三视图与表面展开图.

合集下载

小学六年级立体图形三视图及展开图

小学六年级立体图形三视图及展开图

立体图形三视图及展开图一、知识点(一)三视图在观察物体的时候,我们往往可以从不同的角度进行观察,角度不同,看到的风景就会不同。

比如:我们可以从正面看、上面看、左面看,看到的图形分别称为正视图、俯视图和左视图,并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是相同的。

对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积(二)正方体的展开图展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等,我们采用不同的剪开方法,共可以得到下面(三)长方体的展开图:观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即S上=S下=长×宽,S左=S右=宽×高,S前=S后=长×高。

(四)判断图形折叠后能否围成长方体或正方体的方法判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断。

二、题型(一)展开图与对立面【例1.1】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。

则“祝”、“你”、“前”分别表示正方体的________________________。

【答案】后面、上面、左面【解析】易知“你”、“程”相对,“前”、“锦”相对,“祝”、“似”相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面。

【例1.2】一个数学玩具的包装盒是正方体,其表面展开图如下。

现在每方格内都填上相应的数字。

已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是___________。

【答案】3、1、2【解析】面上的数是“0”,与“B”相对的面上的数是“2”,与“C"相对的面上的数是“1”。

八年级数学认识直棱柱;直棱柱的表面展开图;三视图浙江版知识精讲

八年级数学认识直棱柱;直棱柱的表面展开图;三视图浙江版知识精讲

初二数学认识直棱柱;直棱柱的表面展开图;三视图某某版【本讲教育信息】一. 教学内容:3.1 认识直棱柱3.2 直棱柱的表面展开图3.3 三视图3.4 由三视图描述几何体二. 重点、难点:重点:1. 直棱柱的表面展开图画法2. 三视图的画法3. 根据三视图描述基本几何体难点:1. 通过空间想象把一个物体的形状看成两个(或多个)几何体的组合2. 画直棱柱的多种表面展开图以及画组合体的三视图有一定的难度3. 根据三视图描述实物原形三. 知识要点及学习目标1. 了解多面体、直棱柱的侧棱、侧面、底面等有关概念,会认直棱柱的侧棱、侧面、底面。

由若干个平面围成的几何体,叫做多面体。

多面体上相邻两个面之间的交线叫做多面体的棱,几个面的公共顶点叫做多面体的顶点。

棱柱是多面体的一种,棱柱分为直棱柱和斜棱柱。

(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……长方体和立(正)方体都是直四棱柱。

2. 了解直棱柱以下特征,能根据特征准确说出直棱柱的面、棱的关系。

(1)面的特征:有上、下两个底面,底面是平面图形中彼此全等的多边形;侧面都是长方形(含正方形)。

(2)棱的特征:直棱柱的侧棱互相平行且相等。

3. 了解直棱柱的表面展开图的概念。

会画简单的直棱柱的表面展开图。

如下图,当我们沿着某些棱把一个立方体的盒子剪开,且使其六个面还连在一起,然后铺平,就得到这个立方体的表面展开图。

由于可以从不同的棱剪开,所以一个立方体可以有不同的表面展开图。

反过来,如果我们有了一个几何体的表面展开图,我们也可以把它折叠成原来的几何体。

4. 能根据表面展开图判断出原直棱柱形状。

5. 了解主视图、俯视图、左视图和三视图的概念,能识别简单物体的三视图。

通过从不同方向观察同一物体可以看到不一样的结果得出关于三视图的概念。

主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面向下看时看到的图形。

一般来说,首先要指定正面。

浙教新版九年级下册《第3章_三视图与表面展开图》2024年单元测试卷(4)+答案解析

浙教新版九年级下册《第3章_三视图与表面展开图》2024年单元测试卷(4)+答案解析

浙教新版九年级下册《第3章三视图与表面展开图》2024年单元测试卷(4)一、选择题:本题共15小题,每小题3分,共45分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下面四个几何体中,其左视图为圆的是()A. B. C. D.2.将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的俯视图是()A.B.C.D.3.某物体如图所示,它的主视图是()A.B.C.D.4.一个几何体的三视图如图所示,则该几何体是()A.B.C.D.5.如图,这是一个底面为等边三角形的正三棱柱和它的主视图、俯视图,则它的左视图的面积是()A.4B.2C.D.6.如图2是图1长方体的三视图,若用S表示面积,,,则()A.B.C.D.7.某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为的标杆DF,如图所示,量出DF的影子EF的长度为1m,同时再量出旗杆AC的影子BC的长度为6m,那么旗杆AC的高度为()A.6mB.7mC.D.9m8.如图所示的几何体是由几个大小相同的小正方体搭成的,将正方体①移走后,从左面看到的图形是()A.B.C.D.9.将一正方体纸盒沿下如图所示的粗实线剪开,展开成平面图,其展开图的形状为()A.B.C.D.10.如图,一个几何体是由5个大小相同的小正方体搭成,该几何体的左视图是() A.B.C.D.11.如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.12.把如图所示的纸片沿着虚线折叠,可以得到的几何体是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥13.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创字所在的面相对的面上标的字是()A.水B.陵C.力D.魅14.由完全一样的小正方体堆成一件物体,其正视图、俯视图如图所示,则这件物体最多用小正方体的个数为()A.10个B.11个C.12个D.14个15.如图是某几何体的三视图及相关数据,则判断正确的是()A. B. C. D.二、填空题:本题共3小题,每小题3分,共9分。

