易错汇总2015-2016年甘肃省兰州一中高二上学期期末数学试卷(文科)与解析
2015-2016年甘肃省武威二中高二第一学期数学期末试卷(文科)及 解析
D.
11. (5 分)函数 f(x)的定义域为开区间(a,b) ,导函数 f′(x)在(a,b)内 的图象如图所示,则函数 f(x)在开区间(a,b)内有极小值点( )
A.1 个
B.2 个
C.3 个
D.4 个
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分. 12. (4 分)抛物线 y2=﹣12x 的准线方程是 13. (4 分)¬p 为假命题是 p∨q 为真命题的 14. (4 分)已知 ,则 f′(1)= . 条件. .
第2页(共12页)
+
=1 有相同焦点,且经过点(
,4) ,求其方
(1)求 f′(x)的表达式 (2)求 f(x)的单调区间、极大值和极小值. 18. (12 分)已知命题 p:﹣2<x<10,命题 q:x≤1﹣a 或 x≥1+a,若非 p 是 q 的充分不必要条件,求 a 的取值范围. 19. (13 分)已知双曲线中心在原点,焦点在 x 轴上,过左焦点 F1 作倾斜角为 30°的直线 l,交双曲线于 A,B 两点,F2 为双曲线的右焦点,且 AF2⊥x 轴,如 图. (Ⅰ)求双曲线的离心率; (Ⅱ)若|AB|=16,求双曲线的标准方程.
第3页(共12页)
2015-2016 学年甘肃省武威二中高二(上)期末数学试卷 (文科)
参考答案与试题解析
一、选择题:本大题共 11 个小题,每小题 5 分,共 55 分. 1. (5 分)椭圆 A. (3,0) 【解答】解:椭圆 ∵a2=5,b2=4, ∴ =5﹣4=1, 的一个焦点坐标是( B. (0,3) , ) D. (0,1)
15. (4 分)已知 f(x)=x3+ x2﹣6x+c,若 x∈[0,2]都有 f(x)>2c﹣ 恒成立, 则 c 的取值范围是 .
甘肃省兰州第一中学2014-2015学年高二上学期期末考试数学(文)试卷 Word版含答案
甘肃省兰州第一中学2014-2015学年高二上学期期末考试数学(文)试题 说明:本试卷分第I 卷(选择题)和第II卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卷(卡)上,交卷时只交答题卷(卡) 第I 卷(选择题) 一、选择题(每小题3分,共30分,将答案写在答题卡上) 1已知为虚数单位,且,则的值为() A B. C.-4 D. 2.过点P(2,4)且与抛物线y2=8x有且只有一个公共点的的直线有() A0条 B.1条 C.2条 D..3条 3双曲线的一条渐近线方程是( ) A. B. C. D. 4.下列命题错误的是 ( ) A.命题“若,则”的逆否命题为“若,则” B.若命题,,则“”为: C.“ ”是“”的充分不必要条件 D.若或;q:或,则是的必要不充分条件. 5.曲线与曲线的()A.焦点相同B.离心率相等C.准线相同D.焦距相等 6.根据右边程序框图,当输入10时,输出的是() A .12 B.19 C.14.1 D.30 7.如果命题p?q为真命题,p?q为假命题,那么()A.命题p、q都是真命题B.命题p、q都是假命题C.命题p、q只有一个真命题D.命题p、q至少有一个是真命题 8.设双曲线的一条渐近线与抛物线只有一个公共点,则双曲线的离心率为() A. B.5 C. D. 9.已知p:关于x的不等式的解集为R;q:关于x的不等式的解集为R,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 10.已知F是双曲线的左焦点,E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,若ABE是锐角三角形,则该双曲线的离心率e的取值范围为( )A.(1,+∞)B.(1,2)C.(1,1+)D.(2,1+) 第II卷(非选择题) 二、填空题(每小题4分,共1分,将答案写在答题卡上) 1的共轭复数是. 12.过抛物线的焦点作倾斜角为直线,直线抛物线,两点,则弦的长是13.已知椭圆与双曲线的公共焦点为F1,F2,点P是两条曲线的一个公共点,则cos∠F1PF2的值为 . 14.若椭圆与直线交于A,B两点,若,则过原点与线段AB的中点M的连线的斜率为 . 兰州一中201-2015学年第一学期高二年级期末数学试题 答题卡() 第I 卷(选择题) 一、选择题(每小题分,共分) 题号 1 2 3 4 5 6 7 8 9 10 答案第II卷(非选择题) 二、填空题(每小题4分,共1分) 11.__________________ 12.__________________ 13.14.__________________ 三、解答题(本题共5小题,共分) 15(10分),若, ();()的值 . 16.(10分)设分别为椭圆的左、右两个焦点. ()若椭圆上的点两点的距离之和等于,椭圆的方程和焦点坐标; ()设点是()中所得椭圆上的动点,17.(10分)已知命题成立.命题有实数根.若为假命题,为假命题,求实数的取值范围 18.(本题12分)、, 且过点. (1)求双曲线方程; (2)若点在双曲线上,求证:; (3)对于(2)中的点,求的面积. 19.(本题12分)如图,设抛物线:的焦点为F,为抛物线上的任一点(其中≠0),过P 点的切线交轴于点 (),求证; (),过M点的直线抛物线于A、B两点,若,求的值 兰州一中201-2015学年第一学期高二年级期末数学试题 答() 第I 卷(选择题) 一、选择题(每小题分,共分) 题号 1 2 3 4 5 6 7 8 9 10 答案 C B DD C C D B B 第II卷(非选择题) 三、解答题(本题共5小题,共分) 15.(10分), …………………………….5分 (2)把Z=1+i代入,即, 得 …………………………….7分 所以 解得 所以实数,b的值分别为-3,4 …………………………….10分 16. (10分)解:()椭圆C的焦点在x轴上, 由椭圆上的点A到F1、F2两点的距离之和是4,得2a=4,即a=2又点所以椭圆C的方程为…………4分()设 …………8分又 ………….10分17.(10分) 解: 即命题…………………………分 有实数根…,即…………………………分 因为为假命题,为假命题 则为真命题,所以为假命题,为真命题,:…………………………分 由 即的取值范围是: …………………………1分 18.(本题12分), 又双曲线过点,解得 故双曲线方程为. ……………………………4分,,∴, ∴,,∴, 又点在双曲线上,∴, ∴,即. ……………………………8分 ,∴的面积为6. ……………………………12分 19.(本题12分)解(Ⅰ)证明:由抛物线定义知, …….2分 设过P点的切线 由 令得, 可得PQ所在直线方程为 ∴得Q点坐标为(0, )∴即|PF|=|QF| ………………………….6分 (Ⅱ)设A(x1, y1),B(x2, y2),又M点坐标为(0, y0)∴AB方程为 由得 M P Q y x F O A B M P Q y x F O A B。
2015--2016年度高二第一学期数学文科期末试卷参考答案
2015--2016年度高二数学文科期末试卷参考答案一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
题号 1 2 3 4 5 6 7 8 9 10 11 12 选项A A D D A A C B C A D C 二、填空题:本大题共4小题,每小题5分,共20分。
13.5314.22 15.-216.8三、解答题:本大题共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
17.解:(1)由正弦定理得,sinsinABACCB=∠∠再由三角形内角平分线定理得∴==,21BDDCABAC.21sinsin=∠∠CB(2)︒=∠+∠∴︒=∠120,60CBBAC.30,33tan,sin2)120sin(,sin2sin.21sinsin1︒=∠∴=∠=∠-︒∴∠=∠∴=∠∠BBBBBCCB展开得)得由(19.(本题12分)本题主要考查等比数列的通项公式及等差、等比数列的求和公式、不等式等基础知识,同时考查运算求解能力。
解:(Ⅰ)设等比数列}{na的首项为)0(11>aa,公比为)0(>qq,则由条件得⎪⎩⎪⎨⎧=+=⋅41312151311112q a q a q a q a q a q a , ……………… 3分 解得211==q a ,则n n a 21= ………… 5分 由等比数列前n 项和公式得1(1)1112n nna q S q ………………7分 (Ⅱ)由(Ⅰ)知1(1)1112n nna q S q又2)1()21(+=n n nT ………………10分若存在正整数k ,使得不等式14<++nk n T S 对任意的n ∈N *都成立, 则1)21(21122)1(<+-+++n n kn ,即22)1(+-<n n k ,正整数k 只有取1=k ………………14分 20. 解:(I )设BD 交AC 于点O ,连结EO 。
甘肃省兰州2016-2017学年高二上学期期末考试数学文试题Word版含答案
