convex and quasi convex
第3讲 凸集、凸函数、凸规划 Convex Set、Convex Function、Convex Programming
设S R , x0 S,如果对一切 xS
n
及 0, 有x 0 x S, 则称S是 以x 0为顶点的锥. 如果S又是凸集, 则称S为凸锥.
凸函数
凸函数(Convex Function) ----定义2.4 设 D R n 是非空凸集, f x : S R, 若对任意的 x , y D , 及任意的 0, 1
f x 1 y f x 1 f y 都有:
则称函数 f x 为 D 上的凸函数.
注:将上述定义中的不等式反向,可以得到 凹函数的定义.
凸函数
严格凸函数 设 D R n 是非空凸集, f x : S R, 若对任意的 x, y D ( x y), 及任意的 0,1 则称函数 f x 为 D
上的严格凸函数.
都有:f x 1 y f x 1 f y
注:将上述定义中的不等式反向,可以 得到严格凹函数的定义.
凸函数
几何性质
0 1 表示连接 x1 , f x1 , x2 , f x2 的线段. f x1 1 x2 表示在点 x1 1 x2处的
例:D1 x,0T x R 表示 x 轴上的点.
D2
T
0, y
y R表示 y 轴上的点.
则 D1 D2 表示两个轴的所有点, 它不是凸集; 而 D1 D2 R 2 凸集.
凸集-----凸包(Convex Hull)
定义 设 S R , S 中任意有限个点的所有凸 组合所构成的集合称为S的凸包,记为H(S),即
第 3讲
凸集、凸函数、凸规划
广义凸函数的定义和性质
广义凸函数的定义和性质蒋玲(浙江海洋学院数理与信息学院,浙江舟山316004)[摘要]:凸函数是一类重要的函数,它的概念最早见于Jensen[1905]著述中。
它在纯粹数学和应用数学的众多领域中具有广泛的应用,现已成为数学规划、对策论、数理经济学、变分学和最优控制等学科的理论基础和有力工具。
为了理论上的突破,加强它们在实践中的应用,产生了广义凸函数。
本文主要是研究几类广义凸函数的定义和性质。
探讨拟凸函数、严格拟凸函数及强拟凸函数的定义、性质以及这三类函数之间相互转换的充分必要条件,也讨论拟凸函数的连续性。
同时也对强伪凸函数性质进行研究,得到一些有意义的结论。
[关键词]:拟凸函数;严格拟凸函数;强拟凸函数;强伪凸函数Definitions and Properties of GeneralizedConvex FunctionJiang Ling(College of Mathematics Physics & Information Science,Zhejiang Ocean University, Zhoushan Zhejiang 316004)[Abstract]: Convex function is a kind of important function, its concept forms most early in Jensen [1905] in the writings. It has numerous applications in broad fields of pure Mathematics and applied Mathematics. Convex function is now plays important theoretical basic and useful tools to many subjects such as mathematical planning theory, response theory, numerical economics, change hours theory and sub-optimal control and so on. For theoretical break through, reinforce their application in practice, produced generalized convex function. The article is to study definitions and theorems of generalized convex function. We also obtained some criteria for quasiconvex functions, strictly quasiconvex functions and strongly quasiconvex functions, and given some characteristics among the three functions. Then we discuss lower sem-icontinuities, upper sem-icontinuities. The last of this brief presents a few characteristics of the strong pscudocovexity.[Keywords]: quasiconvex functions; strictly quasiconvex functions; Strong quasiconvex functions; strong pscudocovexity1 前言凸函数(convex function )的理论奠基工作可以追溯到上个世纪初Holder 、Jenson 和Minkowski 的著作,人们称其为“Jensen 凸函数”[1]。
Convex Functions
Examples on R
convex: • affine: ax + b on R, for any a, b ∈ R • exponential: eax, for any a ∈ R • powers: xα on R++, for α ≥ 1 or α ≤ 0 • powers of absolute value: |x|p on R, for p ≥ 1 • negative entropy: x log x on R++ concave: • affine: ax + b on R, for any a, b ∈ R • powers: xα on R++, for 0 ≤ α ≤ 1 • logarithm: log x on R++
Convex functions
3–12
Operations that preserve convexity
practical methods for establishing convexity of a function 1. verify definition (often simplified by restricting to a line) 2. for twice differentiable functions, show ∇2f (x) 0
≥0
≤(
2 k zk vk )(
(from Cauchy-Schwarz inequality)
geometric mean: f (x) = (
n xk )1/n k=1
on Rn is concavar proof as for log-sum-exp)
第二章凸性(Convexity)
凸集-----性质
推论: 设 Di , i 1,2,, k 是凸集, 则 i Di 也是凸集, 其中 i 是实数.
i 1 k
(4) S 是凸集当且仅当S中任意有限个点的凸 组合仍然在S中.
凸集-----性质
注: 和集和并集有很大的区别,凸集的并集 未必是凸集,而凸集的和集是凸集.
f x 1 y f x 1 f y 都有:
则称函数 f x 为 D 上的凸函数.
注:将上述定义中的不等式反向,可以得到 凹函数的定义.
