平面解析几何初步一轮复习-(有答案)

合集下载

考点8 平面解析几何—高考数学一轮复习考点创新题训练(含解析)

考点8 平面解析几何—高考数学一轮复习考点创新题训练(含解析)

考点8 平面解析几何—高考数学一轮复习考点创新题训练1.班级物理社团在做光学实验时,发现了一个有趣的现象:从椭圆的一个焦点发出的光线经椭圆形的反射面反射后将汇聚到另一个焦点处.根据椭圆的光学性质解决下面问题:已知椭圆,其左,右焦点分别是,,直线l 与椭圆C 切于点P ,且(注;若2.数学美的表现形式多种多样,我们称离心率(其中,,若以原点O 为圆心,短轴长为直径作,P为黄金椭圆上除顶点外任意一点,过P作的两条切线,切点分别为A ,B ,直线与x ,y( )C. D.3.冰糖葫芦是中国传统小吃,起源于南宋.由山楂串成的冰糖葫芦如图1所示,若将山楂看成是大小相同的圆,竹签看成一条线段,如图2所示,且山楂的半径(图2中圆的半径)为2,竹签所在的直线方程为,则与该串冰糖动芦的山楂都相切的直线方程为( )C218y +=1F 2F 1PF =ABC △=e ω=ω=221y b+=(0)a b >>O e O e AB 22||a ON +=ωω-1ω-20x y +=A. B. C. D.4.中国国家大剧院的外观被设计成了半椭球面的形状.如图,若以椭球的中心为原点建立空间直(,且a ,b ,c 不全相等).若该建筑的室内地面是面积为的圆,给出下列结论:①;②;③;④若,则,其中正确命题的个数为( )A.1B.2C.3D.45.智慧的人们在进行工业设计时,巧妙地利用了圆锥曲线的光学性质,比如电影放映机利用椭圆镜面反射出聚焦光线,探照灯利用抛物线镜面反射出平行光线.如图,从双曲线右焦点发出的光线通过双曲线镜面反射,且反射光线的反向延长线经过左焦点.已知入射光线斜率为和反射光线PE 互相垂直(其中P 为入射点),则双曲线的离心率为()D.6.彗星的轨道有椭圆轨道、抛物线轨道、双曲线轨道三种.假设有一颗彗星,围绕太阳沿一抛物线C 的轨道运行,太阳恰好位于抛物线C 的焦点处,当此彗星距离太阳为6万公里时,彗星220x y +±=20x y +=240x y +±=20x y +±=22221y z b c++=0,,,0z a b c ≥>2π(0)m m >a b =c m =2ac m =ac m >1c >2F 1F 2F P 2P +1到抛物线C 的对称轴的距离为万公里,则这颗彗星与太阳的最短距离是( )A.1.5万公里或4.5万公里 B.2万公里或4万公里C.3万公里或4.8万公里D.2.5万公里或5万公里7.随着我国经济的迅猛发展,人们对电能的需求愈来愈大,而电能所排放的气体会出现全球气候变暖的问题,这在一定程度上威胁到了人们的健康.所以,为了提高火电厂一次能源的使用效率,有效推动社会的可持续发展,必须对火电厂节能减排技术进行深入的探讨.火电厂的冷却塔常用的外形之一就是旋转单叶双曲面,它的优点是对流快,散热效果好,外形可以看成是双曲线的一部分绕其虚轴旋转所形成的曲面(如图1).某火电厂的冷却塔设计图纸比例(长度比)为(图纸上的尺寸单位:m),图纸中单叶双曲面的方程为(如图2),则该冷却塔占地面积为( )A. B. C. D.8.3D 打印是快速成型技术的一种,通过逐层打印的方式来构造物体.如图所示的笔筒为3D 打印的双曲线型笔筒,该笔筒是由离心率为3的双曲线的一部分围绕其旋转轴逐层旋转打印得到的,已知该笔筒的上底直径为6cm ,下底直径为8cm ,高为8cm (数据均以外壁即笔筒外侧表面计算),则笔筒最细处的直径为( )1:4022211(21)4x y z z +-=-≤≤22800πm 23000πm 23200πm 24800πm9.(多选)据中国载人航天工程办公室消息,北京时间2021年11月8日1时16分,经过约6.5小时的出舱活动,神舟十三号航天员乘组密切协同,圆满完成出舱活动全部既定任务,航天员翟志刚,王亚平安全返回天和核心舱,出舱活动取得圆满成功.已知天和核心舱的运行轨道是以地球中心为一个焦点的椭圆,设其近地点距地面N 千米,远地点距地面M 千米,地球半径为R 千米,则下列说法正确的是( )A.椭圆的短轴长为B.椭圆的短轴长为千米C.椭圆的焦距为千米D.椭圆的长轴长为千米11.从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点;从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.如图①,一个光学装置由有公共焦点,的椭圆T 与双曲线S 构成,现一光线从左焦点发出,依次经S 与T 反射,又回到了点,历时秒;若将装置中的S 去掉,如图②,此光线从点发出,经T 两次反射后又回到了点历时秒.已知,则T 的离心率与S2t 214t t =1e ()()M R N R ++()M N -()2M N R ++1F 2F 1F 1F 1t 1F 1F的离心率________.上的两个动点,若直线上存在点P ,使得为直角,求实数m的取值范围.小峰同学没有思路,于是求助数学老师,老师拍拍他的肩膀告诉他:从前,有个叫蒙日的数学家,发现椭圆的两条互相垂直的切线的交点所构成的轨迹是一个定圆.小峰顿悟,于是写出了答案:________.13.如图所示,为完成一项探月工程,某月球探测器飞行到月球附近时,首先在以月球球心F 为圆心的圆形轨道Ⅰ上绕月球飞行,然后在P 点处变轨进入以F 为一个焦点的椭圆轨道Ⅱ绕月球飞行,最后在Q 点处变轨进入以F 为圆心的圆形轨道Ⅲ绕月球飞行,设圆形轨道Ⅰ的半径为R ,圆形轨道Ⅲ的半径为r ,则椭圆轨道Ⅱ的离心率为____________.(用R 、r 表示)14.生活中,椭圆有很多光学性质,如从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在y 轴上,中心在原点,从下焦点射出的光线经过椭圆镜面反射到上焦点,这束光线的总长度为4,且反射点与焦点构成的三角形面积的最大(1)求椭圆C 的标准方程;(2)若从椭圆C 的中心O 出发的两束光线OM ,ON ,分别穿过椭圆上的A ,B 两点后射到直线上的M ,N 两点,若AB 连线过椭圆的上焦点,试问,直线BM 与直线AN 能交于一e =219y +=430x y m +-=APB ∠1F 2F <4y =2F定点吗?若能,求出此定点;若不能,请说明理由.15.综合应用抛物线和双曲线的光学性质,可以设计制造反射式天文望远镜.这种望远镜的特点是,镜筒可以很短而观察天体运动又很清楚.例如,某天文仪器厂设计制造的一种镜筒长为2 m 的反射式望远镜,其光学系统的原理如图(中心截口示意图)所示.其中,一个反射镜弧所在的曲线为拋物线,另一个反射镜弧所在的曲线为双曲线的一个分支.已知是双曲线的两个焦点,其中同时又是拋物线的焦点,试根据图示尺寸(单位:mm),分别求拋物线和双曲线的方程.1PO Q 2MO N 12,F F 2F答案以及解析1.答案:B解析:由题设,则PQ 平分定义可知.故选:B.2.答案:A解析:依题意有OAPB 四点共圆,设点P 坐标为,则该圆的方程为:,将两圆方程:与相减,得切点所在直线方程为,解得,,所以故选:A.3.答案:D解析:因为竹签所在的直线方程为,设与该串冰糖葫芦的山楂都相切的直线方程为,解得糖葫芦的山楂都相切的直线方程为.故选:D.4.答案:B中,令,由室内地面是面积为的圆,故,①对;且,则,又a ,b ,c 不全相等,故,②错;若,则,可得,与a ,b ,c 不全相等矛盾,③错;若,则,故,对.故选:B.5.答案:D解析:因为入射光线斜率为,又,,12QPF QPF ∠=∠12F PF ∠12||||2PF PF a +==2=()00,P x y ()()000x x x y y y -+-=222x y b +=22000x x x y y y -+-=200:AB l xx yy b +=20,0b M x ⎛⎫ ⎪⎝⎭200,b N y ⎛ ⎝2021y b +=222222222220044224422220011=.||||1b x a y b a b a a b a b b OM ON b b b x y ωω++=+=====-20x y +=20x y c ++=2=c =±20x y +±=22221y z b c ++=z =221y b+=2π(0)m m >a b =22ππa m =a b m ==c m ≠2ac m =2mc m =c m =ac m >0mc m >>1c >2F P 2160PF F =︒21F P F P ⊥12||2F F c =所以,又,所以.故选:D.6.答案:A解析:建立如图所示平面直角坐标系,设抛物线C 的方程为为焦点.不妨设彗星在A 处,且,过A 作轴,H 为垂足,则,由勾股定理,得当点H 落在OF 的延长线上时,如图①,不妨设点,代入,得,整理得,解得易知彗星运动到原点O 时,彗星与太阳的距离最短,所以彗星与太阳的最短距离是1.5万公里.当点H 落在线段OF 上时,如图②,不妨设点,代入,得,整理得,解得,所以彗星与太阳的最短距离是4.5万公里.故选A.7.答案:C解析:令,得方程为的圆.乘上比例尺,即圆的实际半径为,则建筑的占地面积为.故选:C.8.答案:C解析:该塔筒的轴截面如图所示,以C 为笔筒对应双曲线的实轴端点,22(0),,02py px p F ⎛⎫=> ⎪⎝⎭AH x ⊥2z =-222x y +=(()22π3200πm =⨯21||||,P F F P c ==)21||||12PF PF c a -==1c e a ===+||6AF =||AH =|| 3.FH =32pA ⎛+⎝22y px =22(3)2pp =+26270p p +-= 3.p =3,2p A ⎛-- ⎝22y px =2(232p p ⎛⎫-=- ⎪⎝⎭2p -6270p -=9p =以OC 所在直线为x 轴,过点O 且与OC 垂直的直线为y 轴,建立平面直角坐标系,设A 与B 分别为上,下底面对应点.由题意可知,,,设,则,,因为双曲线的离心率为,所以,所以方程可化简为,将A 和B 的坐标代入式可得,解得.故选:C.9.答案:ACD解析:设椭圆的长轴长为,短轴长为,焦距为,则,解得故椭圆的短轴长为,,故C 正确,D 正确,故选:ACD.3A x =4B x =8A B y y -=()3,A m ()4,8B m -221(0,0)y a b b -=>>3=b =()22288x y a -=*()*()222272812888m a m a ⎧-=⎪⎨--=⎪⎩m a ⎧⎪⎪⎨⎪=⎪⎩a =2a 2b 2e ac M Ra c N R +=+⎧⎨-=+⎩a c ⎧⎪⎪⎨⎪=⎪⎩()()()()222a c a c a c N R M R =-=-+=++2a M N R =++2c M N =-对于C 项,如上图,显然AM 由双曲线的光学性质可知,则AH 垂直平分,对于D 项,解析:由,,,故1F E (21122OH F E AE AF ==-AF NF AF F S S =△214t t =1111224D DF a a a +=+=2a 2122AF AF a -=)211222AF AF a a -=-,解得,设椭圆T 与双曲线S 的公共焦点为,,故12.答案:解析:由题知,因为椭圆的两条互相垂直的切线的交点所构成的轨迹是一个定圆,所以,直线围成的矩形外接圆即为该定圆:.若直线上存在点P 使为直角,即,,解得,故答案为:.(2)直线BM 与直线AN 能交于一定点,且该定点为,则.又,..221(0)x a b b+=>>222b c =+1=213x +=()1124422a a a =-122a a =()1,0F c -()2,0F c 1e =2=21a a ==[]25,25-4x =±3y =±2225x y +=430x y m +-=APB ∠AP 55m =≤[]25,25m ∈-[]25,25m ∈-213x =80,5⎛⎫ ⎪⎝⎭2a =2c b ⨯=e <2=b =(2)设直线AB 的方程为.联立得,消去y 并整理,得,则.设,,则,.由对称性知,若定点存在,则直线BM 与直线AN 必相交于y 轴上的定点.由,得,则直线BM 的方程为.令,则,则所以直线BM 过定点,同理直线AN 也过定点.故直线BM 与直线AN 能交于一定点,且该定点为.122634k x x k -+=+122934x x k -=+114y y x x y ⎧=⎪⎨⎪=⎩114,4x M y ⎛⎫ ⎪⎝⎭1y kx =+221431y x y kx ⎧+=⎪⎨⎪=+⎩()2234690k x kx ++-=()222(6)36341441440k k k ∆=++=+>()11,A x y ()22,B x y 2111214444y x y x x y x y ⎛⎫--=- ⎪⎝⎭-0x =()()()121122112114441441414x y x x kx y x y x x kx x ⎡⎤--+=+=+⎢⎥-+-⎣⎦11221123414x kx x x x kx x ⎛⎫-=+= ⎪-+⎝⎭)1212x x kx x +=()()()()21212112214435422x x x x y x x x x x x --===-++-80,5⎛⎫ ⎪⎝⎭80,5⎛⎫ ⎪⎝⎭80,5⎛⎫ ⎪⎝⎭15.答案:.依题意得,,.,设抛物线的方程为,,则,抛物线的方程为.29168(y x =+211100320y -=221(0,0)y a b b-=>>20805291304.5,1304.5529775.52c a +===-=2221100320b c a ∴=-=211100320y -=12121763775.5987.5OO O O O O =-=-= ∴22(987.5)(0)y p x p =+>176********=+=4584p =∴29168(987.5)y x =+。

数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第1课时最值范围证明问题学案含解析

数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第1课时最值范围证明问题学案含解析

第九节圆锥曲线的综合问题最新考纲考情分析1.掌握解决直线与椭圆、抛物线的位置关系的思想方法.2.了解圆锥曲线的简单应用.3.理解数形结合的思想.1.直线与椭圆、抛物线的位置关系是近几年高考命题的热点.2.考查知识有直线与椭圆、抛物线相交,涉及弦长、中点、面积、对称、存在性问题.3.题型主要以解答题的形式出现,属中高档题。

知识点一直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.即错误!消去y,得ax2+bx+c=0。

(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C相切;Δ<0⇔直线与圆锥曲线C相离.(2)当a=0,b≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=错误!|x1-x2|=错误!·错误!=错误!·|y1-y2|=错误!·错误!.知识点二圆锥曲线中的最值与取值范围问题圆锥曲线中的最值与取值范围问题一直是高考命题的热点,各种题型都有,命题角度很广,归纳起来常见的命题角度有:1.转化为函数利用基本不等式或二次函数求最值;2.利用三角函数有界性求最值;3.数形结合利用几何性质求最值.知识点三圆锥曲线中的定值与定点问题1.这类问题一般考查直线与圆锥曲线的位置关系,一元二次方程的根与系数之间的关系,考查斜率、向量的运算以及运算能力.2.解决这类定点与定值问题的方法有两种:一是研究一般情况,通过逻辑推理与计算得到定点或定值,这种方法难度大,运算量大,且思路不好寻找;另外一种方法就是先利用特殊情况确定定点或定值,然后验证,这样在整理式子或求值时就有了明确的方向.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.(√)(2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.(×)(3)直线l与抛物线C相切的充要条件是:直线l与抛物线C 只有一个公共点.(×)(4)如果直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长|AB|=错误!|y1-y2|.(√)解析:(2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.2.小题热身(1)过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有(C)A.1条B.2条C.3条D.4条解析:结合图形分析可知,满足题意的直线共有3条:直线x=0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x=0).(2)(2020·浙江八校联考)抛物线y=ax2与直线y=kx+b(k≠0)交于A,B两点,且这两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则(B)A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0 D.x1x2+x2x3+x3x1=0解析:由错误!消去y得ax2-kx-b=0,可知x1+x2=错误!,x1x2=-错误!,令kx+b=0得x3=-错误!,所以x1x2=x1x3+x2x3.(3)已知抛物线y=ax2(a>0)的准线为l,l与双曲线x24-y2=1的两条渐近线分别交于A,B两点,若|AB|=4,则a=错误!.解析:抛物线y=ax2(a〉0)的准线l:y=-错误!,双曲线错误!-y2=1的两条渐近线分别为y=错误!x,y=-错误!x,可得x A=-错误!,x B=错误!,可得|AB|=错误!-错误!=4,解得a=错误!。

平面解析几何初步直线圆的方程等一轮复习专题练习(四)含答案高中数学

平面解析几何初步直线圆的方程等一轮复习专题练习(四)含答案高中数学

高中数学专题复习《平面解析几何初步直线圆的方程等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.1 .(2020年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))使得()13nx n N nx x +⎛⎫+∈ ⎪⎝⎭的展开式中含有常数项的最小的为 ( )A .4B .5C .6D .72.在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦AB 的长等于( ) A .33B .23C .3D .1(2020广东文)(解析几何)3.已知直线x=a (a>0)和圆(x -1)2+y 2=4相切,那么a 的值是( ) A .5 B .4C .3D .2(2020全国文3)4.设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则m+n 的取值范围是(A )]31,31[+- (B )),31[]31,(+∞+⋃--∞(C )]222,222[+- (D )),222[]222,(+∞+⋃--∞5.下列说法正确的是 . [答]( ) (1)若直线l 的倾斜角为α,则0απ≤<;(2)若直线l 的一个方向向量为(,)d u v =,则直线l 的斜率v k u=; (3)若直线l 的方程为220(0)ax by c a b ++=+≠,则直线l 的一个法向量为(,)n a b =.A .(1)(2) B. (1)(3) C.(2)(3) D.(1)(2)(3)6.直线1:2l y k x ⎛⎫=+⎪⎝⎭与圆22:1C x y +=的位置关系为( ). A.相交或相切 B.相交或相离 C.相切 D.相交7.圆x 2+y 2+2x +6y +9=0与圆x 2+y 2-6x +2y +1=0的位置关系是 ( )A .相交B .相外切C .相离D .相内切8.圆224460x y x y +-++=截直线50x y --=所得弦长为( ) A、6 B、522C、1 D、59.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A 、425x y += B 、425x y -= C 、25x y += D 、25x y -=10. 直线l 过点(-1,2)且与直线垂直,则l 的方程是 A .3210x y +-= B.3270x y ++=C. 2350x y -+=D.2380x y -+=第II 卷(非选择题)请点击修改第II 卷的文字说明评卷人得分二、填空题11.在平面直角坐标系xOy 中,已知圆C 与x 轴交于A (1,0),B (3,0)两点,且与直线x -y -3=0相切,则圆C 的半径为 ▲ . 解析:可设圆心为(2,b ),半径r =b 2+1,则|-1-b |2=b 2+1,解得b =1.故r =2.12. 已知从点(2,1)-发出的一束光线,经x 轴反射后,反射光线恰好平分 圆:222210x y x y +--+=的圆周,则反射光线所在的直线方程为 13.圆2240x y x +-=在点(1,3)P 处的切线方程为 ▲ .14.如果直线210mx y ++=与20x y +-=互相垂直,那么实数m = ▲ .15.两圆221:2220C x y x y +++-=与222:4210C x y x y +--+=的公切线有且仅有_____条。

平面解析几何初步(含有详解答案)

平面解析几何初步(含有详解答案)

