直流电机控制

合集下载

直流电机的控制原理

直流电机的控制原理

直流电机的控制原理
直流电机的控制原理可以通过以下内容来说明:
直流电机的控制原理是通过调节电源电压和改变电枢线圈中电流方向来实现的。

具体来说,直流电机的工作原理是根据洛伦兹力和安培力的作用,通过控制电流方向和大小来改变电机的转速和转向。

在直流电机中,电枢线圈是位于电机中心的旋转部分,而电枢线圈两端与电源相连。

当电流通过电枢线圈时,电流会在磁场中发生作用,产生洛伦兹力,使电枢线圈开始旋转。

电枢线圈的旋转会使其上的集电刷与固定的电极接触,改变电枢线圈中电流的方向,从而反转驱动力,使电机的旋转方向改变。

为了控制直流电机的转速和转向,可以通过改变电源电压和电枢线圈中电流的方向来实现。

当电源电压增加时,电枢线圈中的电流增加,从而增大洛伦兹力,加速电机的转速。

同样地,当电源电压减小时,电机的转速会减慢。

另外,改变电枢线圈中电流的方向也会改变洛伦兹力的方向,从而改变电机的转向。

在实际应用中,直流电机的控制可以通过调节电压或使用电压变频器来实现。

通过调节电源电压的大小,可以实现直流电机的速度调节;通过改变电枢线圈中电流的方向,可以实现直流电机的正反转控制。

综上所述,直流电机的控制原理是通过调节电源电压和改变电
枢线圈中电流方向来实现的,从而实现对电机转速和转向的控制。

直流电机PWM控制

直流电机PWM控制
4)直流电机运营800转停止 5)直流电机上下限速光电报警
直流电机PWM控制
参照原理图如下所示: 1)查询式键盘原理图
2)6位串行静态显示原理图
直流电机PWM控制
3)直流电机控制原理图
PWM基本原理及其实现措施
• PWM基本原理 • PWM是经过控制固定电压旳直流电源开关频率,
从而变化负载两端旳电压,进而到达控制要求旳 一种电压调整措施。PwM能够应用在许多方面, 如电机调速、温度控制、压力控制等。 • 在PWM驱动控制旳调整系统中,按一种固定旳频 率来接通和断开电源,并根据需要变化一种周期 内“接通”和“断开”时间旳长短。经过变化直 流电机电枢上电压旳“占空比”来变化平均电压 旳大小,从而控制电动机旳转速。所以,PWM又 被称为“开关驱动装置”。

* 经过本例程了解PWM 旳基本原理和使用
*

*
*

* 请将直流电机线接在+5V P12相应旳端子上(步进马达接口出)
*

*
*

* 请学员仔细消化本例程
*

*********************************************************************************/

------------1000/(0.02ms*250)=200Hz

*************************************/

void T1zd(void) interrupt 3 //3 为定时器1旳中断号 1 定时器0旳中断号 0 外
部中断1 2 外部中断2 4 串口中断

main()