凸函数
严格凸函数 设 D R n 是非空凸集, f x : S R, 若对任意的 x, y D ( x y), 及任意的 0,1 则称函数 f x 为 D
一个可微函数 是凸函数当且 仅当函数图形 上任一点处的 切平面位于曲 面的下方.
凸函数
凸函数的判别定理---二阶条件
定理5:
2 x1 2 f G x 2 f x x x 2 1 2 f x n x1
设在开凸集 D R 内 f x 二阶可微,则 f x 是 D 内的凸函数的充要条件为: 对任意 x D, f x 的Hesse矩阵 G x 半正定, 其中: 2 f 2 f 2 f
称为函数f在集合S上关于数 定理3 设 f x 是凸集 S R n 上的凸函数,则对任意 R ,水平集 S f , 是凸集. 注:定理3 的逆命题不成立.
的水平集.
凸函数
y 2 xy 的等值线的图形,可以看出水平集是凸集.
4 2 4 f x , y x 3 x y 下面的图形给出了凸函数
凸优化练习题与解答(1)台大考古题
Exam policy: Open book. You can bring any books, handouts, and any kinds of paper-based notes with you, but electronic devices (including cellphones, laptops, tablets, etc.) are strictly prohibited.
2. (18%) Determine whether each of the following sets is a convex function, quasi-convex
function, concave function. Write your answer as a table of 6 rows and 3 columns, with
z, X1z ≥ 1 z, X2z ≥ 1
Then, for 0 ≤ θ ≤ 1,
z, θX1 + (1 − θ)X2 z =θ z, X1 + (1 − θ) z, X2 ≥θ · 1 + (1 − θ) · 1 =1.
As required in definition of S10. To see it is not a cone, consider z = (1, 0, . . . , 0), and X = I ∈ Sn (symmetric matrices). Here z, Xz = 1, but z, 2Iz = 2 The reason that it is not affine is the same, by considering 2I = 2 · I + (−1) · O, the “line” containing O (all-0 matrix) and I. It follows that it is not a subspace. 11. S11 = x ∈ Rn ||P x + q||2 ≤ cT x + r given any P ∈ Rm×n, q ∈ Rm, c ∈ Rn, and r ∈ R. T, F, F, F To show convexity, if
02-凸函数
02-凸函数02-凸函数⽬录⼀、基本性质和例⼦[凸函数] ⼀个函数 f:R n→R 是凸的,如果定义域 dom f 是凸集,并且对于所有 x,y∈f,θ≤1 ,我们有 f(θx+(1−θ)y)≤θf(x)+(1−θ)f(y).注:如果不能理解,从⼆维⾓度去理解⼏何解释:点 (x,f(x)) 和 (y,f(y)) 之间的线段在f对应的图像上⽅。
函数f是严格凸的,如果以上不等式在x≠y,且 0<θ<1 时也成⽴.函数f是凹的,当 −f是凸的,严格凹,当 −f是严格凸的。
仿射函数既是凸的也是凹的,反过来,既凹⼜凸的函数是仿射的。
⼀个函数是凸的当且仅当对任意x∈dom f和任意v,函数g(t)=f(x+tv) 是凸的, {t|x+tv∈dom f}.注:其实只是修改了⾃变量的表⽰,⼜由于⾃变量的集合是凸集,线性表⽰后仍然是凸集˜f:R n→R∪{∞} ,[扩展值] 将凸函数扩展到整个 R n ,通常令它在定义域之外取 ∞ 。
如果 f 是凸函数那么它的拓展为{˜f(x)=f(x)x∈domf∞x∉domf[⼀阶条件] 令函数 f 是可微的(也就是它的梯度 ∇f 在开集 domf 的每个点上都存在)。
那么 f 是凸的,当且仅当 domf 是凸的,并且对所有的 x,y∈domf 有:f(y)≥f(x)+∇f(x)T(y−x).注:其实同样可以从⼆维⾓度的考虑,⽆⾮就是 dy,也就是函数图像永远在某⼀点的切上上,同时 f(x)+∇f(x)T(y−x) 相当于 f 在 x 的⼀阶泰勒近似,如果你对泰勒展开公式熟悉,更好理解,因为泰勒展开是⽆穷阶的,只不过此处做了省略在每个点上,函数图像都⾼于在该点的切线。
解释:y的仿射函数f(x)+∇f(x)T(y−x) 是f在靠近x处的⼀阶泰勒近似。
上述不等式表达了这个⼀阶泰勒近似是函数的全局下限(globalunderestimator),反过来,如果函数的⼀阶泰勒近似总是函数的全局下限,那么这个函数是凸的。
光学专业英语词汇总结
amplitude 振幅
phase 相位
wavenumber 波数
wavefront 波前
wavevector 波矢
envelope 包络
Wave envelope 波包
Wave packet theory 波包理论
quarter wave plate 四分之一波片
grating 光栅
absorption 吸收
Fiber 光纤
Cladding 包层
Perfect image 完善像
Object(image) space 物(像)空间
magnification 放大率
Parallel plate 平行平板
focal plane 焦平面
stop 光阑
pupil 光瞳
ray tracing 光线追迹
Incident beam 入射光
电通量密度 磁通量密度
电位移 自由空间
介质 线性的 色散的 非色散的 各向同性的 各向异性的
refractive index 折射率
absorption coefficient 吸收系数
