最新中职数学模拟试题:解答题(01)
中职数学试题库及答案
中职数学试题库及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c答案:A2. 已知函数f(x) = 2x + 3,求f(-1)的值。
A. -5B. 1C. -1D. 5答案:A3. 以下哪个数是无理数?A. 0.5B. πC. √4D. 0.333...答案:B4. 一个圆的半径为5,它的面积是多少?A. 25πC. 25D. 50答案:B5. 一个等差数列的首项是3,公差是2,那么它的第五项是多少?A. 11B. 13C. 15D. 17答案:A6. 以下哪个选项是不等式3x - 5 > 2的解集?A. x > 1B. x < 1C. x > 3D. x < 3答案:A7. 一个函数y = f(x)的图象关于y轴对称,那么f(x)是哪种函数?A. 奇函数B. 偶函数C. 非奇非偶函数D. 以上都不是答案:B8. 以下哪个选项是复数的共轭?B. z - z*C. z/z*D. z*答案:D9. 一个等比数列的首项是2,公比是3,那么它的第三项是多少?A. 18B. 54C. 162D. 486答案:A10. 以下哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 6D. x = -1答案:A二、填空题(每题3分,共30分)1. 函数y = sin(x)的周期是________。
答案:2π2. 一个圆的直径是10,那么它的周长是________。
答案:10π3. 已知一个等差数列的第二项是5,第三项是7,那么它的首项是________。
答案:34. 一个函数y = f(x)满足f(x + y) = f(x) + f(y),那么f(x)是________函数。
中职数学试题及答案
中职数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333…B. √2C. 22/7D. 3.14答案:B2. 函数y=2x+3的图象是一条直线,其斜率是多少?A. 2B. 3C. -2D. -3答案:A3. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B4. 以下哪个选项是等比数列?A. 1, 2, 4, 8B. 2, 3, 5, 7C. 1, 3, 6, 10D. 5, 10, 15, 20答案:A5. 一个长方体的长、宽、高分别为3、4、5,那么它的体积是多少?A. 60B. 12C. 20D. 15答案:A6. 以下哪个函数是奇函数?A. y = x^2B. y = x^3C. y = x^2 + 1D. y = sin(x)答案:B7. 一个等差数列的首项是2,公差是3,那么第5项是多少?A. 17B. 14C. 11D. 8答案:A8. 以下哪个选项是二项式定理的展开式?A. (a+b)^2 = a^2 + 2ab + b^2B. (a-b)^2 = a^2 - 2ab + b^2C. (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3D. (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3答案:C9. 一个直角三角形的两直角边长分别为3和4,那么它的斜边长是多少?A. 5B. 7C. 6D. 8答案:A10. 以下哪个选项是复数?A. 3+4iB. 4C. 2-3iD. 1/2答案:A二、填空题(每题4分,共20分)1. 一个圆的周长是2πr,其中r是圆的半径,如果一个圆的周长是12π,那么它的半径是______。
答案:62. 函数y=x^2-4x+4的顶点坐标是(______,______)。
答案:(2, 0)3. 一个等比数列的首项是1,公比是2,那么它的第4项是______。
中职高考数学模拟题
中职高考数学模拟题一、选择题1.已知集合A ={−1,0,1,2,3},若B ⊆A 且B ={x ||x |<2},则集合B 的子集个数为A.4B.8C.16D.322.函数y =√2−x x 2−1的定义域是 A.(−∞,−1)∪(1,2)B.(−1,1)C.(−∞,1)∪(1,2]D.(−∞,−1)∪(−1,1)∪(1,2]3.已知命题p:∀x ∈R,|x |>x ,命题q:∃x ∈R,−x 2≤0,则为真命题的是A. p ∧qB. ¬p ∧¬qC.¬p ∧qD.p ∧¬q4.若a −b >0,则不等式成立的是A.2a >bB.|a |>|b |C.a 2>b 2D.2a >2b5.用斜二测画法画出边长为4的正方形的直观图,则该直观图的面积等于A.4B.4√2C.8D.8√26.如图所示,P,Q,M 是线段AB 的四等分点,O 是线段AB 外任意一点,若OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b⃗ ,则OP⃗⃗⃗⃗⃗ =A.23a +13b⃗ B.23a −13b⃗ C.34a +14b ⃗D.14a+34b⃗7.若cos(π+α)=−35,且α是第四象限角,则tan2α=A.−247B.247C.−43D.438.在等差数列{a n}中,已知a4=7,a11=35,则a18=A.63B.67C.73D.769.已知变量x,y满足的约束条件为{2x+y−2≤0x−y+1≥0x≥0y≥0,则函数z=x+y的最大值是A.23B.1C.53D.210.已知p:x>2m−5,q:x>−1,若p是q的必要不充分条件,则实数m的取值范围是A.(2,+∞)B.[2,+∞)C.(−∞,2)D.(−∞,2]11.