平面解析几何初步一、单项选择1. 经过两点(341-,)、(3521-,)的直线的方程是( )A .123=-+y xB .123=+-y xC .123=+y x D .2.123=-+-y x 2. 已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 的值是 ( )A. 1或3B.1或5C.3或5D.1或2 3. 点(1, 1-)到直线x y -+1=0的距离是( )A.0.5B.1.5C.22 D.2234. 圆0222222=-++y x y x 关于( ) A. 直线2=x 成轴对称 B. 直线x y -=成轴对称C. 点)2,2(-成中心对称D. 点)0,2(-成中心对称 5. 已知直线2x+y-2=0和mx-y+1=0的夹角为4π,则m 值为( )A.31-或-3 B.-3或31C.-3或3D.31或36. 已知圆x 2+y 2+2x-6y+F=0与x+2y-5=0交于A, B 两点, O 为坐标原点, 若OA ⊥OB, 则F的值为( )A .0B .1C .-1D .2 7. 直线10x y ++=被圆221x y +=所截得的弦长为 ( )A .12B .1C D8. 若直线062:1=++y ax l 与直线0)1()1(:22=-+-+a y a x l 平行,则实数a =( ) A .32B .1-C .2D .1-,或29. 下列直线中与直线210x y ++=垂直的一条是( ) A .210x y --=B .210x y -+=C .210x y ++=D .1102x y +-=10. 若直线2320620tx y x ty ++=+-=与直线平行,则实数t 等于( )A .1122-或 B .12C .12-D .1411. 曲线c bx x y ++=2在点))(,(00x f x P 处切线的倾斜角的取值范围为]4,0[π,则点P 到该曲线对称轴距离的取值范围为A. ]1,0[B. ]21,0[ C. ]2||,0[b D. ]2|1|,0[-b12. 已知一圆的圆心为点(2,3)-,一条直径的两个端点分别在x 轴和y 轴上,则此圆的方程是( )A.22(2)(3)13x y -++=B.22(2)(3)13x y ++-=C.22(2)(3)52x y -++=D.22(2)(3)52x y ++-=二、填空题13. 已知点(,)P x y 在直线40x y +-=上,O 是原点,则O P 的最小值是__________. 14. 若圆2221:240C x y m x m +-+-=与圆2222:24480C x y x m y m ++-+-=相离,则m 的取值范围是 .15. 若直线1y kx =+与||y x =的一个交点为11,22⎛⎫⎪⎝⎭,则它们的另一个交点的坐标是_____.16. 由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0,,60A B APB ∠=,则动点P 的轨迹方程为 。

新教材老高考适用2023高考数学一轮总复习单元质检卷八平面解析几何北师大版(含答案)

新教材老高考适用2023高考数学一轮总复习单元质检卷八平面解析几何北师大版(含答案)

新教材老高考适用2023高考数学一轮总复习:单元质检卷八平面解析几何(时间:120分钟满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021山东枣庄二模)已知点(1,1)在抛物线C:y2=2px(p>0)上,则抛物线C的焦点到其准线的距离为()A.14B.12C.1D.22.(2021河北石家庄模拟)已知椭圆C:x 2m+4+y2m=1的离心率为√33,则椭圆C的长轴长为()A.2√3B.4C.4√3D.83.(2020全国Ⅰ,理4)已知点A为抛物线C:y2=2px(p>0)上一点,点A到抛物线C的焦点的距离为12,到y轴的距离为9,则p=()A.2B.3C.6D.94.设双曲线C的方程为x 2a2−y2b2=1(a>0,b>0),过抛物线y2=4x的焦点和点(0,b)的直线为l.若双曲线C的一条渐近线与直线l平行,另一条渐近线与直线l垂直,则双曲线C的方程为()A.x 24−y24=1 B.x2-y24=1C.x 24-y2=1 D.x2-y2=15.(2021江苏南通一模)阿基米德不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的焦点在y轴上,且椭圆C的离心率为35,面积为20π,则椭圆C的标准方程为()A.x 25+y24=1 B.x225+y216=1C.y 25+x24=1 D.y225+x216=16.(2021广东梅州二模)F 1,F 2是双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,点P (2,3)在双曲线C 上,且F 1F 2⊥F 2P ,则双曲线C 的离心率为( ) A.2B.√3C.√2D.127.(2021北京房山二模)设F 1,F 2是双曲线C :x 23-y 2=1的两个焦点,点O 为坐标原点,点P 在双曲线C 上,且|OP|=|OF 1|,则△PF 1F 2的面积为( ) A.52B.2C.32D.18.已知椭圆x 2a 2+y 2b 2=1(a>b>0),F 1,F 2分别是椭圆的左、右焦点,点A 是椭圆的下顶点,直线AF 2交椭圆于另一点P ,若|PF 1|=|PA|,则椭圆的离心率为( ) A.√33B.13C.√22D.129.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程可以为( ) ①x 29+y 216=1 ②x 225+y 216=1 ③x 216+y 29=1 ④x 216+y 225=1A.①③B.②④C.①④D.②③10.已知双曲线的方程为x 29−y 27=1,则下列说法正确的是( )A.焦点为点(±√2,0)B.渐近线方程为√7x ±3y=0C.离心率e=34D.焦点到渐近线的距离为√14411.设圆锥曲线Γ有两个焦点F 1,F 2.若曲线Γ上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线Γ的离心率等于( )A.12或2B.23或2C.32或12D.2或1412.已知斜率为k 的直线l 过抛物线C :y 2=2px (p>0)的焦点,且与抛物线C 交于A ,B 两点.抛物线C 的准线上一点M (-1,-1),满足MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =0,则下列结论错误的是( )A.p=2B.k=-2C.|AB|=√5D.△MAB的面积为5√52二、填空题:本题共4小题,每小题5分,共20分.13.已知椭圆C的焦点在x轴上,且离心率为12,则椭圆C的方程可以为.14.(2021北京顺义二模)若双曲线C:x 2a2−y2b2=1(a>0,b>0)的焦距等于实轴长的√3倍,则双曲线C的渐近线方程为.15.(2021山东淄博一模)若抛物线y2=2px(p>0)上的点A(x0,-2)到其焦点的距离是点A到y轴距离的3倍,则p等于.16.(2021浙江,16)已知椭圆x 2a2+y2b2=1(a>b>0)的焦点F1(-c,0),F2(c,0)(c>0),若过点F1的直线和圆(x-12c)2+y2=c2相切,与椭圆在第一象限交于点P,且PF2⊥x轴,则该直线的斜率是,椭圆的离心率是.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)求符合下列要求的曲线的标准方程:(1)已知椭圆的焦点在x轴上,且长轴长为12,离心率为12;(2)已知双曲线过点A(-7,-6√2),B(2√7,3).18.(12分)(2021湖南高三模拟)已知双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的一个焦点为(√5,0),一条渐近线方程为2x-y=0.(1)求双曲线C 的标准方程; (2)已知倾斜角为3π4的直线l 与双曲线C 交于A ,B 两点,且线段AB 的中点的纵坐标为4,求直线l 的方程.19.(12分)已知抛物线C 1:y 2=2px (p>0)的焦点与双曲线C 2:x 24−y 212=1的右顶点重合.(1)求抛物线C 1的标准方程;(2)设过点(0,1)的直线l 与抛物线C 1交于不同的两点A ,B ,点F 是抛物线C 1的焦点,且FA ⃗⃗⃗⃗⃗ ·FB ⃗⃗⃗⃗⃗ =1,求直线l 的方程.20.(12分)(2021福建龙岩三模)已知a>b>0,曲线Γ由曲线C 1:x 2a 2+y 2b 2=1(y ≥0)和曲线C 2:x 2a 2−y 2b 2=1(y<0)组成,其中曲线C 1的右焦点为F 1(2,0),曲线C 2的左焦点为F 2(-6,0).(1)求a ,b 的值;(2)若直线l 过点F 2交曲线C 1于点A ,B ,求△ABF 1面积的最大值.21.(12分)(2021河北张家口一模)已知双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)上一动点P ,左、右焦点分别为F 1,F 2,且F 2(2,0),定直线l :x=32,PM ⊥l ,点M 在直线l 上,且满足|PM||PF 2|=√32.(1)求双曲线的标准方程;(2)若直线l 0的斜率k=1,且l 0过双曲线右焦点与双曲线右支交于A ,B 两点,求△ABF 1的外接圆方程.22.(12分)已知抛物线C :y 2=4px (p>0)的焦点为F ,且点M (1,2)到点F 的距离比到y 轴的距离大p. (1)求抛物线C 的方程;(2)若直线l :x-m (y+2)-5=0与抛物线C 交于A ,B 两点,是否存在实数m 使|MA||MB|=64√2?若存在,求出m 的值;若不存在,请说明理由.单元质检卷八 平面解析:几何1.B 解析:因为点(1,1)在抛物线上,所以1=2p ,所以p=12,所以C 的焦点到其准线的距离为12.故选B .2.C 解析:由题可知c 2=m+4-m=4,所以c=2. 又因为e=√m+4=√33,所以m=8,所以椭圆C 的长轴长为2√m +4=4√3. 故选C .3.C 解析:设点A 的坐标为(x ,y ).由点A 到y 轴的距离为9可得x=9.由点A 到抛物线C 的焦点的距离为12,可得x+p2=12,解得p=6.4.D 解析:抛物线y 2=4x 的焦点坐标为(1,0), 则直线l 的方程为y=-b (x-1).∵双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的渐近线方程为y=±ba x ,且双曲线C 的一条渐近线与直线l 平行,另一条渐近线与直线l 垂直, ∴-ba=-b ,ba·(-b )=-1,∴a=1,b=1,∴双曲线C 的方程为x 2-y 2=1. 故选D .5.D 解析:设椭圆C 的标准方程为y 2a2+x 2b 2=1(a>b>0),焦距为2c ,则{c a=35,ab =20,a 2=b 2+c 2,解得{a =5,b =4.故选D .6.A 解析:由题可知,c=2,b 2a=3,且c 2=a 2+b 2,所以a=1,b=√3,所以e=ca=2.故选A .7.D 解析:由已知,不妨设F 1(-2,0),F 2(2,0). 由题可知a=√3,c=2. 因为|OP|=|OF 1|=12|F 1F 2|,所以点P 在以线段F 1F 2为直径的圆上,所以△PF 1F 2是以点P 为直角顶点的直角三角形, 所以|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=16. 又||PF 1|-|PF 2||=2a=2√3,所以12=||PF 1|-|PF 2||2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|=16-2|PF 1||PF 2|,所以|PF 1||PF 2|=2,所以S △F 1F 2P =12|PF 1||PF 2|=1. 故选D .8.A 解析:由题可知|AF 1|=|AF 2|=a ,|PF 1|+|PF 2|=2a. 因为|PF 1|=|PA|,所以|PF 2|=12a ,|PF 1|=32a ,cos ∠APF 1=(32a)2+(32a)2-a 22×32a×32a =(12a)2+(32a)2-4c 22×12a×32a ,化简得a 2=3c 2.又e=ca ∈(0,1),所以椭圆的离心率为√33.故选A .9.B 解析:因为2c=6,所以c=3. 又2a+2b=18,a 2=b 2+c 2,所以{a =5,b =4,所以椭圆方程为x 225+y 216=1或x 216+y 225=1.故选B .10.B 解析:由题可知a=3,b=√7,c=√9+7=4, 则双曲线的焦点为点(±4,0);渐近线方程为y=±ba x=±√73x ,即√7x ±3y=0;离心率e=c a =43;焦点(4,0)到渐近线√7x+3y=0的距离为d=√7|√7+9=√7.故选B .11.C 解析:设圆锥曲线的离心率为e. 令|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2. 若圆锥曲线Γ为椭圆,则e=|F 1F 2||PF 1|+|PF 2|=34+2=12;若圆锥曲线Γ为双曲线,则e=|F 1F 2||PF 1|-|PF 2|=34−2=32. 综上,曲线Γ的离心率为12或32. 故选C .12.C 解析:由题可知p2=1,所以p=2,故选项A 正确;因为p=2,所以抛物线C 的方程为y 2=4x ,所以其焦点为F (1,0). 因为直线l 过抛物线的焦点,所以直线l 的方程为y=k (x-1). 因为MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =0,所以点M 在以线段AB 为直径的圆上. 设A (x 1,y 1),B (x 2,y 2).联立方程组{y 12=4x 1,y 22=4x 2,两式相减得y 1-y 2x 1-x 2=4y 1+y 2=k.设AB 的中点为Q (x 0,y 0),则y 0=2k . 又点Q (x 0,y 0)在直线l 上,所以x 0=2k 2+1,所以点Q (2k 2+1,2k )是以线段AB 为直径的圆的圆心. 由抛物线的定义知,圆Q 的半径r=|AB|2=x 1+x 2+22=2x 0+22=2k 2+2.因为|QM|2=(2k 2+2)2+(2k +1)2=r 2, 所以(2k 2+2)2+(2k +1)2=(2k 2+2)2, 解得k=-2,故选项B 正确; 因为k=-2,所以弦长|AB|=2r=2(2k 2+2)=5,故选项C 不正确;因为k=-2,所以直线l 的方程为2x+y-2=0, 所以点M 到直线l 的距离d=√5=√5,所以S △MAB =12·d ·|AB|=12×√5×5=5√52,故选项D 正确.故选C . 13.x 24+y 23=1(答案不唯一) 解析:因为焦点在x 轴上,所以设椭圆的方程为x 2a 2+y 2b 2=1(a>b>0).又因为离心率为12,所以ca=12,所以c 2a2=a 2-b 2a 2=14,即b 2a2=34.14.√2x-y=0或√2x+y=0 解析:因为双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的焦距等于实轴长的√3倍, 所以2c=2√3a ,即c=√3a ,所以ca =√3.又因为ba=√(ca)2-1=√2,所以双曲线C 的渐近线方程为y=±√2x.15.2√2 解析:由题可知抛物线y 2=2px (p>0)开口向右,准线方程为x=-p2. 将点A 的坐标代入抛物线方程得4=2px 0,即x 0=2p .因为抛物线y 2=2px (p>0)上的点A (x 0,-2)到其焦点的距离是点A 到y 轴距离的3倍, 所以x 0+p2=3x 0,所以2p +p2=3×2p ,所以p 2=8,所以p=2√2. 16.2√55 √55 解析:不妨设c=2,切点为B ,则sin ∠PF 1F 2=sin ∠BF 1A=|AB||F 1A|=23,tan ∠PF 1F 2=√32-22=25√5, 所以k=2√55.又k=|PF 2||F 1F 2|,|F 1F 2|=2c=4,所以|PF 2|=8√55,所以|PF 1|=12√55,所以2a=|PF 1|+|PF 2|=4√5,即a=2√5,所以e=c a =2√5=√55. 17.解(1)设所求的椭圆标准方程为x 2a2+y 2b 2=1(a>b>0).由题可知2a=12,即a=6, 且离心率e=c a =12,所以c=3, 所以b 2=a 2-c 2=62-32=27, 所以所求椭圆的标准方程为x 236+y 227=1.(2)设所求的双曲线方程为mx 2+ny 2=1, 由题可得{49m +72n =1,28m +9n =1,解得{m =125,n =−175, 所以所求双曲线的标准方程为x 225−y 275=1. 18.解(1)由题可知c=√5.因为双曲线C 的一条渐近线方程为2x-y=0, 所以ba =2.又c 2=a 2+b 2,所以5=a 2+4a 2,解得a 2=1,b 2=4, 所以双曲线C 的标准方程为x 2-y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),AB 中点的坐标为(x 0,4),则x 12−y 124=1, ① x 22−y 224=1.②②-①得x 22−x 12=y 224−y 124,所以y 2-y 1x 2-x 1=4x 2+x1y 2+y 1, 即k=4x 0y 0=4x 04=x 0.又k=tan 3π4=-1,所以x 0=-1,所以直线l 的方程为y-4=-(x+1),即x+y-3=0.19.解(1)由题可知,双曲线C 2:x 24−y 212=1的右顶点为(2,0),∴p 2=2,∴p=4,∴抛物线C 1的标准方程为y 2=8x.(2)设A (x 1,y 1),B (x 2,y 2).由题可知直线l 的斜率存在且不为零,故设直线l 的方程为y=kx+1(k ≠0). 联立{y =kx +1,y 2=8x,得k 2x 2+(2k-8)x+1=0.由Δ>0得(2k-8)2-4k 2>0,∴k<2,∴x 1+x 2=-2k -8k 2,x 1x 2=1k 2.又FA ⃗⃗⃗⃗⃗ ·FB ⃗⃗⃗⃗⃗ =1,F (2,0),∴FA ⃗⃗⃗⃗⃗ ·FB ⃗⃗⃗⃗⃗ =(x 1-2)(x 2-2)+y 1y 2=1,∴x 1x 2-2(x 1+x 2)+4+(kx 1+1)(kx 2+1)=(1+k 2)x 1x 2+(k-2)(x 1+x 2)+5=1, ∴k 2+4k-5=0,解得k=1或k=-5,∴直线l 的方程为x-y+1=0或5x+y-1=0.20.解(1)∵F 1(2,0),F 2(-6,0),∴{a 2+b 2=36,a 2-b 2=4,解得{a 2=20,b 2=16,∴{a =2√5,b =4.(2)由(1)知,曲线C 1:x 220+y 216=1(y ≥0).由题可知直线斜率存在且不为零,故设直线l 的方程为x=my-6(m>0).联立{x =my -6,x 220+y 216=1,得(5+4m 2)y 2-48my+64=0.∵5+4m 2>0,Δ=(48m )2-4×64×(5+4m 2)>0,且m>0,∴m>1.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=48m 5+4m 2,y 1y 2=645+4m 2,∴|y 1-y 2|=√(y 1+y 2)2-4y 1y 2=16√5√m 2-15+4m 2,∴△ABF 1面积S=12|F 1F 2||y 1-y 2|=12×8×16√5√m 2-15+4m 2=64√5×√m 2-15+4m 2.令t=√m 2-1>0,则m 2=t 2+1,∴S=64√5t 4t 2+9=64√54t+9t ≤16√53,当且仅当t=32,即m=√132时等号成立,∴△ABF 1面积的最大值为16√53.21.解(1)设点P (x ,y ).∵|PF 2||PM|=2√33,∴√(x -2)2+y 2|x -32|=2√33,∴(x-2)2+y 2=43(x -32)2,∴1+y 2=x 23,∴双曲线的标准方程为x 23-y 2=1.(2)设A (x 1,y 1),B (x 2,y 2).由题可知直线l 0:y=x-2,联立{y =x -2,x 23-y 2=1,得2x 2-12x+15=0,∴x 1+x 2=6,x 1x 2=152.又y 1+y 2=x 1+x 2-4,∴AB 中点为M (3,1).又△ABF 1外接圆圆心在AB 的垂直平分线l 1上,∴l 1:y=-x+4. |AB|=√2·√(x 1+x 2)2-4x 1x 2=2√3.设圆心(x 0,y 0)满足{y 0=−x 0+4,(x 0-3)2+(y 0-1)2+(√3)2=(x 0+2)2+y 02, 解得{x 0=18,y 0=318,∴半径R=√(18+2)2+(318)2=√62532,∴外接圆方程为(x -18)2+(y -318)2=62532.22.解(1)因为点M 到点F 的距离比到y 轴的距离大p , 所以点M 到点F 的距离与到直线x=-p 的距离相等, 所以点M 在抛物线C 上,所以4=4p ,解得p=1, 所以抛物线C 的方程为y 2=4x.(2)存在.联立{y 2=4x,x -m(y +2)−5=0,得y 2-4my-8m-20=0.由题可知Δ=16m 2+4(8m+20)>0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4(2m+5).因为MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=(y 124-1)(y 224-1)+(y 1-2)(y 2-2)=y 12y 2216−(y 1+y 2)2-2y 1y 24+y 1y 2-2(y 1+y 2)+5=16(2m+5)216−(4m)2+8(2m+5)4-4(2m+5)-8m+5=0,所以MA ⊥MB ,即△MAB 为直角三角形.设d 为点M 到直线l 的距离,则|MA||MB|=|AB|·d=√1+m 2√(y 1+y 2)2-4y 1y 2√1+m 2=4|1+m|√16m 2+16(2m +5)=16|1+m|√(m +1)2+4=64√2,所以(m+1)4+4(m+1)2-32=0,解得(m+1)2=4或(m+1)2=-8(舍去),所以m=1或m=-3,所以当实数m=1或m=-3时,|MA||MB|=64√2.。