phase velocity 相速度
group velocity 群速度
Attenuation 衰减
alumina 氧化铝
Bell inequality 贝尔不等式
teleportation 隐形传态、离物传态
quantum cryptography 量子密码
Vocabulary 9
frequency conversion 频率转换
Down conversion 下转换
Parametric process 参量过程
Nonparametric process 非参量过程
成本概念需要澄清的几个问题
成本概念需要澄清的几个问题分类:经济学:研究对象与研究方法书评文章提交者:黄文平发表时间:2003-08-08四川成都西南财经大学的张树民博士在“固定成本的陷阱”(《经济学消息报》,No.523期,2003年1月10日)一文中指出:“经济学中固定成本的定义存在模糊之处”,“理解成本更重要的是考察要素的替代性的用途的收益,这是产生理解和使用固定成本的陷阱的所在”。
并认为,“标准教科书中完全竞争市场短期均衡的分析,这里存在两个错误,一是继续生产的条件分析,一是短期供给曲线分析”。
对现代经济学中固定成本这样的基本概念,张文(对张树民先生该文的简称,下同)用并不严密(甚至错误)的逻辑论证,辅之以斯蒂格勒关于进入壁垒的分析和作者本人投资股票的案例,就如此轻而易举地加以推翻,并最后作出结论:“固定成本的陷阱就是把经济学作为智力游戏,而从未试图透过概念、曲线看世界的陷阱。
”笔者认为,张文的论证过程和结论不仅过于轻率和武断,而且也不正确。
客观地说,现代经济学,尤其是微观经济学,已是一门非常严谨的学科,如果缺乏正规、严格的现代经济学训练,就很难准确把握现代经济学的基本概念。
动辄以“陷阱”、“智力游戏”之类的话语来描述经济学的基本概念,本身就是一种不负责任的态度,更谈不上是科学的态度。
笔者是一个从事现代经济学教学的教师,愿借此机会对成本概念作一初步分析,以厘清张文在成本概念上的诸多谬误。
一、成本的几个基本概念众所周知,成本(cost)、价格(price)、需求(demand)、供给(supply)、效用(utility)、偏好(preference)等都是经济学、尤其是微观经济学中非常要紧的基本概念。
对每一个概念进行全面、准确地阐释,除了牵涉到经济史或经济思想史方面的知识外,还更多地涉及到现代微观经济学中许多十分技术性和专业性的描述。
这既非本文的目的,也非本文的篇幅所能胜任。
这里,我只是对成本概念作初步的技术性阐释。
高级微观经济学第五讲(效用最大化UMP)
第五讲、效用最大化UMP主要内容:(pp1-32) 1、 Introduction:()max .xn u x s tx B X +∈⊆⊆consumption set, feasible set, preference and utility, and behavioral assumption2、 contents:消费者的偏好与预算集,消费者均衡的特征,由效用函数推导需求函数,间接效用函数及其性质。
第一节、budget constraint and feasible set一、定义definitions 1、 商品 goods ,economic goods 和free goods度量:离散还是连续,infinitely divisible, i x +∈ 同质还是差异产品,different goods, 2、商品空间goods spaceconsumption bundle or plan ()12,,...nn x x x +=∈x nonnegative orthant3、消费集consumption set or choice setset of all alternative consumption plans which is conceivable and feasible given the technological and institutional situation.(without consideration of economic realities)消费集内的元素是alternatives 技术和制度上的可能性 assumptions:X ≠∅,使问题有意义出于分析上的方便和需要:X is closed, X is convexpay more attention to feasible set 4、竞争性预算集预算约束刻画消费者所处的经济环境:稀缺性和可替代性 竞争性预算集(1)假设:市场完备性和竞争性(2){},ny +B =∈≤x x px(3)预算约束线1122p x p x y += (4)预算约束线的斜率及其经济学含义11220p dx p dx +=,trade-off2112dx pdx p =-:斜率取决于商品的相对价格 12p p 的含义是增加一个单位的第一种商品必须放弃掉12pp 个单位的第二种商品,也往往被称为机会成本。
convex 模型的理解
convex 模型的理解
Convex模型是指其函数形式为凸函数的模型,凸函数具有一些特殊的性质,例如局部最小值即为全局最小值、一阶导数单调递增等。
因此,Convex 模型在优化问题中具有广泛的应用,特别是在线性规划、二次规划、凸优化等问题中。
此外,Convex 模型也可以用于概率模型的建立和参数估计,例如最大熵模型、支持向量机等。
对于Convex 模型的解决方法,常用的有梯度下降法、牛顿法、拟牛顿法等。
但需要注意的是,Convex 模型的求解并不一定总是简单和高效的,因为随着模型复杂度的增加,其求解可能变得非常困难。
因此,在实际应用中,需要根据具体问题的特点和求解效率的要求,选择合适的 Convex 模型及其求解方法。
- 1 -。
Mathematics_for_Economists
Mathematics for Economists
要素需求函数的存在性
生产函数为 f (x1, x2, …, xn) 生产要素价格向量 w=(w1, w2, …, wn) T 给定成本 c,
f λw 1 = 0 x1 f λw 2 = 0 x 2 f λw n = 0 x n w1 x1 + + wn x n = c
或Ax=y ,如果A的秩是n,可以得到:
China Agri. Univ.