兰州一中2016-2017-1学期期末考试试题高二数学(文)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题)一、选择题(本大题共10 小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案写在答题卡上...........) 1. 命题p : 对∀ x ∈R ,x 3-x 2+1≤0,则⌝p 是( )A.不存在x ∈R ,x 3-x 2+1≤0B. ∃ x ∈R ,x 3-x 2+1≥0C. ∃ x ∈R ,x 3-x 2+1>0D.对∀ x ∈R ,x 3-x 2+1>02. 抛物线y 2=2px 上横坐标为6的点到焦点的距离是10,则焦点到准线距离是( )A.4B.8C.16D.323. 下列求导数运算正确的是( ) A. 2'11)1(xx x +=+ B. (log 2x )'=2ln 1x C. e x x 3'log 3)3(= D. x x x x sin 2)cos ('2-=4. 若a 、b 为实数, 且a +b =2, 则3a +3b 的最小值为( )A .6B .18C .23D .2435. 椭圆24x +y 2=1的焦点为F 1、F 2,经过F 1作垂直于x 轴的直线与椭圆的一个交点为P ,则|2PF |等于( )A. B. C.72D.4 6.2x 2-5x -3<0的一个必要不充分条件是( )A .-21<x <3 B .-21<x <0 C .-3<x <21 D .-1<x <6 7. 过双曲线221169x y 左焦点F 1的弦AB 长为6,则2ABF (F 2为右焦点)的周长是( ) A .28 B .22 C .14 D .12 8.已知双曲线22221x y a b-= (a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A. 2233125100x y -= B. 221205x y -= C. 221520x y -= D. 2233110025x y -= 9. 椭圆上22221(0)x y a b a b+=>>一点A 关于原点的对称点为B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且[,]124ππα∈,则该椭圆离心率的取值范围为( ) A.B.C. D.10. 已知点P 在曲线41x y e =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .[0,4π) B .[4π,2π) C .(2π,34π] D .[34π,π) 第Ⅱ卷(非选择题)二、选择题(本大题共4小题,每小题4分,共16分,将答案写在答题卡上..........) 11.一个物体运动的方程为s =at 3+3t 2+2t ,其中s 的单位是米,t 的单位是米/秒,若该物体在4秒时的瞬时速度是50米/秒,则a = .12. 已知y x ,满足43035251x y x y x -+≤⎧⎪+≤⎨⎪≥⎩,则z =2x -y 的最小值为 .13. 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,直线l 的方程为 .14.设双曲线2222b y a x -=1(0<b <a )的半焦距为c ,直线l 经过双曲线的右顶点和虚轴的上端点.已知原点到直线l 的距离为43c ,则双曲线的离心率为 . 兰州一中2016-2017-1学期期末考试答题卡高二数学(文)一、选择题(本大题共10 小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10答案二、填空题(每小题4分,共16分)11.;12.;13.;14..三、解答题(本大题共5 小题,共44分)15.(本小题8分)己知a,b,c都是正数,且a,b,c成等比数列.求证:a2+b2+c2>(a-b+c)2.16.(本小题8分)已知命题p:函数y=x2+mx+1在(-1,+∞)上单调递增,命题q:对函数y=-4x2+4(2- m)x-1, y≤0恒成立.若p∨q为真,p∧q为假,求m的取值范围.17.(本小题8分)已知曲线C1:y=ax2上点P处的切线为l1,曲线C2:y=bx3上点A(1,b)处的切线为l2,且l1⊥l2,垂足M(2,2),求a、b的值.18.(本小题10分)已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1) 求抛物线C 的方程,并求其准线方程;(2) 若平行于OA (O 为坐标原点)的直线l 与抛物线C 相交于两点,且直线OA 与l 的距离等,求直线l 的方程.19. (本小题10分)已知定点1(F ,动点B是圆222:(12F x y += (F 2为圆心)上一点,线段F 1B 的垂直平分线交BF 2于P .(1)求动点P 的轨迹方程;(2)若直线y =kx +2(k ≠0)与P 点的轨迹交于C 、D 两点.且以CD 为直径的圆过坐标原点,求k 的值.兰州一中2016-2017-1学期期末考试参考答案高二数学(文)一、选择题(本大题共10 小题,每小题4分,共40分)二、填空题(每小题4分,共16分)11.12; 12.-125; 13.082=-+y x ; 14三、解答题(本大题共5 小题,共44分)15.(8分)证明:∵a ,b ,c 成等比数列,∴b 2=ac∵a ,b ,c 都是正数,c a c a ac b +<+≤=<∴20 ∴a +c >b , ……………………………4分∴a 2+b 2+c 2-(a -b +c )2=2(ab +bc -ca )=2(ab +bc - b 2)=2b (a +c -b )>0∴ a 2+b 2+c 2>(a -b +c )2. ……………………………8分16.(8分)解:若函数y =x 2+mx∴m ≥2,即p :m ≥2 ……………………………2分若函数y =-4x 2+4(2- m )x -1≤0恒成立,则△=16(m -2)2-16≤0,解得1≤m ≤3,即q :1≤m ≤3 ……………………………4分 ∵p ∨q 为真,p ∧q 为假,∴p 、q 一真一假当p 真q 假时,由213m m m ≥⎧⎨<>⎩或 解得:m >3 ……………………………6分 当p 假q 真时,由213m m <⎧⎨≤≤⎩解得:1≤m <2 综上,m 的取值范围是{m |m >3或1≤m <2} …………………………8分17.(8分)解:设P (t ,at 2),则l 1斜率k 1=2at ∴l 1:y -at 2=2at (x -t )l 2斜率k 2=3bx 2|x=1=3b ∴ l 2:y -b =3b (x -1) …………………………3分 ∵ l 1与l 2交于点M (2,2),∴ 222(2)23(21)at at t b b ⎧-=-⎨-=-⎩ ∴ 242012at at b ⎧-+=⎪⎨=⎪⎩ ① …………………………5分 又l 1⊥l 2 ∴ k 1·k 2=-1 ∴at =-13② …………………………7分 由①②得t =10,a =-130…………………………8分 18.(10分) 解:(1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1,所以p =2.故抛物线方程为y 2=4x ,准线为x =-1. ……………………………3分(2)设直线l 的方程为y =-2x +t ,由⎩⎪⎨⎪⎧y =-2x +t y 2=4x 得y 2+2y -2t =0. ……………………………5分 因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0,解得t ≥-12. ……………………………7分 由直线OA 与l 的距离d =55可得|t |5=15,解得t =±1.因为-1∉[-12,+∞),1∈[-12,+∞), 所以直线l 的程为2x +y -1=0. ……………………………10分19.(10分)解:(1)由题意1PF PB =且2PB PF +=,12PFPF ∴+=22> ∴P 点轨迹是以12,F F 为焦点的椭圆.设其标准方程为22221x y a b+=(0)a b >>2a ∴=即a =又∴=2c 2221b a c =-=,∴P 点轨迹方程为2213x y +=. ……………………………4分 (2)假设存在这样的k ,由222330y kx x y =+⎧⎨+-=⎩得22(13)1290k x kx +++=. 由22(12)36(13)0k k ∆=-+>得21k >. 设1122(,),(,)C x y D x y ,则1221221213913k x x k x x k ⎧+=-⎪⎪+⎨⎪=⎪+⎩①, ……………………………6分若以CD 为直径的圆过坐标原点,则有12120x x y y +=,而212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,∴212121212(1)2()40x x y y k x x k x x +=++++= ②, 将①式代入②式整理可得2133k =,其值符合0∆>,故k = .………10分。
易错汇总2014-2015年甘肃省兰州一中高二上学期数学期末试卷(文科)及答案
所以( 1+i)x+y=(1+i)2=2i.
故选: D. 2.( 3 分)过点 P( 2,4)且与抛物线 y2=8x 有且只有一个公共点的直线有 ( )
A.0 条
B.1 条
C.2 条
D..3 条
【解答】 解:由题意可知点 P(2,4)在抛物线 y2=8x 上
故过点 P( 2, 4)且与抛物线 y2=8x 只有一个公共点时只能是
的一条渐近线为
,
第 6 页(共 13 页)
由方程组
,消去 y,
有唯一解,
所以△ =
,
所以 ,
,
故选: D.
9.(3 分)已知 p:关于 x 的不等式 | x﹣ 2|+| x+2| >m 的解集是 R; q:关于 x
的不等式 x2+mx+4>0 的解集是 R.则 p 成立是 q 成立的(
)
A.充分不必要条件
【解答】 解:由图可知:
该程序的作用是计算分段函数
C.14.1
D.﹣ 30
的函数值.