高考数学压轴专题人教版备战高考《平面解析几何》知识点总复习有答案解析

高考数学压轴专题人教版备战高考《平面解析几何》知识点总复习有答案解析

【最新】数学《平面解析几何》复习资料一、选择题1.设P 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点,延长1FP 至点Q ,使得2PQ PF =,则动点Q 的轨迹方程为( )A .22(x 2)y 28-+=B .22(x 2)y 7++=C .22(x 2)y 28++=D .22(x 2)y 7-+=【答案】C【解析】【分析】推导出12PF PF 2a +==2PQ PF =,从而11PFPQ FQ +==Q 的轨迹为圆,由此能求出动点Q 的轨迹方程.【详解】P Q 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点, 延长1FP 至点Q ,使得2PQ PF =,12PF PF 2a ∴+==2PQ PF =,11PF PQ FQ ∴+==,Q ∴的轨迹是以()1F 2,0-为圆心,为半径的圆,∴动点Q 的轨迹方程为22(x 2)y 28++=.故选:C .【点睛】本题考查动点的轨迹方程的求法,考查椭圆的定义、圆的标准方程等基础知识,考查运算求解能力,是中档题.2.已知双曲线2222:1(0,0)x y C a b a b-=>>,过其右焦点F 作渐近线的垂线,垂足为B ,交y 轴于点C ,交另一条渐近线于点A ,并且满足点C 位于A ,B 之间.已知O 为原点,且53OA a =,则||||FB FC =( ) A .45 B .23 C .34 D .13【答案】A【解析】【分析】设出直线AB 的方程,联立直线AB 方程和渐近线方程,由此求得,A B 两点的坐标,以及求得C 点的坐标,根据53OA a =列方程,求得,,a b c 的关系,由此求得||||FB FC 的值. 【详解】 由于双曲线渐近线为b y x a =±,不妨设直线AB 的斜率为a b-,故直线AB 的方程为()a y x c b =--.令0x =,得0,ac C b ⎛⎫ ⎪⎝⎭.由()a y x c b b y x a ⎧=--⎪⎪⎨⎪=⎪⎩解得2,a ab B c c ⎛⎫ ⎪⎝⎭,.由()a y x c b b y x a ⎧=--⎪⎪⎨⎪=-⎪⎩解得22222,a c abc A a b a b ⎛⎫- ⎪--⎝⎭,由53OA a =得22222222259a c abc a a b a b ⎛⎫-⎛⎫+= ⎪ ⎪--⎝⎭⎝⎭,化简得()()2222440a b a b --=,解得12b a =或2b a =.由于C 位于,A B 之间,故12b a =舍去,所以2b a=,即2b a =.故22222222||44||45B C aby FB b b a c ac FC y c a b a a b======++. 故选:A.【点睛】本小题主要考查双曲线的渐近线方程,考查直线和直线相交所得交点坐标的求法,考查双曲线的几何性质,考查运算求解能力,考查数形结合的数学思想方法,属于中档题.3.已知双曲线2222:1(0)x y E a b a b-=>>的左、右焦点分别为1F ,2F ,P 是双曲线E 上的一点,且212||PF PF =.若直线2PF 与双曲线E 的渐近线交于点M ,且M 为2PF 的中点,则双曲线E 的渐近线方程为( )A .13y x =± B .12y x =± C .2y x =± D .3y x =±【答案】C【解析】【分析】 由双曲线定义得24PF a =,12PF a =,OM 是12PF F △的中位线,可得OM a =,在2OMF △中,利用余弦定理即可建立,a c 关系,从而得到渐近线的斜率.【详解】根据题意,点P 一定在左支上.由212PF PF =及212PF PF a -=,得12PF a =,24PF a =,再结合M 为2PF 的中点,得122PF MF a ==,又因为OM 是12PF F △的中位线,又OM a =,且1//OM PF ,从而直线1PF 与双曲线的左支只有一个交点.在2OMF △中22224cos 2a c a MOF ac+-∠=.——① 由2tan b MOF a ∠=,得2cos a MOF c∠=. ——② 由①②,解得225c a=,即2b a =,则渐近线方程为2y x =±. 故选:C.【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.4.设抛物线()2:20C y px p =>的焦点为F ,抛物线C 与圆22525:()416C x y +-='于,A B 两点,且AB =C 的焦点的弦MN 的长为8,则弦MN 的中点到直线2x =-的距离为( )A .2B .5C .7D .9【答案】B【解析】【分析】易得圆C '过原点,抛物线22y px =也过原点,联立圆和抛物线方程由AB 求得交点坐标,从而解出抛物线方程,根据抛物线定义即可求得弦MN 的中点到直线2x =-的距离.【详解】圆:22525:,416C x y ⎛⎫+-= ⎪⎝⎭'即为2252x y y +=,可得圆经过原点. 抛物线22y px =也过原点.设()()0,0,,,0A B m n m >.由AB =可得225m n +=, 又2252m n n += 联立可解得2,1n m ==. 把()1,2B 代人22y px =,解得2p =,故抛物线方程为24y x =,焦点为()1,0F ,准线l 的方程为1x =-. 如图,过,M N 分别作ME l ⊥于E ,NK l ⊥于K ,可得,MF ME NK NF ==,即有MN MF NF ME KN =+=+|.设MN 的中点为0P ,则0P 到准线l 的距离11(|)422EM KNI MN +==, 则MN 的中点0P ,到直线2x =-的距离是415+=.故选:B【点睛】本题考查抛物线的几何性质,考查学生的分析问题,解决问题的能力,数形结合思想.属于一般性题目.5.在矩形ABCD 中,已知3AB =,4=AD ,E 是边BC 上的点,1EC =,EF CD ∥,将平面EFDC 绕EF 旋转90︒后记为平面α,直线AB 绕AE 旋转一周,则旋转过程中直线AB 与平面α相交形成的点的轨迹是( )A .圆B .双曲线C .椭圆D .抛物线【答案】D【解析】【分析】 利用圆锥被平面截的轨迹特点求解【详解】由题将平面EFDC 绕EF 旋转90︒后记为平面α,则平面α⊥平面ABEF ,,又直线AB 绕AE 旋转一周,则AB 直线轨迹为以AE 为轴的圆锥,且轴截面为等腰直角三角形,且面AEF 始终与面EFDC 垂直,即圆锥母线AF ⊥平面EFDC 则则与平面α相交形成的点的轨迹是抛物线故选:D【点睛】本题考查立体轨迹,考查圆锥的几何特征,考查空间想象能力,是难题6.已知椭圆221259x y +=上一点M 到椭圆的一个焦点的距离等于4,那么点M 到另一个焦点的距离等于( )A .1B .3C .6D .10【答案】C【解析】 由椭圆方程可得225210a a =∴= ,由椭圆定义可得点M 到另一焦点的距离等于6.故选C . 7.如图,12,F F 是双曲线221:13y C x -=与椭圆2C 的公共焦点,点A 是1C ,2C 在第一象限的公共点,若112F A F F =,则2C 的离心率是( )A .13B .15C .23D .25【答案】C【解析】由221:13y C x -=知2c =,1124F A F F == ∵122F A F A -=∴22F A =∵由椭圆得定义知1226a F A F A =+= ∴23,3c a e a === 故选C8.过双曲线()2222100x y a b a b-=>>,的右焦点且垂直于x 轴的直线与双曲线交于A B ,两点,OAB ∆,则双曲线的离心率为( )A B C D 【答案】D【解析】【分析】令x c =,代入双曲线方程可得2b y a=±,由三角形的面积公式,可得,a b 的关系,由离心率公式计算可得所求值.【详解】右焦点设为F ,其坐标为(),0c令x c =,代入双曲线方程可得2b y a=±=±OAB V 的面积为2122b c a ⋅⋅= b a ⇒=可得3c e a ==== 本题正确选项:D【点睛】本题考查双曲线的对称性、考查双曲线的离心率和渐近线方程,属于中档题.9.已知椭圆22:12y C x +=,直线:l y x m =+,若椭圆C 上存在两点关于直线l 对称,则m 的取值范围是( )A .33⎛- ⎝⎭B .,44⎛- ⎝⎭C .33⎛⎫- ⎪ ⎪⎝⎭D .44⎛- ⎝⎭【答案】C【解析】【分析】设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y ,根据椭圆C 上存在两点关于直线:l y x m =+对称,将A ,B 两点代入椭圆方程,两式作差可得002y x =,点M 在椭圆C 内部,可得2221m m +<,解不等式即可.【详解】设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y , 则1202x x x +=,1202y y y +=,1AB k =-.又因为A ,B 在椭圆C 上,所以221112y x +=,222212y x +=, 两式相减可得121212122y y y y x x x x -+⋅=--+,即002y x =. 又点M 在l 上,故00y x m =+,解得0x m =,02y m =.因为点M 在椭圆C 内部,所以2221m m +<,解得33,m ⎛⎫∈- ⎪ ⎪⎝⎭. 故选:C【点睛】本题考查了直线与椭圆的位置关系以及在圆锥曲线中“设而不求”的思想,属于基础题.10.如图,设椭圆E :22221(0)x y a b a b+=>>的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆E 于点C ,若直线BF 平分线段AC 于M ,则椭圆E 的离心率是( )A .12B .23C .13D .14【答案】C【解析】如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线,于是△OFM ∽△AFB ,且OF OM1FA AB 2==,即c c a -=12可得e=c a =13. 故答案为13. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.11.已知直线1:(1)(1)20l a x a y -++-=和2:(1)210l a x y +++=互相垂直,则a 的值为( )A .-1B .0C .1D .2【答案】A【解析】分析:对a 分类讨论,利用两条直线相互垂直的充要条件即可得出. 详解:1a =-时,方程分别化为:10210x y +=+=,, 此时两条直线相互垂直,因此1a =-满足题意.1a ≠-时,由于两条直线相互垂直,可得:11()112a a a -+-⨯-=-+, 解得1a =-,舍去.综上可得:1a =-.故选A .点睛:本题考查了两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题12.已知曲线()2222:100x y C a b a b -=>,>的左、右焦点分别为12,,F F O 为坐标原点,P 是双曲线在第一象限上的点,MO OP =u u u u v u u u v ,直线2PF 交双曲线C 于另一点N ,若122PF PF =,且2120MF N ∠=︒则双曲线C 的离心率为( )A .3 BCD 【答案】B【解析】【分析】 由题意结合双曲线的定义可得124,2PF a PF a == ,在三角形12PFF 中,由余弦定理可得2224208c a a =+,据此计算双曲线的离心率即可.【详解】由题意,122PF PF =,由双曲线的定义可得,122PF PF a -= ,可得124,2PF a PF a == ,由四边形12PF MF 为平行四边形,又2120MF N ∠=︒,可得12120F PF ∠=︒, 在三角形12PF F 中,由余弦定理可得2224164242cos120c a a a a =+-⋅⋅⋅︒ , 即有2224208c a a =+,即227c a =,可得7c a =,即7c e a ==.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).13.已知双曲线()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点,若121cos 4F MF ∠=,122MF MF =,则此双曲线渐近线方程为( ) A .3y x =B .33y x =±C .y x =±D .2y x =±【答案】A【解析】【分析】 因为M 为双曲线上一点,可得122MF MF a -=,在12F MF ∆使用余弦定理,结合已知条件即可求得答案.【详解】Q 双曲线()222210,0x y a b a b -=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点∴ 121222MF MF a MF MF ⎧-=⎪⎨=⎪⎩,解得:14MF a =,22MF a = 在12F MF ∆中,根据余弦定理可得:∴ 12121222122c 2os F F MF MF M MF MF F F ∠=+-⋅⋅可得:2221(2)(4)(2)2424c a a a a =+-⋅⋅⋅化简可得:2c a =由双曲线性质可得:22222243b c a a a a =-=-=可得:b = Q 双曲线渐近线方程为:b y x a=± 则双曲线渐近线方程为: y =故选:A.【点睛】本题考查了求双曲线渐近线方程问题,解题关键是掌握双曲线的基本知识,数形结合,考查分析能力和计算能力,属于中档题.14.倾斜角为45︒的直线与双曲线22214x y b-=交于不同的两点P 、Q ,且点P 、Q 在x 轴上的投影恰好为双曲线的两个焦点,则该双曲线的焦距为( )A.2B.2 C1 D1 【答案】B【解析】【分析】方法一;由双曲线的对称性可知直线过原点,可得2Rt QOF △为等腰三角形且245QOF ∠=︒,根据勾股定理及双曲线的定义可得:1c =.方法二:等腰2Rt QOF △中,可得22b QF a=,且2b c a =.又根据222b a c =-,联立可解得1c =. 【详解】方法一;由双曲线的对称性可知直线过原点,在等腰2Rt QOF △中,245QOF ∠=︒,则122F F c =,2QF c =,1QF =. 由双曲线的定义可得:122QF QF a-=,41c c -==,,故22c =.方法二:等腰2Rt QOF △中,22b QF a=, ∴2b c a=. 又222b a c =-,∴2240c c --=,得1c =.∴22c =.故选:B .【点睛】本题考查双曲线的性质,解题关键是将题目条件进行转化,建立等量关系求解,属于中等题.15.已知12F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,P 为双曲线上一点,2PF 与x 轴垂直,1230PF F ∠=︒,且焦距为 )A .y =B .y =C .2y x =±D .3y x =±【答案】B【解析】【分析】先求出c 的值,再求出点P 的坐标,可得22b PF a =,再由已知求得1PF ,然后根据双曲线的定义可得b a的值,则答案可求. 【详解】解:由题意,2c =解得c =,∵()2,0F c ,设(),P c y , ∴22221x y a b-=,解得2b y a =±, ∴22b PF a=, ∵1230PF F ∠=︒, ∴21222b PF PF a==,由双曲线定义可得:2122b PF PF a a-==, 则222a b =,即2b a=. ∴双曲线的渐近线方程为2y x =±.故选:B .【点睛】本题考查双曲线渐近线方程的求解,难度一般.求解双曲线的渐近线方程,可通过找到,,a b c 中任意两个量的倍数关系进行求解.16.过坐标轴上的点M 且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为3M 的个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】设出直线方程,根据弦长公式,转化为圆心到直线的距离建立等量关系求解.【详解】由直线的斜率为tan 603k ︒==3y x b =+.圆2240x y y +-=可化为22(2)4x y +-=,圆心为(0,2),半径为2r =, 则由弦长公式得:圆心(0,2)到直线3y x b =+的距离为2222232122r d l ⎛⎫⎛⎫-=-= ⎪ ⎪⎭⎝⎭=⎪⎝, 即|2|12b -+=,解得0b =,4b =,故直线的方程为3y x =或34y x =+. 直线3y x =过坐标轴上的点(0,0),直线34y x =+过坐标轴上的点()0,4与433⎛⎫- ⎪ ⎪⎝⎭,故点M 的个数为3.故选:C.【点睛】此题考查直线与圆的位置关系,根据弦长公式将弦长问题转化为圆心到直线的距离求解.17.已知抛物线2:2(0)C x py p =>的焦点为F ,C 的准线与对称轴交于点H ,直线32p y x =-与C 交于A ,B 两点,若43||3AH =,则||AF =( ) A .3B .83C .2D .4【答案】C【解析】【分析】 注意到直线32p y x =-过点H ,利用||||AM AH =tan 3,AHM ∠=43||AH =,可得||2AM =,再利用抛物线的定义即可得到答案.【详解】连接AF ,如图,过A 作准线的垂线,垂足为M ,易知点0,,0,22p p F H ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭.易知直线32p y x =-过点H ,tan 3,3AHM AHM π∠=∠=,则||3,||AM AH =又43||3AH =, 所以||2AM =,由抛物线的定义可得||AF =||2AM =.故选:C.【点睛】本题考查直线与抛物线的位置关系,涉及到利用抛物线的定义求焦半径,考查学生转化与化归的思想,是一道中档题.18.已知双曲线22221(0,0)x y a b a b -=>>的左、右焦点分别为1F ,2F ,过2F 且斜率为247的直线与双曲线在第一象限的交点为A ,若()21210F F F A F A +⋅=u u u u v u u u u v u u u v ,则此双曲线的标准方程可能为( )A .22143x y -= B .22134x y -= C .221169x y -= D .221916x y -= 【答案】D【解析】【分析】 先由()21210F F F A F A +⋅=u u u u r u u u u r u u u r 得到1222F F F A c ==,根据2AF 的斜率为247,求出217cos 25AF F ∠=-,结合余弦定理,与双曲线的定义,得到c a ,求出a b ,进而可得出结果.【详解】 由()21210F F F A F A +⋅=u u u u r u u u u r u u u r ,可知1222F F F A c ==, 又2AF 的斜率为247,所以易得217cos 25AF F ∠=-, 在12AF F ∆中,由余弦定理得1165AF c =, 由双曲线的定义得16225c c a -=, 所以53c e a ==,则:3:4a b =, 所以此双曲线的标准方程可能为221916x y -=. 故选D【点睛】本题考查双曲线的标准方程,熟记双曲线的几何性质与标准方程即可,属于常考题型.19.已知椭圆2221(1)x y a a+=>的左、右焦点分别为1F ,2F ,A 是椭圆在第一象限上的一个动点,圆C 与1F A 的延长线,12F F 的延长线以及线段2AF 都相切,且()3,0M 为其中一个切点.则椭圆的离心率为( )A B C D 【答案】B【解析】【分析】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等和椭圆的定义,解方程得出3a =,求出c ,进而可得离心率.【详解】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等,得AN AT =, 11F N F M =,22F T F M =,1(,0)F c -,2(,0)F c ,由椭圆的定义可得,122AF AF a +=,()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+- 222(3)a F M a c =-=--,则26a =,即3a =,又1b =,所以2222c a b =-=,因此椭圆的离心率为22c e a ==. 故选:B.【点睛】本题主要考查求椭圆的离心率,熟记椭圆的定义,以及椭圆的简单性质即可,属于常考题型.20.如图所示,点F 是抛物线24y x =的焦点,点,A B 分别在抛物线24y x =及圆22(1)4x y -+=的实线部分上运动,且AB 总是平行于x 轴,则FAB ∆的周长的取值范围( )A .(4,6)B .[4,6]C .(2,4)D .[2,4]【答案】A【解析】 由题意知抛物线24y x =的准线为1x =-,设A B 、两点的坐标分别为1,0()A x y , 2,0()B x y ,则1||1AF x =+.由()222414y x x y ⎧=⎪⎨-+=⎪⎩ 消去y 整理得2230x x +-=,解得1x =, ∵B 在图中圆()2214x y -+=的实线部分上运动,∴213x <<.∴FAB ∆的周长为1212(1)2()3(4,6)AF FB BA x x x x ++=+++-=+∈. 选A .点睛:解决与抛物线有关的问题时,要注意抛物线定义的运用.特别是对于焦点弦的问题更是这样,利用定义可将抛物线上的点到焦点的距离(两点间的距离)转化成该点到准线的距离(点到直线的距离),然后再借助几何图形的性质可使问题的解决变得简单.。

