最新武汉大学概率统计期末考试B

合集下载

武汉大学《概率论与数理统计》期末考试历年真题及参考答案

武汉大学《概率论与数理统计》期末考试历年真题及参考答案

6、解:首先确定 f (x, y)
1[
1 x dy]dx
6,0 x 1, x2
y x;
0 x2
E(X)=
1[
0
x x2
x
6dy]dx
1 2
;E(X
2
)=
1[
0
x x2
x2
6dy]dx
3 10
;E(Y)=
1[
0
y
y y 6dx]dy
2 5
E(Y 2 )=
1[
0
y
y
(
1 2
x)(
1 2
y)
f
(x,
y), 所以X ,Y不独立;
(3)1[ 1h(x y) f (x, y)dy]dx 1[ x1 h(z)(x x z)dz]dx
00
0x
0 [ z1 h(z)(2x z)dx]dz 1 1 h(z)(2x z)dx]dz
1 0
0z
0 h(z)(z2 z 1)dz 1 h(z)(1 z2 z)dz
Z 0 1234
P
1 131 1
(Z) 16 4 8 4 16
武汉大学2011-2012 第一学期《概率论与数理统 计》期末试题及参考答案
一、解:(1)P(A+B)=P(A)+P(B)-P(A)P(B)=0.5+0.4-0.5×0.4=0.7
(2)P((A-B)|(A+B))=P((A-B)∩(A+B))/P(A+B)=[P(A)-P(A)P(B)]/P(A+B)=0.3/0.7=3/7 二、解:
y
2
6dx]dy
3 14
;E(XY)=

2020-2021大学《概率论与数理统计》期末课程考试试卷B2(含答案)

2020-2021大学《概率论与数理统计》期末课程考试试卷B2(含答案)

2020-2021《概率统与数理统计》课程考试试卷B2适用专业 ,考试日期. 答题时间2小时,闭卷,总分100分附表:0.025 1.96z = 0.975 1.96z =- 0.05 1.65z = 0.95 1.65z =-一、 填空题(每空2分,共28分)1、设C B A ,,是三事件,用C B A ,,的运算关系表示下列各事件. (1)C B A ,,至少有两个发生 (2)A 发生且B 与C 至少有一个发生 (3)C B A ,,只有一个发生2、若()()41,31==B P A P .则(1)若B A ,相互独立,则()=⋃B A P (2)若B A ,互斥,则()=⋃B A P3、设X 在(0,6)服从均匀分布,则方程22540x Xx X ++-=有实根的概 率为4、将n 只球(n ~1号)随机地放进n 个盒子(n ~1号)中去,一个盒子装一 只球,若一只球放入与球同号的盒子中,称为一个配对.设为总的配对数为X , 则()=X E5、设总体()p B X ,1~,n X X X ,,,21 是来自总体X 的样本.则),,,(21n X X X 的 分布为 ,()=X E ,()=X D ,()=2S E 6、设n X X X ,,,21 是来自分布()2,σμN 的样本,μ已知,2σ未知.则()~122∑=-ni i X σμ7、从一批零件中,抽取9个零件,测得其直径(mm )为:19.7 20.1 19.8 19.9 20.2 20.0 19.9 20.2 20.3,设零件的直径服从正态分布()2,σμN ,且21.0=σ(mm ).则这批零件的均值μ的置信水平为0.95的置信区间为8、设n X X X ,,,21 是来自总体X 的样本,且()()2,σμ==X D X E ,若()22cSX -是2μ的无偏估计,则=c二、选择题(共4题,每题3分,共12分)9.设B A ,是任意两个概率不为0的互斥事件,则下列结论肯定正确的是( ) A )B A 与互斥 B )B A 与相容 C )()()()B P A P AB P = D )()()A P B A P =-10.设()2,1,412141101=⎪⎪⎭⎫⎝⎛-=i X i 且()1021==X X P ,则()==21X X P ( )A )0B )1C )21D )4111.设随机变量Y X 与的联合概率密度函数为()⎪⎩⎪⎨⎧≤+=,01,1,22其他y x y x f π,则( )A )Y X 与相关,但不独立B )Y X 与不相关,但不独立C )Y X 与不相关,但独立D )Y X 与既相关,又独立12.设()12,1,0~+=X Y U X ,则 ( ) A )()1,0~U Y B )()110=≤≤Y P C )()3,1~U Y D )()010=≤≤Y P 三、解答题(共5题,每题12分,共60分)13、试卷中有一道题,共有四个答案,其中只有一个答案正确.任一考生如果会解这道题,则一定能选出答案.如果他不会这道题,则不妨任选一答案.设考生会解这道题的概率为0.8,试求考生选出正确答案的概率.14.设随机变量ξ的概率密度函数为()()()0 ,010,>⎩⎨⎧<<=k x kx x f ,,其他αα且95.0=ξE ,试求α,k .15.设随机变量(,)X Y 的联合概率密度函数为212, 01(,)0, y y x f x y ⎧≤≤≤=⎨⎩其他试求边际密度函数()X f x 和()E XY .16.设总体X 具有分布律其中()10<<θθ为未知参数.已知取得了样本值1,2,1321===x x x ,试求θ的 矩估计值和最大似然估计值.17.假定考生成绩服从正态分布()2,σμN ,1.5分,在某地一次数学统考中,随机抽取了36位考生的成绩,算得平均成绩为66.5分,问在显著性水平0.05下,是否可以人为这次考试全体考生的平均成绩为70分.2020-2021《概率统与数理统计》课程考试试卷B2答案一、填空题(每空2分,共28分)1、BC AC AB ⋃⋃,()C B A ⋃,C B A C B A C B A ⋃⋃;2、127,125;3、21;4、1;5、())1(,)1(,,1)(11p p np p p p pni i ni ix n x --∑-∑==-; 6、2)(n χ; 7、20.111; 8、n1. 二、选择题(共4小题,每题3分,共12分).12 11 10 9C B A D 、,、,、,、三、解答题13、0.8⨯1+0.25⨯0.2=0.80514、解 由110160.95f x dx xf x dx分;得191218k分;15、解 ()()230124,015分xX f x y dy x x ==≤≤⎰;()130011(,)1212.2分xy x E XY xyf x y dxdy dx xy dy ≤≤≤===⎰⎰⎰⎰16、解 22122131322E X 分;所以()332分,E X θ-=又()^453分;E X X ==所以的矩估计为566=分θ.由521L,则ln 5ln ln 2ln 18L分;令ln 0d L d,得5106分θ=,所以的最大似然估计为5126=分θ17、解 本题是关于正态总体均值的假设检验问题,由于总体方差未知,故用t 检验法,欲检验的一对假设为:01:70 vs :70H H μμ=≠拒绝域{}1/2z z α->,当显著性水平为0.05时,0.975 1.96z =-.由已知条件,66.5, 1.5,x σ==故检验统计量的值为()666.570141.5z ⨯-==-因为14 1.96z =>,故拒绝原假设,可以认为这次考试全体考生的平均成绩不为70分.。

2021年大学公共课概率论与数理统计期末考试卷及答案(新版)

2021年大学公共课概率论与数理统计期末考试卷及答案(新版)

2021年大学公共课概率论与数理统计期末考试卷及答案(新版)一、单选题1、若X ~211(,)μσ,Y ~222(,)μσ那么),(Y X 的联合分布为A ) 二维正态,且0=ρB )二维正态,且ρ不定C ) 未必是二维正态D )以上都不对【答案】C2、设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的 A )不相关的充分条件,但不是必要条件;B )独立的必要条件,但不是充分条件;C )不相关的充分必要条件;D )独立的充分必要条件【答案】C3、设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是A )当n 充分大时,近似有X ~(1),p p N p n -⎛⎫ ⎪⎝⎭B ){}(1),k k n k n P X kC p p -==-0,1,2,,k n =⋅⋅⋅C ){}(1),k k n k n k P X C p p n-==-0,1,2,,k n =⋅⋅⋅D ){}(1),1k k n k i n P X k C p p i n -==-≤≤ 【答案】B4、对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =⋅,则A )()()()D XY D X D Y =⋅B )()()()D X Y D X D Y +=+C )X 和Y 独立D )X 和Y 不独立【答案】B5、设为来自正态总体的一个样本,若进行假设检验,当___ __时,一般采用统计量n X X X ,,,21 2(,)N μσX U =(A)(B) (C) (D) 【答案】D6、若X ~()t n 那么2χ~(A )(1,)F n (B )(,1)F n (C )2()n χ (D )()t n【答案】A7、总体X ~2(,)N μσ,2σ已知,n ≥ 时,才能使总体均值μ的置信水平为0.95的置信区间长不大于L(A )152σ/2L (B )15.36642σ/2L (C )162σ/2L (D )16【答案】B8、设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的 A )不相关的充分条件,但不是必要条件;B )独立的必要条件,但不是充分条件;C )不相关的充分必要条件;D )独立的充分必要条件【答案】C9、设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的A )不相关的充分条件,但不是必要条件;B )独立的必要条件,但不是充分条件;C )不相关的充分必要条件;D )独立的充分必要条件【答案】C10、已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是( ) X X A +)( +A ∑=-n i i X n B 1211)( a X C +)( +10 131)(X a X D ++5 【答案】B二、填空题220μσσ未知,检验=220μσσ已知,检验=20σμμ未知,检验=20σμμ已知,检验=1、设总体服从正态分布,且未知,设为来自该总体的一个样本,记,则的置信水平为的置信区间公式是 ;若已知,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取__ __。