College of Economics and Mangement
Mathematics for Economists
隐函数
x1 = g 1 ( x n +1 , , x m ; y1 , , y n ) x 2 = g 2 ( x n +1 , , x m ; y1 , , y n )
B A C
China Agri. Univ.
College of Economics and Mangement
Mathematics for Economists
凹函数另一定义
凹函数:集合S为凸集,x1、x2 ∈S,有 f ( x2) ≤ f (x1)+ f '(x1) (x2 - x1)
Mathematics for Economists
隐函数定理 Implicit Function
如果 (1) 函数F (x,y)在(x0,y0)附近连续, (2)偏导数Fx (x,y)和Fy (x,y) 存在且连续, (3)F (x0,y0)=0, (4) Fy (x0,y0) ≠0, 则 F (x,y)=0唯一确定一个隐函数 y=f (x) ,使得
College of Economics and Mangement
凸优化理论与应用_凸函数
25
共轭函数 具有凸性!
13
共轭函数的性质
Fenchel’s inequality
f ( x) f * ( y) yT x.
性质:若 f ( x )为凸函数,且 f ( x ) 的上半图是闭集,则有
f ** f .
n z R 性质:设 f ( x ) 为凸函数,且可微,对于 ,若 y f ( z )
若 f ( x ) 为准凸函数,根据 f ( x ) 的任意 t 下水平集,我们 可以构造一个凸函数族 t ( x),使得
f ( x) t t ( x) 0
例:
f ( x) t 0 t ( x) . otherwise
性质:若 t ( x) 为准凸函数 f ( x ) 的凸函数族表示,对每一 个 x domf ,若 s t ,则有
7
函数上半图(epigraph)
定义:集合
epif {( x, t ) | x domf , f ( x) t}
称为函数 f 的上半图。
定理:函数 f 为凸函数当且仅当 f 的上半图为凸集。
信息与通信工程学院 庄伯金 bjzhuang@
8
Jensen不等式
凸函数的一阶微分条件
若函数 f 的定义域 domf 为开集,且函数 f 一阶可微, 则函数 f 为凸函数当且仅当 domf 为凸集,且对 x, y domf
f ( y) f ( x) f ( x)T ( y x)
信息与通信工程学院 庄伯金 bjzhuang@
定理:若函数 f ( x ) 一阶可微,则 f ( x ) 为准凸函数,当且仅 当 domf 为凸集,且对 x, y domf ,有
尼克尔森微观经济学课后答案
尼克尔森微观经济学课后答案CHAPTER 2THE MATHEMATICS OF OPTIMIZATIONThe problems in this chapter are primarily mathematical. They are intended to give students some practice with taking derivatives and using the Lagrangian techniques, but the problems in themselves offer few economic insights. Consequently, no commentary is provided. All of the problems are relatively simple and instructors might choose from among them on the basis of how they wish to approach the teaching of the optimization methods in class.Solutions2.1 22(,)43=+U x y x y a.86 U U = x , = y x y b.8, 12 c. 86??=?? U U dU dx + dy = x dx + y dy x y d. for 0 8 6 0=+=dy dU x dx y dy dx 8463--dy x x = = dx y ye.1,2413416===?+?=x y U f.4(1)2/33(2)-==-dy dx g. U = 16 contour line is an ellipse centered at the origin.With equation 224316+=x y , slope of the line at (x, y ) is43=-dy x dx y.2.2 a. Profits are given by 2240100π=-=-+-R C q q*44010π=-+=d q q dq2*2(1040(10)100100)π=-+-= b. 224π=-d dq so profits are maximized c. 702==-dR MR q dq 230==+dC MCq dq so q * = 10 obeys MR = MC = 50.2.3 Substitution:21 so =-==-y x f xy x x120?=-=?f x x0.50.5,0.25x =, y = f =Note: 20''=-Lagrangian Method: ?1)λ=+--xy x y£λ?-? = y = 0x£λ?-? = x = 0yso, x = y.using the constraint gives 0.5,0.25===x y xy2.4 Setting up the Lagrangian: ?0.25)λ=++-x y xy .£1£1λλ?=-??=-?y x x ySo, x = y . Using the constraint gives 20.25,0.5====xy x x y .2.5 a. 2()0.540=-+f t gt t*40400,=-+==df g t t dt g . b.Substituting for t*, *2()0.5(40)40(40)800=-+=f t g g g g . *2()800?=-?f t g g. c. 2*1()2=-f t g depends on g because t * depends on g . so*222408000.5()0.5()?-=-=-=?f t g g g . d. 8003225,80032.124.92==, a reduction of .08. Notice that 22800800320.8-=≈-g so a 0.1 increase in g could bepredicted to reduce height by 0.08 from the envelope theorem.2.6 a. This is the volume of a rectangular solid made from a piece ofmetal which is x by 3x with the defined corner squares removed. b. 22316120?=-+=?V x xt t t. Applying the quadratic formula to this expressionyields1610.60.225, 1.1124±===x x t x x . Todetermine true maximum must look at second derivative --221624?