高考数学一轮复习 第九章 平面解析几何9

高考数学一轮复习 第九章 平面解析几何9

高考数学一轮复习 第九章 平面解析几何9.1 直线的方程考试要求 1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.2.根据确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式).知识梳理 1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.(2)范围:直线的倾斜角α的取值范围为0°≤α<180°. 2.直线的斜率(1)定义:把一条直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k 表示,即k =tan_α(α≠90°). (2)过两点的直线的斜率公式如果直线经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2),其斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式名称 方程 适用范围 点斜式 y -y 0=k (x -x 0) 不含直线x =x 0 斜截式 y =kx +b不含垂直于x 轴的直线 两点式y -y 1y 2-y 1=x -x 1x 2-x 1(x 1≠x 2,y 1≠y 2) 不含直线x =x 1 和直线y =y 1截距式 x a +y b=1 不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A2+B2≠0)平面直角坐标系内的直线都适用常用结论直线的斜率k与倾斜角α之间的关系α0°0°<α<90°90°90°<α<180°k 0k>0不存在k<0牢记口诀:1.“斜率变化分两段,90°是分界线;遇到斜率要谨记,存在与否要讨论”.2.“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.应注意过原点的特殊情况是否满足题意.3.直线Ax+By+C=0(A2+B2≠0)的一个法向量v=(A,B),一个方向向量a=(-B,A).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)根据直线的倾斜角的大小不能确定直线的位置.(√)(2)若一条直线的倾斜角为α,则此直线的斜率为tan α.(×)(3)斜率相等的两直线的倾斜角不一定相等.(×)(4)截距可以为负值.(√)教材改编题1.若过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为()A.1 B.4C.1或3 D.1或4答案 A解析 由题意得m -4-2-m=1,解得m =1.2.倾斜角为135°,在y 轴上的截距为-1的直线方程是( ) A .x -y +1=0 B .x -y -1=0 C .x +y -1=0 D .x +y +1=0答案 D解析 直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0. 3.过点P (2,3)且在两坐标轴上截距相等的直线方程为________________. 答案 3x -2y =0或x +y -5=0解析 当截距为0时,直线方程为3x -2y =0; 当截距不为0时, 设直线方程为x a +ya =1,则2a +3a =1,解得a =5. 所以直线方程为x +y -5=0.题型一 直线的倾斜角与斜率例1 (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的变化范围是( ) A.⎣⎡⎦⎤π6,π3 B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2 D.⎣⎡⎦⎤π4,2π3答案 B解析 直线2x cos α-y -3=0的斜率k =2cos α. 由于α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32,因此k =2cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3]. 由于θ∈[0,π), 所以θ∈⎣⎡⎦⎤π4,π3,即倾斜角的变化范围是⎣⎡⎦⎤π4,π3.(2)过函数f (x )=13x 3-x 2的图象上一个动点作函数图象的切线,则切线倾斜角的取值范围为( ) A.⎣⎡⎦⎤0,3π4 B.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D.⎣⎡⎦⎤π2,3π4答案 B解析 设切线的倾斜角为α,则α∈[0,π), ∵f ′(x )=x 2-2x =(x -1)2-1≥-1, ∴切线的斜率k =tan α≥-1, 则α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 教师备选1.(2022·安阳模拟)已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 相交,则k 的取值范围是( ) A .k ≥12B .k ≤-2C .k ≥12或k ≤-2D .-2≤k ≤12答案 D解析 直线l :y =k (x -2)+1经过定点P (2,1),∵k P A =3-11-2=-2,k PB =-1-1-2-2=12, 又直线l :y =k (x -2)+1与线段AB 相交, ∴-2≤k ≤12.2.若直线l 的斜率为k ,倾斜角为α,且α∈⎣⎡⎭⎫π6,π4∪⎣⎡⎭⎫2π3,π,则k 的取值范围是________. 答案 [-3,0)∪⎣⎡⎭⎫33,1解析 当α∈⎣⎡⎭⎫π6,π4时,k =tan α∈⎣⎡⎭⎫33,1; 当α∈⎣⎡⎭⎫2π3,π时,k =tan α∈[-3,0). 综上得k ∈[-3,0)∪⎣⎡⎭⎫33,1.思维升华 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论. 跟踪训练1 (1)直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π答案 B解析 依题意,直线的斜率k =-1a 2+1∈[-1,0),因此其倾斜角的取值范围是⎣⎡⎭⎫3π4,π. (2)若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为______,______. 答案 13-3解析 如图,在正方形OABC 中,对角线OB 所在直线的斜率为2,建立如图所示的平面直角坐标系.设对角线OB 所在直线的倾斜角为θ,则tan θ=2,由正方形的性质可知,直线OA 的倾斜角为θ-45°,直线OC 的倾斜角为θ+45°,故k OA =tan(θ-45°)=tan θ-tan 45°1+tan θtan 45°=2-11+2=13, k OC =tan(θ+45°)=tan θ+tan 45°1-tan θtan 45°=2+11-2=-3. 题型二 求直线的方程例2 求满足下列条件的直线方程:(1)经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍; (2)经过点B (3,4),且与两坐标轴围成一个等腰直角三角形. 解 (1)当直线不过原点时, 设所求直线方程为x 2a +ya=1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0; 当直线过原点时,设直线方程为y =kx , 则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0. (2)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3).所求直线的方程为 x -y +1=0或x +y -7=0.教师备选1.已知A (-1,1),B (3,1),C (1,3),则△ABC 的边BC 上的高所在的直线方程为( ) A .x +y =0 B .x -y +2=0 C .x +y +2=0 D .x -y =0答案 B解析 因为B (3,1),C (1,3),所以k BC =3-11-3=-1,故BC 边上的高所在直线的斜率k =1,又高线经过点A (-1,1),所以其所在的直线方程为x -y +2=0.2.已知点M 是直线l :2x -y -4=0与x 轴的交点,将直线l 绕点M 按逆时针方向旋转45°,得到的直线方程是( ) A .x +y -3=0 B .x -3y -2=0 C .3x -y +6=0 D .3x +y -6=0 答案 D解析 设直线l 的倾斜角为α,则tan α=k =2,直线l 绕点M 按逆时针方向旋转45°,所得直线的斜率k ′=tan ⎝⎛⎭⎫α+π4=2+11-2×1=-3, 又点M (2,0),所以y =-3(x -2),即3x +y -6=0. 思维升华 求直线方程的两种方法(1)直接法:由题意确定出直线方程的适当形式.(2)待定系数法:先由直线满足的条件设出直线方程,方程中含有待定的系数,再由题设条件求出待定系数.跟踪训练2 (1)已知△ABC 的三个顶点坐标为A (1,2),B (3,6),C (5,2),M 为AB 的中点,N 为AC 的中点,则中位线MN 所在直线的方程为( )A .2x +y -12=0B .2x -y -12=0C .2x +y -8=0D .2x -y +8=0答案 C解析 由题知M (2,4),N (3,2),中位线MN 所在直线的方程为y -42-4=x -23-2,整理得2x +y -8=0.(2)过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为______________. 答案 x +y -3=0或x +2y -4=0 解析 由题意可设直线方程为x a +yb =1.则⎩⎪⎨⎪⎧a +b =6,2a +1b=1,解得a =b =3或a =4,b =2.故所求直线方程为x +y -3=0或x +2y -4=0.题型三 直线方程的综合应用例3 已知直线l 过点M (2,1),且分别与x 轴的正半轴、y 轴的正半轴交于A ,B 两点,O 为原点,当△AOB 面积最小时,求直线l 的方程. 解 方法一 设直线l 的方程为y -1=k (x -2)(k <0), 则A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k ), S △AOB =12(1-2k )·⎝⎛⎭⎫2-1k =12⎣⎡⎦⎤4+-4k +⎝⎛⎭⎫-1k ≥12×(4+4)=4, 当且仅当-4k =-1k ,即k =-12时,等号成立.故直线l 的方程为y -1=-12(x -2),即x +2y -4=0.方法二 设直线l :x a +yb =1,且a >0,b >0,因为直线l 过点M (2,1), 所以2a +1b =1,则1=2a +1b≥22ab,故ab ≥8, 故S △AOB 的最小值为12×ab =12×8=4,当且仅当2a =1b =12时取等号,此时a =4,b =2,故直线l 的方程为x 4+y2=1,即x +2y -4=0.延伸探究 1.在本例条件下,当|OA |+|OB |取最小值时,求直线l 的方程. 解 由本例方法二知,2a +1b=1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )·⎝⎛⎭⎫2a +1b =3+a b +2ba≥3+22,当且仅当a =2+2,b =1+2时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x +2y =2+ 2.2.本例中,当|MA |·|MB |取得最小值时,求直线l 的方程. 解 方法一 由本例方法一知A ⎝⎛⎭⎫2k -1k ,0,B (0,1-2k )(k <0).所以|MA |·|MB |=1k 2+1·4+4k 2 =2×1+k 2|k |=2⎣⎡⎦⎤-k +1-k ≥4.当且仅当-k =-1k ,即k =-1时取等号.此时直线l 的方程为x +y -3=0.方法二 由本例方法二知A (a ,0),B (0,b ),a >0,b >0,2a +1b =1.所以|MA |·|MB |=|MA →|·|MB →| =-MA →·MB →=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝⎛⎭⎫2a +1b -5 =2⎝⎛⎭⎫b a +a b ≥4,当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0. 教师备选如图所示,为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪,但△EF A 内部为文物保护区,不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解 如图所示,以A 为坐标原点建立平面直角坐标系,则E (30,0),F (0,20),∴直线EF 的方程为x 30+y20=1.易知当矩形草坪的两邻边在BC ,CD 上,且一个顶点在线段EF 上时,可使草坪面积最大,在线段EF 上取点P (m ,n ),作PQ ⊥BC 于点Q ,PR ⊥CD 于点R , 设矩形PQCR 的面积为S , 则S =|PQ |·|PR |=(100-m )(80-n ), 又m 30+n20=1(0≤m ≤30), ∴n =20-23m ,∴S =(100-m )⎝⎛⎭⎫80-20+23m =-23(m -5)2+18 0503(0≤m ≤30),∴当m =5时,S 有最大值,此时|EP ||PF |=5,∴当矩形草坪的两邻边在BC ,CD 上,一个顶点P 在线段EF 上,且|EP |=5|PF |时,草坪面积最大.思维升华 直线方程综合问题的两大类型及解法(1)与函数相结合的问题:解决这类问题,一般是利用直线方程中x ,y 的关系,将问题转化为关于x (或y )的函数,借助函数的性质解决.(2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识来解决. 跟踪训练3 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程. (1)证明 直线l 的方程可化为 k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧ x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1.∴无论k 取何值,直线l 总经过定点(-2,1). (2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k <-2,1+2k >1, 解得k >0;当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程, 得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0, 解得k >0.∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪1+2k k ·|1+2k |=12·1+2k 2k=12⎝⎛⎭⎫4k +1k +4 ≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.课时精练1.已知直线l 过点(-2,1),且倾斜角是π2,则直线l 的方程是( )A .x +y +1=0B .y =-12xC .x +2=0D .y -1=0答案 C解析 由于直线l 过点(-2,1),且倾斜角是π2,则直线l 的方程为x =-2,即x +2=0.2.(2022·清远模拟)倾斜角为120°且在y 轴上的截距为-2的直线方程为( ) A .y =-3x +2 B .y =-3x -2 C .y =3x +2 D .y =3x -2答案 B解析 斜率为tan 120°=-3,利用斜截式直接写出方程,即y =-3x -2. 3.直线l 经过点(1,-2),且在两坐标轴上的截距相等,则直线l 的方程为( ) A .x -y -1=0或x -2y =0 B .x +y +1=0或x +2y =0 C .x -y +1=0或2x -y =0 D .x +y +1=0或2x +y =0 答案 D解析 若直线l 过原点, 设直线l 的方程为y =kx , 则k =-2,此时直线l 的方程为y =-2x , 即2x +y =0; 若直线l 不过原点, 设直线l 的方程为x a +ya =1,则1a -2a =1,解得a =-1, 此时直线l 的方程为x +y +1=0.综上所述,直线l的方程为x+y+1=0或2x+y=0.4.若直线y=ax+c经过第一、二、三象限,则有()A.a>0,c>0 B.a>0,c<0C.a<0,c>0 D.a<0,c<0答案 A解析因为直线y=ax+c经过第一、二、三象限,所以直线的斜率a>0,在y轴上的截距c>0. 5.(2022·衡水模拟)1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,OO1,OO2,OO3,OO4分别是大星中心点与四颗小星中心点的连接线,α≈16°,则第三颗小星的一条边AB所在直线的倾斜角约为()A.0°B.1°C.2°D.3°答案 C解析∵O,O3都为五角星的中心点,∴OO3平分第三颗小星的一个角,又五角星的内角为36°,可知∠BAO3=18°,过O3作x轴的平行线O3E,如图,则∠OO 3E =α≈16°,∴直线AB 的倾斜角为18°-16°=2°.6.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( ) A .-1<k <15B .k >1或k <12C .k >1或k <15D .k >12或k <-1答案 D解析 设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k ,令-3<1-2k<3,解不等式可得k >12或k <-1.7.直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞) 答案 C解析 令x =0,得y =b 2,令y =0,得x =-b , 所以所求三角形的面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,14b 2≤1, 所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].8.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴与y 轴上的截距之和的最小值为( )A .1B .2C .3D .4 答案 D解析 因为直线ax +by =ab (a >0,b >0), 当x =0时,y =a ,当y =0时,x =b ,所以该直线在x 轴与y 轴上的截距分别为b ,a , 又直线ax +by =ab (a >0,b >0)过点(1,1), 所以a +b =ab ,即1a +1b =1,所以a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b ≥2+2b a ·ab=4, 当且仅当a =b =2时等号成立.所以直线在x 轴与y 轴上的截距之和的最小值为4.9.过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________________. 答案 5x +3y =0或x -y +8=0解析 ①当直线过原点时,直线方程为y =-53x ,即5x +3y =0;②当直线不过原点时,设直线方程为x a +y-a =1,即x -y =a ,代入点(-3,5),得a =-8,即直线方程为x -y +8=0.综上,直线方程为5x +3y =0或x -y +8=0.10.直线l 过(-1,-1),(2,5)两点,点(1 011,b )在l 上,则b 的值为________. 答案 2 023解析 直线l 的方程为y --15--1=x --12--1,即y +16=x +13,即y =2x +1. 令x =1 011,得y =2 023, ∴b =2 023.11.设直线l 的方程为2x +(k -3)y -2k +6=0(k ≠3),若直线l 的斜率为-1,则k =________;若直线l 在x 轴、y 轴上的截距之和等于0,则k =______. 答案 5 1解析 因为直线l 的斜率存在,所以直线l 的方程可化为y =-2k -3x +2,由题意得-2k -3=-1,解得k =5.直线l 的方程可化为x k -3+y2=1,由题意得k -3+2=0,解得k =1.12.已知点M 是直线l :y =3x +3与x 轴的交点,将直线l 绕点M 旋转30°,则所得到的直线l ′的方程为________________________. 答案 x =-3或y =33(x +3) 解析 在y =3x +3中,令y =0,得x =-3,即M (-3,0).因为直线l 的斜率为3,所以其倾斜角为60°.若直线l 绕点M 逆时针旋转30°,则得到的直线l ′的倾斜角为90°,此时直线l ′的斜率不存在,故其方程为x =-3;若直线l 绕点M 顺时针旋转30°,则得到的直线l ′的倾斜角为30°,此时直线l ′的斜率为tan 30°=33,故其方程为y =33(x +3).13.直线(1-a 2)x +y +1=0的倾斜角的取值范围是( ) A.⎣⎡⎭⎫π4,π2 B.⎣⎡⎭⎫0,3π4 C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,πD.⎣⎡⎦⎤0,π4∪⎝⎛⎦⎤π2,3π4 答案 C解析 直线的斜率k =-(1-a 2)=a 2-1, ∵a 2≥0,∴k =a 2-1≥-1. 倾斜角和斜率的关系如图所示,∴该直线倾斜角的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 14.已知直线2x -my +1-3m =0,当m 变动时,直线恒过定点( ) A.⎝⎛⎭⎫-12,3 B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,-3 D.⎝⎛⎭⎫-12,-3 答案 D解析 直线方程可化为2x +1-m (y +3)=0,令⎩⎪⎨⎪⎧2x +1=0,y +3=0,得⎩⎪⎨⎪⎧x =-12,y =-3,∴直线恒过定点⎝⎛⎭⎫-12,-3.15.已知直线x sin α+y cos α+1=0(α∈R ),则下列命题正确的是( ) A .直线的倾斜角是π-αB .无论α如何变化,直线始终过原点C .直线的斜率一定存在D .当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积不小于1 答案 D解析 根据直线倾斜角的范围为[0,π),而π-α∈R ,所以A 不正确;当x =y =0时,x sin α+y cos α+1=1≠0,所以直线必不过原点,B 不正确;当α=π2时,直线斜率不存在,C 不正确;当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积为S =12⎪⎪⎪⎪1-sin α·⎪⎪⎪⎪1-cos α=1|sin 2α|≥1,所以D 正确. 16.若ab >0,且A (a ,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________. 答案 16解析 根据A (a ,0),B (0,b )确定直线的方程为x a +yb =1,又因为C (-2,-2)在该直线上, 故-2a +-2b=1, 所以-2(a +b )=ab . 又因为ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号,即ab 的最小值为16.。