武汉大学数学与统计学院《高等数学B》期末考试试题及答案(A卷)

武汉大学数学与统计学院《高等数学B》期末考试试题及答案(A卷)

武汉大学数学与统计学院2007—2008第一学期《高等数学B 》期末考试试题(180学时)一、(87'⨯)试解下列各题:1、计算n →∞2、计算0ln(1)limcos 1x x xx →+--3、计算arctan d x x x ⎰4、 计算4x ⎰5、计算0d x xe x +∞-⎰6、设曲线方程为sin cos 2x t y t=⎧⎨=⎩,求此曲线在点4t π=处的切线方程。

7、已知2200d cos d y x te t t t =⎰⎰,求x y d d8、设11xy x-=+,求()n y二、(15分)已知函数32(1)x y x =-求:1、函数)(x f 的单调增加、单调减少区间,极大、极小值;2、函数图形的凸性区间、拐点、渐近线 。

三、(10分)设()g x 是[1,2]上的连续函数,0()()d xf xg t t =⎰1、用定义证明()f x 在(1,2)内可导;2、证明()f x 在1x =处右连续; 四、(10分)1、设平面图形A 由抛物线2y x = ,直线8x =及x 轴所围成,求平面图形A 绕x 轴旋转一周所形成的立体体积;2、在抛物线2(08)y x x =≤≤上求一点,使得过此点所作切线与直线8x =及x 轴所围图形面积最大。

五、(9分)当0x ≥,对()f x 在[0,]b 上应用拉格朗日中值定理有: ()(0)()(0f b f f b bξξ'-=∈ 对于函数()arcsin f x x =,求极限0lim b bξ→武汉大学数学与统计学院2007—2008第一学期《高等数学B 》期末考试试题参考答案一、 试解下列各题:(87'⨯) 1、解:n →∞n =l i 2n == 2、解:00011ln(1)1lim lim lim 1cos 1sin (1)sin x x x x x x x x x x x →→→-+--+===---+ 3、解:原式222211111arctan d arctan arctan 222221x x x x x x x x c x =-=-+++⎰ 4222220002111dt 2dt 2(1)dt 2dt111t t t t t t -+==-++++⎰⎰⎰22200(1)|2ln(1)|2ln3t t =-++=5、解:000||1x x x x xe dx xe e dx e +∞+∞--+∞--+∞=-+=-=⎰⎰6、解:因为4t π=时,x =,0y =,442sin 2cos t t dy t dx t ππ==-==-故曲线在点处的切线方程为:y x =--, 7、解:两边微分得: 222cos y e dy x x dx = 222c o s y dyx x e dx-= 8、解:由12212(1)1,2(1)(1)1y x y x x--'=-+=+-=⋅-⋅++ 3()(12(1)(2)(1),,(1)2!(1)n n ny x y n x --+''=⋅-⋅-⋅+=-⋅⋅⋅+ 二、(15分)解:定义域为:(,1)(1,)-∞+∞ 23(3)(1)x x y x -'=- 令⇒='0y 驻点0,3x =46(1)xy x ''=- 令⇒=''0y 0x =极小值为:27(3)4f =,无极大值。

武汉大学《统计学原理》期末考试试卷B卷

武汉大学《统计学原理》期末考试试卷B卷

2010—2011学年第二学期武汉大学经管院 统计学原理 课程期末考试试卷(B )1、最早使用统计学这一学术用语的是( ) A 政治算术学派 B 社会统计学派 C 国势学派 D 数理统计学派2、对百货商店工作人员进行普查,调查对象是( ) A 各百货商店B 各百货商店的全体工作人员C 一个百货商店D 每位工作人员3、下列调查中,调查单位与填报单位一致的是( )A 企业设备调查B 人口普查C 农村耕地调查D 工业企业现状调查4、定基增长速度与环比增长速度的关系为( ) A 定基增长速度等于相应的各个环比增长速度的算术和 B 定基增长速度等于相应的各个环比增长速度的连乘积C 定基增长速度等于相应的各个环比增长速度加1后的连乘积再减1D 定基增长速度等于相应的各个环比增长速度的连乘积加1(或100%) 5、按季节平均法测定季节比率时,各季的季节比率之和应等于( ) A 100% B 400% C 120% D 1200%6、某城市2009年末有人口750万人,有零售商业网点3万个,则该城市的商业网点密度指标是( ) A 2.5千人/个 B 250人/个 C 0.25个/千人D 250个/人7、2009年某地区新批准73个利用外资项目,这个指标属于( ) A 时点指标 B 时期指标一、单项选择题(本大题共20道小题,每小题1分,共20分)。

在每小题列出的四个备选项中只有一个是符合要求的,请将其代码填写在下面的方格内。

C 动态相对指标D 比较相对指标8、某企业报告期产量比基期增长了10% ,生产费用增长了8%,则其产品单位成本降低了()A 1.8%B 2%C 20%D 18%9、某居民在维持基本生活水准情况下,按报告期的物价购买消费品多支付20元,按基期价格购买的消费品支出是400元,则价格指数为()A 95%B 110%C 90%D 105%10、抽样极限误差是指抽样指标和总体指标之间()A 抽样误差的平均数B 抽样误差的标准差C抽样误差的可靠程度D 抽样误差的最大可能范围11、用简单随机重复抽样方法抽取样本单位,如果要使抽样平均误差降低50%,则样本容量需要扩大到原来的()A 2倍B 3倍C 4倍D 5倍12、在假设检验中,由于抽样偶然性,接受了实际不成立的H假设,则()A 犯第Ⅰ类错误B 犯第Ⅱ类错误C 推断正确D犯第Ⅰ类错误和推断正确都有可能13、机床厂某日从两台机器所加工的同一种零件中,分别抽取两个样本,检验两台机床的加工精度是否相同,则提出假设()A012112:;:H Hμμμμ=≠B2222220111:;:H Hσσσσ=≠C012112:;:H Hμμμμ≤>D2222220111:;:H Hσσσσ≤>14、在对总体参数的假设检验中,若给定显著水平(01)αα<<,则犯第Ⅰ类错误的概率为()A αB 1α-C /2αD 不能确定15、几何法平均发展速度等于()。

武汉理工大学概率统计期末试卷B

武汉理工大学概率统计期末试卷B

武汉理工大学教务处试题标准答案及评分标准用纸课程名称—概率论与数理统计——(B 卷)一. 选择题(每小题3分,共15分)1.C2.D3.B4.D5.A 二. 填空题(每小题3分,共15分)1.157 2. 41 3.20 4. 0.3 5.221σ+-n n三.解:(1)3.004.07.0)()()()(=+-=+-=AB P A P B A P B P ……5分(2))()()()()(B P A P A P B A P B P +-= ,5.06.03.0)(1)()()(==--=A P A PB A P B P ……10分四.(1)),(Y X 的联合密度函数⎪⎩⎪⎨⎧∈--=,,0),(,))((1),(其他D y x c d a b y x f … 5分 (2)⎰∞+∞-⎪⎩⎪⎨⎧≤≤-==,,0,,1),()(其他b x a a b dy y x f x f X⎰∞+∞-⎪⎩⎪⎨⎧≤≤-==,,0,,1),()(其他d y c cd dx y x f y f Y … 7分 (3))()(),(y f x f y x f Y X = ,Y X 与∴ 独立。

……10分五、设A 为产品合格事件,则A A ,是产品的一个划分。

又设B 为产品检查合格事件。

则9.0)(=A P ,98.0)|(=A B P ,05.0)|(=A B P …… 4分 (1)由全概率公式,一个产品被认为合格的概率)|()()|()()(A B P A P A B P A P B P +=887.005.01.098.09.0=⨯+⨯=。

…… 8分(2)由贝叶斯定理,“合格品”确实合格的概率)(/)|()()|(B P A B P A P B A P =994.0887.0/98.09.0=⨯=。