控制有刷直流电机的方法

控制有刷直流电机的方法

控制有刷直流电机的方法
控制有刷直流电机的方法有以下几种:
1. 电压控制方法:通过调节电源电压的大小来控制电机的转速。

增大电源电压可以使电机转速增加,减小电压则使电机转速减小。

2. PWM 控制方法:使用脉宽调制(PWM)技术控制电机的
转速。

通过调节PWM信号的占空比(即高电平时间与周期时
间的比值),可以改变电机的平均电压,从而控制电机的转速。

占空比越大,电机转速越高,反之亦然。

3. 反馈控制方法:使用反馈传感器(如编码器)检测电机的转速或位置,并根据反馈信号进行闭环控制。

通过比较反馈信号与设定值,控制器可以调整电机的电压或PWM占空比,使电
机保持在设定的转速或位置。

4. H桥驱动方法:使用H桥电路控制电机的正反转。

通过控
制H桥的开关状态,可以改变电机的电流流动方向,实现电
机的正反转和制动。

需要注意的是,控制有刷直流电机需考虑到电机的最大电流、功率和电机的特性曲线,选择合适的驱动方式和控制策略,以确保电机的安全运行和性能要求的实现。

直流电机控制课程设计

直流电机控制课程设计

直流电机控制课程设计一、课程目标知识目标:1. 学生能理解直流电机的工作原理,掌握直流电机的基本结构及其功能。

2. 学生能掌握直流电机控制的基本方法,包括启动、调速、制动等。

3. 学生能了解并描述直流电机在自动化控制中的应用。

技能目标:1. 学生能运用所学知识,进行简单的直流电机控制电路的设计与搭建。

2. 学生能通过实际操作,熟练使用相关仪器设备进行直流电机控制实验。

3. 学生能通过实验数据分析,解决直流电机控制过程中出现的问题。

情感态度价值观目标:1. 学生对直流电机控制技术产生兴趣,培养探究精神和创新意识。

2. 学生在小组合作中,培养团队协作能力和沟通表达能力。

3. 学生关注直流电机控制技术在现实生活中的应用,增强学以致用的意识。

分析课程性质、学生特点和教学要求:1. 本课程为工程技术类课程,注重理论与实践相结合,强调学生的动手能力。

2. 学生为初中年级学生,具备一定的物理基础和动手操作能力,但对复杂电路和控制原理理解有限。

3. 教学要求以学生为主体,注重启发式教学,引导学生主动探究和解决问题。

二、教学内容1. 直流电机的工作原理与结构- 直流电机的组成及其功能- 直流电机的工作原理- 直流电机的类型及特点2. 直流电机控制方法- 直流电机的启动方法- 直流电机的调速方法- 直流电机的制动方法3. 直流电机控制电路设计与搭建- 控制电路元件的识别与选用- 控制电路的设计原理与步骤- 控制电路的搭建与调试4. 直流电机控制实验- 实验设备的使用与操作- 实验步骤与方法- 实验数据的收集与分析5. 直流电机控制技术应用- 直流电机控制技术在现实生活中的应用案例- 直流电机控制技术的未来发展教学内容安排与进度:第一课时:直流电机的工作原理与结构第二课时:直流电机控制方法第三课时:直流电机控制电路设计与搭建第四课时:直流电机控制实验第五课时:直流电机控制技术应用教材章节关联:教学内容与教材第二章“直流电机的原理与应用”相关联,涵盖直流电机的基本概念、原理、控制方法及其在实际中的应用。