平面解析几何初步复习题参考答案

平面解析几何初步复习题参考答案

平面解析几何初步复习题参考答案1.解析:a -2+-2=5,∴a =4或-2.答案:D2.解析:|AB |2=(5-a -1)2+(2a -1-a +4)2=2a 2-2a +25=2(a -12)2+492,所以当a =12时,|AB |取得最小值.答案:123.∵平行四边形的对角线互相平分,∴平行四边形对角线的中点坐标相同.设C 点坐标为C (x ,y ),则⎩⎪⎨⎪⎧0+x 2=2+12=32,0+y 2=0+32=32,∴⎩⎪⎨⎪⎧x =3,y =3,即C (3,3).4. 解析:因为直线AB 的倾斜角为90°,所以直线的斜率不存在,即a =3.又因为A ,B 两点确定一条直线,两点不重合,所以b +1≠2,即b ≠1.答案:D5. 解析:∵直线l 的倾斜角为锐角,∴斜率k =m 2-11-2>0,∴-1<m <1.答案:C6.解析:由斜率公式得k AB =1-11--=0,k BC =3+1-12-1=3,k AC =3+1-12--=33.如图,当斜率k 变化时,直线CD 绕C 点旋转.当直线CD 由CA 逆时针转到CB 时,直线CD 与AB 恒有交点,即D 在线段AB 上,此时k 由k CA 增大到k CB ,∴k 的取值范围为⎣⎢⎡⎦⎥⎤33,3. 7.解:y +1x +1=y --x --的几何意义是过M (x ,y ),N (-1,-1)两点的直线的斜率.∵点M 在函数y =-2x +8的图象上,且x ∈[2,5], ∴设该线段为AB ,且A (2,4),B (5,-2). ∵k NA =53,k NB =-16,∴-16≤y +1x +1≤53.∴y +1x +1的取值范围为[-16,53]. 8.解:设点A (x,0),点B (0,y ),由AB 的中点为P (4,1),可得点A (8,0),点B (0,2).由直线方程的两点式可得y -02-0=x -80-8,整理可得x +4y -8=0.也可利用截距式得x 8+y2=1,即x+4y -8=0.9.解析:考虑到直线的点斜式方程、斜截式方程、截距式方程的适用条件,可知A ,C ,D 都不正确;当直线的两点式方程y -y 1y 2-y 1=x -x 1x 2-x 1化为(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)时,它就可以表示过任意不同两点P 1(x 1,y 1),P 2(x 2,y 2)的所有直线,故B 正确.10.解析:由题意可知直线的斜率存在,方程可变为y =-ab x -c b ,由题意结合图形有-a b<0,-c b>0⇒ab >0且bc <0.答案:A11.解析:若k 1=k 2,则这两条直线平行或重合,所以①错;当两条直线垂直于x 轴时,两条直线平行,但斜率不存在,所以②错;若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,这两条直线相交,所以③正确;④正确.答案:B12.解析:直线l 与y 轴垂直,则直线l 的斜率为0,直线l 的方程可化为y =-a 2+4a +3a 2+a -6x+8a 2+a -6,所以a 2+4a +3=0,解得a =-1或a =-3.由a 2+a -6≠0,解得a ≠2且a ≠-3,综上可得a =-1.答案:D13.解析:由题意,设直线l 的斜率为k ,则k ²k AB =-1,且直线l 过AB 的中点(1,6).又k AB =7-5-2-4=-13,则k =3,所以直线l 的方程为y -6=3(x -1),即3x -y +3=0.答案:3x -y +3=014. 解:设点A ,C 的坐标分别为A (x 1,y 1)、C (x 2,y 2).∵AB ⊥CE ,k CE =-23,∴k AB =-1k EC =32.∴直线AB 的方程为3x -2y -1=0.由⎩⎪⎨⎪⎧3x 1-2y 1-1=0,2x 1-3y 1+1=0,得A (1,1).∵D 是BC 的中点,∴D (x 2+32,y 2+42).而点C 在直线CE 上,点D 在直线AD 上, ∴⎩⎪⎨⎪⎧2x 2+3y 2-16=0,2²x 2+32-3²y 2+42+1=0.∴C (5,2).|AC |=-2+-2= 17.15.∵A ,B 两点纵坐标不相等,∴AB 与x 轴不平行.∵AB ⊥CD , ∴CD 与x 轴不垂直,-m ≠3,m ≠-3.①当AB 与x 轴垂直时,-m -3=-2m -4,解得m =-1,而m =-1时,点C ,D 纵坐标均为-1,∴CD ∥x 轴,此时AB ⊥CD ,满足题意.②当AB 与x 轴不垂直时,由斜率公式得k AB =4-2-2m -4--m -=2-+,k CD =3m +2-m3--=+m +3.∵AB ⊥CD ,∴k AB ²k CD =-1, 即2-+²+m +3=-1,解得m =1.综上,m 的值为1或-1.16.解:由直线l 与直线y =43x +53垂直,可设直线l 的方程为y =-34x +b .直线l 在x 轴,y 轴上的截距分别为x 0=43b ,y 0=b .又因为直线l 与两坐标轴围成的三角形的面积为24, 所以S =12|x 0||y 0|=24,即12|43b ||b |=24,b 2=36,解得b =6,或b =-6. 故所求直线的方程为y =-34x +6,或y =-34x -6.17.解析:由已知,分析得两直线的交点在x -ay =0上.由⎩⎪⎨⎪⎧x -2y +3=0,2x -y +3=0,得⎩⎪⎨⎪⎧x =-1,y =1,代入x -ay =0,得-1-a =0,即a =-1.18.解析:由平面几何知识易知所求直线与已知直线2x +3y -6=0平行,则可设所求直线方程为2x +3y +C =0.在直线2x +3y -6=0上任取一点(3,0),其关于点(1,-1)的对称点为(-1,-2), 则点(-1,-2)必在所求直线上, ∴2³(-1)+3³(-2)+C =0,C =8. ∴所求直线方程为2x +3y +8=0. 答案:D19.法一:设直线的方程为y -1=k (x +2),即kx -y +2k +1=0.由|-k -2+2k +1|k 2+1=|3k +2k +1|k 2+1,解得k =0,或k =-12.故直线的方程为y =1,或x +2y =0.当直线的斜率不存在时,不存在符合题意的直线l .法二:当l ∥AB 或l 过AB 中点时,满足点A ,B 到l 的距离相等. 若l ∥AB ,由于k AB =-12,则直线l 的方程为x +2y =0. 若l 过AB 的中点N (1,1), 则直线l 的方程为y =1.故直线l 的方程为y =1,或x +2y =0.20. 解:若直线l 的斜率不存在,则l 的方程为x =0,点(1,-3)到l 的距离为1,不满足题意,从而可知直线l 的斜率一定存在,设为k ,则其方程为y =kx -1.由点到直线的距离公式,得|k +3-1|1+k 2=322,解得k =1或k =17.所以直线l 的方程为y =x -1或y =17x -1, 21. 法一:设所求直线的方程为 5x -12y +C =0.在直线5x -12y +6=0上取一点P 0(0,12),则点P 0到直线5x -12y +C =0的距离为|-12³12+C |52+-2=|C -6|13. 由题意,得|C -6|13=2,所以C =32,或C =-20.故所求直线的方程为5x -12y +32=0,或5x -12y -20=0. 法二:设所求直线的方程为5x -12y +C =0, 由两平行直线间的距离公式得2=|C -6|52+-2,解得C =32,或C =-20.故所求直线的方程为5x -12y +32=0,或5x -12y -20=0.22.设点C (x 0,y 0),∵点C 在直线3x -y +3=0上,∴y 0=3x 0+3.∵A (3,2),B (-1,5),∴|AB |=-2+-1-2=5.设C 到AB 的距离为d ,则12d ²|AB |=10,∴d =4.又直线AB 的方程为y -25-2=x -3-1-3,即3x +4y -17=0,∴d =|3x 0+x 0+-17|32+42=|15x 0-5|5=|3x 0-1|=4.∴3x 0-1=±4,解得x 0=-1或53.当x 0=-1时,y 0=0;当x 0=53时,y 0=8.∴C 点坐标为(-1,0)或(53,8).23.解析:a -2+b -2即为(a ,b )到(1,1)的距离,距离最小时即为点(1,1)到直线x +y +1=0的距离,此时d =|1+1+1|12+12=322. 24解析:当AB 最短时,AB 与直线x +y =0垂直.又A (0,1),∴AB :x -y +1=0.联立x +y =0,解得⎩⎪⎨⎪⎧x =-12,y =12,故点B 的坐标为(-12,12).25.解析:由已知可知,l 是过A 且与AB 垂直的直线.∵k AB =2-4-3-3=13,∴k l =-3.由点斜式得y -4=-3(x -3),即3x +y -13=0.答案:C 26.解析:点M 一定在直线x +y -7+52=0,即x +y -6=0上,所以M 到原点距离的最小值为|-6|2=3 2.答案:A27.解析:设点(x ,y )与圆C 1的圆心(-1,1)关于直线x -y -1=0对称,则⎩⎪⎨⎪⎧y -1x +1=-1,x -12-y +12-1=0,解得⎩⎪⎨⎪⎧x =2,y =-2,从而可知圆C 2的圆心坐标为(2,-2).又知其半径为1,故所求圆C 2的方程为(x -2)2+(y +2)2=1.答案:B 28.法一:设圆的标准方程为(x -a )2+(y -b )2=r 2,则⎩⎪⎨⎪⎧2a -b -3=0,-a 2+-b 2=r 2,-a 2+-2-b 2=r 2⇒⎩⎨⎧a=2,b =1,r =10.所以圆的标准方程为(x -2)2+(y -1)2=10.法二:因为圆过A ,B 两点,所以圆心一定在AB 的垂直平分线上,线段AB 的垂直平分线方程为y =-12(x -4),则⎩⎪⎨⎪⎧y =-12x -,2x -y -3=0⇒⎩⎪⎨⎪⎧x =2,y =1,即圆心为(2,1),r =-2+-2=10.所以圆的标准方程为(x -2)2+(y -1)2=10.29.解析:方程可化为 (x -1)2+y 2=-2k -2,只有-2k -2>0,即k <-1时才能表示圆. 答案:A30.解析:直线AB 的方程为x -y +2=0,圆心到直线AB 的距离为d =│1-0+2│2=322.所以,C 到直线AB 的最小距离为322-1,S △ABC 的最小值为12³│AB │³(322-1)=12³22³(322-1)=3- 2. 答案:A31.解:设动点P 的坐标为(x ,y ),根据题意可知AP ⊥OP .当AP 垂直于x 轴时,P 的坐标为(1,0).当x =0时,y =0.当x ≠1且x ≠0时,k AP ²k OP =-1.∵k AP =y -2x -1,k OP =yx, ∴y -2x -1³yx=-1, 即x 2+y 2-x -2y =0(x ≠0,且x ≠1).点(1,0),(0,0)适合上式.综上所述,P 点的轨迹是以(12,1)为圆心,以52为半径的圆.32.解析:由题意知,直线mx -y +1-m =0过定点(1,1).又因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆C 是相交的.答案:A33.解析:当该点是过圆心向直线所引的垂线的垂足时,切线长最小.因圆心(3,0)到直线的距离为d =|3+1|2=22,所以切线长的最小值是l =22-1=7.答案:C34.解:设圆的方程为(x -a )2+(y -b )2=r 2.由已知可知,直线x +2y =0过圆心,则a +2b =0,① 又点A 在圆上,故(2-a )2+(3-b )2=r 2,② ∵直线x -y +1=0与圆相交所得弦长为2 2. ∴(2)2+(a -b +112+-2)2=r 2.③解由①②③所组成的方程组得 ⎩⎪⎨⎪⎧a =6,b =-3,r 2=52或⎩⎪⎨⎪⎧a =14,b =-7,r 2=244.故所求方程为(x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244.35.解析:x 2+y 2=50与x 2+y 2-12x -6y +40=0作差,得两圆公共弦所在的直线方程为2x +y -15=0.圆x 2+y 2=50的圆心(0,0)到2x +y -15=0的距离d =35,因此公共弦长为222-52=2 5.答案:C36.解析:圆C 1:x 2+y 2-8x -4y +11=0,即(x -4)2+(y -2)2=9,圆心为C 1(4,2);圆C 2:x 2+y 2+4x +2y +1=0,即(x +2)2+(y +1)2=4,圆心为C 2(-2,-1).两圆相离,|PQ |的最小值为|C 1C 2|-(r 1+r 2)=35-5.答案:C37.解析:由已知,两个圆的方程作差可以得到公共弦所在的直线方程为y =1a.圆心(0,0)到直线的距离d =⎪⎪⎪⎪⎪⎪1a 1= 22-32=1,解得a =1.答案:138.解析:圆与x 轴,y 轴正半轴的交点为A (1,0),B (0,5),则可知kMA =0,k MB=0-5-1=5,则k ∈(0,5).答案:(0,5)39.解:公共弦所在直线的斜率为23,已知圆的圆心坐标为(0,72),故两圆圆心所在直线的方程为y -72=-32x ,即3x +2y -7=0.设所求圆的方程为x 2+y 2+Dx +Ey +F =0,由⎩⎪⎨⎪⎧-2+32-2D +3E +F =0,12+42+D +4E +F =0,-D 2+-E 2-7=0,解得⎩⎪⎨⎪⎧D =2,E =-10,F =21.所以所求圆的方程为x 2+y 2+2x -10y +21=0.40.解析:点P (3,4,5)与Q (3,-4,-5)两点的x 坐标相同,而y ,z 坐标互为相反数,所以两点关于x 轴对称.答案:A41.解:(1)∵平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =AB ,AB ⊥BE ,∴BE ⊥平面ABCD .∴AB ,BC ,BE 两两垂直.∴以B 为原点,以BA ,BE ,BC 所在的直线分别作为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系.则M (22a,0,1-22a ),N (22a ,22a,0). 由空间两点间的距离公式, 得|MN |=22a -22a 2+-22a 2+-22a -2= a 2-2a +1=a -222+12. (2)∵|MN |= a -222+12, ∴a =22时,|MN |min =22.。

高考数学一轮复习 第八章 平面解析几何 第二节 两条直线的位置关系教案(含解析)-高三全册数学教案

高考数学一轮复习 第八章 平面解析几何 第二节 两条直线的位置关系教案(含解析)-高三全册数学教案

第二节 两条直线的位置关系1.两条直线平行与垂直的判定(1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2.(2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2.2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧ A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.3.三种距离公式 P 1(x 1,y 1),P 2(x 2,y 2)两点之间的距离 |P 1P 2|=x 2-x 12+y 2-y 12点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B 2平行线Ax +By +C 1=0与Ax +By +C 2=0间距离 d =|C 1-C 2|A 2+B 21.(2018·金华四校联考)直线2x +(m +1)y +4=0与直线mx+3y -2=0平行,则m =( )A .2B .-3C .2或-3D .-2或-3解析:选C ∵直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,∴2m =m +13≠4-2,解得m =2或-3. 2.“a =14”是“直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直,得(a +1)(a -1)+3a (a +1)=0,即4a 2+3a -1=0,解得a =14或-1,∴“a =14”是“直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直”的充分不必要条件,故选A.3.(2018·浙江五校联考)已知动点P 的坐标为(x,1-x ),x ∈R ,则动点P 的轨迹方程为________,它到原点距离的最小值为________.解析:设点P 的坐标为(x ,y ),则y =1-x ,即动点P 的轨迹方程为x +y -1=0.原点到直线x +y -1=0的距离为d =|0+0-1|1+1=22,即为所求原点到动点P 的轨迹的最小值.答案:x +y -1=0 221.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件盲目套用公式导致出错.[小题纠偏]1.已知P :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,Q :a =-1,则P 是Q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.所以P 是Q 的充要条件.2.(2018·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( )A .7B.172 C .14 D .17解析:选B 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,解得m =172. 考点一 两条直线的位置关系(基础送分型考点——自主练透)[题组练透]1.已知a ≠0,直线ax +(b +2)y +4=0与直线ax +(b -2)y -3=0互相垂直,则ab 的最大值为( )A .0B .2C .4 D.2解析:选B 若b =2,两直线方程分别为y =-a 4x -1和x =3a,此时两直线相交但不垂直.若b =-2,两直线方程分别为x =-4a和y =a 4x -34,此时两直线相交但不垂直.若b ≠±2,两直线方程分别为y =-a b +2x -4b +2和y =-a b -2x +3b -2,此时两直线的斜率分别为-a b +2,-a b -2,由-ab +2·⎝ ⎛⎭⎪⎫-a b -2=-1,得a 2+b 2=4.因为a 2+b 2=4≥2ab ,所以ab ≤2,且当a =b =2或a =b =-2时取等号,故ab 的最大值为2.2.(2018·诸暨模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a+3b =1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝ ⎛⎭⎪⎫2a +3b =13+6a b+6b a ≥13+2 6a b ·6b a=25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25.答案:253.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使(1)l 1与l 2相交于点P (m ,-1);(2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.解:(1)由题意得⎩⎪⎨⎪⎧ m 2-8+n =0,2m -m -1=0,解得m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧ m =4,n ≠-2或⎩⎪⎨⎪⎧ m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2.(3)当且仅当2m +8m =0,即m =0时,l 1⊥l 2.又-n8=-1,∴n=8.即m=0,n=8时,l1⊥l2,且l1在y轴上的截距为-1.[谨记通法]1.已知两直线的斜率存在,判断两直线平行垂直的方法(1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等;(2)两直线垂直⇔两直线的斜率之积等于-1.[提醒] 当直线斜率不确定时,要注意斜率不存在的情况.2.由一般式确定两直线位置关系的方法直线方程l1:A1x+B1y+C1=0(A21+B21≠0)l2:A2x+B2y+C2=0(A22+B22≠0)l1与l2垂直的充要条件A1A2+B1B2=0l1与l2平行的充分条件A1A2=B1B2≠C1C2(A2B2C2≠0)l1与l2相交的充分条件A1A2≠B1B2(A2B2≠0)l1与l2重合的充分条件A1A2=B1B2=C1C2(A2B2C2≠0)[提醒] 在判断两直线位置关系时,比例式A1A2与B1B2,C1C2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.考点二距离问题重点保分型考点——师生共研[典例引领]1.(2018·衢州模拟)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A. 2 B.823C. 3D.833解析:选B 因为l 1∥l 2,所以1a -2=a 3≠62a,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪⎪⎪6-232=823. 2.直线3x +4y -3=0上一点P 与点Q(2,-2)的连线的最小值是________.解析:∵点Q 到直线的距离即为P ,Q 两点连线的最小值,∴|P Q|min =|3×2+4×-2-3|32+42=1. 答案:13.若直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析:法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13. ∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.故所求直线l 的方程为x +3y -5=0或x =-1.法二:当AB ∥l 时,有k =k AB =-13, ∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当l 过AB 中点时,AB 的中点为(-1,4).∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.答案:x +3y -5=0或x =-1[由题悟法]处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.(2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而使计算简便.[即时应用]1.已知P 是直线2x -3y +6=0上一点,O 为坐标原点,且点A 的坐标为(-1,1),若|PO |=|PA |,则P 点的坐标为________.解析:法一:设P (a,b ),则⎩⎪⎨⎪⎧ 2a -3b +6=0,a 2+b 2=a +12+b -12, 解得a =3,b =4.∴P 点的坐标为(3,4).法二:线段OA 的中垂线方程为x -y +1=0,则由⎩⎪⎨⎪⎧ 2x -3y +6=0,x -y +1=0.解得⎩⎪⎨⎪⎧ x =3,y =4,则P 点的坐标为(3,4).答案:(3,4)2.已知直线l :ax +y -1=0和点A (1,2),B (3,6).若点A ,B 到直线l 的距离相等,则实数a 的值为________.解析:法一:要使点A ,B 到直线l 的距离相等,则AB ∥l ,或A ,B 的中点(2,4)在直线l 上.所以-a =6-23-1=2或2a +4-1=0, 解得a =-2或-32. 法二:要使点A ,B 到直线l 的距离相等,则|a +1|a 2+1=|3a +5|a 2+1,解得a =-2或-32. 答案:-2或-32考点三 对称问题题点多变型考点——多角探明[锁定考向]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型.常见的命题角度有:(1)点关于点对称;(2)点关于线对称;(3)线关于线对称.[题点全练]角度一:点关于点对称1.过点P(0,1)作直线l使它被直线l1:2x+y-8=0和l2:x -3y+10=0截得的线段被点P平分,则直线l的方程为________________.解析:设l1与l的交点为A(a,8-2a),则由题意知,点A关于点P的对称点B(-a,2a-6)在l2上,把B点坐标代入l2的方程得-a-3(2a-6)+10=0,解得a=4,即点A(4,0)在直线l上,所以由两点式得直线l的方程为x+4y-4=0.答案:x+4y-4=02.已知直线l:2x-3y+1=0,点A(-1,-2),则直线l关于点A(-1,-2)对称的直线l′的方程为________.解析:法一:在l:2x-3y+1=0上任取两点,如M(1,1),N(4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二:设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.答案:2x -3y -9=0角度二:点关于线对称3.已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程. 解:(1)设A ′(x ,y ),则⎩⎪⎨⎪⎧ y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧ x =-3313,y =413.∴A ′⎝ ⎛⎭⎪⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设M ′(a ,b ),则⎩⎪⎨⎪⎧ 2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013. 设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧ 2x -3y +1=0,3x -2y -6=0.得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.角度三:线关于线对称4.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( )A .x -2y +3=0B .x -2y -3=0C .x +2y +1=0D .x +2y -1=0解析:选A 设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧ x +x 02-y +y 02+2=0,x -x 0=-y -y 0,得⎩⎪⎨⎪⎧ x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上,∴2(y -2)-(x +2)+3=0,即x -2y +3=0.[通法在握]1.中心对称问题的2个类型及求解方法(1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧ x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程.2.轴对称问题的2个类型及求解方法(1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧ A ⎝ ⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝ ⎛⎭⎪⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[演练冲关]1.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧ y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎪⎨⎪⎧ x =4,y =-2,∴BC 所在直线的方程为y -1=-2-14-3(x -3),即3x +y -10=0. 同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3),∴AC 所在直线的方程为y -2=3-2-1--4(x +4),即x -3y +10=0.联立⎩⎪⎨⎪⎧ 3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧ x =2,y =4,可得C (2,4).2.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧ b -4a --3·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0. 又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1, 即6x -y -6=0.答案:6x -y -6=0 3.已知△ABC 中,顶点A (4,5),点B 在直线l :2x -y +2=0上,点C 在x 轴上,求△ABC 周长的最小值.解:设点A 关于直线l :2x -y +2=0的对称点为A 1(x 1,y 1),点A 关于x 轴的对称点为A 2(x 2,y 2),连接A 1A 2交l 于点B ,交x 轴于点C ,则此时△ABC 的周长取最小值,且最小值为||A 1A 2.∵A 1与A 关于直线l :2x -y +2=0对称,∴⎩⎪⎨⎪⎧y 1-5x 1-4×2=-1,2×x 1+42-y 1+52+2=0, 解得⎩⎪⎨⎪⎧ x 1=0,y 1=7.∴A 1(0,7).易求得A 2(4,-5), ∴△ABC 周长的最小值为 ||A 1A 2=4-02+-5-72=410.一抓基础,多练小题做到眼疾手快1.(2018·浙江名校协作体联考)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧ a a -2=3×1,a ×1≠3×1,解得a =-1,故选C.2.(2018·丽水调研)已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A .(3,3)B .(2,3)C .(1,3) D.⎝ ⎛⎭⎪⎪⎫1,32 解析:选C 直线l 1的斜率为k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2).两式联立,解得⎩⎪⎨⎪⎧ x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).3.(2018·诸暨期初)已知点A (7,-4)关于直线l 的对称点为B (-5,6),则该对称直线l 的方程为( )A .6x +5y -1=0B .5x +6y +1=0C .5x -6y -1=0D .6x -5y -1=0解析:选D 由题可得,直线l 是线段AB 的垂直平分线.因为A (7,-4),B (-5,6),所以k AB =6+4-5-7=-56,所以k l =65.又因为A (7,-4),B (-5,6)的中点坐标为(1,1).所以直线l 的方程为y -1=65(x -1),即6x -5y -1=0. 4.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.因为|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].答案:[0,10]5.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________. 解析:依题意知,63=a -2≠c -1, 解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c 2=0, 又两平行直线之间的距离为21313, 所以⎪⎪⎪⎪⎪⎪c 2+132+-22=21313,解得c =2或-6. 答案:2或-6二保高考,全练题型做到高考达标1.(2018·舟山调研)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|M Q|2的值为( )A.102B.10 C .5 D .10 解析:选D 由题意知P (0,1),Q(-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,∴M 位于以P Q 为直径的圆上,∵|P Q|=9+1=10,∴|MP |2+|M Q|2=|P Q|2=10.2.(2018·慈溪模拟)曲线y =2x -x 3在x =-1处的切线为l ,则点P (3,2)到直线l 的距离为( )A.722B.922C.1122D.91010解析:选A 由题可得,切点坐标为(-1,-1).y ′=2-3x 2,由导数的几何意义可知,该切线的斜率为k =2-3=-1,所以切线的方程为x +y +2=0.所以点P (3,2)到直线l 的距离为d =|3+2+2|12+12=722. 3.(2018·绵阳模拟)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|P Q|的最小值为( )A.95B.185C.2910D.295解析:选C 因为36=48≠-125,所以两直线平行, 由题意可知|P Q|的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910, 所以|P Q|的最小值为2910. 4.(2018·厦门模拟)将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n 等于( )A.345B.365C.283D.323解析:选A 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,则⎩⎪⎨⎪⎧ 3+n 2=2×7+m 2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧ m =35,n =315,故m +n=345. 5.(2018·钦州期中)已知直线l 的方程为f (x ,y )=0,P 1(x 1,y 1)和P 2(x 2,y 2)分别为直线l 上和l 外的点,则方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示( )A .过点P 1且与l 垂直的直线B .与l 重合的直线C .过点P 2且与l 平行的直线D .不过点P 2,但与l 平行的直线解析:选C 由直线l 的方程为f (x ,y )=0,知方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示与l 平行的直线,P 1(x 1,y 1)为直线l 上的点,则f (x 1,y 1)=0,f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0化为f (x ,y )-f (x 2,y 2)=0,显然P 2(x 2,y 2)满足方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0,所以f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示过点P 2且与l 平行的直线.故选C.6.已知三角形的一个顶点A (4,-1),它的两条角平分线所在直线的方程分别为l 1:x -y -1=0和l 2:x -1=0,则BC 边所在直线的方程为________________.解析:A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上.设A 1(x 1,y 1),则有⎩⎪⎨⎪⎧ y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧ x 1=0,y 1=3,所以A 1(0,3).同理设A 2(x 2,y 2),易求得A 2(-2,-1).所以BC 边所在直线方程为2x -y +3=0.答案:2x -y +3=07.(2018·余姚检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析:显然直线l 的斜率不存在时,不满足题意;设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k2, ∴k =2或k =-23. ∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案:2x -y -2=0或2x +3y -18=08.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB上,最后经直线OB 反射后又回到P 点,则光线所经过的路程为________.解析:易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1与A 2两点间的距离.于是|A 1A 2|=4+22+2-02=210.答案:2109.(2018·绍兴一中检测)两平行直线l 1,l 2分别过点P (-1,3),Q(2,-1),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间的距离的取值范围是________.解析:∵l 1∥l 2,且P ∈l 1,Q ∈l 2,∴l 1,l 2间的最大距离为|P Q|=[2--1]2+-1-32=5,又l 1与l 2不重合,∴l 1,l 2之间距离的取值范围是(0,5].答案:(0,5]10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1),∴l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧ 2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0,得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧ 2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),∴k BC =65, ∴直线BC 的方程为y -3=65(x -4), 即6x -5y -9=0.三上台阶,自主选做志在冲刺名校1.已知线段AB 的两个端点A (0,-3),B (3,0),且直线y =2λx +λ+2与线段AB 总相交,则实数λ的取值范围为________. 解析:如图所示,因为y =2λx +λ+2恒过定点C ⎝ ⎛⎭⎪⎫-12,2,连接AC ,CB ,所以直线AC 的斜率k AC=-10,直线BC 的斜率k BC =-47. 又直线y =2λx +λ+2与线段AB 总相交,所以k AC ≤2λ≤k BC ,所以λ的取值范围为⎣⎢⎡⎦⎥⎤-5,-27. 答案:⎣⎢⎡⎦⎥⎤-5,-27 2.已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4).(1)证明直线l 过某定点,并求该定点的坐标.(2)当点P 到直线l 的距离最大时,求直线l 的方程. 解:(1)证明:直线l 的方程可化为a (2x +y +1)+b (x +y -1)=0,由⎩⎪⎨⎪⎧ 2x +y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧ x =-2,y =3,所以直线l 恒过定点(-2,3).(2)由(1)知直线l 恒过定点A (-2,3),当直线l 垂直于直线PA 时,点P 到直线l 的距离最大.又直线PA 的斜率k PA =4-33+2=15, 所以直线l 的斜率k l =-5.故直线l 的方程为y -3=-5(x +2),即5x +y +7=0.。