当当输入 10 时,输出的是: 1.9× 10﹣4.9=14.1.
故选: C.
7.(3 分)如果命题 p∨q 为真命题, p∧ q 为假命题,那么(
)
A.命题 p、q 都是真命题
B.命题 p、q 都是假命题
C.命题 p、q 至少有一个是真命题
11.( 4 分)复数 的共轭复数是
.
12.( 4 分)过抛物线 y2=8x 的焦点作倾斜角为 直线 l,直线 l 与抛物线相交与
A,B 两点,则弦 | AB| 的长是
.
13.( 4 分)椭圆 + =1 和双曲线 ﹣y2=1 的公共焦点为 F1、F2,P 是两曲线
甘肃省兰州高二上学期期末考试数学(文)试题 Word版含答案
兰州一中2016-2017-1学期期末考试试题高二数学(文)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题)一、选择题(本大题共10 小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案写在答题卡上...........) 1. 命题p : 对∀ x ∈R ,x 3-x 2+1≤0,则⌝p 是( ) A.不存在x ∈R ,x 3-x 2+1≤0 B. ∃ x ∈R ,x 3-x 2+1≥0C. ∃ x ∈R ,x 3-x 2+1>0D.对∀ x ∈R ,x 3-x 2+1>02. 抛物线y 2=2px 上横坐标为6的点到焦点的距离是10,则焦点到准线距离是( )A.4B.8C.16D.323. 下列求导数运算正确的是( ) A. 2'11)1(xx x +=+B. (log 2x )'=2ln 1x C. e xx 3'log 3)3(= D. x x x x sin 2)cos ('2-=4. 若a 、b 为实数, 且a +b =2, 则3a +3b 的最小值为( ) A .6B .18C .23D .2435. 椭圆24x +y 2=1的焦点为F 1、F 2,经过F 1作垂直于x 轴的直线与椭圆的一个交点为P ,则|2PF uuu r|等于( )A.B. C.72D.4 6.2x 2-5x -3<0的一个必要不充分条件是( ) A .-21<x <3 B .-21<x <0 C .-3<x <21 D .-1<x <67. 过双曲线221169x y -=左焦点F 1的弦AB 长为6,则2ABF D (F 2为右焦点)的周长是( ) A .28 B .22 C .14 D .128.已知双曲线22221x y a b -= (a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A. 2233125100x y -=B. 221205x y -=C. 221520x y -=D. 2233110025x y -=9. 椭圆上22221(0)x y a b a b+=>>一点A 关于原点的对称点为B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且[,]124ππα∈,则该椭圆离心率的取值范围为( )A.B.C. D.10. 已知点P 在曲线41x y e =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,4π)B .[4π,2π)C .(2π,34π]D .[34π,π)第Ⅱ卷(非选择题)二、选择题(本大题共4小题,每小题4分,共16分,将答案写在答题卡上..........) 11.一个物体运动的方程为s =at 3+3t 2+2t ,其中s 的单位是米,t 的单位是米/秒,若该物体在4秒时的瞬时速度是50米/秒,则a = .12. 已知y x ,满足43035251x y x y x -+≤⎧⎪+≤⎨⎪≥⎩,则z =2x -y 的最小值为 .13. 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,直线l 的方程为 .14.设双曲线2222b y a x -=1(0<b <a )的半焦距为c ,直线l 经过双曲线的右顶点和虚轴的上端点.已知原点到直线l 的距离为43c ,则双曲线的离心率为 .兰州一中2016-2017-1学期期末考试答题卡高二数学(文)一、选择题(本大题共10 小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(每小题4分,共16分)11.;12.;13.;14. .三、解答题(本大题共5 小题,共44分)15.(本小题8分)己知a,b,c都是正数,且a,b,c成等比数列.求证:a2+b2+c2>(a-b+c)2.16.(本小题8分)已知命题p:函数y=x2+mx+1在(-1,+∞)上单调递增,命题q:对函数y=-4x2+4(2- m)x-1, y≤0恒成立.若p∨q为真,p∧q为假,求m的取值范围.17.(本小题8分)已知曲线C1:y=ax2上点P处的切线为l1,曲线C2:y=bx3上点A(1,b)处的切线为l2,且l1⊥l2,垂足M(2,2),求a、b的值.18.(本小题10分)已知抛物线C:y2=2px(p>0)过点A(1,-2).(1) 求抛物线C的方程,并求其准线方程;(2)若平行于OA(O为坐标原点)的直线l与抛物线C相交于两点,且直线OA与l的距离等于,求直线l的方程.19. (本小题10分)已知定点1(F ,动点B 是圆222:(12F x y += (F 2为圆心)上一点,线段F 1B 的垂直平分线交BF 2于P . (1)求动点P 的轨迹方程;(2)若直线y =kx +2(k ≠0)与P 点的轨迹交于C 、D 两点.且以CD 为直径的圆过坐标原点,求k 的值.兰州一中2016-2017-1学期期末考试参考答案高二数学(文)一、选择题(本大题共10 小题,每小题4分,共40分)二、填空题(每小题4分,共16分)11.12; 12.-125; 13.082=-+y x ; 14三、解答题(本大题共5 小题,共44分) 15.(8分)证明:∵a ,b ,c 成等比数列,∴b 2=ac ∵a ,b ,c 都是正数,c a ca acb +<+≤=<∴20 ∴a +c >b , ……………………………4分∴a 2+b 2+c 2-(a -b +c )2=2(ab +bc -ca )=2(ab +bc - b 2)=2b (a +c -b )>0 ∴ a 2+b 2+c 2>(a -b +c )2. ……………………………8分 16.(8分)解:若函数y =x 2+mx ∴m ≥2,即p :m ≥2 ……………………………2分 若函数y =-4x 2+4(2- m )x -1≤0恒成立, 则△=16(m -2)2-16≤0,解得1≤m ≤3,即q :1≤m ≤3 ……………………………4分 ∵p ∨q 为真,p ∧q 为假,∴p 、q 一真一假当p真q假时,由213mm m≥⎧⎨<>⎩或解得:m>3 ……………………………6分当p 假q真时,由213mm<⎧⎨≤≤⎩解得:1≤m<2综上,m的取值范围是{m|m>3或1≤m<2} …………………………8分17.(8分)解:设P(t,at2),则l1斜率k1=2at∴l1:y-at2=2at(x-t)l2斜率k2=3bx2|x=1=3b∴l2:y-b=3b(x-1) …………………………3分∵l1与l2交于点M(2,2),∴222(2)23(21)at at tb b⎧-=-⎨-=-⎩∴242012at atb⎧-+=⎪⎨=⎪⎩①…………………………5分又l1⊥l2∴k1·k2=-1 ∴at=-13②…………………………7分由①②得t=10,a=-130…………………………8分18.(10分)解:(1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, 所以p =2.故抛物线方程为y 2=4x ,准线为x =-1. ……………………………3分 (2)设直线l 的方程为y =-2x +t ,由⎩⎨⎧y =-2x +ty 2=4x得y 2+2y -2t =0. ……………………………5分 因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0,解得t ≥-12. ……………………………7分由直线OA 与l 的距离d =55可得|t |5=15, 解得t =±1.因为-1∉[-12,+∞),1∈[-12,+∞),所以直线l 的程为2x +y -1=0. ……………………………10分19.(10分)解:(1)由题意1PF PB =且2PB PF +=,12PFPF ∴+=22> ∴P 点轨迹是以12,F F 为焦点的椭圆.设其标准方程为22221x y a b+=(0)a b>>2a ∴=即a =又∴=2c 2221b ac =-=,∴P 点轨迹方程为2213x y +=. ……………………………4分(2)假设存在这样的k ,由222330y kx x y =+⎧⎨+-=⎩得22(13)1290k x kx +++=.由22(12)36(13)0k k ∆=-+>得21k >.设1122(,),(,)C x y D x y ,则1221221213913k x x k x x k ⎧+=-⎪⎪+⎨⎪=⎪+⎩①, (6)分若以CD 为直径的圆过坐标原点,则有12120x x y y +=,而212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,∴212121212(1)2()40x x y y k x x k x x +=++++= ②,将①式代入②式整理可得2133k =,其值符合0∆>,故3k =± .………10分。
甘肃省兰州第一中学2015-2016学年高二下学期期末考试数学(文)试题Word版含答案