=-+?V x t twhich is negative only for the first solution.c. If 33330.225,0.67.04.050.68=≈-+≈t x V x x x x so V increaseswithout limit.d. This would require a solution using the Lagrangian method. Theoptimal solution requires solving three non-linear simultaneousequations —a task not undertaken here. But it seems clear thatthe solution would involve a different relationship between tand x than in parts a-c.2.7 a. Set up Lagrangian 1212?ln ()λ=++--x x k x x yields the first order conditions: 12212£10?0£0λλλ?=-=??=-=??=--=?x x x k x xHence, 2215 or 5λ===x x . With k = 10, optimal solution is 12 5.==x xb. With k = 4, solving the first order conditions yields215, 1.==-x xc. Optimal solution is 120,4,5ln 4.===x x y Any positive value forx 1 reduces y.d. If k = 20, optimal solution is 1215, 5.==x x Because x 2provides a diminishing marginal increment to y whereas x 1 doesnot, all optimal solutions require that, once x 2 reaches 5, anyextra amounts be devoted entirely to x 1.2.8 The proof is most easily accomplished through the use of the matrixalgebra of quadratic forms. See, for example, Mas Colell et al.,pp. 937–939. Intuitively, because concave functions lie belowany tangent plane, their level curves must also be convex. Butthe converse is not true. Quasi-concave functions may exhibit“increasing returns to scale”; even though their level curvesare convex, they may rise above the tangent plane when allvariables are increased together.2.9 a.11210.βαα-=> f x x 11220βαβ-=> f .x x21111(1)0.βααα-=-< f x x21222(1)0.βαββ-=-< f x x111212210.βααβ--==> f f x xClearly, all the terms in Equation 2.114 are negative. b.If 12βα==y c x x /1/21αββ-= x c x since α, β > 0, x 2 is a convex function of x 1 .c.Using equation 2.98, 222222222221122111222(1)()(1)ββααααβββα-----=--- f f f x x x x= 222212(1)βααββα---- x x which is negative for α + β > 1.2.10 a.Since 0,0'''>Because 1122,0y is quasi-concave as is γy . But γy is not concave for γ > 1. All of these results can be shown by applying the various definitions to the partial derivatives of y .CHAPTER 3PREFERENCES AND UTILITYThese problems provide some practice in examining utility functions by looking at indifference curve maps. The primary focus is on illustrating the notion of a diminishing MRS in various contexts. The concepts of the budget constraint and utility maximization are not used until the next chapter.Comments on Problems3.1 This problem requires students to graph indifference curves for a varietyof functions, some of which do not exhibit a diminishing MRS.3.2 Introduces the formal definition of quasi-concavity (from Chapter 2) to beapplied to the functions in Problem 3.1.3.3 This problem shows that diminishing marginal utility is not required toobtain a diminishing MRS. All of the functions are monotonic transformations of one another, so this problem illustrates that diminishing MRS is preserved by monotonic transformations, but diminishing marginal utility is not.3.4 This problem focuses on whether some simple utility functions exhibit convexindifference curves.3.5 This problem is an exploration of the fixed-proportions utility function.The problem also shows how such problems can be treated as a composite commodity.3.6 In this problem students are asked to provide a formal, utility-basedexplanation for a variety of advertising slogans. The purpose is to get students to think mathematically about everyday expressions.3.7 This problem shows how initial endowments can be incorporated into utilitytheory.3.8This problem offers a further exploration of the Cobb-Douglas function.Part c provides an introduction to the linear expenditure system. This application is treated in more detail in the Extensions to Chapter 4.。
厦门大学数理经济学复习总结