已知直线l:3x−4y=0,则过点A(−2,3)且与直线l垂直的直线方程是A.4x−3y−17=0B.4x+3y−1=0C.3x−4y+18=0D.3x+4y−6=012.已知两个平面α,β,若α‖β,且m⊂α,n⊂β,则下列结论正确的是A.m,n是平行直线B.m,n是异面直线C.m,n是相交直线D.m,n是不相交直线13.已知函数f(x)=−x2−(a−1)x+2在[1,+∞)是减函数,则实数a的取值范围是A.[−1,+∞)B.(−∞,−1]C.[−2,+∞)D.(−∞,−2]14.已知圆x 2+y 2−4mx +ny +1=0的圆心坐标是(6,1),则该圆的直径等于A.√37B.2√37C.6D.1215.已知向量a =(1,m ),b ⃗ =(m,9),若a 与b⃗ 方向相反,则实数m 等于 A.±3B.−3C.3D.±916.不等式log 2|3−2x |<0的解集为A.(1,2)B.(−∞,1)∪(2,+∞)C.(1,32)∪(32,2)D.(−2,−1)17.已知f (x )是奇函数,当x >0时,f (x )=x (x +1),则当x <0时,f (x )等于A.−x (1−x )B.x (1−x )C.−x (1+x )D.x (1+x )18.已知双曲线x 2a 2+y 2b 2=1(a >0,b >0)的渐近线与圆x 2+(y −2)2=1相切,则双曲线的离心率是A.√2B.√3C.2D.319.已知命题p:∃x ∈R,x 2−2<0,则¬p 是A. ∃x ∈R,x 2−2>0B. ∀x ∈R,x 2−2>0C.∃x ∈R,x 2−2≥0D.∀x ∈R,x 2−2≥020.如图所示,已知F 是是圆圆x 29+y 25=1是的焦点点,点A (1,1)是,若P 是是圆圆的的一个点点,则|PA |+|PF |的最小值是A.6−√6B.6−√5C.6−√3D.6−√2二、填空题21.已知函数f(x)={x−2(x≥8)f[f(x+5)](x<8),则f(5)=22.在ΔABC中,已知BC=4,AC=4√3且B=2A,则cos B=23.已知直线l过点P(3,4),现把直线l绕坐标原点O逆时针方向旋转450得到直线m,则直线m 的斜率是24.如图所示,已知正弦型函数y=A sin(wx+φ)(A>0,w>0,|φ|<π2)的部分图像,则该函数的解析式为25.在平面直角坐标系xOy中,倾斜角为600的直线l过抛物线y2=4x的点点,且直线l与抛物线相交于A,B两点,则ΔOAB的面积等于三、解答题26.已知二次函数f(x)=ax2+bx−2的图像过点A(1,0),且∀x∈R,f(x)=f(2−x)(1)若一次函数g(x)的图像经过原点和B(4,−b),求g(x)的解析式(2)若f(x)>g(x),求x的取值范围27.已知函数y=1−2cos(π+x)(cos x−√3sin x)(1)求函数的最大值和最小正周期(2)若y=1,x∈[0,π],求x的值28.已知四边形ABCD是正方形,P是平面ABCD外一点,PD⊥且平面ABCD(1)求证:PB⊥AC(2)若M为PA的中点,求证:PC‖平面MBD29.某地投入资金进行生态环境建设,同时开发旅游产业,根据规划,2022年投入建设资金800万元,以后每年的投入比的一年减少20%,已知2022年当地的旅游收入是400万元,预计伴随着环境的改善,以后每年的旅游收入比的一年增加25%(1)求2023年的投入资金与旅游收入的差额(2)到哪一年旅游总收入将超过总投入?请计算说明30.已知双曲线x 2a2−y2b2=1(a>0,b>0)的顶点A(6,0)到右点点F2的距离是m,到焦点点F1的距离是7m是(1)求双曲线的标准方程(2)经过F1的直线l与圆x2+y2=a2相切,l与双曲线相交于M,N两点,求|MN|。
(完整版)中等职业学校对口升学考试数学模拟试题及答案
中等职业学校对口升学考试数学模拟试题及答案本试卷分选择题和非选择题两部分。
满分 100 分,考试时间为 90 分钟。
答卷前先填写 密封线内的项目和座位号。
考试结束后,将本试卷和答题卡一并交回。
选择题注意事项:1.选择题答案必须填涂在答题卡上,写在试卷上的一律不计分。
2.答题前,考生务必将自己的姓名、准考证号、座位号、考试科目涂写在答题卡上。
3.考生须按规定要求正确涂卡,否则后果自负。
一、单项选择题(本大题共 10 小题,每小题 4 分,共计 40 分)1. 己知 M={x|x>4}, .N={x|x<5},则 M∪N=( )A. {x|4<x<5}B.RC. { x|x>4}D. {x|x>5}22. 已知 sin α= ,则 cos 2α值为( ) 32 5A. -1 3 1B. 9 5C. 9 5D.1- 33. 函数 y=x 3 是( )A.偶函数又是增函数B. 偶函数又是减函数C.奇函数又是增函数D. 奇函数又是减函数4.不等式|2x -1|<3 的解集是( )A. { x ︱ x <1}B. { x ︱ -1<x <2}C. { x ︱ x >2}D. { x ︱ x < -1 或 x >2}5.在等差数列{a n }中, a 5+a 7=3,则 S 11=( )A.15B.16.5C.18D.18.56. 已知直线a,b 是异面直线,直线 c ∥a ,那么 c 与 b 位置关系是( )A.一定相交B.一定异面C.平行或重合D.相交或异面7.将 3 封信投入 4 个不同的邮筒的投法共有 ( )种A.34 B .43 C .A 34 D .C 348. 已知|a|=8, |b|=6,<a,b >=150°, 则 a ·b=( )A.-24 3B.-24C.24 3D.169. 函数 f(x)=x 2-3x+1在区间[-1,2]上的最大值和最小值分别是 ( )5 5A.5,-1B. 11,-1C.5, -D. 11,- 4 4x 2 y 25 16A . (±11,0)B . (0, ± 11 ) C. (0, ±11) D . (± 11 ,0)10.椭圆 + =1 的焦点坐标是( )非选择题注意事项:用蓝黑色钢笔或圆珠笔将答案直接写在试卷上。