2020年中考数学必考考点专题27三视图与展开图(含解析)

2020年中考数学必考考点专题27三视图与展开图(含解析)

专题13 三视图与展开图1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。

2.物体的三视图特指主视图、俯视图、左视图。

(1)主视图:从物体的前面向后面投射所得的视图称主视图,能反映物体的前面形状。

(2)俯视图:从物体的上面向下面投射所得的视图称俯视图,能反映物体的上面形状。

(3)左视图:从物体的左面向右面投射所得的视图称左视图,能反映物体的左面形状,有时也叫做侧视图。

物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。

3.展开图:平面图形有三角形、四边形、圆等.立体图形有棱柱、棱锥、圆柱、圆锥、球等.把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形。

【例题1】(2019•四川省达州市)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.从左面看可得到从左到右分别是3,1个正方形.专题知识回顾专题典型题考法及解析【例题2】(2019•甘肃)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为.【答案】(18+2)cm2.【解析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).【例题3】(2019•江苏连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A. B. C. D.【答案】B【解析】根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形.由题意可知,该几何体为四棱锥,所以它的底面是四边形.专题典型训练题一、选择题1.(2019广东深圳)下列哪个图形是正方体的展开图()A.B. C.D.【答案】B【解析】立体图形的展开图B中图形符合“一四一”模型,是正方体的展开图.故选B.2.(2019•山东省济宁市)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.【答案】B.【解析】考点是几何体的展开图。

九年级数学下册 第3章 三视图与表面展开图 3.1 投影(2)练习 (新版)浙教版

九年级数学下册 第3章 三视图与表面展开图 3.1 投影(2)练习 (新版)浙教版

3.1投影(2)(见B本67页)A 练就好基础基础达标1.教室内电子白板的投影是( B)A.平行投影B.中心投影C.平行投影或中心投影D.以上均不是2.如图所示,灯光与物体的影子的位置最合理的是( B)A.B.C. D.3.如图所示,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子( C)A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短3题图4题图4.如图所示,四边形木框ABCD在灯泡发出的光照射下形成的影子是四边形A′B′C′D′.若AB∶A′B′=1∶2,则四边形ABCD的面积∶四边形A′B′C′D′的面积为( D)A. 4∶1B. 2∶1C. 1∶ 2D. 1∶45.同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( D)A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长6.太阳光在地面上的投影是__平行__投影,白炽灯在地面上的投影是__中心__投影.7.如图所示,一块直角三角板ABC,∠ACB=90°,BC=12 cm,AC=8 cm,测得BC边的中心投影B1C1长为24 cm第7题图8.如图(a)(b)分别是两棵树及其在太阳光或路灯下影子的情形.(1)哪个图反映了阳光下的情形?哪个图反映了路灯下的情形?你是用什么方法进行判断的?(2)请画出图中表示小丽影长的线段.图(a) 图(b)第8题图解:(1)图(a)是太阳光形成的,图(b)是路灯灯光形成的. 太阳光是平行光线,物高与影长成正比. (2)所画图形如图所示:第8题答图9.如图所示,小华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1 m ,继续往前走3 m 到达E 处时,测得影子EF 的长为2 m .已知小华的身高是1.5 m ,求路灯A 的高度AB.第9题图解:设AB =h(m),BC =x(m).由题意可得△GCD∽△ABD,△HEF ∽△ABF ,∴GC AB =CD BD ,HEAB =EF BF. ∵HE =GC =1.5 m ,CD =1 m .BD =(x +1)m ,BF =(x +5)m , EF =2 m.∴⎩⎪⎨⎪⎧1.5h =1x +1,1.5h =2x +5,解得⎩⎪⎨⎪⎧x =3,h =6,∴路灯A 的高度AB 为6 m. B 更上一层楼 能力提升10.在阳光的照射下,一块三角板的投影不会是( D ) A .线段B .与原三角形全等的三角形C .变形的三角形D .点第11题图11.永州中考如图所示,圆桌面(桌面中间有一个直径为0.4 m 的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2 m ,桌面离地面1 m ,若灯泡离地面3 m ,则地面圆环形阴影的面积是( D )A .0.324 π m 2B .0.288 π m 2C .1.08 π m 2D .0.72 π m 212.要在宽为28 m 的海堤公路的路边安装路灯,路灯的灯臂长为3 m ,且与灯柱成120°角(如图),路灯采用圆锥形灯罩,灯罩的轴线与灯臂垂直.当灯罩的轴线通过公路路面的中点时,照明效果最理想.问:应设计多高的灯柱,才能取得最理想的照明效果(精确到0.01 m ,3≈1.732)?第12题图解:灯柱高为⎝⎛⎭⎪⎫28÷2-3×32×3-3×12≈18.25(m). C 开拓新思路 拓展创新13.如图所示,灯在距地面3 m 的A 处,现有一木棒长2 m ,当B 处木棒绕其与地面的固定端点顺时针旋转到地面,其影子的变化规律是( A )第13题图A .先变长,后变短B .先变短,后变长C .不变D .先变长,再不变,后变短14.如图所示,电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,若CD 与地面成45°,∠A =60°,CD =4 m ,BC =(46-22) m ,则电线杆AB 的长为多少米?第14题图解:延长AD交地面于E,作DF⊥BE于F.第14题答图∵∠DCF=45°.CD=4.∴CF=DF=2 2.由题意知AB⊥BC.∴∠EDF=∠A=60°.∴∠DEF=30°∴EF=2 6.∴BE=BC+CF+FE=6 6.在Rt△ABE中,∠E=30°.∴AB=BEtan 30°=66×33=62(m).答:电线杆AB的长为62米.。