矩阵定性的判定定义1、 正定矩阵A 0,0,in R nx x x '>∀≠ 2、 半正定矩阵A 0,0,in R n x x x '≥∀≠ 3、 负定矩阵A 0,0,in R nx x x '<∀≠ 4、 半负定矩阵A 0,0,in R n x x x '≤∀≠5、 不定矩阵A 0,x x '>for some x ; A 0x x '< for some x.判定矩阵A 是正定矩阵,当且仅当A 的所有的顺序主子式都是正数 矩阵A 是半正定矩阵,当且仅当A 的所有的主子式都是非负数矩阵A 是负定矩阵,当且仅当A 的所有奇数项顺序主子式都是负数,所有的偶数项顺序主子式都是正数矩阵A 是负半定矩阵,当且仅当A 的所有奇数项主子式都为非正数,所有偶数项主子式都为非负数线性约束下矩阵的定性1 一个二次型函数22121122(,)2Q x x ax bx x cx =++,在线性约束条件120Ax Bx +=下是正定的,当且仅当0A B Aa b Bbc是负的2.()Q x x Ax '=,s.t.0Bx =,0T B H B A ⎛⎫=⎪⎝⎭,m 为B 中线性函数的个数 ()Q x 是正定的,当且仅当21m H +与(1)m -符号相同且所有更高阶的顺序主子式和(1)m -符号相同。
0x =全局最小值。
()Q x 是负定的,当且仅当21m H +与1(1)m +-符号相同且更高阶顺序主子式的符号交替变化。
0x =全局最大值。
如果顺序主子式非0,且不满足上述两个条件,则()Q x 为不定矩阵。
0x =不是全局最大也不是全局最小值。
优化理论基本概念:全局最大值点:A point *x U ∈ is a max of F on U , if *()()F x F x ≥ for all x U ∈.A point *x U ∈ is a strict max of F on U , if *()()F x F x > for all *x x ≠.局部最大值点:*x U ∈is a local max if there is a *()r B x about *x such that*()()F x F x ≥ for *()r x U B x ∈⋂无约束条件的优化问题FOC :1:F U R →为1C 函数,*x 是U 的一个内点,且*x 是函数F 的最大值或最小值点,则:*()0,1,2,iF x i n x ∂==∂SOC (充分):1:F U R →为2C 函数,U 为开集,*x 为F 驻点,则2*()D F x 负定,*x 局部最大值点 2*()D F x 正定,*x 局部最小值点2*()D F x 不定,*x 既不是最大值也不是最小值SOC (必要):1:F U R →为2C 函数,*x 为U 内点,且为F 局部最大(最小)值点,则*()0DF x =,2*()D F x 负半定(正半定)。
Concave and Quasiconcave Functions
f (λx + (1 − λ)y ) ≥ (≤) λ f (x ) + (1 − λ) f (y ). Proof First, suppose that f is concave, i.e., hy p f is convex. Let x and y be two arbitrary points in X . Then, (x , f (x )) ∈ hy p f and (y , f (y )) ∈ hy p f . Since hy p f is convex, we have, for any λ ∈ [0, 1], (λx + (1 − λ)y , λ f (x ) + (1 − λ) f (y )) ∈ hy p f . By definition of hy p f , a point (w , z ) is in hy p f only if f (w ) ≥ z , and hence f (λx + (1 − λ)y ) ≥ λ f (x ) + (1 − λ) f (y ). Now suppose that for all x , y ∈ X and for all λ ∈ [0, 1], it is the case that f (λx + (1 − λ)y ) ≥ λ f (x ) + (1 − λ) f (y ). 1 (1)
Intuitively, the hypograph of a function is the area lying below the graph of the function, while the epigraph is the area lying above the graph. Definition 2 (Concave and convex functions) A function f : X −→ (e p i f ) is convex. is concave (convex) on X if hy p f
高级微观经济学所需的数学知识及应用
Although all the three definitions on the upper semi-continuity at x0 are equivalent, the second one is easier to be versified.
A function f : X → R is said to be upper semi-continuous on X if f is upper semicontinuous at every point x ∈ X.
Theorem 1.2.2 (Separating Hyperplane Theorem) Suppose that A, B ⊂ Rm are convex and A ∩ B = ∅. Then, there is a vector p ∈ Rm with p ̸= 0, and a value c ∈ R such that
condition. Becoming a rich country also depends on other factors such as political system, social infrastructures, and culture. Additionally, no example of a country can be found so far that it is rich in the long run, that is not a market economy.
are closed subsets of X.
Let f be a function on Rk with continuous partial derivatives. We define the gradient
2预算偏好效用函数
对不同消费束指派不同数值,这些数值大小关系能 够表示原消费束偏好顺序,例如:U(2,3) = 6 > U(4,1) = U(2,2) = 4。 指派的数值通常称为效用水平(utility levels)。
p
3.2 效用函数的性质 对于一个偏好关系,效用函数不是唯一的,可以用 不同效用函数表示同一个偏好关系。 单调变换性:效用函数的单调变换与原效用函数表 示相同的偏好。
对于消费束 (4,1)、(2,3) 和 (2,2)。例如, U(x1,x2) = x1x2 表示一个偏好关系。 U(x1,x2) =2 x1x2 、 U(x1,x2) =x1x2 +3都表示 相同偏好。
3.3 效用函数与无差异曲线 无差异曲线包含偏好顺序相同的消费束。
偏好顺序相同 效用水平相同。
min{x1,x2} = 5 min{x1,x2} = 3 3 5 8 x1
5 3
拟线性效用函数
x2 每条曲线都是垂直移动可得
x1
Fehr, E., & Schnidt, K. M. A theory of fairness, competition, and cooperation Quarterly Journal of Economics, 1999, 114(3):817-868.
Engelmann, D., & Strobel M. Inequality aversion, efficiency, and maximim preferences in simple distributional experiments. American Economic Review, 2004, 94(4): 857-869.
