同底数幂的乘法公开课课件PPT

合集下载

同底数幂的乘法PPT公开课获奖课件百校联赛一等奖课件

同底数幂的乘法PPT公开课获奖课件百校联赛一等奖课件

变式训练:
填空:
(1) x4· x5 = x9 (2) (-y)4 · (-y)7 =(-y)11 (3) a2m · am =a3m (4) (x-y)2 · (x-y)3 =(x-y)5
我思,我进步
填空: (1) 8 = 2x,则 x = 3 ;
23 (2) 8× 4 = 2x,则 x = 5 ;
观察讨论
请同学们观察下面各题左右两边,底数、指数有什么关 系?
103 ×102 = 10( 5 ) = 10(3+2 ); 23 ×22 = 2( 5 ) = 2( 3+2 );
a3× a2 = a( 5 ) = a( 3+2) 。
猜测: am ·an=
? (当m、n都是正整数)
分组讨论,并尝试证明你旳猜测是否正确.
义务教育课程原则试验教科书(沪科版)数学七年级下册 《8.1幂旳运算》
8.1.1 同底数幂旳乘法
问题情景
一种电子计算机每秒可进行1014次运算,它工作103秒可 进行多少次运算?
列式:1014×103
怎样计算 1014×103呢?
知识回忆
1.什么叫乘方? 求几种相同因数旳积旳运算叫做乘方。
指数
底数 an =
(4) b2m • b2m+1 = b2m+2m+1 = b4m +1.
拓展延伸
例2.计算: (1) -y ·(-y)2 ·y3
解:原式= -y ·y2 ·y3 = -y1+2+3=-y6
(2) (x+y)3 ·(x+y)4
am · an = am+n
公式中旳a可代表 一种数、字母、式 子等。
解: (x+y)3 ·(x+y)4 =(x+y)3+4 =(x+y)7

14.1.1同底数幂的乘法 课件(共20张PPT)

14.1.1同底数幂的乘法  课件(共20张PPT)
14.1.1同底数幂的乘法
人教版 八年级数学上
学习目标
1.理解并掌握同底数幂的乘法法则.(重点) 2.能够运用同底数幂的乘法法则进行相关计算.(难点) 3.通过对同底数幂的乘法运算法则的推导与总结,提升自
身的推理能力和计算能力.
温故旧知
指数

an = a·a·a…(表示n个a相乘)
底数 n个相同因数的积的运算叫做乘方,乘方的结果叫幂.
(2) (a-b)3·(a-b)3=(__a_-_b_)_6_;
(3) -a6·(-a)2=___-_a_8__; (4) y4·y3·y2·y =__y_1_0___.
7.填空: (1)x·x2·x( 6 )=x9;
(2)xm·( x4m )=x5m; (3)16×4=2x,则x=( 6 ).
实战演练
典例精析
例1 计算: (1)x2 · x5 ; (3)(-2) × (-2)4 × (-2)3;
(2)a · a6; (4) xm · x3m+1.
解:(1) x2 · x5= x2+5 =x7
(2)a · a6= a1+6 = a7;
(3)(-2) × (-2)4 × (-2)3= (-2) 1+4+3 = (-2)8 = 256;
8.计算下列各题: (1)(2a+b)2n+1·(2a+b)4; (3) (-3)×(-3)3 ×(-3)3;
(2)(a-b)5·(b-a)4; (4)-a3·(-a)2·(-a)3.
解:(1)(2a+b)2n+1·(2a+b)4=(2a+b)2n+5; (2)(a-b)5·(b-a)4=(a-b)9; (3) (-3)×(-3)3 ×(-3)3=-37; (4)-a3·(-a)4·(-a)3=a10.

浙教版七年级数学下册第三章3.1 同底数幂的乘法教学课件 (共15张PPT)

浙教版七年级数学下册第三章3.1 同底数幂的乘法教学课件 (共15张PPT)
(-2)3×(-2)2 = (-2)5 = (-2) 3+2
a5 ·a4 = a 9
= a 5+4
am ·an = am+n
= a m+n
归纳总结:
同底数幂乘法的运算性质
符号语言: a m·a n = am+n (m,n为正整数)
文字语言: 同底数幂相乘, 底数不变,指数相加。
思维深入
想一想,议一议
解: am ·an
= (a · a · … · a ) × (a · a · … · a ) (乘方的意义)
m个a
= a·a·…·a·a
共(m+n)个a
= a m+n
n个a
(乘法结合律) (乘方的意义)
交流与合作
请同学们观察下面各题左右两边,底数、指数
有什么关系?你发现了什么?与同学分享交流。
0.54 × 0.52 = 0.56 = 0.5 4+2
当三个或三个以上同底数幂相乘时,是 否也具有这一性质呢? 怎样用公式表示?
计算:am ·an ·a p ( m,n,p为正整数 )
am ·an ·a p ( m, n, p 为正整数 )
= (a · a · …· a) · (a · a · … · a) ·( a · a · … · a)
m个a
n个a
= 211 = a7 = (2x)6
= (x+y)9 = 4a2
扩展延伸
1.am+n 可以写成哪两个因数的积?
a m·a n = am+n → a m+n = a m ·a n
2.如果 xa =3, x b =2, 那么 x a+b =___6_