中职生高考模拟数学试卷
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √16B. √-1C. √3D. √02. 已知 a > b,那么下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 > b - 1C. a + 1 < b + 1D. a - 1 < b - 13. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 3C. y = kx(k ≠ 0)D. y = 3/x4. 已知三角形的三边长分别为3,4,5,则这个三角形的形状是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形5. 下列各式中,正确的是()A. 2^3 = 2^2 2B. 3^4 = 3^2 3C. 4^3 = 4^2 4D. 5^4 = 5^2 56. 在平面直角坐标系中,点A(-2,3)关于原点的对称点是()A.(-2,-3)B.(2,3)C.(2,-3)D.(-2,-3)7. 下列各组数中,成等差数列的是()A. 2,4,8,16B. 1,3,5,7C. 1,2,4,8D. 1,2,3,48. 若 a,b,c 是等差数列,且 a + b + c = 12,那么 a + c 的值是()A. 4B. 6C. 8D. 109. 下列函数中,奇函数是()A. y = x^2B. y = 2x + 1C. y = |x|D. y = x^310. 下列各式中,正确的是()A. sin(π/2) = 1B. cos(π/2) = 1C. tan(π/2) = 1D. cot(π/2) = 1二、填空题(每题5分,共50分)11. 若 a > b,那么 a - b 的符号是 _______。
12. 若 x^2 - 5x + 6 = 0,则 x 的值为 _______。
13. 函数 y = 3x^2 - 2x + 1 的顶点坐标是 _______。
四川省中职单招考试模拟题数学试题及答案
四川省中职单招考试模拟题数学试题及答案一、选择题(每题4分,共40分)1. 下列函数中,奇函数是()A. f(x) = x^3 - 2xB. f(x) = x^2 + 1C. f(x) = 2x - 1D. f(x) = |x|答案:A2. 若函数f(x) = 2x + 1在区间(0,+∞)上单调递增,那么函数g(x) = -2x + 1在区间(0,+∞)上()A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:B3. 下列各数中,无理数是()A. √9B. √16C. √3D. √1答案:C4. 已知a、b是方程x^2 - (a+2)x + b = 0的两根,则a + b的值为()A. 2B. 3C. 4D. 5答案:B5. 下列关于x的不等式中,有解的是()A. x^2 + 1 < 0B. x^2 + 2x + 1 < 0C. x^2 - 4x + 3 < 0D. x^2 + 2x - 3 < 0答案:D6. 已知等差数列的前三项分别为a-1, a+1, 2a+1,那么该等差数列的公差为()A. 2B. 1C. -1D. 0答案:A7. 若函数f(x) = 2x - 3在区间(-∞,0)上单调递减,那么函数g(x) = 3x + 2在区间(0,+∞)上()A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:A8. 已知函数f(x) = x^2 - 2x + c在x = 1处取得最小值,那么c的值为()A. 0B. 1C. -1D. -3答案:B9. 已知a > b,那么下列不等式中成立的是()A. a^2 > b^2B. a^3 > b^3C. a^4 > b^4D. a^5 > b^5答案:B10. 若a、b是方程x^2 - 3x + 2 = 0的两根,那么a^2 + b^2的值为()A. 5B. 7C. 9D. 11答案:D二、填空题(每题4分,共40分)11. 若函数f(x) = 2x - 3在区间(-∞,0)上单调递减,那么函数g(x) = 3x + 2在区间(0,+∞)上的单调性为______。
中职数学学业水平考试仿真模拟试题(一)
中职数学学业水平考试仿真模拟试题(一)合格性考试(试卷满分60分,考试时间30分钟)一、单项选择题(本大题共8小题,每小题5分,共计40分)1.下列四个关系正确的是( )A .φ∈0B .φ=0C .}0{0∈ D. }0{∈φ2.不等式0)2)(1(<+-x x 的解集( )A .)1,2(-B .)2,1(-C .),1()2,(∞⋃--∞ D. ),2()1,(∞⋃--∞3.求函数x x f -=1)(的定义域( )A .)1,(-∞B .]1,(-∞C .),1(∞ D. ),1[∞4. 函数θcos 3)(=x f 的最大值( )A .-3B .3C .-1 D.15.已知等差数列}{n a 中,有2065=+a a ,则前10项和为( )A .10B .20C .100 D.2006.向量)4,2(),2,1(-==b a ,则b a ⋅值为( )A .-6B .4C .6 D.-47.过点)4,3(),2,1(--B A 直线的倾斜角为( )A .060B .090C .0120 D. 01358.掷两枚硬币,全部正面朝上的概率为( )A .41B .43C .31 D. 21二、填空题(本大题共2小题,每小题5分,共计10分)9.圆04222=+-+y x y x 的圆心坐标为: ,半径为:10.不等式1|2|<-x 的解集为:三、解答题(本大题1小题,每小题10分,共计10分)11.已知角α的终边经过)4,3(-P ,试求ααcos sin +与αtan 的值。