Convexandconcavefunctions
2.5.Convex and concave functionsLet f be a real-valued function f:S→R.In what follows,we assume that S⊆R n is a convex set.The function f is convex on a set S if∀x1,x2∈S,∀λ∈[0,1]such thatλx1+(1−λ)x2∈S,f(λx1+(1−λ)x2)≤λf(x1)+(1−λ)f(x2).(20)It is strictly convex on S if the strict inequality holds whenever x1=x2.f is concave if(−f) is convex.The epigraph and subgraph of f,denoted epi(f)and sub(f),are defined byepi(f)=(x,α)|x∈S,α∈R,f(x)≤α(21)sub(f)=(x,α)|x∈S,α∈R,f(x)≥α(22)Note that epi(f)⊂R n+1and sub(f)⊂R n+1.Theorem2.33.A function f:S→R,where S is a convex set in R n,is convex iffits epigraph is convex in R n+1.Similarly,f is concave iffits subgraph is convex in R n+1.The following theorem states the relationship between convex and concave functions and continuity.Theorem2.34.Let f be a real-valued concave function defined on a convex set S⊆R n. Then f is continuous on the interior of S.This result can not be strengthened to include the boundary points of S.For differentiable functions,we can conclude the following.Theorem2.35.Let f be a real-valued function defined on an open,convex set S⊆R n. Suppose f is differentiable at¯x∈S.If f is convex at¯x,then∀x∈S,f(x)−f(¯x)≥Df(¯x)(x−¯x).(23) If f is concave at¯x,then∀x∈S,f(x)−f(¯x)≤Df(¯x)(x−¯x).(24)Theorem2.36.Let f be a real-valued function defined on an open,convex set S⊆R n. Suppose f is twice-differentiable on S.Then f is convex iffD2f(x)is positive semi-definite on S, i.e.,∀x∈S,∀y∈R n,y D2f(x)y≥0.Similarly,f is concave iffD2f(x)is negitive semi-definite on S,i.e.,∀x∈S,∀y∈R n,y D2f(x)y≤0.The corresponding“iff”relationship between strict convexity of a function and positive definite second derivative does not hold.In particular,if f is strictly convex at¯x,then D2f(¯x)is positive semi-definite,but not necessarily positive definite.122.6.Unconstrained optimizationRecall in section2.4,we have defined local optima.Let f be a real-valued function defined on a subset S of R n,f:S→R.f has a local maximum at a point x0∈S if there is aδ>0 such that f(x0)≥f(x)for all x∈B(x0,δ)∩S.f has a strict local maximum at a point x0if f(x0)>f(x)for all x∈B(x0,δ)∩S and x=x0.We say that f has a global maximum at a point x0if f(x0)≥f(x)for all x∈S,and that f has a strict global maximum at a point x0if f(x0)>f(x)for all x∈S and x=x0.Local(global)minimum,strict local(global)minimum are similarly defined.Theorem2.25discusses the necessary condition for local optima of single-variable function. The result can be easily generated to multi-variable case.Theorem2.37.(First-order necessary conditions)Let f be a real-valued function defined on a subset S of R n,f:S→R.If f has a local maximum(minimum)at a point x0∈S◦and f is differentiable at x0,then Df(x0)=θ.Note that Df(x0)=θis only a necessary,not sufficient condition for local optima.It also does not distinguish between local maximum from minimum.Next,we look at second derivatives.Theorem2.38.(Second-order conditions)Let f be a C2function defined on a subset S of R n,f:S→R,and x0∈S◦.(i)If Df(x0)=θ,and D2f(x0)is negative definite,then f has a strict local maximum at x0.(ii)If Df(x0)=θ,and D2f(x0)is positive definite,then f has a strict local minimum at x0.(iii)If f has a local maximum at a point x0,then D2f(x0)is negative semi-definite.(iv)If f has a local minimum at a point x0,then D2f(x0)is positive semi-definite.For convex or concave functions,we can say something about global optima.Assume that the domain S of f is convex.If f attains a local maximum at x0and f is concave,then f attains a global maximum at x0.If f attains a local minimum at x0and f is convex,then f attains a global minimum at x0.Furthermore,if f is strictly concave or convex,the optimum is unique.13。
VR渲染器中英文对照
Type(类型):Still camera(静止照相机)▲
Override Focal Length(焦距)40
Shutter speed(快门速度)125 Film Width(宽)36 Distortion(矢真)0
Shutter angle(快门角度)180 Zoom(焦距缩放)1 Lens shift(焦距移动)0
Global Switches(全局光照开关设置)
Materials(材质)
Reflection/Refraction(反射/折射)
Max Depth(最大深度)2
Max Transp.Level(最大透明级别)50
Transp. Cutoff(透明终止值)0.001
System(系统设置)
Raycaster Params(光线追踪参数)
Max Depth(最大深度)60
Min Leaf(最小树叶)0
Face/Level(面/级)2
Mem Limit(限制)400
Distributed Rendering(分布式渲染设置)
Multiplier(倍增)1
Burn Value(曝光值)0.8
Affect Background(影响背景)
Clamp Output(加强输出)
Sub-pixel(子像素贴图)
VFB Channels(VFB通道设置)
VFB Channels(VFB通道):Atmosphere(空气)▲
Calc Samples(计算采样)15 Multipass(多重预计算)
Randomize Samples(随机采样) Check Sample Visibility(检查样本可见性)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
separable
function.
• Why does Theorem 5 require that each φi be strictly concave to ensure that f is strictly concave, while Theorem 4 requires only one fi be strictly concave to ensure that f is is strictly concave?
i=1
i=1
This establishes that f is concave. If some fi is strictly concave and αi > 0, then the inequality is strict.