表面展开图

表面展开图
面的斜椭圆柱。
例1、画出斜四棱柱的展开图。
B1
1. 以棱CC1为轴旋转棱面
CC1B1B,使其平行于V
C1
面。
作法:过b’作直线垂直
于c’c1’,以c’为圆心,
B
CB的水平投影cb(反映 CB的真长)为半径画弧
与上述所画垂线交于点
C
B,连c’B,且以c’B和
c’c1’为邻边作平行四边 形B1B,即为棱面CC1B1B 的展开图。
A1
B1 C1
D1
11’ 41’ 21’ 31’
I II III IV I
A
A
B
D
C
1. 任作PV垂直于棱线,求出截交线 I II III
IV(1234,1’2’3’4’)。
2. 求正截面ⅠⅡⅢⅣ的真形11213141。 3. 画展开图。
例3、求作正交三通的展开图。
1. 准确求出三视图中的相贯线。 2. 作圆柱 I 的展开图。
3. 作圆柱 II 的展开图。
πd2
0123456543210
πd1
M
C B A N A BC
5·2 可展表面展开图画法
图解作图的实质是求出各表面的真形。 常用方法:三角形法;正截面法;侧滚法。
三、侧滚法
基本原理:绕平行于投影面的旋转轴旋转各棱面,称为绕 平行轴旋转法。
展开条件:各棱线必须平行于某一投影面。 适用范围:棱线平行于投影面的斜棱柱和素线平行于投影
AB1
a’0 a0
DC1 DD1
B1
A1
2. 求出各三角形三条边真长 。 3. 从AB1边开始,以AB1 、 AA1、 A1B1三边的真长为边作ΔAA1B1。 A 4. 作出ΔABB1、ΔBB1C1、……、ΔAA1D1,完成四梯形表面的展开图 。