兰州一中2015-2016-2学期期末考试试题高二数学(文科)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.极坐标方程(ρ-1)(θ-π)=0(ρ≥0)表示的图形是A .两个圆B .两条直线C .一个圆和一条射线D .一条直线和一条射线.2.从甲、乙、丙三人中任选两名代表,甲被选中的概率是 A .12 B . 13 C .23D . 13.在等比数列{}n a 中,675=a a ,5102=+a a ,则1018a a 等于 A . 23-或32- B . 32 C .23 D . 32或234.直线⎩⎨⎧x =-2-2t ,y =3+2t (t 为参数)上与点A (-2,3)的距离等于2的点的坐标是A .(4,5)-B .(3,4)-C .(3,4)-或 (1,2)-D .(4,5)-或(0,1) 5.设m n 、是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题:①若m ⊥α,n ∥α,则m ⊥n ②若α∥β,β∥γ,m ⊥α,则m ⊥γ③若m ∥α,n ∥α,则m ∥n ④若αγ⊥,βγ⊥,则α∥β 其中正确命题的序号是 A .①和② B .②和③C .③和④D .①和④6. 函数21sin 2sin ()2y x x x R =+∈的值域是 A .[-21,23] B .[-23,21]C .[2122,2122++-] D .[2122,2122---] 7.如图,90ACB ∠=,CD AB ⊥于点D ,以BD 为直径的圆与BC 交于点E ,则AA . CE CB AD AB ⋅=⋅ B . CE CB AD DB ⋅=⋅C . 2AD AB CD ⋅= D . 2CE EB CD ⋅=8.在ABC ∆中,5,7,8AB BC AC ===,则⋅的值为 A . 79 B . 352- C . 5 D . 5-9.在极坐标系中,点11(2,)6P π到直线sin()16πρθ-=的距离等于 A . 1 B . 2 C . 3D . 110.若不等式0log )1(2≤--x x a 在)2,1(∈x 内恒成立,则a 的取值范围是A .121<<a B .121<≤a C .21≤<a D .21<<a兰州一中2015-2016-2学期期末考试高二数学(文科)答题卡一、 选择题(每小题4分,共40分)第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.11.在极坐标系中,若过点(3,0)A 且与极轴垂直的直线交曲线4cos ρθ=于,A B 两点,则AB =________.12.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.13.若2245x y +=,则x y +的最小值为________,最小值点为________.14.如图,在△ABC 中,∠ACB =90°,∠A =60°,AB =20,过C 作△ABC 的外接圆的切线CD ,BD ⊥CD ,BD 与外接圆交于点E ,则DE 的长为________.三、解答题:本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分10分)设不等式|2x -1|<1的解集为M . (1)求集合M ;(2)若a ,b ∈M ,试比较ab +1与a +b 的大小.16.(本小题满分10分)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数).M 是C 1上的动点,P 点满足2OP OM =,P 点的轨迹为曲线C 2. (1)求C 2的普通方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .17.(本小题满分12分)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.18.(本小题满分12分)已知函数⎩⎨⎧>≤-=1,ln 1,)(23x x x x x x f .(1) 求函数)(x f 的单调递减区间;(2) 若不等式c x x f +≤)(对一切R x ∈恒成立,求c 的取值范围.兰州一中2015-2016-2学期期末考试高二数学(文科)参考答案一、选择题(每小题4分,共40分)二、填空题:(每小题4分,共16分)11. 13. 51;(2,)22--- 14. 5三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.15. (本小题满分10分)解:(1)由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}. ………………………5分(2)由(1)和a ,b ∈M 可知0<a <1,0<b <1,所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b . ………………………10分16.(本小题满分10分)解:(1)设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y 2.由于M 点在C 1上,所以⎩⎪⎨⎪⎧x 2=2cos α,y2=2+2sin α,即⎩⎨⎧x =4cos α,y =4+4sin α.从而C 2的参数方程为⎩⎨⎧x =4cos α,y =4+4sin α.(α为参数),其普通方程为22(4)16x y +-=. ………………………5分(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3 与C 2的交点B 的极径为ρ2=8sin π3.所以AB =|ρ2-ρ1|=2 3. ……10分17.(本小题满分12分)解:(1)曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0. ………………………4分(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43. 当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255. 当sin(θ+α)=1时,|P A |取得最小值,最小值为255. ……………12分18.(本小题满分12分)解:(1)由于⎩⎨⎧>≤-=1,ln 1,)(23x x x x x x f ,当1≤x 时,x x x f 23)(2'-=,令0)('<x f ,可得320<<x . 当1>x 时, )(x f 单调递增.所以函数)(x f 的单调递减区间为)32,0(. …………………….4分(2)设⎩⎨⎧>-≤--=-=1,ln 1,)()(23x x x x x x x x x f x g ,当1≤x 时, 123)(2'--=x x x g , 令0)('>x g ,可得31-<x 或1>x ,即31-<x 令0)('<x g ,可得131<<-x . 所以)31,(--∞为函数)(x g 的单调递增区间, )1,31(-为函数)(x g 的单调递减区间.当1>x 时, 011)('<-=xx g ,可得),1(+∞为函数)(x g 的单调递减区间. 所以函数)(x g 的单调递增区间为)31,(--∞,单调递减区间为),31(+∞-.所以函数2753191271)31()(max =+--=-=g x g ,要使不等式c x x f +≤)(对一切R x ∈恒成立,即c x g ≤)(对一切R x ∈恒成立,所以275c . …………………….12分。
甘肃省兰州新区高二数学上学期期末试卷 文(含解析)
2016-2017学年甘肃省兰州市高二(上)期末数学试卷(文科)一、选择题:(本大题共12小题,每小题5分,共60分.)每小题中,只有一项符合题目要求,请将正确答案填在正确的位置.1.直线l:y=kx+1与圆O:x2+y2=1交于A,B,则“k=1”是“△ABC的面积为”的()A.必要不充分条件B.充分不必要条件C.充要条件 D.既不充分也不必要条件2.原命题为“若<a n,n∈N+,则{a n}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真、真、真B.假、假、真C.真、真、假D.假、假、假3.已知命题p:∀x>0,总有(x+1)e x>1,则¬p为()A.∃x0≤0,使得(x0+1)e≤1 B.∃x0>0,使得(x0+1)e≤1C.∀x0>0,使得(x0+1)e≤1 D.∀x0≤0,使得(x0+1)e≤14.已知椭圆+=1上一点P到椭圆的一个焦点的距离为3,则点P到另一个焦点的距离为()A.2 B.3 C.5 D.75.双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2 B.2 C.4 D.46.已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=()A.2:B.1:2 C.1:D.1:37.若曲线f(x)=x•sinx+1在x=处的切线与直线ax+2y+1=0互相垂直,则实数a等于()A.﹣2 B.﹣1 C.1 D.28.若函数f(x)=cosx+2xf′(),则f(﹣)与f()的大小关系是()A .f (﹣)=f ()B .f (﹣)>f ()C .f (﹣)<f ()D .不确定9.命题“若α=,则tan α=1”的逆否命题是( )A .若α≠,则tan α≠1B .若α=,则tan α≠1C .若tan α≠1,则α≠D .若tan α≠1,则α=10.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于,则C 的方程是( )A .B .C .D .11.给出下列命题:①若原命题为真,则这个命题的否命题,逆命题,逆否命题中至少有一个为真; ②若p 是q 成立的充分条件,则q 是p 成立的必要条件; ③若p 是q 的充要条件,则可记为p ⇔q ; ④命题“若p 则q”的否命题是“若p 则¬q”. 其中是真命题的是( )A .①②③B .②③④C .①③④D .②④ 12.函数f (x )=xe ﹣x,x ∈[0,4]的最大值是( )A .0B .C .D .二、填空题:(本大题4小题,每小题5分,共20分.)