等级性考试(试卷满分30分,考试时间20分钟)一、单项选择题(本大题共3小题,每小题4分,共计12分)1. 函数⎩⎨⎧≤+>-=0,10,5)(2x x x x x f ,求)3()(f f 的值( ) A .-5 B .-2 C .5 D.22.已知,53)cos(-=-απ且α为锐角,则αsin 的值为( ) A .53- B .53 C .54 D. 54- 3.平行于同一条直线的两条直线的位置关系( )A .平行B .相交C .异面 D.都有可能二、填空题(本大题共2小题,每小题4分,共计8分)4.向量)2,(m a = ,且5||=a ,则m 的值:5.过点)2,1(P ,且与直线02:=--y x l 平行的直线方程为:三、解答题(本大题1小题,每小题10分,共计10分)6.已知等差数列}{n a 中,有2,853==a a ,求:(1)求n a 的值;(2)求n S 的最大值.。
中等职业学校对口升学考试数学模拟试题及答案
中等职业学校对口升学考试数学模拟试题及答案一、选择题1.若一组数据的方差为0,则该组数据的所有值相等。
【√】2.已知函数f(x)的导函数f'(x),则f(x)在x=0处的函数值可以通过f'(x)来确定。
【√】3.已知集合A={1,2,3,4},集合B={3,4,5},则A∪B的元素个数为6。
【×】4.已知集合A={x|x<5},集合B={x|3<x<6},则A∩B的元素个数为0。
【×】5.已知三角形ABC中,∠B=90°,tanA=1/√3,则sinC=1/2。
【×】二、填空题1.若10%的一批商品中有5%是次品,则整批商品中的次品数量为__________。
2.已知函数f(x)=3x^2-2x+1,求f(-1)的值为____________。
3.已知集合A={1,2,3,4},集合B={3,4,5},则A-B的元素个数为__________。
4.解方程3x+4y=10,5x+8y=14,得到x的值为__________。
5.已知正方形ABCD的边长为2,O为正方形的中心点,连接OA、OB、OC、OD形成一新的不规则图形,求该图形的面积为____________。
三、解答题1.某公司今年的棉花产量比去年增加了20%,去年的棉花产量为1000吨,今年的棉花产量为多少吨?解:今年的棉花产量 = 去年的棉花产量 + 增加的数量= 1000 + (1000 × 0.2)= 1000 + 200= 1200 (吨)2.已知函数y=3x^2-2x+1,求函数图像与x轴、y轴的交点坐标。
解:当y=0时,3x^2-2x+1=0使用求根公式可得:x = (-b±√(b^2-4ac)) / (2a)将a=3,b=-2,c=1代入得:x = (-(-2)±√((-2)^2-4×3×1)) / (2×3)x = (2±√(4-12)) / 6x = (2±√(-8)) / 6由于开方结果为负数,没有实数解,因此函数图像与x轴、y轴没有交点。
中专考试题卷子数学及答案
中专考试题卷子数学及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 计算下列表达式的结果:\[ 3x - 2x = \]A. xB. 5xC. 1D. 0答案:A4. 一个圆的半径是5厘米,那么它的周长是:A. 10π厘米B. 15π厘米C. 20π厘米D. 25π厘米答案:C5. 一个等差数列的首项是3,公差是2,那么它的第5项是:A. 13B. 15C. 17D. 19答案:A6. 一个三角形的三个内角分别是40度、50度和90度,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形答案:B7. 计算下列表达式的值:\[ (2^3) \times (3^2) \]A. 24B. 36C. 54D. 72答案:B8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C9. 一个数的倒数是它本身,这个数是:A. 1B. -1C. 0D. 2答案:A10. 计算下列表达式的值:\[ \frac{1}{2} + \frac{1}{3} \]A. 1B. 1/2C. 1/5D. 5/6答案:D二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是____。
答案:5或-52. 一个等腰三角形的两个底角相等,且其中一个底角是60度,那么顶角的度数是____。
答案:60度3. 一个数的立方根是它本身,这个数是____。
答案:0, 1或-14. 一个数的平方是16,那么这个数是____。
答案:4或-45. 一个数的绝对值是3,那么这个数是____。
答案:3或-3三、解答题(每题10分,共50分)1. 已知一个等差数列的前三项分别是2,5,8,求第10项的值。
答案:第10项的值是23。
2024年中职高考数学计算训练 专题01 一元二次函数、方程、不等式的相关计算(原卷版)
43.下列不等式中哪些是一元二次不式?(其中a,b,c,m为常数)
(1)
(2)
(3)
(4)
(5)
(6)
44.解下列不等式:
(1) ;
(2) ;
(3) .