…… 10分六.12411218381=+++++B A (1) ……3分若x 与y 独立, 应有:()()()212,1=⋅====y P x P y x P⎪⎭⎫⎝⎛+⋅⎪⎭⎫ ⎝⎛++=⇒A 12124112181121 (2) ……6分综合(1)(2)有:41=A 81=B ……10分 七.0>y 时,dx x f y F yyX Y ⎰-=)()( ……4分 221)()(yY Y e y y F y f -='=π ……6分0≤y 时,0)(=y F Y ⎪⎩⎪⎨⎧≥>=-0021)(2y y e yy f y Y π …… 10分八、(1)1)()(+==⎰+∞--θθθdx xe X E x X =+1θ , θ的矩估计为:.1-X ……… 5分 (2)∑-=⋅=ni ix n n e e x x x L 1),,,(21θθ0ln >θd L d , L 为θ的单调增函数,故 }{min 1i n i x ≤≤=θ … 10分九(0,1)X N ………3分{1.4 5.4}}2(163P X P <<=<=Φ- ………7分解2(10.953Φ-≥ 得34.6n ≥ n 至少取35 (10)()1{0,1}()()()8P AB P X Y P AB P AB P A B ====-= ………………8分|1115{0,0}18888P X Y ===---= ………………10分| 五. (10分)(1)由(,)1f x yd x d y +∞+∞-∞-∞=⎰⎰,得A =1 ………………2分 |(2)10()0xxDE XY xydxdy dx xydy -===⎰⎰⎰⎰2()3DE X xdxdy ==⎰⎰ …………6分 ()0DE Y ydxdy ==⎰⎰ cov ,)()()()0X Y E XY E X E Y (=-= (9)分(3)0XY ρ= X 与Y 不相关 ………………10分六.(10分)设同时开着的灯数为X ,(10000,0.7)X b ………………2分(0,1)N (近似) (5)分{69007100}210.971P X ≤≤=Φ-= ………………10分七.(10分)1101()(2E X dx θθθθ++==+⎰+1)x ………………3分 解12X θθ+=+,得θ的矩估计量为211X X-- ………………5分1()1()ni i L x θθθ=+∏n=() 1ln ln 1ln nii L n xθθ==+∑()+ (7)分令1ln ln 01ni i d L nx d θθ==+=+∑ 得θ的极大似然估计量为11ln nii nX=--∑ …………10分八.(10(0,1)X N ………………3分{1.4 5.4}21P X P <<=<=Φ- ………………7分解2(10.953Φ-≥ 得34.6n ≥ n 至少取35 ………………10分九.(10分)T =(1)X t n - 0.005{(1)}0.99P T t n <-= ……………4分0.0050.005{(1)(1)}0.99P X n X X n -<<-= ..................8分 所求为(1485.61,1514.39) (10)分。

2021年大学必修概率论与数理统计期末考试题及答案含解析

2021年大学必修概率论与数理统计期末考试题及答案含解析

2021年大学必修概率论与数理统计期末考试题及答案(含解析)一、单选题1、袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。

则第二人 取到黄球的概率是 (A )1/5(B )2/5 (C )3/5(D )4/5 【答案】B2、设x 「X 2,…,x n 为来自正态总体N (Ne 2)的一个样本,若进行假设检验,当 时,一般采用统计量【答案】D3、设某个假设检验问题的拒绝域为W,且当原假设H °成立时,样本值(x 1,x 2,…,x n )落入W 的概率为0.15,则 犯第一类错误的概率为 ___________ 。

(A ) 0.1 (B ) 0.15 (C ) 0.2 (D ) 0.25【答案】B4、设X ,…,X 是来自总体X 的样本,且EX = N ,则下列是N 的无偏估计的是()1n【答案】D统计量的是( ) (A) _L(X 2 + X 2 + X 2)(B)X + 3No 21 231(C) max(X ,X ,X )(D)1(X + X + X )1233123【答案】A 6、设X〜N(N ,o 2),那么当o增大时,尸{X -N<o} =A )增大B )减少C )不变D )增减不定。

(A)日未知,(B)日已知,检验o 2= o 2 0(C)o 2未知, 检验N =N(D )o2已知,检验N = N(A )1处X(8) 占Z Xi =1(C )- E Xni =21 n -1(D )工5、设5~ N Q,o 2),其中N 已知,o 2未知,X ,X ,X 为其样本,123下列各项不是X - A t = -=o S / nn日未知,检验o 2= o 2(A) 0日已知,检验o 2= O 2(B)o 2未知,检验A =A(C)o 2已知,检验A =A(D)【答案】CZ10、X , X ,…,X 是来自总体X 〜N(0,1)的一部分样本,设:Z = X 2+…+ X 2 Y = X 2+…+ X 2,则一~()121618916Y(A ) N(0,1) (B ) t(16) (C ) x 2(16) (D ) F(8,8)7、 设X , X ,…X 为来自正态总体N (从,。

《概率论与数理统计》期末考试(B)卷答案与评分标准

《概率论与数理统计》期末考试(B)卷答案与评分标准

海南师范大学物理、电子、自动化、地理、城规、计算机专业《概率论与数理统计》 2009—2010学年度第一学期期末考试(B )卷答案与评分标准注意事项:1. 考前请将密封线内填写清楚 2. 所有答案请直接答在试卷上3.考试形式:闭卷4. 本试卷共五大题,满分100分, 考试时间100分钟一、单项选择题(本题共六小题,每小题3分,共18分。

在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分)1、将3个不同的球随机地放入4个不同的杯中, 有一个杯子放入2个球的概率是( B ).. A :324234C C ⋅; B :324234P C ⋅ ; C :424233P C ⋅; D :424233C C ⋅.2、下列函数中,可看作某一随机变量X 的概率分布密度函数的是( C ) A :;,1)(2+∞<<-∞+=x x x f B :;,11)(2+∞<<-∞+=x xx fC :;,)1(1)(2+∞<<-∞+=x x x f π; D :.,)1(2)(2+∞<<-∞+=x x x f π3、己知随机变量Y X ,相互独立且都服从正态分布)4 ,2(N , 则( B ) . A :)4 ,4(~N Y X +; B :)8 ,4(~N Y X + ; C :)4 ,0(~N Y X -; D :Y X -不服从正态分布.4、己知随机变量X 服从二项分布)2.0 ,10(B , 则方差=)(X D ( D ). A :1; B :0.5; C :0.8; D :1.6.5、己知随机变量X 的期望5)(=X E , 方差4)(=X D , 则( A ). A :98}65-X {≥<P ; B :98}65-X {≤<P ; C :98}65-X {≥≥P ; D :98}65-X {≤≥P .6、设4321,,,X X X X 是来自正态总体) ,(2σμN 的简单随机样本,下列四个μ的无偏估计量中,最有效的是( D ). A :)(313211X X X ++=μ; B :)2(413214X X X ++=μ; C :)32(613213X X X ++=μ; D :)(4143212X X X X +++=μ.二、填空题(将答案直接填入栝号内,本题共六小题,每小题3分,共18分)1、设B A 与为随机事件,3.0)(,5.0)(==AB P A P ,则条件概率=)(A B P ( 0.6 )2、已知随机变量X 服从区间,10]2[内的均匀分布,X 的概率分布函数为),(x F 则=)4(F ( 0.25 )。

3《概率论与数理统计》期末考试试题 B卷答案

3《概率论与数理统计》期末考试试题 B卷答案

华中农业大学本科课程考试 参考答案与评分标准考试课程:概率论与数理统计 学年学期: 试卷类型:B 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。

答案错选或未选者,该题不得分。

每小题2分,共10分。

) 1. 设随机变量X 的概率密度)1(1)(2x x p +=π,则X Y 2=的分布密度为 . 【 b 】 (a))41(12x +π; (b) )4(22x +π; (c) )1(12x +π; (d) x arctan 1π. 2. 设随机变量序列x 1, x 2,…, x n …相互独立,并且都服从参数为1/2的指数分布,则当n 充分大时,随机变量Y n =∑=ni i x n 11的概率分布近似服从 . 【 b 】(a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n) (d) N(2n,4n)3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个 简单随机样本,则下列表达式中不是统计量的是 . 【 C 】(a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在假设检验问题中,检验水平α意义是 . 【 a 】 (a )原假设H 0成立,经检验被拒绝的概率; (b )原假设H 0成立,经检验不能拒绝的概率; (c )原假设H 0不成立,经检验被拒绝的概率; (d )原假设H 0不成立,经检验不能拒绝的概率.5.在线性回归分析中,以下命题中,错误的是 . 【 d 】(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.二、填空题(将答案写在该题横线上。

答案错选或未选者,该题不得分。

每小题2分,共10分。

最新概率统计试题及答案(本科完整版)

最新概率统计试题及答案(本科完整版)

一、 填空题(每题2分,共20分)1、记三事件为A ,B ,C . 则用A ,B ,C 及其运算关系可将事件,“A ,B ,C 中只有一个发生”表示为 . 2、匣中有2个白球,3个红球。