请将正确的答案填在横线上. 13.设a ,b ∈R ,则“a +b >4”是“a>2且b >2”的 . 14.p :∃x 0∈R ,x 02+2x 0+2≤0的否定是 .15.设函数f (x )在(0,+∞)内可导,且f (e x)=x+e x,则f′(1)= .16.已知F 1(﹣1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直x 轴的直线交C 于A ,B 两点,且|AB|=3,则C 的方程为 .三、解答题(本大题共8小题,共70分.解答应写出文字说明、演算步骤或推证过程) 17.求双曲线9y 2﹣16x 2=144的实半轴长,虚半轴长,焦点坐标,离心率,渐近线方程. 18.已知双曲线两个焦点坐标分别是F 1(﹣5,0),F 2(5,0),双曲线上一点到的距离之差的绝对值等于6,求双曲线的标准方程.19.已知点A,B的坐标分别为(﹣5,0),(5,0),直线AM,BM相交于点M,且它们的斜率之积是,则点M的轨迹方程为.20.已知集合A=,p:x∈A,q:x∈B,并且p是q的充分条件,求m的取值范围.21.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交抛物线C于A,B两点,则|AB|= .22.已知函数f(x)=x3﹣4x2+5x﹣4.求曲线f(x)在点(2,f(2))处的切线方程.23.已知函数f(x)=e x,求f(x)的单调区间.24.已知函数f(x)=e x﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.2016-2017学年甘肃省兰州市舟曲中学高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.)每小题中,只有一项符合题目要求,请将正确答案填在正确的位置.1.直线l:y=kx+1与圆O:x2+y2=1交于A,B,则“k=1”是“△ABC的面积为”的()A.必要不充分条件B.充分不必要条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】k=1时,圆心O到直线l的距离d=,|AB|=2,可得S△ABC=d|AB|.反之不成立,例如取k=﹣1.即可判断出结论.【解答】解:k=1时,圆心O到直线l的距离d=,|AB|=2=.∴S△ABC=d|AB|==.反之不成立,例如取k=﹣1.∴“k=1”是“△ABC的面积为”的充分不必要条件.故选:B.2.原命题为“若<a n,n∈N+,则{a n}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真、真、真B.假、假、真C.真、真、假D.假、假、假【考点】四种命题;四种命题间的逆否关系.【分析】先根据递减数列的定义判定命题的真假,再判断否命题的真假,根据命题与其逆否命题同真性及四种命题的关系判断逆命题与逆否命题的真假.【解答】解:∵<a n=⇔a n+1<a n,n∈N+,∴{a n}为递减数列,命题是真命题;其否命题是:若≥a n,n∈N+,则{a n}不是递减数列,是真命题;又命题与其逆否命题同真同假,命题的否命题与逆命题是互为逆否命题,∴命题的逆命题,逆否命题都是真命题.故选:A.3.已知命题p:∀x>0,总有(x+1)e x>1,则¬p为()A.∃x0≤0,使得(x0+1)e≤1 B.∃x0>0,使得(x0+1)e≤1C.∀x0>0,使得(x0+1)e≤1 D.∀x0≤0,使得(x0+1)e≤1【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题p:∀x>0,总有(x+1)e x>1,则¬p为:∃x0>0,使得(x0+1)e≤1.故选:B.4.已知椭圆+=1上一点P到椭圆的一个焦点的距离为3,则点P到另一个焦点的距离为()A.2 B.3 C.5 D.7【考点】椭圆的简单性质.【分析】先根据条件求出a=5;再根据椭圆定义得到关于所求距离d的等式即可得到结论.【解答】解:设所求距离为d,由题得:a=5.根据椭圆的定义得:2a=3+d⇒d=2a﹣3=7.故选D.5.双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2 B.2 C.4 D.4【考点】双曲线的简单性质.【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,∴e=,双曲线的渐近线方程为y=,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0的距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C6.已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=()A.2:B.1:2 C.1:D.1:3【考点】抛物线的简单性质.【分析】求出抛物线C的焦点F的坐标,从而得到AF的斜率k=﹣.过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|.Rt△MPN中,根据tan∠MNP=,从而得到|PN|=2|PM|,进而算出|MN|=|PM|,由此即可得到|FM|:|MN|的值.【解答】解:∵抛物线C:x2=4y的焦点为F(0,1),点A坐标为(2,0)∴抛物线的准线方程为l:y=﹣1,直线AF的斜率为k==﹣,过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|∵Rt△MPN中,tan∠MNP=﹣k=,∴=,可得|PN|=2|PM|,得|MN|==|PM|因此,,可得|FM|:|MN|=|PM|:|MN|=1:故选:C7.若曲线f(x)=x•sinx+1在x=处的切线与直线ax+2y+1=0互相垂直,则实数a等于()A.﹣2 B.﹣1 C.1 D.2【考点】利用导数研究曲线上某点切线方程.【分析】求出函数f(x)=xsinx+1在点处的导数值,这个导数值即函数图象在该点处的切线的斜率,然后根据两直线垂直的条件列方程求解a.【解答】解:f'(x)=sinx+xcosx,,即函数f(x)=xsinx+1在点处的切线的斜率是1,直线ax+2y+1=0的斜率是,所以,解得a=2.故选D.8.若函数f(x)=cosx+2xf′(),则f(﹣)与f()的大小关系是()A.f (﹣)=f() B.f (﹣)>f()C.f (﹣)<f()D.不确定【考点】正弦函数的单调性.【分析】利用已知条件,求出函数的导数,推出f′(),得到函数的表达式,然后比较f(﹣)与f()的大小.【解答】解:函数f(x)=cosx+2xf′(),所以函数f′(x)=﹣sinx+2f′(),所以f′()=﹣sin+2f′()=,f(x)=cosx+x,则f (﹣)=cos ﹣;f ()=cos +,所以f (﹣)<f ().故选C .9.命题“若α=,则tan α=1”的逆否命题是( )A .若α≠,则tan α≠1B .若α=,则tan α≠1C .若tan α≠1,则α≠D .若tan α≠1,则α=【考点】四种命题间的逆否关系.【分析】原命题为:若a ,则b .逆否命题为:若非b ,则非a .【解答】解:命题:“若α=,则tan α=1”的逆否命题为:若tan α≠1,则α≠.故选C .10.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于,则C 的方程是( )A .B .C .D .【考点】椭圆的标准方程.【分析】由已知可知椭圆的焦点在x 轴上,由焦点坐标得到c ,再由离心率求出a ,由b 2=a 2﹣c 2求出b 2,则椭圆的方程可求.【解答】解:由题意设椭圆的方程为.因为椭圆C 的右焦点为F (1,0),所以c=1,又离心率等于,即,所以a=2,则b 2=a 2﹣c 2=3.所以椭圆的方程为.故选D .11.给出下列命题:①若原命题为真,则这个命题的否命题,逆命题,逆否命题中至少有一个为真;②若p是q成立的充分条件,则q是p成立的必要条件;③若p是q的充要条件,则可记为p⇔q;④命题“若p则q”的否命题是“若p则¬q”.其中是真命题的是()A.①②③B.②③④C.①③④D.②④【考点】命题的真假判断与应用.【分析】①,原命题与其逆否命题同真假,;②,若p是q成立的充分条件,则q是p成立的必要条件;③,若p是q的充要条件,则可记为p⇔q;④,命题“若p则q”的否命题是“若¬p则¬q”,.【解答】解:对于①,原命题与其逆否命题同真假,故正确;对于②,若p是q成立的充分条件,则q是p成立的必要条件,正确;对于③,若p是q的充要条件,则可记为p⇔q,正确;对于④,命题“若p则q”的否命题是“若¬p则¬q”,故错.故选:A12.函数f(x)=xe﹣x,x∈[0,4]的最大值是()A.0 B.C.D.【考点】利用导数求闭区间上函数的最值.【分析】利用导数判断函数的单调性即可得出结论.【解答】解:f(x)=e﹣x﹣xe﹣x=e﹣x(1﹣x),∴当0≤x≤1时,f′(x)≥0,f(x)单调递增,当1≤x≤4时,f′(x)≤0,f(x)单调递减,∴当x=1时,f(x)max=f(1)=.故选B.二、填空题:(本大题4小题,每小题5分,共20分.)请将正确的答案填在横线上.13.设a,b∈R,则“a+b>4”是“a>2且b>2”的必要不充分条件.【考点】必要条件、充分条件与充要条件的判断.【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判定.【解答】解:当a=5,b=0时,满足a+b>4,但a>2且b>2不成立,即充分性不成立,若a>2且b>2,则必有a+b>4,即必要性成立,故“a+b>4”是“a>2且b>2”的必要不充分条件,故答案为:必要不充分条件.14.p:∃x0∈R,x02+2x0+2≤0的否定是∀x∈R,x2+2x+2>0 .【考点】命题的否定.【分析】特称命题:∃x0∈R,x02+2x0+2≤0”的否定是:把∃改为∀,其它条件不变,然后否定结论,变为一个全称命题.