同底数幂的乘法法则课件

同底数幂的乘法法则课件

例题三:实际应用
总结词:实际应用
详细描述:该例题将同底数幂的乘法法则与实际问题相结合,通过解决实际问题,让学习者深入理解 幂的乘法规则在实际生活中的应用。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
同底数幂的乘法法则的 练习题
基础练习题
01
02
03
04
总结词:考察基本概念和运算 规则
未来展望
深入理解幂的性质
在未来的学习中,学生需要进一步深入理解幂的性质,包括交换律、结合律、分配律等, 以便更好地应用这些性质解决实际问题。
探索同底数幂的除法法则
在掌握了同底数幂的乘法法则之后,学生可以开始探索同底数幂的除法法则,了解如何进 行同底数幂的除法运算。
应用同底数幂的乘法法则解决实际问题
难点解析
理解同底数幂的乘法法则
对于初学者来说,理解同底数幂的乘法法则可能有一定的难度, 需要强调指数相加而非数值相加的概念。
掌握幂的性质
掌握幂的性质是理解同底数幂乘法法则的基础,需要让学生充分理 解并掌握这些性质。
灵活运用法则
在掌握同底数幂的乘法法则的基础上,需要让学生学会如何在实际 问题中灵活运用这个法则。
学生可以在实际问题的解决中应用同底数幂的乘法法则,提高解决实际问题的能力。
REPORT
THANKS
感谢观看
CATALOG
DATE
ANALYSIS
SUMMAR Y
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
同底数幂的乘法法则的 例题解析
例题一:基础应用
总结词:基础运算

1.1同底数幂的乘法课件 (共20张PPT)

1.1同底数幂的乘法课件 (共20张PPT)

-x2
· (-x)3 =x5
m + m3 = m + m3
例2、计算:
(1)a a
m
2m
3 · 2 (2) (a-b) (a-b) a
am ·an = am+n (当m、n都是正整数) 底数可以是一个数、也可是一个字母或是一个多项式。
3 (b-a) 3 (a-b)
2 ·(a-b) = 2 ·(b-a) =
(4) b5 · b ( b6 )
练习二:下面的计算结果对不对?如果不对,怎 样改正? ×) 1、b5 ·b5= 2b5 (× ) 2、b5 + b5 = b10 ( b5 ·b5= b10 b5 + b5 = 2b5 3、(-7)6 · 73 = -79 (× ) 4、y5 +2 y5 =3y10 (× ) (-7)6 · 73 = 79 y5 + 2 y5 =3y5 5、-x2 · (-x)3 =-x5 (× ) 6、m + m3 = m4 (× )
(1) a ·a7- a4 ·a4 = 0
;ห้องสมุดไป่ตู้
(2)(1/10)5 ×(1/10)3 = (1/10)8
(3)(-2 x2 y3)2
4y6 4x =

; ;
(4)(-2 x2 )3 = -8x6
小结:
• 今天,我们学到了什么?
同底数幂的乘法: am · an = am+n
(m、n为正整数)
同底数幂相乘,底数不变,指数相加。
23 ×24
=
23+
4
= 27
a3× a5 = a3+5
= a8
猜想:
m a

3.1《同底数幂的乘法》课件(共24张ppt)

3.1《同底数幂的乘法》课件(共24张ppt)
解 2.566千万亿次=2.566×107×108次,24小时= 24×3.6×103秒. 由乘法的交换律和结合律,得 (2.566×107×108) × (24×3.6×103) =(2.566×24×3.6) ×(107×108×103) =221.7024×1018≈2.2×1020(次). 答:它一天约能运算2.2×1020次.
(3)64 6 641 65. (4)x3 x5 x35 x8 . (5)32 (- 3)5 32 (- 35) -32 35 -37. (6)(a b)2( a b)3 (a b)23 (a b)5 .
例2 我国“天河-1A”超级计算机的实测运算速度达到每 秒2.566千万亿次.如果按这个速度工作一整天,那么它 能运算多少次?
解 V 4 (7 104)3
3 4 73 1012
3 1.4101(5 km3).
答:木星的体积大约是1.4×1015km3.
1、 把下列各式表示成幂的形式:
(1)26 • 23 ;
2 解:原式= 63
29
(3)xm • xm1 ;
x 解:原式= m(m1)
例3 计算下列各式,结果用幂的形式表示.
(1)(107)3. (2)(a4)8. (3)(- 3)6 3.(4)(x3)4( x2)5.