现一个接一个地从中随机地取出所有的球。

那么,白球比红球早出现的概率是 2/5 。

3、已知P(A)=0.3,P (B )=0.5,当A ,B 相互独立时,06505P(A B )_.__,P(B |A )_.__⋃==。

4、一袋中有9个红球1个白球,现有10名同学依次从袋中摸出一球(不放回),则第6位同学摸出白球的概率为 1/10 。

5、若随机变量X 在区间 (,)a b 上服从均匀分布,则对a c b <<以及任意的正数0e >,必有概率{}P c x c e <<+ =⎧+<⎪⎪-⎨-⎪+>⎪-⎩e,c e b b ab c ,c e b b a6、设X 服从正态分布2(,)N μσ,则~23X Y -= N ( 3-2μ , 4σ2 ) .7、设1128363X B EX DX ~n,p ),n __,p __==(且=,=,则 8、袋中装有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以X 表示取出3只球中的最大号码。

则X 的数学期望=)(X E 4.5 。

9、设随机变量(,)X Y 的分布律为则条件概率 ===}2|3{Y X P 2/5 .10、设121,,X X 来自正态总体)1 ,0(N , 2129285241⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∑∑∑===i i i i i i X X X Y ,当常数k = 1/4 时,kY 服从2χ分布。

二、计算题(每小题10分,共70分)1、三台机器因故障要人看管的概率分别为0.1,0.2,0.15,求: (1)没有一台机器要看管的概率 (2)至少有一台机器不要看管的概率 (3)至多一台机器要看管的概率解:以A j 表示“第j 台机器需要人看管”,j =1,2,3,则: ABC ABC ABCP ( A 1 ) = 0.1 , P ( A 2 ) = 0.2 , P ( A 3 ) = 0.15 ,由各台机器间的相互独立性可得()()()()()123123109080850612P A A A P A P A P A ....=⋅⋅=⨯⨯= ()()()12312321101020150997P A A A P A A A ....⋃⋃=-=-⨯⨯= ()()()()()()1231231231231231231231233010808509020850908015090808500680153010806120941P A A A A A A A A A A A A P A A A P A A A P A A A P A A A .................=+++=⨯⨯+⨯⨯+⨯⨯+⨯⨯=+++=2、甲袋中有n 只白球、m 只红球;乙袋中有N 只白球、M 只红球。

2020-2021某大学《概率论》期末课程考试试卷合集(含答案)

2020-2021某大学《概率论》期末课程考试试卷合集(含答案)