即∀x∈R,x2+2x+2≥0”.【解答】解:特称命题:∃x0∈R,x02+2x0+2≤0”的否定是全称命题:∀x∈R,x2+2x+2>0故答案为:∀x∈R,x2+2x+2>0.15.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)= 2 .【考点】导数的运算;函数的值.【分析】由题设知,可先用换元法求出f(x)的解析式,再求出它的导数,从而求出f′(1).【解答】解:函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,令e x=t,则x=lnt,故有f(t)=lnt+t,即f(x)=lnx+x,∴f′(x)=+1,故f′(1)=1+1=2.故答案为:2.16.已知F1(﹣1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直x轴的直线交C于A,B两点,且|AB|=3,则C的方程为=1 .【考点】椭圆的简单性质.【分析】设椭圆的方程为=1,(a>b>0),根据题目条件得出a2﹣b2=1,①,=1,②由①②联合求解即可.【解答】解:设椭圆的方程为=1,(a>b>0)∵可得c==1,∴a2﹣b2=1,①AB经过右焦点F2且垂直于x轴,且|AB|=3,A(1,),(1,﹣),代入方程得出:=1,②联合①②得出a2=4,b2=3,∴椭圆C的方程为:=1,故答案为:=1三、解答题(本大题共8小题,共70分.解答应写出文字说明、演算步骤或推证过程)17.求双曲线9y2﹣16x2=144的实半轴长,虚半轴长,焦点坐标,离心率,渐近线方程.【考点】双曲线的标准方程.【分析】把双曲线9y2﹣16x2=144方程化为,由此利用双曲线的性质能求出结果.【解答】解:把双曲线9y2﹣16x2=144方程化为由此可知实半轴长a=4,虚半轴长b=3,,焦点坐标(0,﹣5),(0,5),离心率,渐近线方程为.18.已知双曲线两个焦点坐标分别是F1(﹣5,0),F2(5,0),双曲线上一点到的距离之差的绝对值等于6,求双曲线的标准方程.【考点】双曲线的简单性质;双曲线的标准方程.【分析】设出双曲线方程,利用已知条件求出a,c,b,即可得到双曲线方程.【解答】解:因为双曲线的焦点在x轴上,所以可设它的标准方程为,因为2a=6,2c=10,所以a=3,c=5,又因为b2=c2﹣a2所以b2=52﹣32=16,双曲线的标准方程为.19.已知点A,B的坐标分别为(﹣5,0),(5,0),直线AM,BM相交于点M,且它们的斜率之积是,则点M的轨迹方程为.【考点】椭圆的标准方程.【分析】设出点M的坐标,表示出直线AM、BM的斜率,进而求出它们的斜率之积,利用斜率之积是,建立方程,去掉不满足条件的点,即可得到点M的轨迹方程.【解答】解:设M(x,y),因为A(﹣5,0),B(5,0)所以k AM=(x≠﹣5),k BM=(x≠5)由已知,•=﹣化简,得4x2+9y2=100(x≠±5)即.故答案为:.20.已知集合A=,p:x∈A,q:x∈B,并且p是q的充分条件,求m的取值范围.【考点】必要条件、充分条件与充要条件的判断.【分析】根据二次函数的性质求出A的范围,化简集合B,根据A⊆B,得到关于m的不等式,解出即可.【解答】解:化简集合,配方,得.因为,∴,化简集合B,由x+m2≥1,得x≥1﹣m2,B={x|x≥1﹣m2},因为命p题是命题q的充分条件,∴解得或,故实数的取值范围是.21.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交抛物线C于A,B两点,则|AB|= 12 .【考点】抛物线的简单性质.【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B两点的直线方程,和抛物线方程联立后化为关于x的一元二次方程,由根与系数关系得到A,B两点横坐标的和,代入抛物线过焦点的弦长公式得答案.【解答】解:由y2=3x,得2p=3,p=,则F(,0),∴过A,B的直线方程为y=(x﹣),联立,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2),则,∴|AB|=.故答案为:12.22.已知函数f(x)=x3﹣4x2+5x﹣4.求曲线f(x)在点(2,f(2))处的切线方程x﹣y ﹣4=0 .【考点】利用导数研究曲线上某点切线方程.【分析】求出原函数的导函数,得到f′(2),再求得f(2)的值,代入直线方程的点斜式得答案.【解答】解:由f(x)=x3﹣4x2+5x﹣4,得f′(x)=3x2﹣8x+5,∴f′(2)=1,又f(2)=﹣2.∴曲线f(x)在点(2,f(2))处的切线方程为y+2=1(x﹣2),即x﹣y﹣4=0.故答案为:x﹣y﹣4=0.23.已知函数f(x)=e x,求f(x)的单调区间.【考点】利用导数研究函数的单调性.【分析】先求出函数的导数,得到f′(x)<0,从而判断出函数的单调性.【解答】解:f′(x)=()′e x+()e x=e x=﹣e x<0,∴函数f(x)在R上单调递减.24.已知函数f(x)=e x﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.【考点】利用导数研究函数的极值;利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求函数的导数,利用导数的几何意义即可求a的值及函数f(x)的极值;(2)构造函数g(x)=e x﹣x2,求函数的导数,研究是的单调性和极值即可证明当x>0时,x2<e x.【解答】解:(1)因为f(x)=e x﹣ax,所以f(0)=1,即A(0,1),由f(x)=e x﹣ax,得f′(x)=e x﹣a.又f′(0)=1﹣a=﹣1,得a=2.所以f(x)=e x﹣2x,f′(x)=e x﹣2.令f′(x)=0,得x=ln2.当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增.所以当x=ln2时,f(x)取得极小值,且极小值为f(ln2)=e ln2﹣2ln2=2﹣ln4,f(x)无极大值.(2)令g(x)=e x﹣x2,则g′(x)=e x﹣2x.由(1)得g′(x)=f(x)≥f(ln2)>0,故g(x)在R上单调递增,又g(0)=1>0,因此,当x>0时,g(x)>g(0)>0,即x2<e x.。
甘肃省兰州第一中学2015-2016届高二下学期期中考试数学(文)试题Word版含答案
兰州一中2015-2016-2学期期中考试试题高二数学(文科)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.下面几种推理过程是演绎推理的是A.某校高二年级有10个班,1班62人,2班61人,3班62人,由此推测各班人数都超过60人B.根据三角形的性质,可以推测空间四面体的性质C .平行四边形对角线互相平分,矩形是平行四边形,所以矩形的对角线互相平分D .在数列}{n a 中,*1121,,2nn na a a n a +==∈N +,计算23,,a a 由此归纳出}{n a 的通项公式 2.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是A .假设三内角都不大于60度B .假设三内角都大于60度C .假设三内角至多有一个大于60度D .假设三内角至多有两个大于60度 3.右图是《集合》的知识结构图,如果要加入“交集”,则应该放在A . “集合的概念”的下位B . “集合的表示”的下位C . “基本关系”的下位D . “基本运算”的下位4.曲线123+-=x x y 在点)0,1(处的切线方程为A . 1y x =-B . 1y x =-+C . 22y x =-D . 22y x =-+ 5.下表为某班5位同学身高x (单位:cm )与体重y (单位kg )的数据,若两个变量间的回归直线方程为 1.16y x a =+,则a 的值为A .-121.04B .123.2C .21D .-45.126.已知三角形的三边分别为c b a ,,,内切圆的半径为r ,则三角形的面积为a s (21=r c b )++;四面体的四个面的面积分别为4321,,,s s s s ,内切球的半径为R ,类比三角形的面积可得四面体的体积为A . R s s s s V )(214321+++=B . R s s s s V )(314321+++= C . R s s s s V )(414321+++= D . R s s s s V )(4321+++=7.若正实数b a ,满足1=+b a ,则A .ba 11+有最大值4 B . ab 有最小值41C . b a +有最大值2D . 22b a +有最小值228.如果执行右面的程序框图,那么输出的S =A . 2450B . 2500C . 2550D . 26529.定义运算:()()x x y x y y x y ≥⎧⎪⊗=⎨<⎪⎩,例如344⊗=,则231()(cos sin )24a a -⊗+-的最大值为A . 4B . 3C . 2D . 110.若函数)(x f 在R 上可导,其导函数为)(′x f ,且函数)(′)-1(=x f x y 的图象如图所示,则下列结论中一定成立的是A . 函数)(x f 有极大值(2)f -,无极小值B . 函数)(x f 有极小值(1)f ,无极大值C . 函数)(x f 有极大值(2)f -和极小值)1(fD . 函数)(x f 有极大值)1(f 和极小值(2)f -兰州一中2015-2016-2学期期中考试高二数学(文科)答题卡一、 选择题(每小题4分,共40分)第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分. 11.i 是虚数单位,239i 2i 3i 9i ++++= .(用i a b +的形式表示,a b ∈R ,)12.