山东省烟台市高考数学一轮基础复习:专题11 平面解析几何

山东省烟台市高考数学一轮基础复习:专题11 平面解析几何

山东省烟台市高考数学一轮基础复习:专题11 平面解析几何姓名:________ 班级:________ 成绩:________一、单选题 (共13题;共26分)1. (2分)已知直线和圆,则直线和圆C的位置关系为().A . 相交B . 相切C . 相离D . 不能确定2. (2分)从圆外一点向这个圆作两条切线,则两切线夹角的余弦值为()A .B .C .D . 03. (2分)已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F1、F2 ,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1、e2 ,则e1•e2+1的取值范围为()A . (1,+∞)B . (,+∞)C . (,+∞)D . (,+∞)4. (2分) (2018高二上·牡丹江期中) 若直线和圆没有交点,则过点的直线与椭圆的交点的个数()A . 至多一个B . 2C . 1D . 05. (2分)若抛物线的焦点是F,准线是L,则经过点F、M(4,4)且与l相切的圆共有()A . 0个B . 1个C . 2个D . 4个6. (2分)(2018·全国Ⅱ卷文) 已知、是椭圆C的两个焦点,P是C上的一点,若,且 ,则C的离心率为()A . 1-B . 2-C .D .7. (2分)直线3x+2=0的倾斜角为()A . 90°B . 0°C . 180°D . 不存在8. (2分) (2019高二上·余姚期中) 一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.其中正确的个数为()个A . 1B . 2C . 3D . 49. (2分)设F1 , F2是双曲线的左右两个焦点,若在双曲线的右支上存在一点P,使(o为原点)且,则双曲线的离心率为()A .B .C .D .10. (2分)(2017·绵阳模拟) 已知点P(﹣2,)在椭圆C: =1(a>b>0)上,过点P作圆C:x2+y2=2的切线,切点为A,B,若直线AB恰好过椭圆C的左焦点F,则a2+b2的值是()A . 13B . 14C . 15D . 1611. (2分)已知圆(x﹣a)2+(y﹣b)2=r2的圆心为抛物线y2=4x的焦点,且与直线3x+4y+2=0相切,则该圆的方程为()A .B .C . (x﹣1)2+y2=1D . x2+(y﹣1)2=112. (2分)“曲线C上的点的坐标都是方程f(x,y)=0的解”是“曲线C的方程是f(x,y)=0”的()条件A . 充要B . 充分不必要C . 必要不充分D . 既不充分又不必要13. (2分)已知双曲线的一个焦点与抛物线的焦点重合,则实数t等于()A . 1B . 2C . 3D . 4二、填空题 (共4题;共4分)14. (1分)(2017·北京) 若双曲线x2﹣ =1的离心率为,则实数m=________.15. (1分) (2018高二上·武邑月考) 过点作直线交轴于点,过点作交轴于点,延长至点,使得,则点的轨迹方程为________.16. (1分)椭圆的两个焦点是F1(﹣1,0),F2(1,0),P为椭圆上一点,且F1F2是PF1与PF2的等差中项,则该椭圆方程是________17. (1分) (2017高三上·张掖期末) 抛物线y=﹣ x2上的动点M到两定点F(0,﹣1),E(1,﹣3)的距离之和的最小值为________.三、综合题 (共5题;共45分)18. (10分) (2019高二下·南充月考) 设椭圆过点,且着焦点为(Ⅰ)求椭圆的方程;(Ⅱ)当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足,证明:点总在某定直线上19. (10分)(2014·江西理) 如图,已知双曲线C:﹣y2=1(a>0)的右焦点为F,点A,B分别在C 的两条渐近线AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).(1)求双曲线C的方程;(2)过C上一点P(x0,y0)(y0≠0)的直线l:﹣y0y=1与直线AF相交于点M,与直线x= 相交于点N.证明:当点P在C上移动时,恒为定值,并求此定值.20. (10分) (2018高二下·驻马店期末) 已知椭圆的离心率为是椭圆上一点.(1)求椭圆的标准方程;(2)过椭圆右焦点的直线与椭圆交于两点,是直线上任意一点.证明:直线的斜率成等差数列.21. (5分) (2018高二下·哈尔滨月考) 已知椭圆E的长轴的一个端点是抛物线的焦点,离心率是.(1)求椭圆E的方程;(2)过点,斜率为k的动直线与椭圆E相交于A、B两点,请问x轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由.22. (10分) (2017高二上·海淀期中) 已知直线与圆相交于、两点,且满足.(1)求圆的方程.(2)若,,为轴上两点,点在圆上,过作与垂直的直线与圆交于另一点,连,求四边形的面积的取值范围.参考答案一、单选题 (共13题;共26分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、二、填空题 (共4题;共4分)14-1、15-1、16-1、17-1、三、综合题 (共5题;共45分)19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、。

平面解析几何初步复习题

平面解析几何初步复习题

平面解析几何初步复习题(共7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--平面解析几何初步复习题平面直角坐标系中的基本公式1.已知A(1,2),B(a,6),且|AB|=5,则a的值为()A.4 B.-4或2 C.-2 D.-2或42.已知点A(5,2a-1),B(a+1,a-4),则当|AB|取得最小值时,实数a等于________.3.已知平行四边形ABCD的三个顶点坐标分别为A(0,0),B(2,0),D(1,3),求顶点C的坐标.直线的方程4.已知A(a,2),B(3,b+1),且直线AB的倾斜角为90°,则a,b的值为()A.a=3,b=1 B.a=2,b=2C.a=2,b=3 D.a=3,b∈R且b≠15.经过两点A(2,1),B(1,m2)的直线l的倾斜角为锐角,则m的取值范围是() A.(-∞,1) B.(-1,+∞)C.(-1,1) D.(-∞,-1)∪(1,+∞) 6.△ABC的顶点坐标分别为A(-1,1),B(1,1),C(2,3+1).若D为△ABC的边AB 上一动点,则直线CD的斜率k的取值范围是________.7.点M(x,y)在函数y=-2x+8的图象上,当x∈[2,5]时,则y+1x+1的取值范围是________.8.已知直线与x轴、y轴分别交于A,B两点,且线段AB的中点为P(4,1),求直线l的方程.9.下列四个结论中正确的是()A.经过定点P1(x1,y1)的直线都可以用方程y-y1=k(x-x1)表示B.经过任意不同两点P1(x1,y1),P2(x2,y2)的直线都可以用方程(x2-x1)(y-y1)=(y2-y1)(x-x1)表示C.不过原点的直线都可以用方程xa+yb=1表示D.经过点A(0,b)的直线都可以用方程y=kx+b表示10.直线ax+by+c=0同时经过第一、第二、第四象限,则a,b,c应满足() A.ab>0,bc<0 B.ab<0,bc<0C.ab>0,bc>0 D.ab<0,bc>011.下列说法正确的有()①若两条直线的斜率相等,则这两条直线平行;②若l1∥l2,则k1=k2;③若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线相交;④若两条直线的斜率都不存在且两直线不重合,则这两条直线平行.A.1个B.2个 C.3个D.4个12.直线l:(a2+4a+3)x+(a2+a-6)y-8=0与y轴垂直,则实数a的值是() A.-3 B.-1或-3C.2 D.-113.点A(4,5)关于直线l的对称点为B(-2,7),则直线l的方程为________.14.如图,△ABC的顶点B(3,4),AB边上的高CE所在直线方程为2x+3y-16=0,BC 边上的中线AD所在直线方程为2x-3y+1=0,求边AC的长.15.已知点A(-m-3,2),B(-2m-4,4),C(-m,m),D(3,3m+2),若直线AB ⊥CD,求m的值.16.求与直线y=43x+53垂直,并且与两坐标轴围成的三角形的面积为24的直线l的方程.17.两条直线x-2y+3=0和2x-y+3=0关于直线x-ay=0对称,则实数a =()A.1 B.-1C.-2 D.218.与直线2x+3y-6=0关于点(1,-1)对称的直线方程是 ()A.3x-2y+2=0 B.2x+3y+7=0C.3x-2y-12=0 D.2x+3y+8=019.求过点M(-2,1),且与A(-1,2),B(3,0)两点距离相等的直线的方程.20.已知直线l过点(0,-1),且点(1,-3)到l的距离为322,求直线l的方程,并求出坐标原点到直线l的距离.21.求与直线l:5x-12y+6=0平行且与l的距离为2的直线方程.22.已知在△ABC中,A(3,2),B(-1,5),C点在直线3x-y+3=0上.若△ABC 的面积为10,求C点坐标.23.若点P(a,b)为直线x+y+1=0上任一点,则a-12+b-12的最小值为________.24.已知定点A(0,1),点B在直线x+y=0上运动.当线段AB最短时,点B的坐标是________.25.直线l过点A(3,4)且与点B(-3,2)的距离最远,那么l的方程为() A.3x-y-13=0 B.3x-y+13=0C.3x+y-13=0 D.3x+y+13=026.若动点A(x1,y1),B(x2,y2)分别在直线l1:x+y-7=0和l2:x+y-5=0上移动,则AB中点M到原点距离的最小值为()A.3 2 B.2 3 C.3 3 D.42圆的方程27.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为()A.(x+2)2+(y-2)2=1 B.(x-2)2+(y+2)2=1C.(x+2)2+(y+2)2=1 D.(x-2)2+(y-2)2=128.求圆心在直线2x-y-3=0上,且过点A(5,2),B(3,-2)的圆的标准方程.29.已知方程x2+y2-2x+2k+3=0表示圆,则k的取值范围是()A.(-∞,-1) B.(3,+∞)C.(-∞,-1)∪(3,+∞) D.(-32,+∞)30.已知两点A(-2,0),B(0,2),点C是圆x2+y2-2x=0上任意一点,则△ABC的面积最小值是()A.3- 2 B.3+ 2 C.3-2 231.已知圆O的方程为x2+y2=9,求过点A(1,2)的圆的弦的中点P的轨迹.32.直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是A.相交B.相切 C.相离D.不确定33.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为() A.1 B.2 2 D.334.设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且圆与直线x-y+1=0相交的弦长为22,求圆的方程.35.圆x2+y2=50与圆x2+y2-12x-6y+40=0的公共弦长为()C.2 5 D.2636.点P在圆C1:x2+y2-8x-4y+11=0上,点Q在圆C2:x2+y2+4x+2y+1=0上,则|PQ|的最小值是()A.5 B.1 C.35-5 D.35+537.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a=________. 38.若过定点M(-1,0)且斜率为k的直线与圆x2+4x+y2-5=0在第一象限有交点,则k 的取值范围为________.39.求与已知圆x2+y2-7y+10=0相交,所得公共弦平行于已知直线2x-3y-1=0,且过点(-2,3),(1,4)的圆的方程.空间直角坐标系40.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是()A.关于x轴对称 B.关于xOy平面对称 C.关于坐标原点对称 D.以上都不对41.如图,已知正方形ABCD、正方形ABEF的边长都是1,而且平面ABCD与平面ABEF 互相垂直,点M在AC上移动,点N在BF上移动.设CM=BN=a(0<a<2).(1)求MN的长;(2)a为何值时,MN的长最小。

平面解析几何初步一轮复习-(有答案)

平面解析几何初步一轮复习-(有答案)

平面解析几何初步一轮复习-(有答案)第1课时直线的方程1 •倾斜角:对于一条与x轴相交的直线把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角a叫做直线的倾斜角.当直线和 X轴平行或重合时,规定直线的倾斜角为0°倾斜角的范围为_______________ •斜率:当直线的倾斜角9时,该直线的斜率即 k = tan a当直线的倾斜角等于90,时,直线的斜率不存在.2.过两点 P i(x i, y i), P2(X2, y2)(x i Hx)的直线的斜率公式______________ .若x i = X2,则直线的斜率不存在,此时直线的倾斜角为90°3.直线方程的五种形式例 1.已知直线(2m2+ m — 3)x+ (m2— m)y = 4m —1•①当m = _______ 时,直线的倾斜角为45 °②当m = 时,直线在x轴上的截距为1.③当 m = 时,直线在y轴上的截距为一号•④当m = _______ 时,直线与 x轴平行.⑤当 m = ______ 时,直线过原点.解:⑴ —1 ⑵2或一2(3)寸或一2 ⑷一号⑸4变式训练1. (1)直线3y+ 3 x + 2=0的倾斜角是 ()A . 30 ° B. 60 ° C . 120 ° D. 150 °(2)设直线的斜率 k=2, P i (3, 5), P2 (X2, 7), P (- 1, y3)是直线上的三点,贝V X2 , y3依次是()A. — 3 , 4 B .2 , — 3 C .4 , — 3 D .4 3(3)直线11与12关于X轴对称,11的斜率是一I 7 则12的斜率是()A. 7 B+ C . + D 7(4)直线I经过两点(1, — 2), ( — 3 , 4),则该直线的方程是_______________ .解:(1) D.提示:直线的斜率即倾斜角的正切值是一子.C .提示:用斜率计算公式(3)(4) % y?X1 X2 *A .提示:两直线的斜率互为相反数.2y + 3x+仁0 •提示:用直线方程的两点式或点斜式。

