作上也有突出的作用! 数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。
这是对数学与生活关系的精彩描述。
首先, 我重点分析等差数列、等比数列在实际生活和经济活动中的应用。
(一)按揭货款中的数列问题
随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。
众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。
这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。
下面就来寻求这一问题的解决办法。
若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有:
a1=a0(1+p)-a,
a2=a1(1+p)-a,
a3=a2(1+p)-a,
......
an+1=an(1+p)-a,.........................(*)
将(*)变形,得(an+1-a/p)/(an-a/p)=1+p.
由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列。
日常生活中一切有关按揭货款的问题,均可根据此式计算。
(二)有关数列的其他经济应用问题
数列知识除在个人投资理财方面有较为广泛的应用外,在企业经营管理上也是不可或缺的。
一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题,但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。
因此,解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。
(三)数列在艺术中的广泛应用
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
其比值是[5^(1/2)-1]/2,取其前三位数字的近似值是0.618。
由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。
这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:
1/0.618=1.618
(1-0.618)/0.618=0.618
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做“菲波那契数列”,这些数被称为“菲波那契数”。
特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。
菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。
即f(n)/f(n-1)-→0.618…。
由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。
但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
不仅这个由1,1,2,3,5....开始的“菲波那契数”是这样,随便选两个整数,然后按照菲波那契数的规律排下去,两数间比也是会逐渐逼近黄金比的。
一个很能说明问题的例子是五角星/正五边形。
五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。
正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
黄金分割三角形还有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。
这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。
其实有关“黄金分割”,我国也有记载。
虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。
经考证。
欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。
就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。
在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。
正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为“黄金分割”。
接下来讲体系黄金律形式美法则的应用。
(黄金律两点重要内容:1、典型的美的比例;2、由多次分割同一比值造成的重复的节奏。
有比例的重复,这是对艺术形式规律最本质的概况。
)“根号2矩形”,纸的长宽比例,如果宽边为1,则长边为根号2,这个矩形使得整开纸以任何对开裁法,都能保持同一比例,大大方便了作为文化载体的纸的利用。
相似的还有三合板600乘以900cm的比例,以及相关家具、建筑材料、构件具有的相似的比例。
书法中一笔三转、一波三折等要诀,三横三点、三竖的互相联系——形状、距离、长短、方向角度等的处理。
书法中“二”字一长一短,“十”字竖笔被分为2∶3的两段,“口”、“田”则上宽下窄,“吕”、“炎”、“林”、“羽”则将本身是等大的两半部分分成一大一小,“品”、“森”则将本是等大的三部分写成三种大小,以上规律在行书中更为清晰。
中国书法美学的规律是与黄金比原则一致的。
西文中“S”、“B”等字母及阿拉伯“3”、“8”的上下两半比例适度。
拉丁文26个字母中,下行的是5个,上行8个,中行13个,所以连写数行,参差错落,比例适中,再加上大小写的比例差别,在视觉上也具有书法艺术的整体美感。
油画中的“三色法”,在一个有固定主调的色彩背景中配置三色(或三个笔触),一色是相对暖色,一色相对冷,第三色则是中性色,这个中性色绝不该是绝对值的“中间”色。
中性色稍有偏向,就拉近了或拉大了对两色的色距,对两个色距比例的选择,就是色彩的优选法。
素描的虚实、明暗程度、色块面积、复线排列的交叉穿插角度等,都可发现数的比值规律的运用,不详细讲。
中国画,画面都是“自一至万,自万法以治一”(石涛《画语录》),由“一条线”开始,以后的许多线都是这第一条线的相反相成的铺陈,以至完成全画。
“一笔”中的粗细、曲直、方圆、浓淡、干湿、虚实……
美的线条:“蛇形曲线或称波状曲线”、“S形线”。