2020九年级数学下册第3章三视图与表面展开图3-精装版

2020九年级数学下册第3章三视图与表面展开图3-精装版

教学资料范本2020九年级数学下册第3章三视图与表面展开图3-精装版编辑:__________________时间:__________________3.4【精选】20xx最新九年级数学下册第3章三视图与表面展开图33.53.6(见A本75页)A 练就好基础基础达标1.如图所示,圆锥的侧面展开图可能是下列图中的( D )第1题图A.B.C. D.2.已知圆锥的母线长为5 cm,底面半径为3 cm,则圆锥的表面积为( B )A.15π cm2 B.24π cm2 C.30πcm2 D.39π cm23.圆锥轴截面的等腰三角形的顶角为60°,这个圆锥的母线长为8 cm,则这个圆锥的高为( A )A. 4 cm B.8 cm C.4 cmD.8 cm第4题图4.如图所示,圆锥底面半径为8,母线长为15,则这个圆锥侧面展开图的扇形的圆心角α为( C )A.120°B.150°C.192°D.210°第5题图5.20xx·南充中考如图所示,在Rt△ABC中,AC=5 cm,BC=12 cm,∠ACB=90°,把Rt△ABC绕BC所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为( B )A.60π cm2 B.65π cm2 C.120π cm2 D.130π cm26.若一个圆锥的侧面展开图是半径为18 cm,圆心角为240°的扇形,则这个圆锥的底面半径长是( C )A.6 cm B.9 cm C.12 cmD.18 cm7.已知圆锥的底面半径为5 cm,侧面积为60πcm2,则这个圆锥的母线长为__12__ cm,它的侧面展开图的圆心角是__150°__.8.圆锥的侧面积为18π cm2,其侧面展开图是半圆,则圆锥的底面半径是__3__ cm.第9题图9.如图所示的扇形是一个圆锥的侧面展开图,若∠AOB=120°,的长为12π cm,则该圆锥的侧面积为__108_π__cm2.10.如图所示,现有一圆心角为90°.半径为80 cm的扇形铁片,用它恰好围成一个圆锥形的量筒,用其他铁片再做一个圆形盖子把量筒底面密封(接缝都忽略不计).求:(1)该圆锥盖子的半径为多少cm?(2)制作这个密封量筒,共用铁片多少cm2?(结果保留π)第10题图解:(1)圆锥的底面周长==40π(cm),设圆锥底面圆的半径为r,则2πr=40π,解得r=20,即该圆锥盖子的半径为20 cm.(2)由题意得:S=S侧+S底=π×802+400π=20xxπ(cm2),即共用铁片20xxπ cm2.B 更上一层楼能力提升11.20xx·绵阳中考“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8 cm,圆柱体部分的高BC=6 cm,圆锥体部分的高CD=3 cm,则这个陀螺的表面积是( C )第11题图A.68π cm2 B.74π cm2C.84π cm2 D.100π cm2第12题图12.如图所示,从直径为2 m的圆形铁皮上剪出一个圆心角是90°的扇形ABC(A,B,C三点在⊙O上),将剪下来的扇形围成一个圆锥的侧面,则该圆锥的底面圆的半径是____ m.第13题图13.如图所示,在Rt△ABC中,∠ACB=90°,AC=BC=2,若把Rt△ABC绕边AB所在直线旋转一周,所得几何体的全面积为__8π__(结果保留π).第14题图14.如图所示,扇形OBC是圆锥的侧面展开图,圆锥的母线OB =l,底面圆的半径HB=r.(1)当l=2r时,求∠BOC的度数;(2)当l=3r,l=4r时,分别求∠BOC的度数;(直接写出结果)(3)当l=nr(n为大于1的整数)时,猜想∠BOC的度数.(直接写出结果)解:(1)设∠BOC=n,则得n=180°,∴∠BOC的度数为180°.(2)当l=3r时,∠BOC=120°;当l=4r时,∠BOC=90°.(3)∠BOC=°C 开拓新思路拓展创新15.20xx·岱岳二模如图是某几何体的三视图及相关数据,则该几何体的全面积是( B )第15题图A.15πB.24πC.20πD.10π16.在一次科学探究实验中,小明将半径为5 cm的圆形滤纸片按图1所示的步骤进行折叠,并围成圆锥形.(1) 取一漏斗(如图2所示),上部的圆锥形内壁(忽略漏斗管口处)的母线OB长为6 cm,开口圆的直径为6 cm.当滤纸片重叠部分为三层,且每层为圆时,滤纸围成的圆锥形放入该漏斗中,能否紧贴此漏斗的内壁(忽略漏斗管口处)?请你用所学的数学知识说明.(2)假设有一特殊规格的漏斗,其母线长为6 cm,开口圆的直径为7.2 cm,现将同样大小的滤纸围成重叠部分为三层的圆锥形,放入此漏斗中,且能紧贴漏斗内壁.问重叠部分每层的面积为多少?图1图2第16题图解:(1)∵表面紧贴的两圆锥形的侧面展开图为圆心角相同的两扇形,∴表面是否紧贴只需考虑展开图的圆心角是否相等,由于滤纸围成的圆锥形只有最外层侧面紧贴漏斗内壁,故只考虑该滤纸圆锥最外层的侧面和漏斗内壁圆锥侧面的关系.将圆形滤纸片按图示的步骤折成四层且每层为圆,则围成的圆锥形的侧面积=S滤纸圆=S滤纸圆,∴它的侧面展开图是半圆,其圆心角为180°,如将漏斗内壁构成的圆锥侧面也抽象地展开,展开的扇形弧长为πd=π×6=6π(cm),该侧面展开图的圆心角为6π÷6×=180°.由此可以看出两圆锥的侧面展开得到的扇形,它们的圆心角相等,∴该滤纸围成的圆锥形必能紧贴漏斗内壁.(2)如果抽象地将母线长为6 cm,开口圆直径为7.2 cm的特殊规格的漏斗内壁圆锥侧面展开,得到的扇形弧长为7.2πcm,圆心角为7.2π÷6×=216°,滤纸片如紧贴漏斗壁,其围成圆锥的最外层侧面展开图的圆心角也应为216°.又∵重叠部分每层面积为圆形滤纸片的面积减去围成圆锥的最外层侧面展开图的面积的差的一半,∴滤纸重叠部分每层面积=÷2=5π(cm2).。