高考数学压轴专题人教版备战高考《平面解析几何》知识点总复习含答案

高考数学压轴专题人教版备战高考《平面解析几何》知识点总复习含答案

新数学高考《平面解析几何》复习资料一、选择题1.已知椭圆22:195x yC+=左右焦点分别为12F F、,直线():32l y x=+与椭圆C交于A B、两点(A点在x轴上方),若满足11AF F Bλ=u u u v u u u v,则λ的值等于()A.23B.3 C.2 D.3【答案】C【解析】由条件可知,直线l过椭圆的左焦点()12,0F-.由()2232195y xx y⎧=+⎪⎨+=⎪⎩消去y整理得232108630x x++=,解得34x=-或218x=-.设1122(,),(,)A x yB x y,由A点在x轴上方可得12321,48x x=-=-.∵11AF F Bλ=u u u v u u u v,∴1122(2,)(2,)x y x yλ---=+,∴122(2)x xλ--=+.∴3212()(2)48λ---=-+,解得2λ=.选C2.如图,12,F F是椭圆221:14xC y+=与双曲线2C的公共焦点,,A B分别是12,C C在第二、四象限的公共点,若四边形12AF BF为矩形,则2C的离心率是()A2B3C.32D6【答案】D【解析】 【分析】 【详解】试题分析:由椭圆与双曲线的定义可知,|AF 2|+|AF 1|=4,|AF 2|-|AF 1|=2a(其中2a 为双曲线的长轴长),∴|AF 2|=a +2,|AF 1|=2-a ,又四边形AF 1BF 2是矩形,∴|AF 1|2+|AF 2|2=|F 1F 2|2=2,∴a ,∴e 考点:椭圆的几何性质.3.已知双曲线2222:1(0)x y E a b a b-=>>的左、右焦点分别为1F ,2F ,P 是双曲线E 上的一点,且212||PF PF =.若直线2PF 与双曲线E 的渐近线交于点M ,且M 为2PF 的中点,则双曲线E 的渐近线方程为( )A .13y x =±B .12y x =±C .2y x =±D .3y x =±【答案】C 【解析】 【分析】由双曲线定义得24PF a =,12PF a =,OM 是12PF F △的中位线,可得OM a =,在2OMF △中,利用余弦定理即可建立,a c 关系,从而得到渐近线的斜率.【详解】根据题意,点P 一定在左支上.由212PF PF =及212PF PF a -=,得12PF a =,24PF a =, 再结合M 为2PF 的中点,得122PF MF a ==,又因为OM 是12PF F △的中位线,又OM a =,且1//OM PF , 从而直线1PF 与双曲线的左支只有一个交点.在2OMF △中22224cos 2a c aMOF ac+-∠=.——① 由2tan b MOF a ∠=,得2cos aMOF c∠=. ——② 由①②,解得225c a=,即2b a =,则渐近线方程为2y x =±.故选:C. 【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.4.已知直线(3)(0)y k x k =+>与抛物线2:4C y x =相交于A ,B 两点,F 为C 的焦点.若5FA FB =,则k 等于( )A .3B .12C .23D .2【答案】B 【解析】 【分析】 由2(3)4y k x y x=+⎧⎨=⎩,得()22226490k x k x k +-+=,()22464360k k ∆=-->,得213k <,129x x =①,再利用抛物线的定义根据5FA FB =,得到1254x x =+②,从而求得21x =,代入抛物线方程得到(1,2)B ,再代入直线方程求解. 【详解】设()11,A x y ,()22,B x y ,易知1 0x >,20x >,10y >,20y >,由2(3)4y k x y x=+⎧⎨=⎩,得()22226490k x k x k +-+=,()22464360k k ∆=-->,所以213k <,129x x =①.因为1112p FA x x =+=+,2212pFB x x =+=+,且5FA FB =, 所以1254x x =+②. 由①②及20x >得21x =, 所以(1,2)B ,代入(3)y k x =+,得12k =. 故选:B 【点睛】本题考查抛物线的定义,几何性质和直线与抛物线的位置关系,还考查了运算求解的能力,属于中档题.5.设抛物线()2:20C y px p =>的焦点为F ,抛物线C 与圆22525:()416C x y +-='于,A B 两点,且AB =C 的焦点的弦MN 的长为8,则弦MN 的中点到直线2x =-的距离为( )A .2B .5C .7D .9【答案】B【分析】易得圆C '过原点,抛物线22y px =也过原点,联立圆和抛物线方程由AB 求得交点坐标,从而解出抛物线方程,根据抛物线定义即可求得弦MN 的中点到直线2x =-的距离. 【详解】圆:22525:,416C x y ⎛⎫+-= ⎪⎝⎭'即为2252x y y +=,可得圆经过原点.抛物线22y px =也过原点.设()()0,0,,,0A B m n m >. 由5AB =可得225m n +=, 又2252m n n +=联立可解得2,1n m ==. 把()1,2B 代人22y px =,解得2p =,故抛物线方程为24y x =,焦点为()1,0F ,准线l 的方程为1x =-.如图,过,M N 分别作ME l ⊥于E ,NK l ⊥于K ,可得,MF ME NK NF ==,即有MN MF NF ME KN =+=+|. 设MN 的中点为0P ,则0P 到准线l 的距离11(|)422EM KNI MN +==, 则MN 的中点0P ,到直线2x =-的距离是415+=. 故选:B 【点睛】本题考查抛物线的几何性质,考查学生的分析问题,解决问题的能力,数形结合思想.属于一般性题目.6.已知抛物线24y x =上有三点,,A B C ,,,AB BC CA 的斜率分别为3,6,2-,则ABC ∆的重心坐标为( )A .14,19⎛⎫⎪⎝⎭B .14,09⎛⎫⎪⎝⎭C .14,027⎛⎫⎪⎝⎭D .14,127⎛⎫⎪⎝⎭【答案】C【分析】设()()()112233,,,,,A x y B x y C x y ,进而用坐标表示斜率即可解得各点的纵坐标,进一步可求横坐标,利用重心坐标公式即可得解. 【详解】设()()()112233,,,,,,A x y B x y C x y 则1212221212124344ABy y y y k y y x x y y --====-+-,得1243y y +=, 同理234263y y +==,31422y y +==--,三式相加得1230y y y ++=, 故与前三式联立,得211231241,2,,3349y y y y x =-==-==,22214y x ==,233449y x ==,则12314327x x x ++=.故所求重心的坐标为14,027⎛⎫⎪⎝⎭,故选C. 【点睛】本题主要考查了解析几何中常用的数学方法,集合问题坐标化,进而转化为代数运算,对学生的能力有一定的要求,属于中档题.7.已知P 是双曲线C 上一点,12,F F 分别是C 的左、右焦点,若12PF F ∆是一个三边长成等差数列的直角三角形,则双曲线C 的离心率的最小值为( ) A .2 B .3 C .4 D .5【答案】A 【解析】 【分析】设直角三角形三边分别为3,4,5x x x ,分23c x =,24c x =和25c x =三种情况考虑,即可算得双曲线离心率的最小值. 【详解】如图,易知该直角三角形三边可设为3,4,5x x x .①若23c x =,则254a x x x =-=,得232ce a ==; ②若24c x =,则2532a x x x =-=,得222ce a==; ③若25c x =,则243a x x x =-=,得252ce a==. 故选:A 【点睛】本题主要考查双曲线的离心率的求法,体现了分类讨论的数学思想.8.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( )A .125 B .65C .2D 【答案】A 【解析】试题分析:根据抛物线的定义可知抛物线24y x =上的点P 到抛物线的焦点距离1PF d =,所以122d d MF d +=+,其最小值为()1,0F 到直线3490x y -+=的距离,由点到直线的距离公式可知()()122min min125d d MF d +=+==,故选A. 考点:抛物线定义的应用.9.已知椭圆22:12y C x +=,直线:l y x m =+,若椭圆C 上存在两点关于直线l 对称,则m 的取值范围是( )A .33⎛- ⎝⎭B .,44⎛- ⎝⎭C .⎛ ⎝⎭D .⎛ ⎝⎭【答案】C 【解析】 【分析】设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y ,根据椭圆C 上存在两点关于直线:l y x m =+对称,将A ,B 两点代入椭圆方程,两式作差可得002y x =,点M 在椭圆C 内部,可得2221m m +<,解不等式即可.【详解】设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y , 则1202x x x +=,1202y y y +=,1AB k =-.又因为A ,B 在椭圆C 上,所以221112y x +=,222212y x +=,两式相减可得121212122y y y y x x x x -+⋅=--+,即002y x =. 又点M 在l 上,故00y x m =+,解得0x m =,02y m =.因为点M 在椭圆C 内部,所以2221m m +<,解得33m ⎛⎫∈- ⎪ ⎪⎝⎭.故选:C 【点睛】本题考查了直线与椭圆的位置关系以及在圆锥曲线中“设而不求”的思想,属于基础题.10.已知,A B 两点均在焦点为F 的抛物线()220y px p =>上,若4AF BF +=,线段AB 的中点到直线2px =的距离为1,则p 的值为 ( ) A .1 B .1或3C .2D .2或6【答案】B 【解析】4AF BF +=1212442422p px x x x p x p ⇒+++=⇒+=-⇒=-中 因为线段AB 的中点到直线2px =的距离为1,所以121132px p p -=∴-=⇒=中或 ,选B. 点睛:1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理. 2.若00(,)P x y 为抛物线22(0)y px p =>上一点,由定义易得02pPF x =+;若过焦点的弦AB AB 的端点坐标为1122(,),(,)A x y B x y ,则弦长为1212,AB x x p x x =+++可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.11.(2017新课标全国卷Ⅲ文科)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A BC D .13【答案】A 【解析】以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即22d a a b==+,整理可得223a b =,即()2223,a a c=-即2223ac =,从而22223c e a ==,则椭圆的离心率2633c e a ===, 故选A.【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.12.如图,设椭圆E :22221(0)x y a b a b+=>>的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆E 于点C ,若直线BF 平分线段AC 于M ,则椭圆E 的离心率是( ) A .12B .23C .13D .14【答案】C 【解析】如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线, 于是△OFM ∽△AFB ,且OF OM 1FAAB2==, 即c c a -=12可得e=c a =13.故答案为13. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.13.在圆M :224410x y x y +---=中,过点(0,1)E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .6B .12C .24D .36【答案】B 【解析】 【分析】先将圆M 的方程化为标准方程,得到其圆心坐标与半径,再结合直线与圆的位置关系可得AC 、BD 的值,进而求出答案. 【详解】圆M 的标准方程为:22(2)(2)9x y -+-=,其圆心为(2,2)M ,半径3r =, 过点E 最长的弦长是直径,故6AC =,最短的弦是与ME 垂直的弦,又ME ==所以122BD ===,即4BD =, 所以四边形的面积11641222S AC BD =⋅⋅=⨯⨯=, 故选:B. 【点睛】本题考查直线与圆相交的性质,解题关键是明确AC 和BD 的位置关系,难度不大.14.已知抛物线24x y =的焦点为F ,准线为l ,抛物线的对称轴与准线交于点Q ,P 为抛物线上的动点,PF m PQ =,当m 最小时,点P 恰好在以,F Q 为焦点的椭圆上,则椭圆的离心率为( )A .3-B .2-CD 1【答案】D 【解析】由已知,(01)(01)F Q ,,,-,过点P 作PM 垂直于准线,则PM PF =.记PQM α∠=,则sin PF PM m PQPQα===,当α最小时,m 有最小值,此时直线PQ与抛物线相切于点P .设204x P x ⎛⎫ ⎪⎝⎭,,可得(21)P ,±,所以222PQ PF ,==,则2PF PQ a +=,∴21a =+,1c =,∴21ce a==-,故选D .15.点为椭圆的一个焦点,若椭圆上存在点使(为坐标原点)为正三角形,则椭圆的离心率为( ) A .B .C .D .【答案】B 【解析】 【分析】为正三角形,点在椭圆上,代入椭圆方程,计算得到.【详解】由题意,可设椭圆的焦点坐标为, 因为为正三角形,则点在椭圆上,代入得,即,得,解得,故选B . 【点睛】本题考查了椭圆离心率的计算,意在考查学生的计算能力.16.若A ,B 分别是直线20x y --=与x 轴,y 轴的交点,圆C :()()22448x y -++=上有任意一点M ,则AMB ∆的面积的最大值是( )A .6B .8C .10D .12【答案】C 【解析】 【分析】先求出AB ,再求出M 到直线的最大距离为点M 到直线20x y --=加上半径,进而可得面积最大值. 【详解】由已知()2,0A ,()0,2B - 则222222AB =+=,又点M =所以最大面积为1102⨯=. 故选:C.【点睛】 本题考查圆上一点到直线的最大距离问题,是基础题.17.已知双曲线()2222100x y C a b a b-=:>,>的一条渐近线与圆22(4x y +-=相交于A ,B 两点,若|AB |=2,则C 的离心率为( )A B C .2 D .4【答案】C【解析】【分析】求出双曲线的渐近线方程,圆的圆心与半径,利用距离公式得到a 、b 关系式,然后求解离心率即可.【详解】由题意可知不妨设双曲线的一条渐近线方程为:bx +ay =0,圆22(4x y +-=的圆心为(0,,半径为2,由题意及|AB |=2,可得22212+=,222123a a b=+,即b 2=3a 2,可得c 2﹣a 2=3a 2,即224c a = 所以e c a==2. 故选:C .【点睛】 本题主要考查求双曲线离心率的问题,此类问题的解题关键是建立,,a b c 的方程或不等关系,考查学生的运算求解能力,是一道中档题.18.已知(cos ,sin )P αα,(cos ,sin )Q ββ,则||PQ 的最大值为( )AB .2C .4D .【答案】B【解析】【分析】由两点的距离公式表示PQ ,再运用两角差的余弦公式化简,利用余弦函数的值域求得最值. 【详解】 ∵(cos ,sin )P αα,(cos ,sin )Q ββ,∴22||(cos cos )(sin sin )PQ αβαβ=-+-2222cos cos 2cos cos sin sin 2sin sin αβαβαβαβ=+-++-()()()2222cos sin cos sin 2cos cos sin sin ααββαβαβ=+++-+22cos()αβ=--.∵cos()[1,1]αβ-∈-,∴||[0,2]PQ ∈.故选B .【点睛】本题综合考查两点的距离公式、同角三角函数的平方关系、两角差的余弦公式和余弦的值域,属于中档题.19.若函数1()ln (0,0)a a f x x a b b b+=-->>的图象在x =1处的切线与圆x 2+y 2=1相切,则a +b 的最大值是( )A .4B .2C .2D .【答案】D【解析】 ()1ln (0,0)a a f x x a b b b+=-->>, 所以()'a f x bx =-,则f ′(1)=-a b 为切线的斜率, 切点为(1,-1a b+), 所以切线方程为y +1a b +=-a b(x -1), 整理得ax +by +1=0. 因为切线与圆相切,所以22a b +=1,即a 2+b 2=1.由基本不等式得a 2+b 2=1≥2ab ,所以(a +b )2=a 2+b 2+2ab =1+2ab ≤2,所以a +b ≤,即a +b 的最大值为.故选D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.20.当点P 在圆221x y +=上变动时,它与定点(3,0)Q 的连结线段PQ 的中点的轨迹方程是( )A .22(3)4x y ++=B .22(23)41x y -+=C .22(3)1x y -+=D .22(23)41x y ++= 【答案】B【解析】【分析】根据已知条件可设()00,P x y ,线段PQ 的中点为(),M x y ,再利用中点坐标公式可得到0023,2x x y y =-=,再代入圆的方程221x y +=即可得到线段PQ 的中点的轨迹方程.【详解】设()00,P x y ,线段PQ 的中点为(),M x y ,(如图)则00322x x y y +⎧=⎪⎪⎨⎪=⎪⎩即00232x x y y =-⎧⎨=⎩, Q 点()00,P x y 在圆221x y +=上变动,即22001x y += ()()222321x y ∴-+=即()222341x y -+= 故选:B【点睛】本题考查了中点坐标公式,动点轨迹方程求法,属于一般题.。