Since a constant function is concave, Theorem 4 implies:
V31.0006 Mathematics for Economists
New York University Department of Economics
C. Wilson September 15, 2011
Concave and Quasi-Concave Functions
A set X ⊂ Rn is convex if x, y ∈ X implies λx + (1 − λ) y ∈ X for all λ ∈ [0, 1] . Geometrically, if x, y ∈ Rn, then {z ∈ Rn : z = λx + (1 − λ) y for λ ∈ [0, 1]} constitutes the straight line connecting x and y. So a convex set is any set that contains the entire line segment between any two vectors in the set.
fi (λx + (1 − λ) y) ≥ λfi(x) + (1 − λ) fi(y)
Therefore,
Xn
Xn
f (λx + (1 − λ) y) ≡
αifi (λx + (1 − λ) y) ≥ αi (λfi(x) + (1 − λ) fi(y))
i=1
i=1
Xn
Xn
= λ αifi(x) + (1 − λ) αifi(y) ≡ λf (x) + (1 − λ) f (y).
1 3
x2
=
2 3
x23
+
1 3
x1
=
1 3
x1
+
1 3
x2
+
1 3
x3
/ caw1/
V31.0006: Concave and Quasi-Concave Functions
September 15, 2011 Page 2
Theorem 1: A set X ⊂ Rn is convex if and only if it contains any convex combination of any vectors x1, ..., xm ∈ X.
f (λz + (1 − λ) x) ≥ λf (z) + (1 − λ) f (x).
f : X → R is strictly concave if for any x, z ∈ X with x 6= z, we have, for all λ ∈ (0, 1) , f (λz + (1 − λ) x) > λf (z) + (1 − λ) f (x).
any α1, ..., αn, least one fj is
for which each strictly concave
and αj > 0, then f is strictly concave.
Proof. Consider any x, y ∈ X and λ ∈ (0, 1) . If each fi is concave, we have
mX−1 λj j=1 1 − λm
=
Pm−1
j=1
λj
1 − λm
=
1 − λm 1 − λm
= 1,
the
induction
hypothesis
implies
that
y
≡
Pm−1
j=1
³´
λj 1−λm
xj
∈
X.
Then
the
definition
of
a
convex
set implies
X m λj xj
Linear Combinations of Concave Functions
Consider a list
f
≡
Pn
i=1
αifi
of is
functions fi : X → R for i = 1, ..., called a linear combination of f1,
n, ...,
and fn.
/ caw1/
V31.0006: Concave and Quasi-Concave Functions
September 15, 2011 Page 4
Tαih≥eo0r,efm≡4P: niS=u1pαpifoiseisfa1l,s.o..,afncoanrceavceonfucnacvteiofnu.ncIft,ioinnsa. ddTihtieonn,foart
• f : X → R is concave if and only if f(λ∆x + x) ≥ λ (f (x + ∆x) − f (x)) + f(x) for all x, (x + ∆x) ∈ X and λ ∈ (0, 1) . Why?
Theorem α1, . . . , αm
∈3:R(+Jewnistehn’Ps Imin=e1qαuia=lity1,)
vector x is x itself. So the basis statement for m = 1 is true. The induction step is to suppose that
ttSrhiuneecpefromorpmo≥si2tvieoacnntdoirsesta.rcuSheoλfcojor≥nms0id−wer1itah>nP y0 cvmjo=enc1vtλoejrxs=,coa1mn,dbwitenhametniaoytnosP ushpmjop=wo1stλehjWaxtjLtoOhfiGsmitmhvpeacltiteλosrmsth<ceon1p.traoTipnhoeesdintiisnoinnXcies.
X m
X m
z = λjxj for some λ1, ..., λm ≥ 0 with λj = 1.
j=1
j=1
In the figure below:
x12 =
1 2
x1
+
1 2
x2,
x13
=
1 2
x1
+
1 2
x3,
x23
=
1 2
x2
+
1 2
x3
x123
=
2 3
x12
+
1 3
x3
=
2 3
x13
+
a If
list of numbers α1, ..., αn. The function each of the weights αi ≥ 0, then f is a
nonnegative linear combination of f1, ..., fn.
The next proposition establishes that any nonnegative linear combination of concave functions is also a concave function.
j=1
=
mX−1 λj xj
j=1
+
ቤተ መጻሕፍቲ ባይዱλmxm
=
(1
−
mX−1 µ
λm)
1
j=1
¶
λj
xj
− λm
+ λmxm
=
(1
−
λm) y
+
λmxm
∈
X.
The proposition then follows from mathematical induction.
Given any set X ⊂ Rn, the convex hull Co(X) is the intersection of all convex sets that contain X. • Since the intersection of any two convex sets is convex, it follows that the convex hull is the
/ caw1/
V31.0006: Concave and Quasi-Concave Functions
September 15, 2011 Page 3
Concave Functions
For the remainder of these notes, we suppose that X ⊂ Rn is a convex set. f : X → R is concave if for any x, z ∈ X, we have, for all λ ∈ (0, 1) ,