(1) (107)3 1073 1021. (2) (a4)8 a48 a32 .
(3)(- 3)6 3 (- 3)63 (- 3)18 318.
(mn) 个a
am • an amn. (m,n都是正整数)
同底数幂相乘,底数不变,指数相加.
整理反思 z`````xx```k 知识

同底数幂的乘法课件(公开课)-PPT

同底数幂的乘法课件(公开课)-PPT

解: (1)原式= x2+5 = x7
(2)原式= a1+6 =
(3)原式= (2)143 ( 2 )8 28
(4)原式= xm3m1 x4m1
1.计算: (1)107 ×104 ; 解:(1)原式=107 + 4 = 1011
(2)x2 ·x5 .
(2)原式= x2+5 = x7
➢练习二
(当m、n都是正整数)
am·an·ap = am+n+p (m、n、p都是正整数)
1、计算: (1)23×24×25 (2)y ·y2 ·y3
解:(1)23×24×25=23+4+5=212 (2)y ·y2 ·y3 = y1+2+3=y6
➢思考题
2.计算: (x+y)3 ·(x+y)4 .
公式中的 a 可代表 一个数、字母、式 子等.
求几个相同因数的积的运算叫做乘方。
25表示什么? 10×10×10×10×10 可以写成什么形式?
25 = 2×2×2×2×2 . (乘方的意义) 10×10×10×10×10 = 105 (乘方的意义)
回顾 热身
(1)、(- 2)×(-2) ×(-2 )=(- 2)( 3 )
(2)、 a·a·a·a·a = a( 5 ) (3)、 x4= x·x·x·x
探索并推导同底数幂的乘法的性质
a ma na m n(m,n 都是正整数)表述了两个 同底数幂相乘的结果,那么,三个、四个…多个同底 数幂相乘,结果会怎样?
这一性质可以推广到多个同底数幂相乘的情况: a m a n a p a m n p (m,n,p都是正整数).
➢am ·an = am+n

同底数幂的乘法课件(公开课)

同底数幂的乘法课件(公开课)

幂的性质在物理中的应用
计算速度和加速度
在物理学中,速度和加速 度可以用幂函数来描述, 特别是在分析物体的运动 磁波的传 播可以用幂函数来描述, 特别是分析波的强度和频 率。
分析热传导
在热力学中,热传导可以 用幂函数来描述,特别是 在分析热量传递的速率和 温度分布时。
举例说明
3^2 + 3^3 = 3^(2+3) = 3^5。
注意事项
幂的加法运算与普通加法运算不同,指数相同时, 底数相加;指数不同时,不能直接相加。
幂的减法运算
幂的减法运算规则
同底数的幂相减时,指数相减。即,a^m - a^n = a^(m-n)。
举例说明
3^4 - 3^2 = 3^(4-2) = 3^2。
计算 $(x^2 times x)^3$ 的结 果。
综合习题2
计算 $x^{2+3} times x^{-3}$ 的结果。
综合习题3
计算 $(x^{-2})^3 times x^4$ 的结果。
综合习题4
计算 $x^{2} times (x^{-3} times x^{-4})$ 的结果。
05
CHAPTER
幂的性质在数学中的应用
01
02
03
解决几何问题
在几何学中,幂的性质可 以用于解决与面积、体积 和角度等相关的数学问题。
求解方程
在代数中,幂的性质可以 用于求解方程,例如求解 指数方程或对数方程。
证明数学定理
在数学证明中,幂的性质 可以用于证明各种数学定 理,例如幂的性质定理和 同底数幂的乘法公式。
03
CHAPTER
同底数幂的乘法应用
幂的性质在生活中的应用
计算细胞繁殖

11.1《同底数幂的乘法》ppt课件4(共22张PPT)

11.1《同底数幂的乘法》ppt课件4(共22张PPT)
11.1同底数幂的乘法
嫦嫦娥娥奔奔月 月
白 兔













()
地球到月球的平均距离是
? 李
3.8 ×108米

an 表示的意义是什么?
其中a、n、an分别叫做什么?
指数
底数 an =a·a·… ·a
n个a
76与74

相乘
学习目标
1.经历猜测、交流、反思等过程,探索同底 数幂相乘时幂的底数和指数的规律,培养数 学思维。
1.下列运算正确的是( C )
A.a4·a4=2a4
B.a4+a4=a8
C.a4·a4=a8
D.a4·a4=a16
2.计算-x3·x2的结果是( B )
A.x5
B.-x5
C.x6
D.-x6
3.若 a7·am=a2·a10,则 m=_____5_____.
点拨:∵a7·am=a7+m,a2·a10=a12, ∴a7+m=a12,即 7+m=12,故 m=5.
a ·( )=a6 xm ·( )=x3m
同学们 再见!
(2)(-5)3×(-5)5 =(-5)3+5 =(-5)8 =58
练习一
1. 计算:(抢答) (1) 76×74
(2) a7 ·a8
( 710 )
( a15 )
(3) (-x)5 ·(-x)3 ( x8 )
(4) b5 ·b ( b6 )
下面的计算对不对?如果不对,怎样改正?
(1)b5 ·b5= 2b5 (×) (2)b5 + b5 = b10 (× )
3×33 × 32 = 36
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档