第7讲 三视图与平面展开图

第7讲  三视图与平面展开图
第七讲
五年级寒假A版课件
三视图与平面展 开图
数学教研组 编写
知识要点: 还记得我们之前学过的观察物体吗?
从左面看
从正面看
从上面看
正视图
俯视图
左视图
知识要点:
想一想,怎么样用4个同样的小正方 体,摆出的正视图是 的图形。
知识要点:
如果再增加1个同样的小正方体,要保 证从正面看到的形状不变,你可以怎 样摆?
例题4
(1)下面的四个展开图中,( D )是下图所示的正方体的展开 图.
C AB
ABC
C
B
A
C A
B
C
B
A
例题4
(2)在下图所示的正方体的三个面上,分别画了不同的圆,下 面的4个图中,是这个正方体展开图的有( A ).
A.1个 B.2个 C.3个 D.4个
练习4
下图表示正方体的展开图,将它折叠成正方体,可能的图形是 ( ).
A
B
C
D
选讲题
※ 下图是由一些大小相同的小正方体组成的简单几何体的主视图 和俯视图.
(1)请你画出这个几何体的一种左视图Байду номын сангаас (2)若组成这个几何体的小正方体的块数为n,请你写出n的 所有可能值.
(1)略(2)n=8、9、10、11
主视图
俯视图
A
B
C
D
小热身
2. 由四个相同的小正方体搭建了一个积木,它的三视图如图所示,则 这个积木可能是( A ).
A
B
C
D
例题1
下图中的几何体是由若干个完全相同的小正方体搭成的,请你分 别画出它的正视图、左视图和俯视图.

练习1

部编人教版数学九年级下册《三视图 表面展开图》省优质课一等奖教案

部编人教版数学九年级下册《三视图 表面展开图》省优质课一等奖教案

第3课时表面展开图教学目标知识技能1.进一步认识由物体画视图、由视图想象物体.2.会初步利用三视图画出(简单)立体图形的展开图.3.会利用三视图计算立体图形的侧面积和表面积.数学思考与问题解决通过观察、探究等活动先让学生由物体的三视图想象出物体的立体图形,再由物体的立体图形进一步画出展开图.情感态度1.了解将三视图转换成立体图形在生产生活中的应用,使学生体会到所学知识具有重要的实用价值.2.在探究由三视图求物体面积的过程中,使学生感受到知识间的联系,培养学生动手实践能力,发展空间想象能力.重点难点重点:根据三视图描述基本几何体和实物原型及三视图在生产中的作用.难点:根据三视图想象基本几何体和实物原型的形状,画出立体图形的展开图并进行有关计算.教学设计一、引入新课1.完成下列练习.1(1)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称.(2)一张桌子上摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有多少个碟子?(3)某几何体的三种视图分别如下图所示,那么这个几何体可能是( )A.长方体 B.圆柱 C.圆锥 D.球2.让学生欣赏事先准备好的机械制图中三视图与对应立体图形的图片,并借此可以讲述一下现在一些中专、中技甚至大学里开设的模具和机械制图专业和课程就需要这方面的知识,导入本课.(教师出示问题,引导学生思考解决问题.教师引导学生了解一些中专、中技甚至大学里开设的模具和机械制图专业和课程就需要这方面的知识,由此引入新课.学生观察、思考、相互交流,进一步了解研究三视图是生活的需要.) 设计意图:借助图片信息让学生体会到本节知识的价值,并借此使学生了解现在一些中专、中技2甚至大学里开设的模具和机械制图专业和课程就需要这方面的知识,激发学生的学习兴趣.二、探究新知根据三视图用小方块摆出它的立体图形.由三视图可得立体图形:(教师出示三视图,让学生先独立思考、再小组合作完成.学生观察、思考、想象,动手摆放.)设计意图:通过让学生亲自观察三视图,想象得出实物图,用小方块摆出立体图形,激发学生学习的好奇心、求知欲,加深对三视图与实物的关系的理解与认识,进一步掌握由图想物的技能,同时也提高了空间想象能力.三、应用提高例1(教材例5)分析:对于某些立体图形,若沿其中一些线(例如棱柱的棱)剪开,可以把立体图形的表面展开成一个平面图形——展开图.在实际的生产中,三视图和展开图往往结合在一起使用.解决本题的思路是:由视图想象出密封罐的立体形状,再进一步画出展开图,从而计算面积.解:由三视图可知,密封罐的形状是正六棱柱(如下图中左图).密封罐的高为50 mm,底面正六边形的直径为100 mm,边长为50 mm,如下图中右图是它的展开图.34由展开图可知,制作一个密封罐所需钢板的面积为 6×50×50+2×6×12×50×50sin60°=6×502×(1+32) ≈27 990(mm 2)例2(补充) 已知一个几何体由若干个长方体组成,每个长方体的长为2 cm ,宽、高都为1 cm,它的三视图如下图所示,描述该几何体的形状,并计算它的表面积.分析:由俯视图确定该几何体在平面上的形状,由主视图、左视图确定空间的形状如图所示. 解:该几何体的形状如下图所示:该几何体的表面积为:1×6×2+2×7×2+2×5×2=60(cm 2). (教师引导学生总结由图想物的基本方法,提供摆放的立体图形.教师引导、点拨、总结画图的方法规律,共性问题做好补教,组织学生独立思考后,再小组交流.学生先独立思考,再小组内交流.教师出示例题,引导分析解决:先根据三视图想象立体图形,根据立体图形求出几何体的表面积.学生想象、描述几何体的形状.)设计意图:通过观察、想象、比较、综合、分析的过程体现了对“平面—空间—平面”相互关系的理解与把握,由三个视图想实物,由实物想展开图,进一步培养学生空间想象能力,发展学生的空间观念.四、巩固练习1.教材第100页练习第1题.答案:(1) (2)2.教材第101页练习第2题,教材习题29.2第10题.(教师要求学生独立解决,然后与同伴交流.学生思考、想象、画出展开图.)设计意图:通过练习巩固所学的知识,同时教师检查教学效果.五、师生小结1通过这节课,同学们学到了什么?2.布置作业:必做题:教材复习题29第6,7题.选做题:教材复习题29第8题.(学生总结发言.教师补充完善.教师分层布置作业.学生按要求课外完成.)设计意图:梳理知识、总结方法,形成知识体系,养成系统整理知识的习惯.板书设计5一、引入新课三、应用提高例1(教材例5)例2(补充)二、探究新知四、巩固练习三视图与几何体:五、师生小结6。