直流电机的三种转速控制方法

直流电机的三种转速控制方法

直流电机的三种转速控制方法
直流电机是一种常见的电动机类型,广泛应用于各种电力设备和工业机械中。

在实际应用中,为了满足不同的工作需求,需要对直流电机的转速进行控制。

下面将介绍直流电机的三种常见转速控制方法。

一、电压调节法
电压调节法是一种简单常用的直流电机转速控制方法。

通过调节电源的输出电压来控制直流电机的转速。

当电源电压增大时,直流电机的转速也会随之增加。

这种方法适用于转速变化范围较小的情况,例如风扇、泵等。

二、电阻调节法
电阻调节法是一种通过改变电阻来控制直流电机转速的方法。

在直流电机的电路中串接一个可调电阻,通过改变电阻的阻值来改变电机的转速。

当电阻增大时,电机的转速会减小。

这种方法适用于转速变化范围较大的情况,但效率较低。

三、PWM调节法
PWM调节法是一种通过改变脉宽调制信号的占空比来控制直流电机转速的方法。

通过控制开关管的导通时间,使得电机得到短时间的高电压和长时间的低电压,从而实现对电机转速的控制。

这种方法具有调速范围广、效率高的特点,适用于对转速要求较高的场合,
例如机械加工、自动化生产线等。

以上是直流电机的三种常见转速控制方法。

不同的控制方法适用于不同的应用场景,根据实际需求选择合适的方法可以提高电机的性能和效率。

同时,随着科技的不断进步,还出现了更多先进的转速控制技术,例如矢量控制、闭环控制等,这些方法在特定的领域中得到了广泛应用。

未来,随着技术的不断发展,直流电机的转速控制方法将会更加多样化和高效化。

电机控制公式

电机控制公式

电机控制公式
电机控制公式可以根据具体的电机类型和控制方式有所不同。

以下是一些常见的电机控制公式:
1.直流电机速度控制公式:
o电动势方程:E = Kϕω,E为电动势,K为电机常数,ϕ为磁通量,ω为角速度。

o转矩方程:T = KtI,T为转矩,Kt为电机转矩常数,I 为电流。

2.三相感应电机速度控制公式:
o转矩方程:T = KsIs,T为转矩,Ks为电机转矩常数,Is为电流。

o转速公式:N = (120f) / P,N为转速,f为电网频率,P为极数。

3.步进电机控制公式:
o步进角度公式:θ = 360 / S,θ为步进角度,S为步进角度。

o脉冲频率公式:f = N / (S × T),f为脉冲频率,N为转速,T为步进周期。

需要注意的是,电机控制公式通常是基于理想条件下的模型推导出来的,并且不考虑实际电机的非线性和动态特性。

在实际应用中,电机控制还需要考虑到控制器的影响、传感器反馈、电机参数变化等因素,因此在具体控制系统设计时,需要结合
实际情况进行调整和优化。

直流电机 控制方法

直流电机 控制方法

直流电机控制方法
直流电机的控制方法主要有以下几种:
1. 速度控制:通过改变电压或电流的大小来控制电机的转速。

可以使用PWM (脉冲宽度调制)技术来实现精确的速度控制。

2. 方向控制:通过改变电机的电流流向来控制电机的旋转方向。

可以使用H桥电路来实现方向控制。

3. 位置控制:通过测量电机转子的位置来控制电机的旋转角度。

可以使用编码器等位置传感器来获取转子位置信息,并使用闭环控制算法来实现精确的位置控制。

4. 力矩控制:通过改变电机的电流大小来控制电机输出的力矩。

可以使用电流反馈控制算法来实现力矩控制。

5. 转矩控制:通过改变电机的电流大小和方向来控制电机输出的转矩。

转矩控制可以实现精确的负载控制和工艺要求。

这些控制方法可以单独应用,也可以组合使用,以实现不同的应用需求。

直流电动机正反转控制方法

直流电动机正反转控制方法

直流电动机正反转控制方法直流电动机正反转控制方法直流电动机是广泛应用于工业和家庭的电动机之一,可以通过调整不同的控制方法,在不同的应用场景中实现不同的控制目的。

其中,正反转控制是直流电动机应用的常规控制之一,本文将介绍几种常见的直流电动机正反转控制方法。

1. 简单交换极性法这种方法是最简单和常见的正反转控制方法之一。

由于直流电机是由磁阻力和电动势两个构成的,当它的电源极性改变时,磁场和电动势也相应地改变,因此电机的旋转方向也会发生变化。

简单来说,通过交换电动机连接的正负极,可以实现直流电动机的正反转控制。

但是,这种方法在实际工作中的应用范围有限,因为在许多场合下,交换电源极性是不现实的。

2. 手动切换反转器法该方法需要一个手动反转器用于可更改电动机的电源极性。

反转器是一个切换装置,中间位置为关闭状态,向左和向右则分别实现正向和反向,根据需要转动反转器来手动改变电源的极性,从而控制电动机的方向。

该方法比较简单且价格便宜,但只适用于需要低频正反转的场合,而且需要人工操作。

3. 电子反转器法电子反转器是一种电子设备,它可以通过更改电动机的电源极性,实现直流电动机正反转控制。

该方法通常采用大小不同的 MOSFET 晶体管,通过激励电路控制 MOSFET 晶体管从而实现电源极性的更改。

这种方法具有操作灵活、反应迅速、稳定性好等优势,并且可以结合其他电子设备进行远程控制和自动化控制。

4. 程序控制反转器法这种方法通常应用于大型机器和复杂生产线。

它通过对反转器的编程控制实现电动机的正反转控制,相比较手动切换反转器法,节省了操作成本和时间,同时,采用程序控制反转器无需人工参与,提高了自动化程度。

但该方法需要专门的软件和控制程序,因此成本较高。

结论控制直流电机正反转的方法有很多种,不同的方法有不同的优缺点。

选择应该根据工作环境、电机负载的大小和形状、控制要求等多个因素进行综合考虑。

需要根据具体情况选择最适用的方法,以满足生产需求。

直流电机控制原理图

直流电机控制原理图

直流电机控制原理图
直流电机是一种常见的电动机,它通过直流电源驱动,能够将
电能转换为机械能,广泛应用于工业生产、交通运输、家用电器等
领域。

直流电机的控制原理图是直流电机控制系统的重要组成部分,它能够帮助我们了解直流电机的工作原理和控制方式,本文将介绍
直流电机控制原理图的相关知识。

首先,直流电机控制原理图包括直流电机、电源、控制器等组件。

直流电机通常由定子、转子、碳刷、电枢等部分组成,电源为
直流电源,控制器则是用来控制电机运行的设备。

在直流电机控制
原理图中,这些组件通过电气连线连接在一起,形成一个完整的控
制系统。

在直流电机控制原理图中,电源为直流电源,它可以是电池、
直流发电机、直流稳压电源等。

电源的电压和电流大小将直接影响
到直流电机的运行性能,因此在设计直流电机控制系统时,需要根
据实际需要选择合适的电源。

控制器是直流电机控制系统中的关键部件,它可以根据外部输
入信号控制电机的启停、正反转、速度调节等功能。

常见的直流电
机控制器有直流调速器、直流电机驱动器、直流电机控制板等,它们可以根据具体的控制要求选择使用。

在直流电机控制原理图中,还会包括一些辅助元件,如限流电阻、过载保护器、电流传感器等。

这些辅助元件能够提高电机控制系统的稳定性和安全性,保护电机免受过载、短路等异常情况的影响。

总的来说,直流电机控制原理图是直流电机控制系统的重要组成部分,它通过电气连线将直流电机、电源、控制器等组件连接在一起,形成一个完整的控制系统。

掌握直流电机控制原理图的相关知识,能够帮助我们更好地理解直流电机的工作原理和控制方式,为实际应用提供参考和指导。

直流电机控制器原理图

直流电机控制器原理图

直流电机控制器原理图直流电机控制器是指控制直流电机运行的设备,其主要作用是根据外部输入信号来控制电机的启动、停止、正反转以及调速等功能。

直流电机控制器原理图是直流电机控制系统的核心部分,通过原理图可以清晰地了解控制器的工作原理和电路结构,有利于工程师们进行系统设计和故障排查。

一般来说,直流电机控制器原理图包括电源模块、控制模块、驱动模块和保护模块等部分。

电源模块主要用于将外部交流电源转换为直流电源,为整个系统提供电能;控制模块则负责接收外部控制信号,并通过逻辑运算和电路控制来实现对电机的启停、正反转和调速等功能;驱动模块则是根据控制模块的输出信号,驱动电机正常运行;保护模块则用于监测电机和系统的工作状态,一旦出现异常情况,及时采取保护措施,避免损坏设备。