设1,0a b c >><给出下列三个结论: ①bca c >;②c cb a <;③)(log )(logc b c a a b ->-;④ln()ln()a c b c ->-. 其中所有正确命题的序号是 .13.已知函数2()ln f x x x ax =+-在(0,1)上是增函数,则a 的取值范围是 . 14.如图所示,由若干个点组成形如三角形的图形,每条边(包括两个端点)有),1(N n n n ∈>个点,每个图形总的点数记为n a ,则_____6=a ; 233445201520169999________a a a a a a a a ++++=.. . . . . . . . . . . . . . . . . .2=n 3=n 4=n三、解答题:本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分10分) 已知复数()()21213i i z i +--=-,若212z az b i ++=+,(1)求||z ; (2)求实数,a b 的值.16.(本小题满分10分)(1)解不等式255x x -+-<;(2)如果关于x 的不等式25x x a -+-<的解集不是空集,求实数a 的取值范围.17.(本小题满分12分)有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.已知在全部105人中随机抽取一人为优秀的概率为7. (1)请完成上面的列联表;(2)根据列联表的数据,若按97.5%的可靠性要求,能否认为“成绩与班级有关系”; (3)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到8或9号的概率.参考公式和数据: ))()()(()(22d b c a d c b a bc ad n K ++++-=18.(本小题满分12分) 已知函数ln ()xf x x=. (1)设实数k 使得()f x kx <恒成立,求k 的取值范围;(2)设()() ()g x f x kx k R =-∈,若函数()g x 在区间21[,e ]e上有两个零点,求k 的取值范围.兰州一中2015-2016-2学期期中考试高二数学(文科)参考答案一、选择题(每小题4分,共40分)二、填空题:(每小题4分,共16分)11. 45i + 12. ①②③ 13. (,-∞ 14. 15;20142015三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15. (本小题满分10分) 解:(1)22224133i i iz i i i -+-+===---,2=∴z (5)分(2)把z =1-i 代入212z az b i ++=+,即()()21112i a i b i -+-+=+,得()212a b a i i +-+=+所以1(2)2a b a +=⎧⎨-+=⎩, 解得4;5a b =-=所以实数a ,b 的值分别为-4,5 …………………………….10分16.(本小题满分10分)解:(1)由绝对值不等式的几何意义易得原不等式的解集为(1,6).…………………….5分 (2)令25y x x =-+-,而min 3y =,所以3a >. …………………….10分 17.(本小题满分12分) 解:(1) (4)分(2)根据列联表的数据,得到02.5109.675305055)45203010(10522>≈⨯⨯⨯⨯-⨯⨯=K , 因此有97.5%的把握认为成绩与班级有关系. …………………………….8分 (3)设“抽到10或11号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为 (x ,y ),所有基本事件有(1,1)、(1,2)、(1,3)、…(6,6),共36个.事件A 包含的 基本事件有(2,6)、(3,5)、(4,4)、(5,3)、(6,2) 、(3,6)、(4,5)、(5,4) 、(6,3)共9个,91()364P A ∴==. ………………….12分 18.(本小题满分12分) 解:(1)设2()ln ()(0)f x xh x x x x==>,则312ln ()(0)x h x x x -'=>令()312ln 0xh x x-'==,解得:x =当x 在(0,)+∞上变化时,()h x ',()h x 的变化情况如下表:由上表可知,当x =()h x 取得最大值12e由已知对任意的0x >,()()f x k h x x>=恒成立 所以,k 得取值范围是1(,)2e+∞. …………………………….6分(2)令()0g x =得:2()ln f x xk x x ==由(1)知,2ln ()x h x x=在1[e 上是增函数,在2]上是减函数.且21()e e h =-,12e h =,242(e )e h =当421e 2ek <≤时,函数()g x 在21[,e ]e 上有2个零点. ……………………………12分。
【百强校】2015-2016学年甘肃省兰州一中高二上期末文科数学试卷(带解析)
绝密★启用前【百强校】2015-2016学年甘肃省兰州一中高二上期末文科数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:130分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、设椭圆:的左右焦点分别为,,过点的直线与交于点,.若,且,则的值为( )A .B .C .D .【答案】D 【解析】 试题分析:由题意,则,又因为,在试卷第2页,共15页三角形中,在三角形中,因为,所以,所以,化简得,代入消去得.考点:椭圆的性质及余弦定理的应用.2、设曲线在点处的切线与直线垂直,则= ( ) A .B .C .D .【答案】A 【解析】试题分析:因为,所以,在点处的切线斜率,直线的斜率,与直线垂直的斜率,所以,解得.考点:导数的几何意义.3、过点作斜率为的直线与椭圆: 相交于,两点,若是线段的中点,则椭圆的离心率等于( )A .B .C .D .【答案】B 【解析】试题分析:试题分析:设A (x 1,y 1),B (x 2,y 2),x 1+x 2=2,y 1+y 2=1,又因为,,将A,B 两点代入椭圆得,,两式相减可得,,所以所以考点:直线与圆锥曲线的关系.【方法点睛】本题考查考生的运算求解能力,属中档题.正确应用点差法是本题的关键,注意解题方法的积累.与弦的中点的问题常用到点差法,在椭圆中,设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),代入椭圆得,,两式相减可得,,将弦的中点代入即可求得直线的斜率.本题中利用直线的斜率求得的关系,从而求得椭圆的标准方程.考点:椭圆的离心率. 4、若动圆过定点,且在轴上截得弦的长为,则动圆圆心的轨迹方程是 ( )试卷第4页,共15页A .B .C .D .【答案】C 【解析】试题分析:设动圆圆心,过点作轴,垂足为则,所以,化简得,所以答案为C . 考点:直线与圆的位置关系.5、过双曲线的右焦点且与轴垂直的直线,交该双曲线的两条渐近线于,两点,则( )A .B .C .D .【答案】D 【解析】试题分析:双曲线的右焦点为(2,0),其渐近线方程为,双曲线的右焦点且与轴垂直的直线,可得.考点:双曲线的性质. 6、已知函数的图象在点的切线过点,则的值为( ) A .B .C .D .【答案】A 【解析】 试题分析:所以当,,函数的图象在点的切线斜率,又因为切线过点,,所以,所以解得,所以答案为A .考点:导数的几何意义. 7、5.A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】 试题分析:当时,在区间内单调递增,当时,结合二次函数的图像可得函数在区间内单调递增,当时,函数图像如图所示,在区间内有增有减考点:二次函数及充要条件. 8、已知函数 ,其中为实数,为的导函数,若 ,则的值为( )A .B .C .D .【答案】B试卷第6页,共15页【解析】 试题分析:因为,所以,又因为,所以,所以应选B .考点:函数的导数的运算. 9、已知命题:若,则;命题:若,则.在命题①;②;③;④中,真命题是( )A .①③B .①④C .②③D .②④【答案】C 【解析】试题分析:因为命题:若,则是真命题,所以是假命题;命题:若,则,是假命题,则是真命题;所以命题①一假则假,所以该命题是假命题;②一真则真,所以该命题是真命题;③是真命题;④是假命题,所以选C .考点:复合命题的真假.10、设函数在处可导,则等于( )A .B .C .D .【答案】B 【解析】试题分析:函数在处可导,所以,所以.考点:导数的定义的应用. 11、下列说法正确的是 ( ) A .命题“若,则”的否命题为“若,则”B.命题“”的否定是“”C.命题“若,则”的逆否命题为假命题D.命题“若,则”的逆命题为假命题【答案】D.【解析】试题分析:对于A.命题“若,则”的否命题应为“若,则”对于否命题是即否定条件又否定结论,故错;对于B.由特称命题的否定为全称命题可知,所求命题的否定为,故错;C.命题“若,则”是真命题,所以其逆否命题也为真命题,故错;D.命题“若,则”的逆命题为“若,则”当满足但是假命题,所以选D.考点:命题真假的判断.试卷第8页,共15页第II 卷(非选择题)二、填空题(题型注释)12、已知抛物线:的焦点为,准线为,是上一点,是直线与的一个交点,若,则= .【答案】3 【解析】 试题分析:设到准线为的距离为,由抛物线的定义可得,因为若,所以所以直线PF 的斜率为,因为F (2,0),所以直线PF 的方程与联立可得x=1,所以考点:抛物线的性质.13、.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖”,乙说“甲、丙都未获奖”,丙说”我获奖了”,丁说“是乙获奖”。
【全国百强校】甘肃省兰州第一中学2015-2016学年高二上学期期末考试理数试题解析(解析版)