45.解不等式
(1)
(2)
46.求解下列不等式的解集:
(1) ;
(2) ;
(3) ;
(4) ;
(5) .
23.不等式 的解集是.
24.函数 在 上的最大值为.
25. 的解集为.
26.不等式 的解集是.
27.关于x的方程 的解集为 ,则实数a的值为.
28.不等式 的解集是.
29.不等式 的解集为.
30.不等式 的解集为.
31.不等式 的解集为.
32.不等式2x2+x-15<0的解集为.
33.设关于 的不等式 的解集为 ,则 .
A. B.
C. D.
11.不等式 的解集是()
A. B. C. D.
12.关于x的不等式 的解集为()
A.
B.
C.
D.
13.不等式 的解集是()
A. B.
C. D.
14.不等式 的解集为()
A. B. C. D.
15.不等式 的解集为()
A. B.
C. D. 或 ,
16.不等式 的解集是()
A. B. C. D.
A. B.
C. ,或 D. ,或
6.下列不等式中,解集为 或 的不等式是()
A. B. C. D.
7.若关于 的方程 的两根分别为 ,则 ()
A.-1B.1C.-3D.3
8.不等式 的解集是()
最新中职数学期中模考试题及答案:解答题(1)
中职数学期中模考试题及答案:解答题解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答题卡的相应位置上)17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cosA +C 2=33. (1)求cos B 的值; (2)若2=⋅,b =22,求a 和c 的值.18.(本小题满分12分)已知函数)m x x x f --++=|2||1(|log )(2.(1)当7=m 时,求函数)(x f 的定义域;(2)若关于x 的不等式2)(≥x f 的解集是R ,求m 的取值范围.19.(本小题满分12分)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线θθρcos 2sin :2a C =)0(>a ,过点)4,2(--P 的直线l 的参数方程为:⎪⎪⎩⎪⎪⎨⎧+-=+-=t y t x 224222,(t 为参数),直线l 与曲线C 分别交于N M ,两点.(1)写出曲线C 和直线l 的普通方程;(2)若|||,||,|PN MN PM 成等比数列,求a 的值.20.(本小题满分12分)在极坐标系中,已知圆C 经过点()4P π,,圆心为直线sin 3ρθπ⎛⎫-= ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.21.(本小题满分12分)设函数x e x x f 221)(=. (1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.22.(本小题满分12分)已知椭圆的长轴长为a 2,焦点是)0,3(),0,3(21F F -,点1F 到直线32a x -=的距离为33,过点2F 且倾斜角为锐角的直线l 与椭圆交于A 、B 两点,使得BF 2→=3F 2A →.(1)求椭圆的标准方程;(2)求直线l 的方程.解答题(本大题共6小题,共70分)18.(本小题满分12分)解:(1)由题设知:721>-++x x , ……………1分 不等式的解集是以下不等式组解集的并集: ⎩⎨⎧>-++≥7212x x x ,或⎩⎨⎧>+-+<≤72121x x x ,或⎩⎨⎧>+---<7211x x x ……………4分解得函数)(x f 的定义域为),4()3,(+∞⋃--∞; ……………6分(2)不等式2)(≥x f 即421+≥-++m x x , ……………8分 R x ∈ 时,恒有3)2()1(21=--+≥-++x x x x , ……………10分 不等式421+≥-++m x x 解集是R ,m m ,34≤+∴的取值范围是]1-,(-∞ ……………12分20.(本小题满分12分)解:∵圆C 圆心为直线3sin 3ρθπ⎛⎫-= ⎪⎝⎭与极轴的交点, ∴在3sin 3ρθπ⎛⎫-= ⎪⎝⎭中令=0θ,得1ρ= ………………3分 ∴圆C 的圆心坐标为(1,0) ………………5分 ∵圆C 经过点()24P π,, ∴圆C 的半径为()2221212cos =14PC π=+-⨯⨯ ………………8分∴圆C 经过极点………10分∴圆C 的极坐标方程为=2cos ρθ ……………12分21.(本小题满分12分)解:(1))2(221)(2'+=+=x x e e x xe x f xx x……2分 设)(),0()2,(,20,0)2(2x f x x x x e x为和或+∞--∞∴-<>>+的增区间, )()0,2(,02,0)2(2x f x x x e x为-∴<<-<+的减区间. ……6分 (2)x ∈[-2,2]时,不等式f (x )>m 恒成立等价于min )(x f >m, ……8分令:0)2(221)(2'=+=+=x x e e x xe x f xx x∴x=0和x=-2,由(1)知x=-2是极大值点,x=0为极小值点]2,0[)(,0)0(,2)2(,2)2(222e x f f e f e f ∈∴===- ∴m <0 ……12分22.(本小题满分12分)解: (1)∵F 1到直线x =-a 23的距离为33,∴-3+a 23=33. ∴a 2=4而c =3,∴b 2=a 2-c 2=1.∵椭圆的焦点在x 轴上,∴所求椭圆的方程为x 24+y 2=1………………4分 (2)设A (x 1,y 1)、B (x 2,y 2).由第(1)问知)0,3(2FBF 2→=3F 2A →,⎩⎨⎧=--=-∴12123)3(33y y x x∴⎩⎨⎧x 2=43-3x 1,y 2=-3y 1.………………6分 ∵A 、B 在椭圆x 24+y 2=1上, ∴⎩⎨⎧x 214+y 21=1,43-3x 124+3y 12=1. ………………8分∴⎩⎪⎨⎪⎧ x 1=1033,y 1=233取正值. ………………10分∴l 的斜率为233-01033-3= 2. ∴l 的方程为y =2(x -3),即2x -y -6=0. ………………12分。