在直流电机控制器原理图中,控制模块是最核心的部分,它通常包括信号输入端、逻辑控制电路和输出端。

信号输入端可以接收外部控制信号,比如启停信号、正反转信号、调速信号等,这些信号经过处理后,通过逻辑控制电路的运算,最终输出给驱动模块,实现对电机的控制。

逻辑控制电路通常采用集成电路或者单片机等器件来实现,其结构复杂,但是可以实现多种控制功能,具有很高的灵活性和可靠性。

此外,直流电机控制器原理图中的驱动模块也是非常重要的部分,它的主要作用是根据控制模块的输出信号,驱动电机正常运行。

驱动模块通常采用功率器件和驱动电路来实现,其设计需要考虑到电机的功率大小、负载特性以及工作环境等因素,以确保电机能够稳定、高效地运行。

总的来说,直流电机控制器原理图是直流电机控制系统的核心部分,它的设计和实现直接影响到整个系统的性能和稳定性。

工程师们在进行系统设计和故障排查时,需要充分理解原理图的结构和工作原理,合理选择电路元件和器件,确保系统能够稳定、可靠地运行。

同时,随着科技的发展,直流电机控制器原理图也在不断地更新和优化,以满足不同应用场景的需求,提高系统的性能和可靠性。

直流电机控制(PID)实验报告

直流电机控制(PID)实验报告
b = speed1 / 100;
s = speed1 % 100 / 10;
g = speed1 % 100 % 10;
sent(table[b]);
sent(table[s]);
sent(table[g]);
sent(0); sent(0);//预期值
sent(table[speedset/100]);
out=0;
uk1=uk;//为下一次增量做准备
e2=e1;
e1=e;
PWMTime=out; //out对应于PWM高电平的时间
return(0);
}
void PWMOUT()
{
//PWM=1;
if(cnt<PWMTime)//若小于PWM的设定时间,则输出高电平
PWM=1;
else//否则输出低电平
三、仪器及原理图
实验仪器:THKL-C51仿真器
四、实验代码
%增量式
#include<reg51.h>
#define uchar unsigned char
#define uint unsigned int
#define ufloat unsigned float
sbit PWM=P1^2;
sbit DIN=P1^0;
sbit CLK=P1^1;
uint num;
float count=0;
uint cnt,n=0;
uint out;
uint PWMTime;
uchar code table[] = { 0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x77,0x7C,0x39,0x5E,0x7B,0x71,0x00,0x40 };

电机控制及原理

电机控制及原理

电机控制及原理电机作为一种常见的电力装置,广泛应用于各个领域,它在工业生产、交通运输、家庭生活等方面扮演着重要角色。

本文将探讨电机的控制及其原理,包括直流电机和交流电机的控制方法、控制原理和常见的控制电路。

一、直流电机的控制及原理直流电机是一种将直流电能转换为机械能的电器设备。

它由不同的电枢线圈和永磁体组成,电枢上的电流和磁场相互作用,产生力矩使电机转动。

在直流电机的控制中,常见的方法有电压控制、电流控制和脉宽调制。

1. 电压控制电压控制是一种简单有效的直流电机控制方法。

通过改变直流电源的电压来控制电机的转速和扭矩。

当电压增加时,电机的速度和扭矩也会相应增加,反之亦然。

这种控制方法可以通过调节电源开关或使用调速器来实现。

2. 电流控制电流控制是基于直流电机电枢上的电流大小来控制电机的转速和扭矩。

通过改变电枢电流的大小,可以精确地控制电机的运行状态。

电流控制方法常用于需要精密控制的应用,如机器人、仪器设备等。

3. 脉宽调制脉宽调制(PWM)是一种通过改变电压的开关频率来控制电机的方法。

PWM控制方法通过快速开关电源来产生一个平均电压,通过调整开关的占空比来控制电机的转速和扭矩。

这种方法具有高效能的优点,并且可以保持电机运行的平稳性。

二、交流电机的控制及原理交流电机是以交流电作为动力源来驱动的电机。

根据其构造和工作原理的不同,交流电机又可分为异步电机和同步电机。

下面将简要介绍这两种电机的控制及其原理。

1. 异步电机的控制异步电机是最常见的交流电机之一,其控制方法主要有电压控制、频率控制和电流控制。

- 电压控制:通过改变电源电压的大小来控制异步电机的转速和扭矩。

电压越高,电机的转速和扭矩越大。

- 频率控制:改变供电频率可以改变异步电机的转速。

改变频率的方法有旋转变频器、瞬变变频器等。

- 电流控制:通过控制电机电流的大小和相位,可以实现对异步电机的转速和扭矩的控制。

2. 同步电机的控制同步电机具有与供电频率同步工作的特点。

直流电机及其控制系统

直流电机及其控制系统

38
• 对和复励发电机,当负载电流增加时,由 于电枢反应、电枢电阻与串励绕组所引起 的电压降落,可由串励绕组的磁动势增强 来补偿。
• 所以,和复励发电机在任何负载下,其端 电压U几乎可以保持不变。
• 对差复励发电机,由于其串励绕组磁动势 与并励绕组磁动势相反。当有负载时,使 它的磁通大为削弱,端电压急剧下降。
器在内的励磁回路的总电阻。
可编辑ppt
27
• ⒈ 空载特性(n不变)
可编辑ppt
28
• ⒉ 外特性(n不变、Rf不变)
可编辑ppt
29
• 对并励发电机,当负载增加时(即外电 路电阻减小),负载电流IL增加,当负载 增加到一定程度,电流达到最大ILm 。若 负载电阻继续减小,电流则不在增加,
反而减小,当负载短路时,仅有不大的 短路电流Ia。
可编辑ppt
45
• ⒊功率平衡方程
• 式中:P1=U*Ia是电源对电机输入的功率; • Pe=Ea*Ia是电机向机械负载转换的电功率; • Pcua=Ia2*Ra是电枢回路总的铜损耗。
可编辑ppt
35
㈣ 复励发电机
可编辑ppt
36
• 复励发电机在磁极上有两个励磁绕组: 一个绕组与电枢并联,导线细匝数多— —并励绕组;另一个绕组与电枢串联, 导线粗而匝数少——串励绕组。
• 发电机空载时,串励绕组中没有电流, 故空载特性与并励发电机相同。
• 和复励、差复励
可编辑ppt
37
可编辑ppt
第三章 直流电机及其控制系统
可编辑ppt
1
第一节 直流电机的基本原理
可编辑ppt
2
• 直流电机电刷间的感应电势为:
• 式中:φ:一个磁极的磁通; n:电枢转速; KE: K关E 的=p常N/数60。a是与电机结构有 a:电枢绕组并联支路数。

直流电机基本知识与控制方法

直流电机基本知识与控制方法

专业资料电机简要学习手册2015-2-3一、直流电机原理与控制方法1直流电机简介直流电机(DM)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。