第26讲 三视图与展开图

第26讲 三视图与展开图

第26讲三视图与展开图1.三视图2.立体图形的展开与折叠1.(2017·衢州)如图是由四个相同的小立方体搭成的几何体,它的主视图是( )第1题图第2题图2.(2017·丽水)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同3.(2017·宁波)如图所示的几何体的俯视图为()4.(2017·金华)一个几何体的三视图如图所示,这个几何体是()A.球B.圆柱C.圆锥D.立方体【问题】如图,下列四个几何体是水平放置.(1)这四个几何体中,主视图与其他三个不相同的是________;(2)图(1)的直三棱柱,底面是边长为2的正三角形,高为4,则此直三棱柱的侧面展开图的面积________;(3)图(2)的圆柱,底面半径为2,高为4,则此圆柱左视图的面积________;(4)通过(1)(2)(3)的解答,请你联想三视图和立体图形展开图的相关知识、方法.【归纳】通过开放式问题,归纳、疏理简单几何体的三视图、展开图.类型一判断(画)几何体的三视图例1下列几何体中,俯视图相同的是()A.①②B.①③C.②③D.②④【解后感悟】掌握从不同方向看物体的方法和画几何体三视图的要求,通过仔细观察、比较、分析,可选出正确答案.1.(1)(2016·湖州)由六个相同的立方体搭成的几何体如图所示,则它的主视图是()(2)(2017·黔西南州)下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个(3)(2017·台州)如图所示的工件是由两个长方体构成的组合体,则它的主视图是()类型二由三视图判断原几何体的形状例2(2016·黄石)某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.圆柱D.球【解后感悟】由三视图确定几何体,往往需要把三个视图组合起来、空间想象综合考虑;掌握常见几何体的三视图是解题的关键.2.(1)(2015·桂林)下列四个物体的俯视图与如图给出视图一致的是()(2)(2017·嘉兴模拟)如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱(3)(2015·随州)如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是cm3.类型三立体图形的展开与折叠例3如图给定的是纸盒的外表面,下面能由它折叠而成的是()【解后感悟】常见几何体的展开与折叠:①棱柱的平面展开图是由两个相同的多边形和一些长方形组成,按棱柱表面不同的棱剪开,可能得到不同组合方式的平面展开图,特别关注正方体的表面展开图;②圆柱的平面展开图是由两个相同的圆形和一个长方形组成的;③圆锥的平面展开图是由一个圆形和一个扇形组成的.3.(1)(2017·漳州模拟)如图是一个长方体包装盒,则它的平面展开图是()(2)(2015·广州)如图是一个几何体的三视图,则该几何体的展开图可以是()(3)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B在围成的正方体上的距离是()A.0 B.1 C. 2 D.3(4)(2016·十堰)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.103cm D.202cm类型四几何体的综合运用例4学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);(2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.【解后感悟】从问题中获取信息(读表),找出碟子个数与碟子高度之间的关系式是解此题的关键.4.(1)(2017·湖州)如图是按1∶10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A.200cm2B.600cm2C.100πcm2D.200πcm2(2)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.【课本改变题】教材母题--浙教版九下第76页例题如图是某几何体的三视图,则该几何体的体积是()A.18 3 B.54 3 C.108 3 D.216 3 【方法与对策】由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.这类题是中考热点题型,平时学习中也要注意平面图形和空间图形的转化.【分不清三视图中的实线与虚线】一个空心的圆柱如图所示,那么它的主视图是()参考答案第26讲三视图与展开图【考题体验】1.D 2.B 3.D 4.B【知识引擎】【解析】(1)图(1)的主视图为长方形;图(2)的主视图为长方形;图(3)的主视图为长方形;图(4)的主视图为三角形.故主视图与其他三个不相同的是图(4).(2)侧面展开图是矩形,侧面积为6×4=24.(3)左视图的面积为4×4=16.(4)画三视图,根据三视图描述简单几何体,直棱柱,圆锥侧面展开图等【例题精析】例1②③的俯视图都是圆,有圆心,故选C.例2∵如图所示几何体的主视图和左视图分别是长方形和圆,∴该几何体可能是圆柱体.故选C.例3B例4(1)2+1.5(x-1)=(1.5x+0.5)cm(2)由三视图可知共有12个碟子,∴叠成一摞的高度=1.5×12+0.5=18.5(cm).【变式拓展】1.(1)A(2)D(3)A 2.(1)C(2)D(3)24 3.(1)A(2)A(3)B(4)D 4.(1)D(2)20 【热点题型】【分析与解】由三视图可看出:该几何体是一个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6×34×62×2=108 3.故选C.【错误警示】A。