中职技能高考数学模拟试题及解答(一)
中职技能高考数学模拟试题及解答一、选择题(本大题共6小题,每小题分,共30分)在每小题给出的四个备选项中,只有一项是符合题目要求的,请将其选出。
未选,错选或多选均不得分。
1.下列三个结论中正确的个数为①所有的直角三角形可以构成一个集合;②两直线夹角的范围为,;③若,则.A、0B、1C、2D、3答案:B 考查集合的定义,夹角的定义,不等式的乘法性质。
2.直线的倾斜角为A、B、C、D、答案:D考查直线一般式求斜率,特殊角的三角函数。
3.下列三个结论中正确的为①零向量与任意向量垂直;②数列是以5为公差的等差数列;③的解集为,.A、①②B、①③C、②③D、①②③答案:B考查零向量定义,等差数列通项公式,一元二次不等式的解法。
4.下列函数中为幂函数的是①;②;③;④;⑤.A、①②⑤B、①③⑤C、①④⑤D、②③④答案:B考查幂函数的定义。
5.下列函数中既是奇函数,又在区间,是增函数的是A、B、C、D、答案:B考查函数奇偶性和单调性的判断。
6.等差数列中,,,则A、84B、378C、189D、736答案:B考查等差数列通项公式及前n项和公式的运用。
二、填空题(本大题共4小题,每小题6分,共24分)把答案填在答题卡相应题号的横线上。
7.计算:答案:考查指数、对数的运算法则及计算能力。
8.函数的定义域用区间表示为答案:,考查函数定义域的求法,不等式的解法及集合交集。
9.若数列是等差数列,其中,,成等比数列,则公比答案:2 考查等比中项,等差数列通项公式,等比数列定义。
10.与向量垂直的单位向量坐标为答案:,或,考查向量垂直的充要条件,单位向量的定义。
三、解答题(本大题共3小题,每小题12分,共36分)应写出文字说明,证明过程或演算步骤。
11.平面内给定三个向量,,,解答下列问题:(I)求满足的实数; (6分)(II)设,求实数k的值. (6分)答案:(I)=得:考查向量的线性运算(II),(,)由可得:(得:-2考查向量的线性运算,向量平行的充要条件。
中职单招考试数学全真综合模拟试卷
中职单招考试数学全真综合模拟试卷一、选择题1. 一件商品原价600元,商家打折促销,打7折后还可以使用优惠券减50元,最终需要支付的金额是多少元?2. 某公司原本有500名员工,其中男性占总人数的40%,公司决定增加员工数量,使男性员工占总人数的45%,那么公司需要再招聘多少名员工?3. 一根绳子长3米,要分成10段,每段长度相等,每段绳子的长度是多少米?4. 某地区一辆公交车每天运行16小时,每小时运行80公里,那么该地区公交车每天行驶的总里程是多少公里?5. 一个几何图形的面积是120平方厘米,将其放大到原来的2倍后,新图形的面积是多少平方厘米?6. 某班级有35名学生,男生占总人数的45%,女生有多少名?7. 一块长方形的土地,长和宽的比是3:4,如果宽度增加2米,那么新的长和宽的比是多少?8. 某人从A地出发,沿直线行驶120千米到达B地,然后沿另一条直线行驶80千米到达C地,那么从A地到C地的直线距离是多少千米?9. 一张长方形的纸片,长是5厘米,宽是3厘米,如果长宽都放大到原来的3倍,新纸片的面积是多少平方厘米?10. 某人购买了一套电视、冰箱和洗衣机,共花费15000元,其中电视的价格是冰箱价格的2倍,洗衣机价格是电视价格的1.5倍,那么冰箱的价格是多少元?二、解答题1. 某人去购物,购买了一件原价500元的衣服,商家打折促销,打9折后还可以使用优惠券减50元,某人需要支付的金额是多少元?解:打9折后的价格 = 500元 × 0.9 = 450元某人需要支付的金额 = 450元 - 50元 = 400元2. 某公司原本有200名员工,其中男性占总人数的30%,公司决定增加员工数量,使男性员工占总人数的40%,那么公司需要再招聘多少名员工?解:原本男性员工数量 = 200人 × 0.3 = 60人原本女性员工数量 = 200人 - 60人 = 140人新员工总人数 = 200人 + x新员工数量中的男性员工数量 = (60人 + x) × 0.4新员工数量中的女性员工数量 = (140人 + x)根据题目要求,可以列出方程:(60人 + x) × 0.4 = (200人 + x) × 0.4解方程得到:x = 100所以公司需要再招聘100名员工。
中职一模数学试题及答案
中职一模数学试题及答案一、选择题(本题共10分,每小题2分)1. 下列哪个选项是实数集的表示符号?A. ℤB. ℚC. ℝD. ℂ答案:C2. 函数f(x) = 2x^2 + 3x - 5的图像关于哪个点对称?A. (0, -5)B. (1, -2)C. (-3/4, -25/8)D. (-1/2, -7/2)答案:C3. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。