它是能实现直流电能和机械能互相转换的电机。

当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。

直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现以前基本占据了电机控制领域的整座江山。

但随着交流电机控制技术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流电机所取代。

但如今直流电机仍然占据着不可忽视的地位,广泛用于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然意义重大。

2 直流电动机基本结构与工作原理2.1 直流电机结构如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。

定子按照励磁可分为直励,他励,复励。

电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。

2.2 直流电机工作原理如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷A 流入,经过线圈abcd,从电刷B 流出,根据电磁力定律,载流导体ab和cd收到电磁力的作用,其方向可由左手定则判定,两段导体受到的力形成了一个转矩,使得转子逆时针转动。

如果转子转到如上图(b)所示的位置,电刷A 和换向片2接触,电刷B 和换向片1接触,直流电流从电刷A 流入,在线圈中的流动方向是dcba,从电刷B 流出。

此时载流导体ab和cd受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。

这就是直流电动机的工作原理。

外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。

直流电动机控制系统

直流电动机控制系统

直流电动机控制系统直流电动机是一种基本的电机类型,应用非常广泛。

而直流电动机控制系统则是控制直流电动机的关键工具。

本文将介绍直流电动机控制系统的工作原理、基本组成部分以及应用场景。

工作原理直流电动机控制系统的工作原理基于电流和电磁场的相互作用。

当通电后,电动机内的电流会在电磁铁中产生磁场。

这个磁场会作用于转子,导致它开始旋转。

而直流电动机控制系统的目的就是在保持稳定的基础上,改变电流的方向和大小,进而实现电机的转速控制。

组成部分直流电动机控制系统包含多个组成部分,下面将逐一介绍。

电源电源是直流电动机控制系统不可或缺的一个部分。

它提供了系统所需的电能,通常使用的是交流电源。

电动机电动机是直流电动机控制系统的核心,负责产生转动力。

根据控制系统的不同,会有不同规格的电机,例如不同转速和转矩。

电机驱动器电机驱动器是用来控制电流的方向和大小,改变电机的转速。

通常是由开关管、驱动电路以及电源组成。

传感器和反馈传感器和反馈是直流电动机控制系统中非常重要的部分,它可以检测电机的状态并将信息反馈给控制系统。

常用的传感器包括转速传感器、温度传感器等。

控制器控制器是直流电动机控制系统的大脑,根据传感器和反馈的信息来决定电机所要做的动作,例如改变电流的方向和大小,控制电机的运转。

应用场景直流电动机控制系统可以应用于许多领域,例如工业制造、航空和交通运输等。

在工业制造中,它可以应用于机械加工、制造生产线等设备;在航空中,它可以应用于航空器的起飞和着陆;在交通运输中,它可以应用于电动车辆、电动自行车和其他交通工具上。

直流电动机控制系统是控制电机的重要工具。

本文介绍了直流电动机控制系统的工作原理、基本组成部分以及应用场景。

希望本文能帮助您更好地了解直流电动机控制系统的基本知识,从而更好地应用于实际生产和生活中。

无刷直流电机控制方法

无刷直流电机控制方法

无刷直流电机控制方法
无刷直流电机的控制方法有以下几种:
1. 电压控制方法:通过改变驱动电机的电压来控制电机的转速。

利用PWM调整电压占空比,可以精确控制电机的转速和扭矩。

2. 闭环控制方法:通过采集电机的转速、位置或电流等信息,来计算误差并进行校正,实现对电机的闭环控制。

常见的闭环控制方法有速度闭环控制和位置闭环控制。

3. 传感器反馈控制方法:通过安装速度、位置或电流等传感器来实时监测电机状态,并将反馈信号与期望信号进行比较,通过控制器对电机进行控制。

这种方法可以提高控制精度和响应速度。

4. 感应器反馈控制方法:通过对电机正弦电流的反馈进行控制,实现对电机的控制。

这种方法不需要安装传感器,并具有较高的控制精度和响应速度。

5. 磁场定向控制方法:通过感应器或感应器反馈对电机磁场进行定向控制,实现对电机转矩和速度的精确控制。

需要注意的是,无刷直流电机的控制方法选用应根据具体应用场景和要求来确定,而不同的控制方法也可能会相互结合使用,以满足对电机的精确控制。

直流电机 控制原理

直流电机 控制原理

直流电机控制原理
直流电机的控制原理是通过改变电机的电流和电压来实现转速和转向的控制。

一般来说,直流电机的转速与电压成正比,而转向则与电流方向相关。