2020-2021《概率论》期末课程考试试卷B1适用专业:畜教 考试日期:试卷所需时间:120分钟 闭卷 试卷总分:100一.单选题(每题2分,共20分)1.设A 为随机事件,则下列命题中错误的是 ( ).(A)A 和A 互为对立事件; (B)Ω=⋃A A 即样本空间; (C)A 和A 互为互不相容; (D)A A =. 2. 抛掷4枚均匀对称的硬币,恰有1枚反面向上的概率为( ). (A)0.125; (B)0.375; (C)0.25; (D)0.5.3. 设随机变量X 的分布函数为)(x F ,密度函数为)(x f ,则下列结论中不一定成立的是( ).(A)1)(=+∞F ; (B)0)(=-∞F ;(C)1)(0≤≤x f ; (D)1)(=⎰+∞∞-dx x f .4.设随机变量X 服从[]8,0上的均匀分布,则概率{}32<≤X P 为 ( ). (A)0.2; (B)0.45;(C)0.125; (D)0.5.5.已知5.0)(=A P ,3.0)(=B P ,且事件A 与B 独立,则)(B A P ⋃为( ).(A)0.5; (B)0.3;(C)0.8; (D)0.65.6.设随机变量X 与Y 的期望和方差都存在,则下列各式成立的是( ).(A)EY EX Y X E +=+)(; (B)DY DX Y X D +=+)(;(C)EY EX XY E ⋅=)(; (D)DY DX XY D ⋅=)(. 7.下列各表中可作为随机变量分布律的是( ).8.设二维随机变量),(Y X 的联合分布密度为22221),(y x e y x f +-=π,则下列说法错误的是( ).(A)),(Y X 服从正态分布; (B)X 与Y 相互独立; (C)X 与Y 不相关; (D)协方差0),cov(≠Y X . 9.已知4)(=X D ,16)(=Y D ,4),cov(=Y X ,则相关系数XY ρ为( ). (A)0.005; (B)0.05;(C)5; (D)0.5.10.将2封信随机投入4个邮筒中,则未向前两个邮筒投信的概率为( ).(A)2412C C ; (B)!4!2;(C)24!2A ; (D)2242.二.填空题(每空2分,共20分)1.试用事件A 、B 、C 表示下列事件:(1)A 、B 、C 都不发生 ;(2)A 、B 、C 至多一个发生 ; (3)A 、B 、C 至少两个发生 ;2.设X 为连续型随机变量,C 为一个常数,则{}C X P == . 3. 4个人随机地排成一排,甲和乙相邻的概率是 . 4.设X ~)3,6(2N ,Y ~)4,4(2N ,且X 与Y 相互独立,则: (1)Y X -服从的分布为 ; (2){}=<-2Y X P .5.设X ~),(p n B ,且4.2=EX ,44.1=DX ,则=n , =p . 6.设X 的方差5.0)(=X D ,用契比晓夫不等式估计{}5.2≥-EX X P . 三. 计算题 (每题10分,共60分)1.试卷中有一道选择题,共有四个答案可供选择,其中只有一个正确答案,任一考生如果会解这道题,则一定能选出答案,如果他不会做这道题,则不妨任选一个答案,设考生会解这道题的概率为0.8,求考生选出正确答案的概率.2.设二维随机变量(X,Y)的联合分布律为:试求 (1))(X E ;(2))2(Y X E +.3.设随机变量X的分布律为:X -1 0 211 2概率31 61 61 121 41 求:X 的分布函数F(X).4.甲乙丙三人向同一目标射击,甲射中的概率为0.3,乙射中的概率为0.4,丙射中的概率为0.5,求目标被击中的概率.5.设随机变量X在区间(0,1)上服从均匀分布,求X e Y =的概率密度.6.设随机变量X的概率密度为⎩⎨⎧≤≤-=其他.;,022,)(2x cx x f试求:(1)常数c ;(2){}10<<X P .2020-2021《概率论》期末课程考试试卷B1答案适用专业:畜教 考试日期:试卷所需时间:120分钟 闭卷 试卷总分:100一.单选题(每题2分,共20分)1.设A 为随机事件,则下列命题中错误的是 ( B ).(A)A 和A 互为对立事件; (B)Ω=⋃A A 即样本空间; (C)A 和A 互为互不相容; (D)A A =. 2. 抛掷4枚均匀对称的硬币,恰有1枚反面向上的概率为( C ). (A)0.125; (B)0.375; (C)0.25; (D)0.5.3. 设随机变量X 的分布函数为)(x F ,密度函数为)(x f ,则下列结论中不一定成立的是( C ).(A)1)(=+∞F ; (B)0)(=-∞F ;(C)1)(0≤≤x f ; (D)1)(=⎰+∞∞-dx x f .4.设随机变量X 服从[]8,0上的均匀分布,则概率{}32<≤X P 为 ( C ). (A)0.2; (B)0.45; (C)0.125; (D)0.5.5.已知5.0)(=A P ,3.0)(=B P ,且事件A 与B 独立,则)(B A P ⋃为( D ).(A)0.5; (B)0.3;(C)0.8; (D)0.65.6.设随机变量X 与Y 的期望和方差都存在,则下列各式成立的是( A ).(A)EY EX Y X E +=+)(; (B)DY DX Y X D +=+)(;(C)EY EX XY E ⋅=)(; (D)DY DX XY D ⋅=)(. 7.下列各表中可作为随机变量分布律的是( D8.设二维随机变量),(Y X 的联合分布密度为22221),(y x e y x f +-=π,则下列说法错误的是( D ).(A)),(Y X 服从正态分布; (B)X 与Y 相互独立; (C)X 与Y 不相关; (D)协方差0),cov(≠Y X . 9.已知4)(=X D ,16)(=Y D ,4),cov(=Y X ,则相关系数XY ρ为( D ). (A)0.005; (B)0.05;(C)5; (D)0.5.10.将2封信随机投入4个邮筒中,则未向前两个邮筒投信的概率为( D ).(A)2412C C ; (B)!4!2;(C)24!2A ; (D)2242.二.填空题(每空2分,共20分)1.试用事件A 、B 、C 表示下列事件:(1)A 、B 、C 都不发生 C B A ;(2)A 、B 、C 至多一个发生 C A C B B A ⋃⋃ ; (3)A 、B 、C 至少两个发生 AC BC AB ⋃⋃ ; 2.设X 为连续型随机变量,C 为一个常数,则{}C X P == 0 . 3. 4个人随机地排成一排,甲和乙相邻的概率是 0.5 . 4.设X ~)3,6(2N ,Y ~)4,4(2N ,且X 与Y 相互独立,则: (1)Y X -服从的分布为 )5,2(2N ; (2){}=<-2Y X P 0.5 .5.设X ~),(p n B ,且4.2=EX ,44.1=DX ,则=n 6 , =p 0.4 . 6.设X 的方差5.0)(=X D ,用契比晓夫不等式估计{}5.2≥-EX X P 08.0≤. 三. 计算题 (每题10分,共60分)1.试卷中有一道选择题,共有四个答案可供选择,其中只有一个正确答案,任一考生如果会解这道题,则一定能选出答案,如果他不会做这道题,则不妨任选一个答案,设考生会解这道题的概率为0.8,求考生选出正确答案的概率.解:015.0200310110321)1091)(1071)(211(==⨯⨯=---=P2.设二维随机变量(X,Y)的联合分布律为:试求 (1))(X E ;(2))2(Y X E +.解:(1)125)(=X E ;(2)451251252)2(=+⨯=+Y X E3.设随机变量X的分布律为:X -1 0 211 2概率 31 61 61 121 41求:X 的分布函数F(X).解:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤--<=2,121,43121,32210,2101,311,0)(x x x x x x X F ;4.甲乙丙三人向同一目标射击,甲射中的概率为0.3,乙射中的概率为0.4,丙射中的概率为0.5,求目标被击中的概率.解:P=1-(1-0.3)(1-0.4)(1-0.5)=1-0.7*06*0.5=1-0.21=0.795.设随机变量X在区间(0,1)上服从均匀分布,求X e Y =的概率密度.解:⎪⎩⎪⎨⎧<<=其它,01,1)(ex y y f Y6.设随机变量X的概率密度为⎩⎨⎧≤≤-=其他.;,022,)(2x cx x f试求:(1)常数c ;(2){}10<<X P .解:(1)16313161311223222=⇒=⇒=⇒=--⎰c c cx dx cx (2){}16116116310103102===<<⎰x dx x X P2020-2021大学《概率论》期末课程考试试卷A1适用专业:考试日期:考试时间:120分钟考试方式:闭卷总分100分一、填空题. (每空2分,共22分)1、设为三个事件,用它们表示下列事件(1)发生而不发生可表示为(2)三个事件中至少有一个发生可表示为(3)三个事件中最多有两个发生可表示为2、,则3、设X与Y的联合分布律为YX 1 2 31 1/6 1/9 1/182 1/3 a b若x与y相互独立,则a= ,b=4、设随机变量服从参数为0.5的指数分布,则;5、若服从A上的均匀分布,A由X轴,Y轴及直线所围,则6、设随机变量则7、设每次射击中靶的概率是0.7,某人射击10次,最可能命中炮二、选择题(7小题,每小题2分,共14分)1、袋子中有3个白球,1个黑球,从中不放回的取球,则第3次取到黑球的概率为()A、B、C、D、2、P(A)=0.5 , P(B)=0.6 , P(B/A)=0.8 则P(A∪B)的值是()A、0.6B、0.7C、0.8D、0.93、若X则的密度函数为()A、B、C、D、4、若X~B(n , p )且Ex=8 ,Dx=4.8 , 则n= ( )A、10B、15C、20D、255、若x的数学期望Ex存在,则E[E(Ex)]= ( )A、ExB、xC、0D、6、下列函数是某随机变量的分布函数的是()A、B、C、D、7、设二维随机变量的概率密度函数为,则常数C()A、0.25B、0.5C、2D、4三、解答题(第1,5题12分,2,3,4,6,7每题8分)1、设随机变量的分布列为:已知,试求(1),,(2)(3) X的分布函数2、x的分布函数为求x的概率密度及P(x<2),P(0<x≤3).X -1 0 1P3、的密度函数为求4、若,求的密度函数5、设随机变量X 的概率密度函数为,试求:(1)常数C (2)6、设等可能在区间上取值,求方程有实根的概率7、设联合概率密度函数为,求的分布函数及密度函数2020-2021大学《概率论》期末课程考试试卷A1答案适用专业: 考试日期:考试时间:120分钟 考试方式:闭卷 总分100分一、填空题. (每空2分,共22分)1 (1)C AB (2)(3)2 0.33、a= 2/9 ,b= 1/94、, 5 165、6、0.57、7二、选择题(5小题,每小题3分,共15分)1、 C2、 B3、 C4、 C5、A6、D7、 A三、解答题 1 解: 1)++=1 -+ =0.1+=0.9 解得……6分2), ……9分3) ………12分2 解:………………4分……………………………8分3 解:…4分…8分4 解:…………2分………4分对求导………8分5解 ⑴,得到(6分) (2)………(8分),所以(12分)6.解:方程有实根等价于,得 (4)又服从上的均匀分布,故所求概率为7.解:………….6分所以……………..8分-----------------------------------------------------装-------------------------------------------订-----------------------------------------线-----------------------------------------院系 专业班级 姓名 学号2020-2021《概率论》期末课程考试试卷A1适用专业:畜教 考试日期:试卷所需时间:120分钟 闭卷 试卷总分:100一.单选题(每题2分,共20分)1.设A 为随机事件,则下列命题中错误的是 ( ).(A)A 和A 互为对立事件; (B)Ω=⋃A A 即样本空间; (C)A 和A 互为互不相容; (D)A A =. 2. 抛掷3枚均匀对称的硬币,恰有2枚正面向上的概率为( ). (A)0.125; (B)0.375; (C)0.25; (D)0.5.3. 设随机变量X 的分布函数为)(x F ,则下列结论中不一定成立的是( ).(A)1)(=+∞F ; (B)0)(=-∞F ;(C)1)(0≤≤x F ; (D)为连续函数)(x F . 4.设随机变量X 服从[]4,0上的均匀分布,则概率{}32<≤X P 为 ( ). (A)0.2; (B)0.45; (C)0.25; (D)0.5.5.已知5.0)(=A P ,3.0)(=B P ,且事件A 与B 互斥,则)(B A P ⋃为( ).(A)0.5; (B)0.3;(C)0.8; (D)0.65.6.设随机变量X 与Y 的期望和方差都存在,则下列各式成立的是( ).(A)EY EX Y X E +=+)(; (B)DY DX Y X D +=+)(;(C)EY EX XY E ⋅=)(; (D)DY DX XY D ⋅=)(. 7.下列各表中可作为随机变量分布律的是( ).8.),(y x f =(A)),(Y X 服从指数分布; (B)X 与Y 相互独立;(C)X 与Y 不独立; (D)协方差0),cov(≠Y X . 9.已知4)(=X D ,25)(=Y D ,4),cov(=Y X ,则相关系数XY ρ为( ). (A)0.004; (B)0.04; (C)4; (D)0.4.10.将2封信随机投入4个邮筒中,则未向前两个邮筒投信的概率为( ).(A)2412C C ; (B)!4!2;(C)24!2A ; (D)2242.二.填空题(每空2分,共20分)1.试用事件A 、B 、C 表示下列事件:(1)A 、B 、C 都发生 ;(2)A 、B 、C 至少一个发生 ;(3)A 、B 、C 至少一个不发生 ;2.设X 为连续型随机变量,C 为一个常数,则{}C X P == . 3.袋中有3个白球,4个黑球,不放回取球,则第2次取到黑球的概率 . 4.设X ~)3,6(2N ,Y ~)4,2(2N ,且X 与Y 相互独立,则: (1){}=<6X P ;(2)Y X -服从的分布为 . 5.设X ~),(p n B ,且4.2=EX ,44.1=DX ,则=n , =p . 6.设X 的方差5.0)(=X D ,用契比晓夫不等式估计{}5.2≥-EX X P . 三. 计算题 (每题10分,共60分)1.设某光学仪器厂制造的透镜,第一次落地时打破的概率为21,若第一次落地未打破,则第二次落地时打破的概率为107,若前两次落地未打破,则第三次落地打破的概率为109,求透镜落地三次后未打破的概率. 2.设二维随机变量),(Y X 的联合分布律为:0 31 41 1 41 61试求 (1)),(Y X 关于X 和关于Y 的边缘分布律;(2)X 与Y 是否相互独立,为什么?3.设随机变量X 的分布律为:X -1 0 211 2概率31 61 61 121 41 求:(1))(X E ;(2))(2X E .4.盒中有6只灯泡,其中2只次品,4只正品,现从中有放回的抽取两次(每次抽取一只),设每次抽取时每只灯泡被取到的可能性相同,求下列事件的概率:(1)A={两次抽到的都是次品};(2)B={一次抽到正品,另一次抽到次品}.5.设随机变量X 在区间(0,1)上服从均匀分布,求X e Y =的概率密度.6.设随机变量X 的概率密度为⎩⎨⎧≤≤-=其他.;,022,)(2x cx x f试求:(1)常数c ;(2){}10<<X P .2020-2021《概率论》期末课程考试试卷A1答案适用专业:畜教 考试日期:试卷所需时间:120分钟 闭卷 试卷总分:100一. 单选题(每题2分,共20分)BBDCC ADBDD二.填空题(每空2分,共20分)1.(1) ABC (2) C B A ⋃⋃ (3) C B A ⋃⋃ 2. 0 3. 74 4.(1)0.5 (2))5,4(2N 5.6;0.4. 6.08.0≤ 三. 计算题 (每题10分,共60分)1.解:015.0200310110321)1091)(1071)(211(==⨯⨯=---=P2.解:(1(2)因为:{}{}{}1444912712710311,0=•=-=•=≠=-==Y P X P Y X P 故:X 与Y 不独立3.解:(1)31)(=X E ; (2)2435)(2=X E4.解:(1)916262)(=⨯=A P ; (2)9462646462)(=⨯+⨯=B P5.解:⎪⎩⎪⎨⎧<<=其它,01,1)(ex y y f Y6.解:(1)16313161311223222=⇒=⇒=⇒=--⎰c c cx dx cx (2){}16116116310103102===<<⎰x dx x X P2020-2021大学《概率论》期末课程考试试卷B1适用专业:考试日期:考试时间:120分钟考试方式:闭卷总分100分一、填空题. (9小题,每空3分,共27分)1、设为三个事件,用它们表示下列事件(1)三个事件中恰有两个发生可表示为(2)三个事件中至少有两个发生可表示为(3)三个事件中最多有两个发生可表示为2、设等可能在区间(1,6)上取值,则方程有实根的概率为3、设x与y的联合分布率为YX 1 2 31 1/6 1/9 1/182 1/3 a b若x与y相互独立,则a= ,b=4、,且两者独立,则5、若服从A上的均匀分布,A由X轴,Y 轴及直线所围,则二、选择题(5小题,每小题4分,共20分)1、进行一系列独立试验,每次试验成功的概率为P,则在5次试验中成功了2次的概率为()A、B、C、D、2、P(A)=0.5 , P(B)=0.3 , A与B互斥,则P(A∪B)的值是()A、0.6B、0.7C、0.8D、0.93、袋中有5个乒乓球,其中2个黄的,3个白的,现在两个人不放回地依次从袋中随机各取一球,则第二人取到黄球的概率是()A、0.2B、0.4C、0.6D、0.8 4、若X~B(n , p )且Ex=8 ,Dx=4.8 , 则n= ( )A、10B、15C、20D、255、若x的数学期望Ex存在,则E[E(Ex)]= ( )A、0B、xC、ExD、三、解答题(第1,2,3,4每题10分,第5题13分)1、三人独立破译一个密码,破译出密码的概率分别为,问他们同时工作能将密码破译出的概率为多少?2、x的分布函数为求x的概率密度及P(x<2),P(0<x≤3).3、的密度函数为求3(Ex)4、若X~N(0 , 1 ),求Y=︳X ︳分布的密度函数5、若(x,y)在区域G上服从均匀分布,其中G由X轴,Y轴,及直线x+y=1围成。