A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3}D. {1, 4}答案:A4. 已知等差数列的首项a1 = 2,公差d = 3,求第5项的值。
A. 17B. 14C. 11D. 8答案:A5. 圆的半径为5,求圆的面积。
A. 25πB. 50πC. 75πD. 100π答案:B二、填空题(本题共10分,每小题2分)6. 若直线y = 2x + 3与x轴相交,则交点的坐标为______。
答案:(-3/2, 0)7. 一个三角形的内角和为______度。
答案:1808. 已知等比数列的首项a1 = 4,公比q = 2,求第4项的值。
答案:329. 一个圆的周长为44cm,求这个圆的直径。
答案:22cm10. 一个长方体的长、宽、高分别为2m、3m、4m,求其体积。
答案:24m³三、解答题(本题共80分)11. 解不等式2x - 5 < 3x + 1,并写出解集。
答案:首先将不等式化简为2x - 3x < 1 + 5,得到-x < 6,解得x > -6。
所以解集为x > -6。
12. 已知函数f(x) = x^3 - 3x^2 + 2x - 5,求其导数f'(x)。
答案:根据导数的定义,f'(x) = 3x^2 - 6x + 2。
13. 证明:对于任意实数x,x² - 1 ≥ 0。
答案:首先,我们可以将x² - 1分解为(x - 1)(x + 1)。
中职数学考试题及答案
中职数学考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的结果:A. 2^3B. 3^2C. 4^1D. 5^0答案:D3. 已知函数f(x) = 2x + 3,求f(-1)的值。
A. -1B. 1C. 5D. 7答案:B4. 一个数的平方根是4,这个数是:A. 16B. 8C. 4D. 2答案:A5. 圆的周长公式是:A. C = πrB. C = 2πrC. C = πdD. C = 2πd答案:B6. 已知直角三角形的两条直角边长分别为3和4,斜边长为:A. 5B. 7C. 9D. 12答案:A7. 计算下列表达式的值:A. (-3)^2B. (-3)^3C. (-3)^4D. (-3)^5答案:A8. 一个数的立方根是2,这个数是:A. 8B. 2C. 4D. 6答案:A9. 已知等差数列的首项为2,公差为3,求第5项的值。
A. 17B. 14C. 11D. 8答案:A10. 已知等比数列的首项为2,公比为2,求第4项的值。
A. 32B. 16C. 8D. 4答案:A二、填空题(每题3分,共30分)1. 一个数的绝对值是5,这个数是______。
答案:±52. 一个数的相反数是-7,这个数是______。
答案:73. 计算(-3) × (-4) = ______。
答案:124. 计算√16 = ______。
答案:45. 已知一个数的平方是25,这个数是______。
答案:±56. 计算(-2)^3 = ______。
答案:-87. 已知一个数的立方根是3,这个数是______。
答案:278. 已知直角三角形的两条直角边长分别为6和8,斜边长为______。
答案:109. 已知等差数列的首项为10,公差为2,求第10项的值是______。
答案:2810. 已知等比数列的首项为1,公比为3,求第3项的值是______。
中职数学高考复习模拟试题:解答题(1)
中职数学高考复习模拟试题:解答题17.某农家旅游公司有客房300间,日房租每间为20元,每天都客满. 公司欲提高档次,并提高租金,如果每间客房日房租每增加2元,客房出租数就会减少10间. 若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?18.A 市和B 市分别有某种库存机器12台和6台,现决定支援C 市10台机器,D 市8台机器.已知从A 市调运一台机器到C 市的运费为400元,到D 市的运费为800元;从B 市调运一台机器到C 市的运费为300元,到D 市的运费为500元.(1)若要求总运费不超过9 000元,共有几种调运方案?(2)求出总运费最低的调运方案,最低运费是多少?19.某地西红柿从2月1号起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg )与上市时间t (距2月1日的天数,单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q 与上市时间t 的变化关系:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t ;(2)利用你选取的函数,求西红柿种植成本Q 最低时的上市天数及最低种植成本.20.设计一幅宣传画,要求画面面积为4 840 cm 2,画面的宽与高的比为λ(λ<1 ),画面的上、下各留8 cm 空白,左、右各留5 cm 空白.怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?17.每间客房日租金提高到40元.18.(1)共有三种调运方案.(2)由y =200x +8 600(0≤x ≤6)可知,当x =0时,总运费最低,最低费用是8 600元.19.(1)西红柿种植成本Q 与上市时间t 的函数关系是Q =2001t 2-23t +2425.(2)当t =-2001223- =150天时,西红柿种植成本Q 最低为 Q =2001×1502-23×150+2425=100(元/100 kg ). 20.高为88 cm ,宽为55 cm。