在电机控制系统中,常用的控制方式包括电压控制和电流控制。

1. 电压控制:通过改变电机输入端的电压来控制电机的转速。

这种控制方式常用于较简单的电机控制系统,如家用电器中的风扇调速。

通过改变电压大小,可以实现电机转速的调节。

2. 电流控制:通过改变电机输入端的电流来控制电机的转向和转速。

在这种控制方式下,通过改变电流的方向和大小,可以实现电机正转、反转和调速等功能。

电机启动时,通常会施加较大的启动电流,然后根据需要逐渐减小电流来控制转速。

为了实现电机的精确控制,还常常使用脉宽调制(PWM)技术。

脉宽调制是通过调节一个定时周期内高电平的时长来控制输出电压或电流的一种技术。

在直流电机控制系统中,通过改变PWM的占空比(高电平时长与一个周期时长的比值),可
以实现电机转速的微调。

较大的占空比意味着输出电压或电流的变化幅度较大,从而实现较高的转速。

此外,还可结合反馈控制系统来实现闭环控制。

反馈控制的原理是通过测量电机的转速或转角,并与期望值进行比较,然后根据误差来调整输出。

通过反馈控制,可以实现电机的精确控制和稳定运行。

直流电动机驱动及其控制

直流电动机驱动及其控制

度,满足高精度应用需求。
智能化与网络化
03
通过集成传感器、通信模块和控制单元,实现直流电动机的智
能化与网络化,提升系统的自动化和远程监控能力。
新材料与新技术的应用
新型磁性材料
利用新型磁性材料如稀土永磁材料,增强直流电动机的磁场强度 和稳定性,提高电机性能。
碳纤维复合材料
在电动机结构中应用碳纤维复合材料,减轻电机重量,提高机械强 度和耐腐蚀性。
案例三
总结词
航空航天领域对直流电动机驱动与控制技术有特殊要求,需要具备高可靠性、高稳定性 、抗干扰能力强等特点。
详细描述
在航空航天领域中,直流电动机驱动与控制系统广泛应用于各种飞行器、卫星和火箭的 控制系统。由于航空航天领域的特殊环境条件,对直流电动机驱动与控制系统的可靠性 、稳定性和抗干扰能力要求极高。因此,需要采用先进的材料、工艺和设计方法,确保
直流电动机驱动及 其控制
目录
• 直流电动机简介 • 直流电动机驱动技术 • 直流电动机的控制技术 • 直流电动机驱动与控制的挑战与展望 • 实际应用案例分析
01
CATALOGUE
直流电动机简介
直流电动机的基本原理
直流电动机的基本原理基于磁场和电流的相互作用。当电流通过电机的线圈时, 会产生磁场,该磁场与电机内部的磁铁相互作用,从而产生转矩驱动电机旋转。
案例二
总结词
工业自动化生产线中,直流电动机驱动与控制技术广泛应用于各种机械设备的驱动,具有高精度、高效率、高可 靠性等优点。
详细描述
在工业自动化生产线中,直流电动机驱动与控制系统能够实现精确的位置控制、速度控制和力矩控制,广泛应用 于机床、机器人、包装机械等设备的驱动。通过先进的控制算法,可以实现高精度的运动控制和工艺参数调节, 提高生产效率和产品质量。

几种常见的电机控制方法

几种常见的电机控制方法

几种常见的电机控制方法电机控制是指对电机的转速、转向、转矩等参数进行控制的一种技术手段。

随着科技的发展和应用领域的不断扩大,电机控制方法也日新月异,下面将介绍几种常见的电机控制方法。

直流电动机是最简单的一种电机,控制方法也相对简单。

常见的直流电机控制方法有电压控制法、电流控制法和功率控制法等。

-电压控制法:通过调节直流电源的电压来改变电机的转速和转矩。

一般来说,电压越高,电机的转速和转矩就越大。

这种方法简单易行,但效果较差,容易导致电机失控。

-电流控制法:通过调节直流电机的电流,来控制电机的转速和转矩。

在实际应用中,通过改变电机的电流来改变其转速和转矩,效果比较理想。

-功率控制法:通过调节直流电机的功率来控制电机的转速和转矩。

功率控制方法可以根据实际需求,灵活地调整电机的工作状态。

交流电机分为异步电机和同步电机,它们的控制方法也有所不同。

-异步电机控制方法:常见的异步电机控制方法有电压控制法、频率控制法和转子电阻控制法等。

+电压控制法:通过调节电压的大小来改变电机的转速和转矩。

随着电压的升高,电机的转速和转矩也会增大。

+频率控制法:通过改变供电频率来控制电机的转速和转矩。

频率越高,电机的转速越高,但转矩会下降。

+转子电阻控制法:通过改变转子电阻的大小来控制电机的转速和转矩。

转子电阻越大,电机的转速和转矩就越小。

-同步电机控制方法:同步电机是一种特殊的交流电机,其控制方法主要有磁通定向控制法和转矩控制法。

+磁通定向控制法:通过改变定子电流的相位和幅值,以及转子磁通的磁链位置,来控制电机的转速和转矩。

该方法可以实现电机的高效控制和精确控制。

+转矩控制法:通过改变定子电流和转子磁链的相对位置,来控制电机的转矩。

该方法主要用于需要实现精确转矩控制的应用。

步进电机是一种特殊的交流电机,根据其驱动方式不同,控制方法也有所不同。

-开环控制法:通过给步进电机施加一定的脉冲信号,来控制电机的转速和转矩。

这种方法简单易行,但缺乏反馈信息,控制效果有限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直流电机控制电路永磁式换向器直流电机,是应用很广泛的一种。