概率期末考试试题及答案

概率期末考试试题及答案

概率期末考试试题及答案一、选择题(每题2分,共20分)1. 事件A和事件B是互斥事件,如果P(A) = 0.3,那么P(B|A)等于:A. 0B. 1C. 0.7D. 不能确定2. 如果随机变量X服从二项分布B(n, p),那么E(X)等于:A. npB. nC. pD. 13. 抛一枚均匀硬币两次,出现正面向上的概率是:A. 0.5B. 0.25C. 0.75D. 14. 随机变量X和Y的协方差Cov(X, Y)为负,这表明:A. X和Y不相关B. X和Y负相关C. X和Y正相关D. 无法确定5. 一个随机变量X服从正态分布N(μ, σ^2),那么P(X ≤ μ)等于:A. 0.5C. 0.7D. 16. 一个事件的概率为0.05,这个事件是:A. 必然事件B. 不可能事件C. 随机事件D. 确定事件7. 一个骰子连续投掷两次,出现两次6点的概率是:A. 1/6B. 1/36C. 1/216D. 1/128. 随机变量X服从泊松分布,参数为λ,那么P(X=k)等于:A. λ^k * e^(-λ) / k!B. k * λ^(k-1) * e^(-λ)C. λ^k / (k! * e^(λ))D. e^(-λ) * λ^k9. 两个独立事件A和B同时发生的概率是:A. P(A) + P(B)B. P(A) * P(B)C. P(A) / P(B)D. 1 - P(A) * P(B)10. 随机变量X服从均匀分布U(a, b),那么E(X)等于:A. (a + b) / 2B. aD. (b - a) / 2二、填空题(每空2分,共20分)11. 如果一个随机变量X服从指数分布,其概率密度函数为f(x) =________,其中λ > 0。

12. 两个事件A和B的互斥关系可以用概率公式表示为P(A∪B) = P(A) + P(B) - P(A∩B),当A和B是__________时。

13. 假设随机变量X服从正态分布N(0, 1),则P(-1.96 < X < 1.96) ≈ ________。

《线性代数、概率统计》期末考试试卷及详细答案 二

《线性代数、概率统计》期末考试试卷及详细答案  二

《线性代数、概率论》期末考试试卷答案一、选择题(每小题后均有代号分别为A, B, C, D的被选项, 其中只有一项是正确的, 将正确一项的代号填在横线上,每小题2分,共40分):1.行列式G的某一行中所有元素都乘以同一个数k得行列式H,则------------C-------------;(A) G=H ;(B) G= 0 ;(C) H=kG ;(D) G=kH 。

2.在行列式G中,A ij是元素a ij的代数余子式,则a1j A1k+ a2j A2k+…+a nj A nk--------D------;(A) ≠G (j=k=1,2,…,n时) ;(B) =G(j, k=1,2,…,n; j≠k时) ;(C) =0 (j=k=1,2,…,n时) ;(D) =0(j, k=1,2,…,n ;j≠k时) 。

3.若G,H都是n⨯ n可逆矩阵,则----------B------------;(A) (G+H)-1=H-1+G-1;(B) (GH)-1=H-1G-1;(C) (G+H)-1=G-1+H-1;(D) (GH)-1=G-1H-1。

4.若A是n⨯ n可逆矩阵,A*是A的伴随矩阵, 则--------A----------;(A) |A*|=|A|n-1;(B) |A*|=|A|n ;(C) |A*|=|A|n+1;(D) |A*|=|A|。

5.设向量组α1, α2,…,αr (r>2)线性相关, 向量β与α1维数相同,则------------C----------- (A) α1, α2,…,αr-1 线性相关;(B) α1, α2,…,αr-1 线性无关;(C) α1, α2,…,αr ,β线性相关;(D) α1, α2,…,αr ,β线性无关。

6.设η1, η2, η3是5元齐次线性方程组AX=0的一组基础解系, 则在下列中错误的是D-------------------(A) η1, η2, η3线性无关;(B) X=η1+η2+ η3是AX=0的解向量;(C) A的秩R(A)=2;(D) η1, η2, η3是正交向量组。

概率论__武汉大学2021-2021第一学期

概率论__武汉大学2021-2021第一学期

武汉大学2021-2021第一学期概率论与数理统计B 期末试题(A 卷)1. (12分)若1()()()4p A p B p C ===,()()0P AB P BC ==,1()8P AC =。

⑴求,,A B C 三个事件中至少出现一个的概率。

⑵求()p C A B |⋃。

2. (12分)若随机变量X 的概率密度2()0x f x ⎧=⎨⎩ 01x ≤≤其他, 记A 为事件12X ⎧⎫≤⎨⎬⎭⎩; 对随机变量X 进行4次观测,以Y 表示事件A 出现的次数;⑴ ()p A ; ⑵求(2)p Y =。

3. (14分)若随机变量(),X Y 的联合概率密度为()()2,0,0,0,x y Ae x y f x y -+⎧>>⎪=⎨⎪⎩其它, (1)求A 的值? (2)求()(),X Y f x f y ;(3)随机变量X 与Y 是否独立? (4)求Z X Y =+的密度。

4. (12分)设某种商品每周的需求量X 是服从区间[]10,30上均匀分布的随机变量,而经销商进货数量Y 为区间[]10,30中的某一整数,商店每销售一单位商品可获利500元;若供大于求则削价处理,每处理1单位商品亏损100元;若供不应求,则可从外部调剂供应,此时每单位仅获利300元。

为使商店所获利润期望值不少于9280,试确定最小进货量。

5. (12分)若随机变量(),X Y 在2:01,D x x y x <<<<上服从均匀分布,求随机变量X与Y 的相关系数xy ρ。

6. (12分)若116X X 是正态总体()0,4N 的样本, 22221216S X X X =+++ 求k 使2kS 服从2χ分布,并求()()22,E S D S 7. (14分)若总体X 在(),1θ上服从均匀分布,1n X X 为样本,(1)求θ的矩估计1ˆθ;(2)求θ的极大似然估计2ˆθ;(3)判别他们是否为无偏估计。