专题27 三视图与展开图(解析版)

专题27  三视图与展开图(解析版)

专题13 三视图与展开图1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。

2.物体的三视图特指主视图、俯视图、左视图。

(1)主视图:从物体的前面向后面投射所得的视图称主视图,能反映物体的前面形状。

(2)俯视图:从物体的上面向下面投射所得的视图称俯视图,能反映物体的上面形状。

(3)左视图:从物体的左面向右面投射所得的视图称左视图,能反映物体的左面形状,有时也叫做侧视图。

物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。

3.展开图:平面图形有三角形、四边形、圆等.立体图形有棱柱、棱锥、圆柱、圆锥、球等.把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形。

【例题1】(2019•四川省达州市)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.从左面看可得到从左到右分别是3,1个正方形.专题知识回顾专题典型题考法及解析【例题2】(2019•甘肃)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为.【答案】(18+2)cm2.【解析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).【例题3】(2019•江苏连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.【答案】B【解析】根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形.由题意可知,该几何体为四棱锥,所以它的底面是四边形.专题典型训练题一、选择题1.(2019广东深圳)下列哪个图形是正方体的展开图()A. B.C.D.【答案】B【解析】立体图形的展开图B中图形符合“一四一”模型,是正方体的展开图.故选B.2.(2019•山东省济宁市)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.【答案】B.【解析】考点是几何体的展开图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【典例 1】 (2016· 长沙)如图 287 是由六个相同的小立方 体搭成的几何体,则这个几何体的主视图是 ( )
图 287
A.
B.
C.
D.
【解析】 从正面看第一层是三个小正方形,第二层左边 一个小正方形,第三层左边一个小正方形.
【答案】 B
【类题演练 1】 如图 288 所示的几何体,它的左视图与 俯视图都正确的是 ( )
的正方形纸片按虚线裁剪后,恰好围成底面是正六边 形的棱柱,则这个六棱柱的侧面积为____cm2.
图 2812 【解析】 ∵将一张边长为 6 cm 的正方形纸片按虚线裁剪 后,恰好围成一个底面是正六边形的棱柱, ∴这个正六边形的底面边长为 1 cm. 易得棱柱的侧面展开图是长为 6 cm,宽为(6-2 3)cm 的 矩形,
图 281 3.判断简单物体的三视图,能根据三视图描述基本几何 体或实物原型. 4.直棱柱、圆锥的侧面展开图分别是矩形和扇形,能根 据展开图判断和制作立体模型.
1.(2016· 台州)如图 282 所示的几何体的俯视图是(
)
图 282
A.
【答案】
B.
D
C.
D.
2.(2016· 河北)如图 283①和②中所有的正方形都全等, 将图①中的正方形放在图②中的①②③④的某一位 置,所组成的图形不能围成立方体的是 ( ) A.① B.② C.③ D.④
根据物体的三视图求几何体的侧面积、表面积、体积 等,关键是由三视图想象出几何体的形状,把所给的数据 标注到立体图形中,从而找到解题方法.
【典例 3】 (2016· 泰安)如图 2811 是一圆 锥的左视图,根据图中所标数据,该圆 锥侧面展开图的扇形圆心角的度数为 ( ) A.90° B.120° C.135° D.150°
【错解】 ∵切掉的部分都被挡住了,看不到,∴用虚线 表示,故选 B.