北京中职数学模拟试题解答题集中练(一)
北京中职数学模拟试题:解答题解答题:(共6小题,共70分)17.(10分)已知集合}03|{<≤-=x x A ,集合}2|{2x x x B >-=(1)求B A ⋂;(2)若集合}22|{+≤≤=a x a x C ,且C B A ⊆⋂)(,求实数a 的取值范围.18.(12分)如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点.(1)求证:EF ∥平面CB 1D 1; (2)求证:平面CAA 1C 1⊥平面CB 1D 1.19.(12分)已知函数22)(2+-=x x x f .(Ⅰ)求)(x f 在区间[3,21]上的最大值和最小值;(Ⅱ)若mx x f x g -=)()(在[2,4]上是单调函数,求m 的取值范围.20.(12分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数。
(Ⅰ)求b 的值;(Ⅱ)判断函数()f x 的单调性;21.(12分)如图,长方体1111D C B A ABCD -中,1==AD AB ,21=AA ,点P 为1DD 的中点.(1)求证:直线1BD ∥平面PAC ; (2)求CP 与平面11BDD B 所成的角大小.22.(12分)某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是p =⎩⎨⎧t +20,0<t <25,t ∈N,-t +100,25≤t ≤30,t ∈N.该商品的日销售量Q (件)与时间t (天)的函数关系是Q =-t +40(0<t ≤30,t ∈N),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?解答题:18.证明:(1)连结BD.在正方体1AC 中,对角线11//BD B D . 又 E 、F 为棱AD 、AB 的中点, //EF BD ∴. 11//EF B D ∴. 又B 1D 1⊂平面11CB D ,EF ⊄平面11CB D ,∴ EF∥平面CB 1D 1.(2) 在正方体1AC 中,AA 1⊥平面A 1B 1C 1D 1,而B 1D 1⊂平面A 1B 1C 1D 1,∴ AA 1⊥B 1D 1.又在正方形A 1B 1C 1D 1中,A 1C 1⊥B 1D 1,1111AA A C A =∴ B 1D 1⊥平面CAA 1C 1. 又 B 1D 1⊂平面CB 1D 1, ∴平面CAA 1C 1⊥平面CB 1D 1.ADA 1B 1C 1D 1E21.(1)证明:设AC 和BD 交于点O ,连PO , 由P ,O 分别是1DD ,BD 的中点,故PO//1BD , ∵PO ⊂平面PAC ,BD ⊄平面PAC 所以直线1BD ∥平面PAC(2)长方体1111D C B A ABCD -中, 1==AD AB ,底面ABCD 是正方形,则AC ⊥BD 又1DD ⊥面ABCD ,则1DD ⊥AC ,∵BD ⊂平面11BDD B ,1D D ⊂平面11BDD B ,1BD D D D ⋂= ∴AC ⊥面11BDD BPD CBAC 1B 1D 1 A 1∴CP在平面11BDD B内的射影为OP∴CPO∠是CP与平面11BDD B所成的角,依题意得222 CP CD DP=+=,1222 CO AC==,在Rt△CPO中,12CO CP=,∴CPO∠=30o∴CP与平面11BDD B所成的角为30o。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中职数学模拟试题:解答题
解答题(本大题满分52分):
17. (本题满分10分)设关于x 的函数b x f x x --=+12
4)(,若函数有零点,求实数b 的取值范围。
18. (本题满分10分) 计算:(I)1037188-⎛⎫⎛⎫-
++ ⎪ ⎪⎝⎭⎝⎭ ( II)2lg 25lg 2lg 50(lg 2)+⨯+.
19. (本题满分10分)某种药物试验监测结果是:服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.
写出第一次服药后y 与t 的函数关系式()y f t =;
据进一步测定:每毫升血液中含药量不少于1微克时,治疗有效,服药多少小时后开始有治疗效果?治疗能持续多少小时?(精确到0.1,参考数据:lg2=0.301)
20. (本题满分10分) (1) 计算:421
033
)21(25.0)21()4(--⨯+--;
(2)计算: 7123
5521002573
log log log log .-+++。
21. (本题满分12分) (Ⅰ)已知13a a -+=,求22a a -+的值;
(Ⅱ)化简求值:
021.10.5lg 252lg 2-++; (Ⅲ)解不等式:
2log (1)1x +<.
17.(1)10; (2) 52
18.
19.
略
20.
(1)原式=4141(2)2
--+⨯=-3;………………………………………5分
=214
21.解:(Ⅰ) ∵13a a -+= ∴
12()9a a -+= 即2229a a -++= ∴ 227a a -+=
(Ⅱ)原式1442lg52lg 212(lg5lg 2)12=+-++=++=+ 3= (Ⅲ)∵2log (1)1x +< 即22log (1)log 2x +<
∴101112x x x +>⎧⇒-<<⎨+<⎩
∴不等式的解集为(1,1)-
略。