2020年大学基础课概率论与数理统计期末考试卷及答案精选版

2020年大学基础课概率论与数理统计期末考试卷及答案精选版

2020年大学基础课概率论与数理统计期末考试卷及答案(精选版)一、单选题1、设X , X ,…,X 是取自总体X 的一个简单样本,则E (X 2)的矩估计是 1 2n,【答案】D2、若X 〜t (n )那么X 2〜【答案】A设随机变量X 和Y 的方差存在且不等于0,则D (X + 丫-D (X ^+D ^Y )是X 和Y 的不相关的充分必要条件; 、 X - R 、 X - RB) t = ---- J== C) t =S /Vn -1 S / nn2 3S 2 =(A) 1n -1i =1(B) S 2 =1E (X - X )22nii =1(C)S 12+X 2(D)S 2+ X2(A)F (1,n )(B )F (n ,1)(C)殍(n )(D)t (n )3、 A) 不相关的充分条件,但不是必要条件; B) 独立的必要条件,但不是充分条件;D) 独立的充分必要条件 【答案】C4、设某个假设检验问题的拒绝域为W ,且当原假设H0成立时,样本值(XjX,x n )落入亚的概率为0.15,则犯第一类错误的概率为 (A) 0.1(B) 0.15(C) 0.2(D) 0.25【答案】B5、设X , X ,…X 为来自正态总体N (R ,。

2)简单随机样本,X 是样本均值 12 n记 S 2 = -L-Z(X -X )2,S 2 =1Z (X - X )22n ii =1S 2 = -L- Z (X -^)2,3n -1 iS 2 = 1 Z(X -^)2, 4nii =1则服从自由度为n -1的t 分布的随机变量是X - RA) t = ----- =S /- nn -1 1X -RD) t = -------S / nn【答案】BnrX = 1 £x i6、X服从正态分布,EX =T, EX 2 =5, (x i,…,X n )是来自总体x的一个样本,则ni=1服从的分布为o(A)N( —1,5/n) (B)N( —1,4/n) (C)N( —1/n,5/n) (D)N( —1/n,4/n) 【答案】B7、设X〜N(从 e 2),那么当o增大时,尸{X -川<°} =A)增大B)减少C)不变D)增减不定。

武汉大学《数理统计》2022-2023学年期末试卷

武汉大学《数理统计》2022-2023学年期末试卷

武汉大学《数理统计》2022—2023学年第一学期期末试卷一、单项选择题1、设总体X~E(λ),则λ的矩估计和极大似然估计分别为()A、B、C、D、2、极大似然估计必然是( )。

A、相合估计 B、似然函数的极值点C、似然方程的根 D、无偏估计3、设总体为来自该总体的样本,为样本均值,为样本方差,则的极大似然估计为A、B、sC、D、s24、设X1,X2…X20,是来自总体N(μ,σ2)的样本,则统计量_____为σ2的无偏估计量。

()A、B、C、D、5、设随机变量 X的概率密度函数是,则 a=()A.0.5B.1C.2D.ln26、A、 B C D7、设随机变量 X与 Y相互独立,则 P{X=-2|Y=1}=()A.0.25B.0.3C.0.4D.0.58、A.1/4B.1/2C.2D.49、设二维连续型随机变量(X,Y)的分布函数是?X,Y),则有X> 1,Y≤2} =()A.(1,2)B.(1,2)C. (1,+∞)−?(1,2)D.(+∞,2)−?(1,2)10、已知随机变量 X~N(-2,2),则下列随机变量中,服从 N(0,1)分布的是()A、 B、 C、D、二、填空题(总分30分)1、总体X ~N(μ,σ2),则11+μ的极大似然估计值为________2、设总体X 的概率密度为其中为未知参数,x1,x2,…,xn 为来自X 的样本,则的矩估计= _____。

3、设总体X 的分布律为其中p 为未知参数,0<p <1,设为来自该总体的样本,为样本均值,则p 的矩估计______.4、设总体X 的概率密度为f(x;),其中为未知数,且, x 1,x 2,…,x n 为来自总体X 的一个样本, 为样本均值.若为的无偏估计,则常数c=______.5、假设总体X 服从参数为的泊松分布,X 1,X 2,…,X n 是来自总体X 的简单随机样本,其均值为,样本方差S 2=。

已知为的无偏估计,则=______.6、7、设随机变量(X,Y)的概率密度为f(x,y)=,则X 的边缘概率密度f x (x)= ________________.8、设随机变量(X,Y)服从区域D 上的均匀分布,其中区域D 是直线y=x ,x=1和x 轴所围成的三角形区域,则(X,Y)的概率密度f(x,y)= ________________.9、设某个假设检验的拒绝域为W ,当原假设H 0成立时,样本(x 1,⎩⎨⎧≤≤≤≤其他2y 0,1x 0xyx 2,…,x n )落入W 的概率是0.1,则犯第一类错误的概率为________.10、已知一元线性回归方程为________.三、综合题(总分40分)1、设总体X 的概率密度其中未知参数θ>-1,x 1,x 2…,x n 是来自该总体的一个样本,求参数θ的矩估计和极大似然估计.2、设总体X 服从指数分布,概率密度(1)求λ的矩估计;(2)求λ的极大似然估计。

武汉大学2010-2011概率论与数理统计B期末试卷

武汉大学2010-2011概率论与数理统计B期末试卷

武汉大学 2010­2011第二学期概率论与数理统计B 期末试题(54学时)一、(12 分)若B 和 A 为事件, ()0.5,()0.6,(|)0.8 P A P B P B A === 求 ⑴ () P A B È ;⑵ (()()) P A B A B -½È 。

二、(12 分) 某车间的零件来自甲、 乙、 丙三厂, 其各占比例为 5: 3: 2, 次品率分别为0.05,0.06,0.03;现从中任取一件,求 :⑴它是次品的概率?⑵如果它是次品,它来自乙厂的概率?三、(12 分)随机变量X 的密度函数为 10 sin () 2x xf x p ì << ï = í ï î 其他。

A 表示事件“ 3X p³”⑴求 () P A ;⑵对X 进行 4 次独立观测,记A 出现的次数为Y ,求其概率分布及 2Y 的数学期望。

四、(14 分)若随机变量(,) X Y 的联合概率密度为 (2)2 (,) 0x y ef x y -+ ì = íî 0,0 x y >> 其他;⑴求随机变量X 和Y 的边缘概率密度 ();() x y f x f y ; ⑵ X 和Y 是否独立 ?(3)求 2 Z X Y =+ 的概率密度。

五、(12 分) 若随机变量 (,) X Y 在区域 2:01, D x x y x ££££ 上服从二维均匀分布, 求随机变量(,) X Y 的相关系数 xy r 。

六、(14 分)若 12 , n X X X K 为来自 2(0,) N s 的样本; X 为样本均值, i i Y X X =- 1,2 i n= K 求(1) i Y 的方差;(2) 1 ov(,) n C Y Y 。

(3)当a 为何值时, 2122223 naX F X X X = +++ L 服从F 分布? 七、(12 分)若随机变量X 在区间(0,) q 服从均匀分布, 12 , n X X X K 是其样本,求(1)q 的矩估计和极大似然估计。

高校统计学专业概率论期末考试习题解答解析

高校统计学专业概率论期末考试习题解答解析

高校统计学专业概率论期末考试习题解答解析在高校统计学专业中,概率论是一门重要的基础课程,其内容涉及到随机变量、概率分布、随机变量的数学期望与方差、大数定律和中心极限定理等多个方面。

期末考试是对学生在这门课程中所学知识的综合考验,下面将对一些常见的概率论习题进行解答和解析。

1. 设X为随机变量,其概率函数为:P(X=k) = C * (1/2)^k,k=0,1,2...其中C是一个常数,试求C的值。

解答与解析:这是一个几何分布的概率函数。

由于对所有k,P(X=k)的和应该等于1,即∑(P(X=k))=1,那么我们可以计算出C的值。

∑(P(X=k)) = C * ∑((1/2)^k),k=0,1,2...= C * (1/2^0 + 1/2^1 + 1/2^2 + ...)= C * (1 + 1/2 + 1/4 + ...)= C * (1 + 1/2 * (1 + 1/2 + 1/4 + ...))= C * (1 + 1/2 * ∑((1/2)^k),k=0,1,2...)= C * (1 + 1/2 * ∑((1/2)^k),k=0,1,2...)= C * (1 + 1/2 * 2)= C * (1 + 1)= C * 2根据∑(P(X=k)) = 1,我们得到C * 2 = 1,因此C = 1/2。