பைடு நூலகம்
【析错】 选 B 的错误在于概念混淆不清,左视图是从左 面来看,所以切掉的棱都应表现在视图中.
【纠错】 从左面所看到的图形是正方形,切去部分的棱 都能看到,所以应用实线表示,故选 C.
易错点1
【典例 1】 是
立方体展开图的正确判断
下列四个选项中,不是立方体表面展开图的 ( )
【错解】
D
【析错】 本题错在不熟悉立方体表面展开图有哪几种类 型,凭直观看法想当然地认为 D 是错误的.
【纠错】
选项 A,B,D 折叠后都可以围成立方体;而
选项 C 折叠后上面一行的两个面无法折起来. 故选 C.
A.40π cm2 C.80π cm2
图 286 B.65π cm2 D.105π cm
【答案】
B
题型一
几何体的三视图
三视图是分别从正面、左面、上面三个方向看同一个 物体所得到的平面图形,要注意用平行光去看.画三视图 时应注意尺寸的大小,即三个视图的特征:主视图体现物 体的长和高,左视图体现物体的宽和高,俯视图体现物体 的长和宽.
★名师指津 当遇到立方体表面展开图问题时,我们应熟
练掌握立方体表面展开图的特点.立方体的表面展开 图中不含有田字形,解题时最好从相对面入手,这样 其他的面也就随之确定了.
易错点2
视图中看到的与看不到的轮廓线的表示
【典例 2】 如图 2813 是将立方体切去一个角后形成的 几何体, 则该几何体的左视图为 ( )
图 288
A.
B.
C.
D.
【解析】 该几何体的左视图是边长分别为圆的半径和底 面宽的矩形,俯视图是边长分别为圆的直径和底面宽的矩 形. 【答案】
D
题型二
由三视图确定几何体的构成
由三视图确定几何体,往往需要把三个视图组合起来 综合考虑,应熟练掌握基本几何体的三视图特征.
【典例 2】 (2015· 广州)如图 289 是一个几何体的三视图, 则该几何体的展开图可以是 ( )
∴侧面积为 6×(6-2 3)=(36-12 3)cm2.
【答案】 (36-12 3)
1.画三视图时,位置有规定,其中主视图要在左上方, 它下方应是俯视图,左视图坐落在主视图右边. 2.主视图可以清晰地展现物体的长和高,主要提供物体 正面的形状;左视图可以展现物体的宽和高;俯视图 不能展现物体的高,但能展现物体的长和宽. 3. 从不同的方向观察同一物体得到的图形不一定相同. 物 体的三视图与物体的放置方向有关系,画三视图时要 注意这一点. 4.判断小立方体中的三视图应注意: (1)主视图与俯视图的列数相同,其每列方块数是俯视 图中该列中的最大数字. (2)左视图的列数与俯视图的行数相同,其每列的方块 数是俯视图中该行的最大数字.
【解析】 由三视图可知该几何体是圆柱,∴该几何体的 展开图可以是 A.
【答案】
A
【类题演练 2】 正三棱柱是
(2016· 德州)如图 2810 中三视图对应的 ( )
【解析】 确.
【答案】
由俯视图得到正三棱柱两个底面在竖直方向,
由主视图得到有一条侧棱在正前方, 于是可判定 A 选项正
A
题型三
根据三视图进行计算
【解析】 ∵圆锥的底面半径为 6÷2=3, ∴圆锥的底面周长为 6π. ∵圆锥的高是 6 2, ∴圆锥的母线长为 32+(6 2)2=9. 设扇形的圆心角为 n° , n π× 9 则 =6π,解得 n=120,即扇形的圆心角为 120° . 180
【答案】
B
【类题演练 3】 (2015· 荆州)如图 2812, 将一张边长为 6 cm
图 283
【答案】
A
3.(2016· 杭州)下列选项中,如图 284 所示的圆柱的三视 图画法正确的是 ( )
图 284
A.
B.
C.
D.
【答案】
A
4.(2016· 北京)如图 285 是某个几何体的三视图,则该几 何体是 ( ) A.圆锥 B.三棱锥 C.圆柱 D.三棱柱
图 285
【答案】
D
5.(2016· 大连)如图 286,按照三视图确定该几何体的全 面积是(图中尺寸单位: cm) ( )
1.三视图: (1)主视图:物体在正投影面上的正投影. (2)左视图:物体在侧投影面上的正投影.
(3)俯视图:物体在水平投影面上的正投影.
2.画“三视图”的原则(如图 281): (1)大小:长对正,高平齐,宽相等. (2)虚实:在画图时,看得见部分的轮廓线通常画成 实 线,看不见部分的轮廓线通常画成虚线.
相关文档
最新文档