只要在它上面加适当电压。

电机就转动。

图9是这种电机的符号和简化等效电路。

工作原理这种电机由定子、转子、换向器(又称整流子)、电刷等组成,定子用作产生磁场。

转于是在定子磁场作用下,得到转矩而旋转起来。

换向器及时改变了电流方向,使转子能连续旋转下去。

也就是说,直流电压加在电刷上,经换向器加到转子线圈,流过电流而产生磁场,这磁场与定子的固定磁场作用,转子被强迫转动起来。

当它转动时,由于磁场的相互作用,也将产生反电动势,它的大小正比于转子的速度,方向和所加的直流电压相反。

图9(b)给出了等效电路。

Rw代表转子绕组的总电阻,E代表与速度相关的反电动势。

永磁式换流器电机的特点·当电机负载固定时,电机转速正比于所加的电源电压。

·当电机直流电源固定时,电机的工作电流正比于转予负载的大小。

·加于电机的有效电压,等于外加直流电压减去反电动势。

因此当用固定电压驱动电机时,电机的速度趋向于自稳定。

因为负载增加时,转子有慢下来的倾向,于是反电动势减少,而使有效电压增加,反过来又将使转子有快起来的倾向,所以总的效果使速度稳定。

·当转子静止时,反电动势为零,电机电流最大。

其最大值等于V/Rw(这儿V是电源电压)。

最大·电流出现在刚起动的条件。

·转子转动的方向,可由电机上所加电压的极性来控制。

·体积小,重量轻。

起动转矩大。

由于具备上述的那些特点,所以在医疗器械、小型机床、电子仪器、计算机、气象探空仪、探矿测井、电动工具、家用电器及电子玩具等各个方面,都得到广泛的应用。

对这种永磁式电机的控制,主要有电机的起停控制、方向控制、可变速度控制和速度的稳定控制。

1、电机的起/停控制电机的起/停控制,最简单最原始的方法是在电机与电源之间,加一机械开关。

或者用继电器的触点控制。

大家都比较熟悉,故不举例。

现在比较流行的方法,是用开关晶体管来代替机械开关,无触点、无火花干扰,速度快。

电路如图10(a)所示。

当输入端为低电平时,开关晶体管Q1截止,电机无电流而处于停止状态。

如果输入端为高电平时,Q1饱和导通,电机中有电流,因此电机起动运转。

图中二极管D1和D2是保护二极管,防止反电动势损坏晶体管。

电容C1是消除射频干扰而外加的。

R1基极限流电阻,限制Q1的基极电流。

在6V电源时,基极电流不超过52mA。

在这种情况下,Q1提供电机的最大电流为1A左右。

图10(a)的电路,因基极电流需外部驱动电路。

如果再增加一级缓冲放大,如图10(b)的电路,驱动电流减少到2mA。

R3限制Q1的基极电流到安全值。

其他元件作用与(a)图中相同。

2、电机的方向控制水磁式换流器电机的转动方向,可以用改变电源极性的方法,使电机反转。

如果用正、负双极性电源,可用一个单刀进行转换,如图11(a)所示。

因为电机的电流直接通过开关,容易烧坏开关接点。

所以可以改用功率开关晶体管来代替机械开关,就可以克服上述缺点。

电路如图11(b)所示。

电路工作原理:当开关SW1置于“正转”位时,Q1和Q3的基极加上偏流;Q2和Q4的偏置电路被断开。

所以Q1和Q3导通,Q2和Q4截止。

电流从V+→Q3发射极→Q3集电极→电机正端→电机负端→地形成回路,此时电机正转。

同理,如果SW1置于“反转’位置时,Q2和Q4得到偏流而导通;01和Q3截止。

电流从电源地端→电机负端→电机正端→Q4集电极→Q4发射极→电源负端形成回路,故电机电源与上述情况相反,因此电机反转。

而SW1置于断时,电机停止转动。

图11(b)电路中SW1要转接正、负电源。

在接口电路的应用中,用电子开关来代替SW1就比较困难。

为了克服这个缺点,可用图11(c)的电路加以改进。

图11(c)中的SW1就很容易用电子开关来代替。

在这个电路中,SW1置于“正转”位置时,Q1和Q3导通,Q2和Q4截止。

SW1置于“反转”位置时,Q2和Q4导通,Q1和Q3截止。

3、单极性电源的方向控制如果电源为单极性,那么控制方向的开关就要双刀三掷。

如图12(a)所示。

不过用晶体管连接为桥式电路,也是最基本和最通用的形式。

电路如图12(b)所示。

从电路中可以看出,当SW1置于“正转”位置时,Q1和Q4导通,Q2和Q3截止。

当SW1置于“反转”位置时,Q2和Q3导通,Q1和Q4截止。

二极管D1—D4是保护电路,防止电机反电动势可能损坏晶体管。

图12(c)为图12(b)的改进电路。

它使SW1只控制正转/反转,而SW2只控制电机的起停。

用简图指出了电路中的关键点。

Q1或Q2总有一个是接通的,Q3或Q4是起通/断作用。

当电路被断开时,电机电流经Q1—D2或Q2—D1环路迅速减少,这是所谓的“飞轮效应”。

如果SW2用脉冲调制的电子开关代替的话,就是需要这种“飞轮效应”。

电机的速度可用脉宽控制。

这种技术在本文后面将叙述。

图12(b)的电路,需要大的驱动电流。

如果需要更灵敏的控制电路,可以采用图13(a)的方案。

在这个电路中,A、B、C和D的四个输入端,只需要几毫安的驱动电流。

这个电路也可以像图13(b)那样,用人工进行控制。

图中用CMOS 集成电路CD4052B,作双刀四路双向开关。

逻辑电平“0”或逻辑电平“1”加到A或B的输入端。

正转/反转,起动/停止是相互独立的。

这个电路也具有“飞轮效应”。

图13(a)和图]3(c)的电路工作的逻辑真值表如表4列出。