2. 从一个装有白球和黑球的袋子中,随机取出两个球,放回袋子后再取两个球。

设在前一次取两个球时,两个球的颜色都相同。

试求在后一次取两个球时,两个球的颜色相同的概率。

解答与解析:我们可以根据条件概率来求解。

设事件A表示前一次取两个球时,两个球颜色相同,事件B表示后一次取两个球时,两个球颜色相同。

我们需要求解的是P(B|A),即在事件A已经发生的条件下,事件B发生的概率。

首先,可能出现的情况有两种:一种是两个白球,一种是两个黑球。

设事件C表示取到两个白球,事件D表示取到两个黑球。

根据条件概率公式,我们有:P(B|A) = P(C|A) + P(D|A)= P(A交C) / P(A) + P(A交D) / P(A)= (1/4) / (1/2) + (1/4) / (1/2)= 1/2 + 1/2= 1因此,在后一次取两个球时,两个球的颜色相同的概率为1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉大学2012——2013第一学期概率统计B 试题(54学时A )学院____________________专业______________学号____________姓名________________一、(14分)某系有三个班,1班有24位同学,其中12人是特长生;2班有20位同学,其中8人是特长生;3班有26位同学,其中8人是特长生;现从此70个同学中任找一个同学;(1)求他是特长生的概率?(2)若他是特长生,求他来自1班的概率? (3)若每班任找一人组成三人队参加数模竞赛,求此队的三人全是特长生的概率? 二、(12分)某真菌的寿命(单位:小时)在区间(0,5)服从均匀分布;(1)求其寿命大于3小时的概率?(2)观测3个此类真菌,求恰有2个寿命大于3小时的概率? 三、(14分)若随机变量(,)X Y 的联合概率密度为(,)0k f x y ⎧=⎨⎩221x y +≤其他 ;k 为常数。

⑴求随机变量X 和Y 的边沿概率密度();()x y f x f y ; ⑵X 和Y 是否独立 ? (3)求Z =的概率密度。

四、(12分)设,A B 为随机事件,111(),(),()432P A P B A P A B =|=|=,设,X Y 分别表示一次实验中,A B 发生的次数。

求:(1)二维随机变量(,X Y )的联合概率分布。

(2),X Y 的相关系数ρ。

五、(12分)若 一批种子的发芽率为0.8,分别用切比雪夫不等式和中心极限定理估计这样的种子10000粒发芽数在7800——8200之间的概率。

(标准正态分布的分布函数用()x Φ表示)六、(12分)若X 1…Xn 是来自正态总体2(,)N m s 的样本,X 是样本均值,2211()1n i i S X X n ==--∑是样本方差。

⑴ 求2S 的期望和方差。

(2)选取常数,a b ,使得X bt aS-=服从(1)t n -分布。

七、(12分)若总体在区间(1,)q 服从均匀分布,X 1…Xn 是其样本,(1)求q 的矩估计和极大似然估计。

(2) 判别他们的无偏性。

并将不是无偏估计的估计化为无偏估计。

八、(12分)据报道:12月7日,全球有感地震18次,其中6级以上2次,某专家说:全球每年发生6级以上地震大约250次,标准差约为60次,最近9年,测得6级以上地震年平均约274.0次,问:可否认为最近9年地球的6级以上地震次数有大幅增加? (0.05α=)(假设地震次数近似服从正态分布2(,)N m s ,数据为计算方便有改动) 已知: (1.65)0.95,(1.96)0.975Φ=Φ= ,其中()x Φ为标准正态分布的分布函数。

武汉大学2012——2013第一学期概率统计B 试题参考答案(54学时A )学院____________________专业______________学号____________姓名________________三、(14分)某系有三个班,1班有24位同学,其中12人是特长生;2班有20位同学,其中8人是特长生;3班有26位同学,其中8人是特长生;现从此70个同学中任找一个同学;(1)求他是特长生的概率?(2)若他是特长生,求他来自1班的概率? (3)若每班任找一人组成三人队参加数模竞赛,求此队的三人全是特长生的概率?解:(1)282705P == ………………………………….6’ (2)123287P == ……………………………………………10’(3)1288424202665P ==…………………………………..14’ 四、(12分)某真菌的寿命(单位:小时)在区间(0,5)服从均匀分布; (1)求其寿命大于3小时的概率?(2)观测3个此类真菌,求恰有2个寿命大于3小时的概率?解:(1)5310.45P dx ==⎰……………………………….6’ (2)设3个 真菌中寿命大于3小时的个数为X ,则(3,0.4)X B :所以 223(2)0.40.60.288P X C ===或36125。

…………12’ 三、(14分)若随机变量(,)X Y 的联合概率密度为(,)0k f x y ⎧=⎨⎩221x y +≤其他 ;k 为常数。

⑴求随机变量X 和Y 的边沿概率密度();()x y f x f y ; ⑵X 和Y 是否独立 ?(3)求Z =的概率密度。

解:显然,1k π=(1)()(,)0X f x f x y dy +∞-∞==⎪⎩⎰11x -<<其他;()(,)0Y f y f x y dx +∞-∞==⎪⎩⎰-11y <<其他; ………………..8’ (2)显然,X 和Y 不独立。

……………………….10’(3)设()h z是一非负连续函数,21(,)()2R h f x y dxdy h z zdz =⎰⎰⎰;所以,Z =2()0z z f z ⎧=⎨⎩01z ≤≤其他。

………14’四、(12分)设,A B 为随机事件,111(),(),()432P A P B A P A B =|=|=,设,X Y 分别表示一次实验中,A B 发生的次数。

求:(1)二维随机变量(,X Y )的联合概率分布。

(2),X Y 的相关系数ρ。

解:(1)1()()()12P AB P A P B A =|=,()1()()6P AB P B P A B ==| 所以 1{1,1}()12P X Y P AB ====,1{1,0}()()()6P X Y P AB P A P AB ====-= 1{0,1}()()()12P X Y P AB P B P AB ====-=,2{0,0}3P X Y ===故 (,X Y )的联合概率分布为……………………………………..6’(2)11135,,,,46121636EX EY EXY DX DY ===== 故 1(,)24COV X Y EXY EXEY =-=,,X Y 的相关系数ρ. …………………………………………………..12’ 五、(12分)若 一批种子的发芽率为0.8,分别用切比雪夫不等式和中心极限定理估计这样的种子10000粒发芽数在7800——8200之间的概率。

(标准正态分布的分布函数用()x Φ表示)解:用X 表示10000粒种子的发芽数,则(10000,0.8)X B :8000,1600EX DX ==;所以,由切比雪夫不等式2{78008200}{200}10.96200DXP X P X EX ≤≤=|-|≤≥-= ……………6’ 由中心极限定理8200800078008000{78008200}()()2(5)114040P X --≤≤=Φ-Φ=Φ-=…….12’六、(12分)若X 1…Xn 是来自正态总体2(,)N m s 的样本,X 是样本均值,2211()1ni i S X X n ==--∑是样本方差。

⑴ 求2S 的期望和方差。

(2)选取常数,a b ,使得X bt aS-=服从(1)t n -分布。

解:(1)因为 222(1)(1)n S n χσ--:,又22(1)1,(1)2(1)E n n D n n χχ-=--=- 所以 22242,1ES DS n σσ==- …………………….6’(2)a b μ== ……………………………………………………12’七、(12分)若总体在区间(1,)q 服从均匀分布,X 1…Xn 是其样本,(1)求q 的矩估计和极大似然估计。

(2) 判别他们的无偏性。

并将不是无偏估计的估计化为无偏估计。

解:(1)矩估计令 12EX X θ+==,得 $121X θ=-再求极大似然估计似然函数 1(1)()0nL θθ⎧⎪-=⎨⎪⎩121,,...n X X X θ<<其他所以,q 的极大似然估计 µ212=max{,,...}nX X X θ …………………..6’(2)因为 µ1()E θθ=,所以,矩估计$121X θ=+是无偏估计。

而 µ21()1n E n θθθ+=≠+, 故 q 的极大似然估计 µ212=max{,,...}nX X X θ不是q 的无偏估计。

可将其化为无偏估计 µ122(1)max{,,...}1'=n n X X X nθ+-。

……….12’八、(12分)据报道:12月7日,全球有感地震18次,其中6级以上2次,某专家说:全球每年发生6级以上地震大约250次,标准差约为60次,最近9年,测得6级以上地震年平均约274.0次,问:可否认为最近0年地球的6级以上地震次数有大幅增加? (0.05α=)(假设地震次数近似服从正态分布2(,)N m s ,数据为计算方便有改动) 已知: (1.65)0.95,(1.96)0.975Φ=Φ= ,其中()x Φ为标准正态分布的分布函数。

解:由题意,做假设,01:250,:250H H μμ=>274.0,9,60.0X n σ===,0.05α= …………….4’检验统计量 u =拒接域为 1.65u > …………………………………………8’计算得 1.2u =,不落在拒接域内。

所以,接受0H ,即认为最近9年地球的6级以上地震次数没有大幅增加。

………………………………………………..12’。

相关文档
最新文档