1312_高中数学习题:一轮复习 平面解析几何(新人教B版).doc_0

1312_高中数学习题:一轮复习 平面解析几何(新人教B版).doc_0

平面解析几何一、选择题1.已知抛物线x 2=2py 上一点A (m,1)到其焦点的距离为p ,则p =()A.2B.-2C.4D.-4A[依题意可知抛物线的准线方程为y =-p2,∵抛物线x 2=2py (p >0)上一点A (m,1)到其焦点的距离为p ,∴点A 到准线的距离为1+p2=p ,解得p =2.故选A.]2.圆心在直线x -y =0上且与y 轴相切于点(0,1)的圆的方程是()A.(x -1)2+(y -1)2=1B.(x +1)2+(y +1)2=1C.(x -1)2+(y -1)2=2D.(x +1)2+(y +1)2=2A[根据题意,要求圆的圆心在直线x -y =0上,则设要求圆的圆心的坐标为(m ,m ),又由要求圆与y 轴相切于点(0,1),则圆心在直线y =1上,则m =1,要求圆的半径r =1,故要求圆的方程为(x -1)2+(y -1)2=1,故选A.]3.已知直线l 1:x sin α+2y -1=0,直线l 2:x -y cos α+3=0,若l 1⊥l 2,则tan 2α=()A.-23B.-43C.25D.45B[直线l 1:x sin α+2y -1=0,直线l 2:x -y cos α+3=0,若l 1⊥l 2,则sin α-2cos α=0,即sin α=2cos α,所以tan α=2,所以tan 2α=2tan α1-tan 2α=2×21-22=-43.故选B.]4.(2021·河北承德高三三模)已知双曲线C :x 2a 2-y 216=1(a >0)的一条渐近线方程为2x-y =0,F 1、F 2分别是双曲线C 的左、右焦点,P 为双曲线C 上一点,若|PF 1|=5,则|PF 2|=()A.1B.1或9C.3或9D.9D[由题意知4a=2,所以a =2,所以c =4+16=25,所以|PF 1|=5<2+25=a +c ,所以点P 在双曲线C 的左支上,所以|PF 2|-|PF 1|=4,所以|PF 2|=9,故选D.]5.设m ∈R ,已知圆C 1:x 2+y 2=1和圆C 2:x 2+y 2-6x -8y +30-m =0,则“m >21”是“圆C 1和圆C 2相交”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件B[由已知圆C 2:(x -3)2+(y -4)2=m -5,若圆C 1和圆C 2相交,则|1-m -5|<|C 1C 2|=32+42=5<1+m -5,解得21<m <41,“m >21”是“21<m <41”的必要而不充分条件.故选B.]6.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线2x +y -4=0与y 轴交于点A ,线段AF 2与E 交于点B .若|AB |=|BF 1|,则E 的方程为()A.x 240+y 236=1B.x 220+y 216=1C.x 210+y 26=1D.x 25+y 2=1D[由题可得A (0,4),F 2(2,0),所以c =2,又|AB |=|BF 1|,所以2a =|BF 1|+|BF 2|=|AF 2|=25,得a =5,∴b =1,所以椭圆的方程为x 25+y 2=1.故选D.]7.(2020·全国卷Ⅱ)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点,若△ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32B[由题意知双曲线的渐近线方程为y =±bax .因为D ,E 分别为直线x =a 与双曲线C的两条渐近线的交点,所以不妨设D (a ,b ),E (a ,-b ),所以S △ODE =12×a ×|DE |=12×a ×2b =ab =8,所以c 2=a 2+b 2≥2ab =16,所以c ≥4,所以2c ≥8,所以C 的焦距的最小值为8,故选B.]8.(2021·天津高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点与抛物线y 2=2px (p >0)的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C ,D 两点,若|CD |=2|AB |,则双曲线的离心率为()A.2B.3C.2D.3A [设双曲线x 2a 2-y 2b2=1(a >0,b >0)与抛物线y 2=2px (p >0)的公共焦点为(c,0),则抛物线y 2=2px (p >0)的准线为x =-c ,令x =-c ,则c 2a 2-y 2b 2=1,解得y =±b 2a ,所以|AB |=2b 2a,又因为双曲线的渐近线方程为y =±ba x ,所以|CD |=2bc a ,所以2bc a =22b 2a ,即c =2b ,所以a 2=c 2-b 2=12c 2,所以双曲线的离心率e =ca=2.]二、填空题9.(2021·辽宁大连高三期末)已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2a 2-y 2b 2=13(a >0,b >0)的焦点相同,则双曲线的渐近线方程为.y =±22x[因为椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2a 2-y 2b 2=13(a >0,b >0)的焦点相同,所以a 2-b 2=a 23+b 23,即a 2=2b 2,解得a =2b ,所以双曲线的渐近线方程为y =±ba x =±22x .]10.已知双曲线C 1:x 2m 2+1-y 24-2m=1,当双曲线C 1的焦距取得最小值时,其右焦点恰为抛物线C 2:y 2=2px (p >0)的焦点,若A ,B 是抛物线C 2上的两点,且|AF |+|BF |=8,则AB 中点的横坐标为.2[由题意可得4-2m >0,即m <2,因为c 2=m 2+1+4-2m =(m -1)2+4,所以当m =1时,焦距2c 取得最小值,所以双曲线C 1的方程为x 22-y 22=1,所以双曲线C 1的右焦点为(2,0),即抛物线C 2的焦点为(2,0),所以p 2=2,p =4,则抛物线C 2:y 2=8x ,其准线方程为x =-2,设A (x 1,y 1)B (x 2,y 2),则|AF |+|BF |=x 1+2+x 2+2=8,解得x 1+x 2=4,∴线段AB 中点的横坐标为2.]11.(2021·桂林模拟)设F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P 为椭圆上一个点,∠F 1PF 2=60°,|F 1F 2|为|PF 1|与|PF 2|的等比中项,则该椭圆的离心率为.12[因为|F 1F 2|为|PF 1|与|PF 2|的等比中项,所以|F 1F 2|2=4c 2=|PF 1||PF 2|,在△F 1PF 2中,由余弦定理知,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos∠F 1PF 2=|PF 1|2+|PF 2|2-|PF 1||PF 2|=(|PF 1|+|PF 2|)2-3|PF 1||PF 2|,即4c 2=4a 2-12c 2,所以4c 2=a 2,则离心率e =c a =12.]12.设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →=.8[过点(-2,0)且斜率为23的直线的方程为y =23(x =23x +2,2=4x ,得x2-5x +4=0,解得x =1或x =1,=2,=4,=4,不妨设M (1,2),N (4,4),易知F (1,0),所以FM →=(0,2),FN →=(3,4),所以FM →·FN →=8.]三、解答题13.已知抛物线C :x 2=2py (p >0)的焦点为F ,点P (x 0,3)为抛物线C 上一点,且点P 到焦点F 的距离为4,过A (a,0)作抛物线C 的切线AN (斜率不为0),切点为N .(1)求抛物线C 的标准方程;(2)求证:以FN 为直径的圆过点A .[解](1)由题知,|PF |=y P +p2,∴4=3+p2,解得p =2,∴抛物线C 的标准方程为x 2=4y .(2)设切线AN 的方程为y =k (x -a ),k ≠0,2=4y =k x -a,消去y 可得x 2-4kx +4ka =0,由题意得Δ=16k 2-16ka =0,即a =k ,∴切点N (2a ,a 2),又F (0,1),∴AF →·AN →=(-a,1)(a ,a 2)=0.∴∠FAN =90°,故以FN 为直径的圆过点A .14.(2020·全国卷Ⅱ)已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合,过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.[解](1)由已知可设C 2的方程为y 2=4cx ,其中c =a 2-b 2.不妨设A ,C 在第一象限,由题设得A ,B 的纵坐标分别为b 2a ,-b 2a;C ,D 的纵坐标分别为2c ,-2c ,故|AB |=2b 2a,|CD |=4c .由|CD |=43|AB |得4c =8b 23a,即3×ca =2-2.解得c a =-2(舍去)或c a =12.所以C 1的离心率为12.(2)由(1)知a =2c ,b =3c ,故C 1:x 24c 2+y 23c2=1.设M (x 0,y 0),则x 204c 2+y 203c 2=1,y 20=4cx 0,故x 204c 2+4x 03c=1.①由于C 2的准线为x =-c ,所以|MF |=x 0+c ,而|MF |=5,故x 0=5-c ,代入①得5-c 24c2+45-c 3c=1,即c 2-2c -3=0,解得c =-1(舍去)或c =3.所以C 1的标准方程为x 236+y 227=1,C 2的标准方程为y 2=12x .15.在平面直角坐标系xOy 中,已知A (-2,0),B (2,0),且|PA |+|PB |=42,记动点P 的轨迹为C .(1)求曲线C 的方程;(2)过点(2,0)的直线l 与曲线C 相交于M ,N 两点,试问在x 轴上是否存在定点Q ,使得∠MQO =∠NQO ?若存在,求出点Q 的坐标,若不存在,请说明理由.[解](1)由题意可知|PA |+|PB |=42>|AB |=4,∴由椭圆的定义可得:动点P 的轨迹C 是以A ,B 为焦点的椭圆,其中2a =42,2c =4,∴a =22,c =2,∴b 2=a 2-c 2=4,∴曲线C 的方程为x 28+y 24=1.(2)假设定点Q 存在,设Q (m,0),M (x 1,y 1),N (x 2,y 2),直线l 的方程为x =ty +2.∵∠MQO =∠NQO ,∴直线MQ 与直线NQ 的斜率互为相反数,即k MQ +k NQ =0.ty +2+y 24=1,得(t 2+2)y 2+4ty -4=0,∴y 1+y 2=-4t t 2+2,y 1y 2=-4t 2+2.又k MQ =y 1-0x 1-m =y 1ty 1+2-m ,k NQ =y 2-0x 2-m =y 2ty 2+2-m ,∴y 1ty 1+2-m +y 2ty 2+2-m=0,整理得2ty 1y 2+(2-m )(y 1+y 2)=0,∴2t ×-4t 2+2+(2-m 解得m =4.所以存在定点Q (4,0),使得∠MQO =∠NQO .16.(2021·北京高考)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)过点A (0,-2),以四个顶点围成的四边形面积为45.(1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M ,N ,若|PM |+|PN |≤15,求k 的取值范围.[解](1)因为椭圆E 过点A (0,-2),所以b =2.以四个顶点围成的四边形面积为45,故12×2a×2b=2ab=45.=2ab=452=b2+c2=5=2=1,故椭圆E的标准方程为x25+y24=1.(2)由题意可得,直线l的斜率存在,且直线l的方程为y=kx-3,设B(x1,y1),C(x2,y2).=kx-3x2+5y2=20,消去y整理得(5k2+4)x2-30kx+25=0,Δ=(-30k)2-4(5k2+4)×25=400(k2-1)>0,故k>1或k<-1.由根与系数的关系,得x1+x2=--30k5k2+4=30k5k2+4,x1x2=255k2+4,进而可得y1+y2=k(x1+x2)-6=-245k2+4,y1y2=(kx1-3)(kx2-3)=k2x1x2-3k(x1+x2)+9=36-20k25k2+4.直线AB的方程为y+2=y1+2x1x,令y=-3,则x=-x1y1+2,故点-x1y1+2,-3直线AC的方程为y+2=y2+2x2x,令y=-3,则x=-x2y2+2,故点-x2y2+2,-3 |PM|+|PN|=|x1y1+2|+|x2y2+2|=|x1·y2+2+x2·y1+2y1+2·y2+2|=|x1kx2-1+x2kx1-1y1y2+2y1+y2+4|=|2kx1x2-x1+x2y1y2+2y1+y2+4|=|2k×255k2+4-30k5k2+436-20k25k2+4-485k2+4+4|=|5k|≤15,即|k|≤3,解得-3≤k≤3.综上,k的取值范围为[-3,-1)∪(1,3].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 平面解析几何初步 第1课时 直线的方程1.倾斜角:对于一条与x 轴相交的直线,把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角α叫做直线的倾斜角.当直线和x 轴平行或重合时,规定直线的倾斜角为0°.倾斜角的范围为________.斜率:当直线的倾斜角α≠90°时,该直线的斜率即k =tanα;当直线的倾斜角等于90°时,直线的斜率不存在.2.过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式 .若x 1=x 2,则直线的斜率不存在,此时直线的倾斜角为90°. 3.名称 方程 适用范围 斜截式 点斜式 两点式 截距式 一般式例1. 已知直线(2m 2+m -3)x +(m 2-m)y =4m -1.① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-23.④当m = 时,直线与x 轴平行.⑤当m = 时,直线过原点. 解:(1) -1 ⑵ 2或-21⑶31或-2 ⑷-23⑸ 41变式训练1.(1)直线3y + 3 x +2=0的倾斜角是 ( )A .30°B .60°C .120°D .150° (2)设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( )A .-3,4B .2,-3C .4,-3D .4,3(3)直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( )A .7B .-77 C .77D .-7 (4)直线l 经过两点(1,-2),(-3,4),则该直线的方程是 .解:(1)D .提示:直线的斜率即倾斜角的正切值是-3. (2)C .提示:用斜率计算公式1212y y x x --. (3)A .提示:两直线的斜率互为相反数.(4)2y +3x +1=0.提示:用直线方程的两点式或点斜式典型例题 基础过关例2. 已知三点A (1,-1),B (3,3),C (4,5). 求证:A 、B 、C 三点在同一条直线上. 证明 方法一 ∵A (1,-1),B (3,3),C (4,5), ∴k AB =1313-+=2,k BC =3435--=2,∴k AB =k BC ,∴A 、B 、C 三点共线.方法二 ∵A (1,-1),B (3,3),C (4,5), ∴|AB|=25,|BC|=5,|AC|=35,∴|AB|+|BC|=|AC|,即A 、B 、C 三点共线. 方法三 ∵A (1,-1),B (3,3),C (4,5), ∴AB =(2,4),BC =(1,2),∴AB =2BC . 又∵AB 与BC 有公共点B ,∴A 、B 、C 三点共线.变式训练2. 设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a+b+c=0.证明 ∵A 、B 、C 三点共线,∴k AB =k AC ,∴ca c ab a b a --=--3333,化简得a 2+ab+b 2=a 2+ac+c 2,∴b 2-c 2+ab-ac=0,(b-c )(a+b+c )=0, ∵a 、b 、c 互不相等,∴b-c≠0,∴a+b+c=0. 例3. 已知实数x,y 满足y=x 2-2x+2 (-1≤x≤1). 试求:23++x y 的最大值与最小值. 解: 由23++x y 的几何意义可知,它表示经过定点P (-2,-3)与曲线段AB 上任一点(x,y)的直线的斜率k,如图可知:k PA ≤k≤k PB , 由已知可得:A (1,1),B (-1,5), ∴34≤k≤8, 故23++x y 的最大值为8,最小值为34. 变式训练3. 若实数x,y 满足等式(x-2)2+y 2=3,那么xy的最大值为 ( ) A.21B.33 C.23D.3答案D例4. 已知定点P(6, 4)与直线l 1:y =4x ,过点P 的直线l 与l 1交于第一象限的Q 点,与x 轴正半轴交于点M .求使△OQM 面积最小的直线l 的方程. 解:Q 点在l 1: y =4x 上,可设Q(x 0,4x 0),则PQ 的方程为:6644400--=--x x x y 令y =0,得:x =1500-x x (x 0>1),∴ M(1500-x x,0)∴ S △OQM =21·1500-x x ·4x 0=10·1020-x x =10·[(x 0-1)+110-x +2]≥40 当且仅当x 0-1=110-x 即x 0=2取等号,∴Q(2,8) PQ 的方程为:626484--=--x y ,∴x +y -10=0变式训练4.直线l 过点M(2,1),且分别交x 轴y 轴的正半轴于点A 、B ,O 为坐标原点. (1)当△AOB 的面积最小时,求直线l 的方程; (2)当MB MA ⋅取最小值时,求直线l 的方程. 解:设l :y -1=k(x -2)(k <0) 则A(2-k 1,0),B(0,1-2k) ①由S =21(1-2k)(2-k 1)=21(4-4k -k1) ≥21⎥⎥⎦⎤⎢⎢⎣⎡-⋅-+)1()4(24k k =4当且仅当-4k =-k 1,即k =-21时等号成立 ∴△AOB 的面积最小值为4此时l 的方程是x +2y -4=0 ②∵|MA|·|MB|=224411k k+⋅+ =||)1(22k k +=2⎥⎦⎤⎢⎣⎡-+-)()1(k k ≥4 当且仅当-k =-k1即k =-1时等号成立 此时l 的方程为x +y -3=0(本题也可以先设截距式方程求解)1.直线方程是表述直线上任意一点M 的坐标x 与y 之间的关系式,由斜率公式可导出直线方程的五种形式.这五种形式各有特点又相互联系,解题时具体选取哪一种形式,要根据直线的特点而定.2.待定系数法是解析几何中常用的思想方法之一,用此方法求直线方程,要注意所设方程的适用范围.如:点斜式、斜截式中首先要存在斜率,截距式中横纵截距存在且不为0,两点式的横纵坐标不能相同等(变形后除处).3.在解析几何中,设点而不求,往往是简化计算量的一个重要方法.4.在运用待定数法设出直线的斜率时,就是一种默认斜率存在,若有不存在的情况时,就会出现解题漏洞,此时就要补救:较好的方法是看图,数形结合来找差距.第2课时 直线与直线的位置关系(一)平面内两条直线的位置关系有三种________.1.当直线不平行坐标轴时,直线与直线的位置关系可根据下表判定2.当直线平行于坐标轴时,可结合图形判定其位置关系. (二)点到直线的距离、直线与直线的距离1.P(x 0,y 0)到直线Ax +By +C =0 的距离为______________.2.直线l 1∥l 2,且其方程分别为:l 1:Ax +By +C 1=0 l 2:Ax +By +C 2=0,则l 1与l 2的距离为 .(三)两条直线的交角公式若直线l 1的斜率为k 1,l 2的斜率为k 2,则 1.直线l 1到l 2的角θ满足 .2.直线l 1与l 2所成的角(简称夹角)θ满足 .(四)两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数.(五)五种常用的直线系方程.① 过两直线l 1和l 2交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(不含l 2). ② 与直线y =kx +b 平行的直线系方程为y =kx +m (m≠b). ③ 过定点(x 0, y 0)的直线系方程为y -y 0=k(x -x 0)及x =x 0.④ 与Ax +By +C =0平行的直线系方程设为Ax +By +m =0 (m≠C). ⑤ 与Ax +By +C =0垂直的直线系方程设为Bx -Ay +C 1=0 (AB≠0). 例1. 已知直线l 1:ax+2y+6=0和直线l 2:x+(a-1)y+a 2-1=0, (1)试判断l 1与l 2是否平行; (2)l 1⊥l 2时,求a 的值.解(1)方法一 当a=1时,l 1:x+2y+6=0, l 2:x=0,l 1不平行于l 2; 当a=0时,l 1:y=-3,l 2:x-y-1=0,l 1不平行于l 2; 当a≠1且a≠0时,两直线可化为 l 1:y=-x a 2-3,l 2:y=x a-11-(a+1),l 1∥l 2⇔⎪⎩⎪⎨⎧+-≠--=-)1(3112a a a,解得a=-1, 综上可知,a=-1时,l 1∥l 2,否则l 1与l 2不平行.方法二 由A 1B 2-A 2B 1=0,得a (a-1)-1×2=0, 由A 1C 2-A 2C 1≠0,得a(a 2-1)-1×6≠0,∴l 1∥l 2⇔⎪⎩⎪⎨⎧≠⨯--=⨯--061)1(021)1(2a a a a⇔⎪⎩⎪⎨⎧≠-=--6)1(0222a a a a ⇒a=-1,故当a=-1时,l 1∥l 2,否则l 1与l 2不平行. (2)方法一 当a=1时,l 1:x+2y+6=0,l 2:x=0, l 1与l 2不垂直,故a=1不成立.当a≠1时,l 1:y=-2ax-3, l 2:y=x a-11-(a+1), 由⎪⎭⎫⎝⎛-2a ·a-11=-1⇒a=32.方法二 由A 1A 2+B 1B 2=0,得a+2(a-1)=0⇒a=32.变式训练1.若直线l 1:ax+4y-20=0,l 2:x+ay-b=0,当a 、b 满足什么条件时,直线l 1与l 2分别相交?平行?垂直?重合?解:当a=0时,直线l 1斜率为0,l 2斜率不存在,两直线显然垂直。

当a≠0时,分别将两直线均化为斜截式方程为:l 1:y= - a 4x+5,l 2:y= - 1a x+ ba 。

(1)当- a 4 ≠ - 1a,即a≠±2时,两直线相交。

(2)当- a 4 = - 1a 且5≠ ba 时,即a=2且b≠10或a= -2且b≠-10时,两直线平行。

(3)由于方程(- a 4)(- 1a)= -1无解,故仅当a=0时,两直线垂直。

(4)当- a 4 =- 1a 且5= ba 时,即a=2且b=10或a= -2且b=-10时,两直线重合例2. 已知直线l 经过两条直线l 1:x +2y =0与l 2:3x -4y -10=0的交点,且与直线l 3:5x -2y +3=0的夹角为4π,求直线l 的方程.解:由⎩⎨⎧=--=+0104302y x y x 解得l 1和l 2的交点坐标为(2,-1),因为直线l 3的斜率为k 3=25,l 与l 3的夹角为4π,所以直线l 的斜率存在. 设所求直线l 的方程为y +1=k(x -2).则tan4π=331kk k k +-=kk 25125+-=1 ⇒k =73或k =-37,故所求直线l 的方程为y +1=-37(x -2)或y +1=73(x -2)即7x +3y +11=0或3x -7y -13=0变式训练2. 某人在一山坡P 处观看对面山顶上的一座铁塔,如图所示,塔高BC=80(米),塔所在的山高OB=220(米),OA=200(米),图中所示的山坡可视为直线l ,且点P 在直线l 上,l 与水平地面的夹角为α,tan α=21.试问,此人距水平地面多高时,观看塔的视角∠BPC 最大(不计此人的身高)?解 如图所示,建立平面直角坐标系,则A (200,0),B (0,220),C (0,300). 直线l 的方程为y=(x-200)tan α,则y=2200-x .设点P 的坐标为(x,y ),则P (x, 2200-x )(x >200).由经过两点的直线的斜率公式k PC =xx x x 28003002200-=--,k PB =xx x x 26402202200-=--.由直线PC 到直线PB 的角的公式得tan ∠BPC=xx x x x k k k k PCPB PCPB 2640·280012160·1--+=+- =2886401606464016028864-⨯+=⨯+-2xx x x x (x >200).要使tan ∠BPC 达到最大,只需x+x640160⨯-288达到最小,由均值不等式x+x640160⨯-288≥2640160⨯-288,当且仅当x=x640160⨯时上式取得等号.故当x=320时,tan ∠BPC 最大. 这时,点P 的纵坐标y 为y=2200320-=60.由此实际问题知0<∠BPC <2π,所以tan ∠BPC 最大时,∠BPC 最大.故当此人距水平地面60米高时,观看铁塔的视角∠BPC 最大.例3. 直线y =2x 是△ABC 中∠C 的平分线所在的直线,若A 、B 坐标分别为A(-4,2)、B(3,1),求点C 的坐标并判断△ABC 的形状.解:因为直线y =2x 是△ABC 中∠C 的平分线,所以CA 、CB 所在直线关于y =2x 对称,而A(-4, 2)关于直线y =2x 对称点A 1必在CB 边所在直线上 设A 1(x 1,y 1)则⎪⎪⎩⎪⎪⎨⎧-⋅=+-=⋅---2422212)4(21111x y x y 得⎩⎨⎧-==2411y x 即A 1(4, -2)由A 1(4, -2),B(3, 1)求得CB 边所在直线的方程为:3x +y -10=0 又由⎩⎨⎧=-+=01032y x xy解得C(2, 4)又可求得:k BC =-3,k AC =31∴k BC ·k AC =-1,即△ABC 是直角三角形变式训练3.三条直线l 1:x+y+a=0,l 2:x+ay+1=0,l 3:ax+y+1=0能构成三角形,求实数a 的取值范围。

相关文档
最新文档