4、电机的速度控制直流电机的转速与所加的电压有效值成正比。

图14是12V直流电机的可变电压速度控制。

图中Q1和Q2是复合管射极跟随器,电机的直流电压可从0V变到12v。

这种电路的特点是:在中速和高速时,速度的控制和自动调节的性能很好。

但是低速和慢启动特性比较差。

用开关方式或脉宽调制,可以获得非常好的速度控制性能。

电路图如15所示。

图中IC1作为50Hz的无稳多谐振荡器,它产生一个矩形波输出,占空比可变从20比1到1比20,由RV1进行调节。

这个波形经过Q1和Q2送到电机,电机上的电压有效值是随RV1的调节而变化的(总的周期是50HZ)。

不过电机上所加上的电压,是具有峰值电压为12V的功率脉冲。

因此在整个调速范围内;性能都非常好。

即使在很低的速度,转矩也很大。

速度控制的程度,正比于所加电压的有效值。

5、模型火车速度控制器图16所示的电路是具有自动短路保护的模型火车速度控制器。

电源用12V,最大输出电流为1.5A。

如果轨道上出现短路时,控制单元上张有短路探测器和保护电路,自动将输出电流限制在100mA(有效值)这个电路的工作原理如下:交流电源经变压器T1降压后,经BR1进行全波桥式整流,得到一个未滤波的直流电压。

通过一个串联的单向可控硅(SCR1)与方向控制开关SW3,将整流电压加在电机上。

在整流输出直流的每个开始的半周,可控硅(SCR)是断开的。

直流电压经R4和ZD1稳压后,加到双基极二极管(UJT)Q1及相关的定时电路C1和RV1上。

当C1上的电压超过UJT发射极的门限值时,触发可控硅,使SCR1饱和导通。

而另一半周期SCR1关断复位。

电机的电源是经SCR1阴极、R2和R3、SW3而得到。

未经滤波原整流后的频率为电源频率的二倍。

电机通电时间的长短,受电位器RV1控制。

所以模型火车的速度能在很宽的范围内变化。

还要提醒一下,输出电流流过了并联电阻R2和R3,电阻上的电压正比于电流。

该电压经过一个峰值检波电路D1和C2,检波后妁直流电压馈送到Q2的基极。

当输出电流的峰值超过1.5A或输出短路时,由于C2的电压储能作用,使R8和R9的分压、正好能使Q2导通,将Q1的定时电路短路,停止几个半周不触发SCR1。

如果出现短路情况,由电路内部电阻限流在几安的峰值电流,每15个半周触发一次SCR1,使输出电流的有效值限制在100mA,这就保护了电路的安全。

6、自动轨道清洁机图17是典型的铁路轨道清洁机的电路原理图。

电源部份与图16的整流部份相同。

有了自动轨道清洁机,就可以保持模型火车与轨道之间有良好的电接触。

因为车轮与轨道之间,容易被脏物或氧化造成接触障碍。

这个问题的解决是经过一个高频高压小功率的信号发生器,把控制信号送至轨道,如果道轨上存在污物或氧化的危害时,将使其信号中断,高压发生器便工作。

结合图17叙述其工作原理。

电路的振荡频率大约为100KHz,由变压器T1的电感与C2的容量而定。

C4是抵销不希望的轨道效应的分布电容。

在T1的次级,峰值电压有几佰伏,但为高阻抗。

如果负载是低阻抗时,振荡器就停止振荡不产生高压。

变压器T1次级用粗漆包铜线绕制,通过火车控制信号送到道轨。

当火车电机与道轨的电接触为低阻抗时,振荡停止。

只有火车的控制信号送到轨道。

然而,如果接触被污物中断,车轮与道轨的接触变成高阻抗;这时高压发生器迅速工作。

建立起良好的电接触。

排除了中断的障碍。

当轨道清洁机有效时,T1次级的氖灯的亮度指示轨道的接触损失。

R6限制振荡器只有很小的振荡电压送到火车的控制端。

7.电机速度控制及稳定电机速度稳定器,意味着控制电路的电压和电机的负载尽管在很大的范围内变化,电机的转速也能稳定不变。

图18是一种简便的电机速度控制器和稳速电路。

这个电路的特点是:不管电压和温度怎样变,加在电机上的电压都恒定不变,所以速度稳定。

电路中317K为三端可调稳压器,当加上适当的散热器时,输出电流可达1.5A,并且317K稳压集成电路内具有短路和过载保护。

对于图中的元件标值,输入电压从1.25V~13.75V变化。

为了确保电压的稳定,输入电压至少要比要求的输出电压大3V以上。

图19所示电路为通用电机稳速器电路。

这种电路应用范围很广。

例如盒式录音机。

它能自动补偿电池电压和电机负载的变化。

电机的电流受串联晶体管Ql的控制,而Q1的电流又受晶体管Q2的控制。

如果电机的额定电压为6V,其他元件如图中标值,可获得100mA的电机电流。

值得一提的是:Q2发射极的电压比电机电压低1.2v左右。

D1、D2、和R3上面的电压之和等于电机上的电压。

Q2的基极偏压,取自Q1的集电极。

由R4、RV1和R5分压提供。

由于某种因素电源电压下降,有使电机电压减小的趋势。

这将引起Q2发射极电压的降低Q2基极电压也跟着降低,这又会引起Q2和Q1的集电极电流减小,其结果导致Q1集电极电位上升,这就自动补偿电源电压的降低。

达到了稳速的目的。

如果电源电压上升,原理与上述相同,不过变化方向相反而已。

D1和D2二极管起温度补偿作用。

电机速度控制可由RV1调节。

高性能可变速度稳定器电路如图20所示。

它可用作宽范围速度可变的场合,例如12V微型电钻。

图中电机的电源是经过317K三端稳压器集成电路输出。

电机的电流经R5和RV2取样,把部份电压送到IC2和Q1组成的同相直流放大器。

相关文档
最新文档