第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.下列说法正确的是 ( )A .命题“若21x >,则1x >”的否命题为“若21x >,则1x ≤”B .命题“2001x ,x ∃∈>R ”的否定是“21x ,x ∀∈>R ” C .命题“若x y =,则cos cos x y =”的逆否命题为假命题D .命题“若x y =,则cos cos x y =”的逆命题为假命题【答案】D考点:命题真假的判断.2.已知空间四边形OABC 中,OA a =,OB b =,OC c =,点M 在OA 上,且2OM MA =,N 为BC 中点,则MN = ( ) A. 121232a b c -+ B .211322a b c -++ C. 111222a b c +- D. 221332a b c +- 【答案】B【解析】试题分析:在空间四边形OABC 中,OA a =,OB b =,OC c =,点M 在OA 上,且2OM MA =,N 为BC 中点, 所以12ON c b =+211322MN MO ON a b c =+=-++,所以答案为B. 考点:空间向量的基本运算.3.下面的命题中是真命题的是 ( )A .两个平面的法向量所成的角是这两个平面所成的角B .设空间向量a ,b 为非零向量,若0a b ⋅>,则,a b <>为锐角C .方程221(0,0)mx ny m n +=>>表示的曲线是椭圆D 【答案】D考点:命题真假的判断.4.= ( )A .两条线段B .两条直线C .两条射线D .一条射线和一条线段【答案】A【解析】=101||1y x y -≥⎧⎨+=-⎩即1||y x y ≤⎧⎨=-⎩,所以(0)y x y =±≤=.考点:曲线与方程.=1||010x y -≥-≥且,求出轨迹方程,忽略了此处就出错,在解决任何问题时,使式子有意义是必要的,在平方,同乘以,同除以一个数或代数式时该数或代数式一定不能为0,否则容易丢根,实际上,我们在化简一个等式或代数式时,一定要等价变化,考虑要周全.5.“0a ≤”是“函数()(1)f x ax x =-在区间(0,)+∞内单调递增”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C考点:二次函数及充要条件【方法点睛】判断充分条件和必要条件的方法(1)命题判断法:设“若p ,则q ”为原命题,那么:①原命题为真,逆命题为假时,p 是q 的充分不必要条件;②原命题为假,逆命题为真时,p 是q 的必要不充分条件;③原命题与逆命题都为真时,p 是q 的充要条件;④原命题与逆命题都为假时,p 是q 的既不充分也不必要条件.(2)集合判断法:从集合的观点看,建立命题p ,q 相应的集合:p :A ={x |p (x )成立},q :B ={x |q (x )成立},那么: ①若A ⊆B ,则p 是q 的充分条件;若A B 时,则p 是q 的充分不必要条件;②若B ⊆A ,则p 是q 的必要条件;若B A 时,则p 是q 的必要不充分条件;③若A ⊆B 且B ⊆A ,即A =B 时,则p 是q 的充要条件.(3)等价转化法:p 是q 的什么条件等价于非q 是非p 的什么条件.6.已知1F 、2F 为双曲线C :222x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠为( ) A. 14 B. 35 C. 34 D. 45【答案】C考点:双曲线的定义及性质.7.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF = ( )A. 3B.72 C. 2 D. 52 【答案】A【解析】试题分析: 设Q 到准线为l 的距离为d ,由抛物线的定义可得||QF d =,因为若4FP FQ =,所以||3,PQ d =所以直线PF 的斜率为-,因为F(2,0),所以直线PF 的方程2)y x =--与28y x =联立可得x=1,所以||d 123QF ==+=,所以选D. 考点:抛物线的性质.8.过点(1,1)M 作斜率为12-的直线与椭圆C : 22221(0)x y a b a b +=>>相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 ( )A. 12 D. 23【答案】B考点:直线与圆锥曲线的关系.【方法点睛】本题考查考生的运算求解能力,属中档题.正确应用点差法是本题的关键,注意解题方法的积累.与弦的中点的问题常用到点差法,在椭圆中,设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),代入椭圆得2211221x y a b +=,2222221x y a b +=,两式相减可得,1212121222()()()()0x x x x y y y y a b -+-++=,将弦的中点代入即可求得直线的斜率.本题中利用直线的斜率求得,a b 的关系,从而求得椭圆的标准方程. 考点:椭圆的离心率.9.直三棱柱111ABC A B C -中,090BCA ∠=,M ,N 分别是11A B ,11A C 的中点,1BC CA CC ==,则BM 与AN 所成的角的余弦值为 ( )A .110B . 25C D . 【答案】D【解析】考点:异面直线所成的角.10.设椭圆C :22221(0)x y a b a b+=>>的左右焦点分别为1F ,2F ,过点1F 的直线与C 交于点P ,Q . 若212||||PF F F =,且113||4||PF QF =,则b a的值为 ( ) A .35 B .57CD【答案】C【解析】试题分析:由题意212||||PF F F =,2||2PF c =则1||2a 2c PF =-,又因为113||4||PF QF =,123333|Q |(2a 2)(a ),|Q |2(a )c,42222a F c c F a c =-=-=--=+在三角形12PF F ∆中,112121||2cos ||2PF a c PF F F F c -∠==在三角形12QF F ∆中2221291()4(3)44cos 322()2a c c a c QF F c a c -+-+∠=⨯⨯-,因为12PF F ∠+012180QF F ∠=,所以12cos PF F ∠=-12cos QF F ∠,所以考点:椭圆的性质及余弦定理的应用.第Ⅱ卷(共70分)二、填空题(每题4分,满分20分,将答案填在答题纸上)11.若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p = .【答案】【解析】试题分析:双曲线221x y -=的一个左焦点(,所以抛物线22(0)y px p =>的准线方程为x =,所以2p p =∴=. 考点:双曲线及抛物线的性质.12.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则【答案】【解析】试题分析:双曲线2213y x -=的右焦点为(2,0),其渐近线方程为y =,双曲线2213y x -=的右焦点且与x 轴垂直的直线2x =,可得y |AB |A B y ==-∴=. 考点:双曲线的性质.13.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖”,乙说“甲、丙都未获奖”,丙说”我获奖了”,丁说“是乙获奖”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,
由 cos∠PF1F2+cos∠QF1F2=0,得
+
=0,
整理得:
,∴ 5a=7c,
第 8 页(共 15 页)
(x)的导函数,若 f ′(1)=3,则 a 的值为( )
A.4
B.3
【解答】 解: f ′(x)=alnx+a,
C.2
D.1
∵ f ′( 1) =3,∴ a=3.
故选: B.
5.(4 分) “≤a0”是“函数 f( x) =| (ax﹣ 1) x| 在区间( 0,+∞)内单调递增 ”的
()
A.充分不必要条件
可得 yA=2 , yB=﹣ 2 , ∴ | AB| =4 .
故选: D. 8.(4 分)已知 F1、F2 为双曲线 C:x2﹣y2=2 的左、右焦点,点 P 在 C上,| PF1| =2| PF2| ,
则 cos∠ F1PF2=( )
A.
B.
C.
D.
【解答】 解:将双曲线方程 x2﹣y2=2 化为标准方程 ﹣ =1,则 a= ,b= ,
A.
B.
C.
D.
二、填空题(本大题共 4 小题,每小题 4 分,共 16 分) 13.( 4 分)若抛物线 y2=2px(p>0)的准线经过双曲线 x2﹣y2=1 的一个焦点,
则 p=
.
14.(4 分)设函数 f(x)在(0,+∞)内可导,且 f( ex)=x+ex,则 f (′1)=
.
15.( 4 分)有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走
圆心 C 的轨迹方程是(
)
A.
B.
C.y2=8x
D.y2=8x( x≠ 0)
【解答】 解:设圆心 C(x,y),过点 C 作 CE⊥y 轴,垂足为 E,则 | ME| =4, ∴ | CA| 2=| CM| 2=| ME| 2+| EC| 2, ∴( x﹣ 4) 2+y2=42+x2,化为 y2=8x.
相交于 A,B,若 M 是线段 AB的中点,则椭圆 C 的离心率为(
)
A.
B.
C.
D.
11.( 4 分)已知曲线 y= 在点( 3,2)处的切线与直线 ax+y+1=0 垂直,则 a
的值为( A.2
) B.
C.﹣
D.﹣ 2
12.( 4 分)设椭圆 C:
的左右焦点分别为 F1,F2,过点 F1
的直线与 C 交于点 P,Q.若| PF2| =| F1F2| ,且 3| PF1| =4| QF1| ,则 的值为( )
命题,
当 x=1,y=﹣ 1 时,满足 x>y,但 x2>y2 不成立,即命题 q 为假命题,
第 4 页(共 15 页)
则① p∧q 为假命题;② p∨ q 为真命题;③ p∧(¬ q)为真命题;④(¬ p)∨ q
为假命题,
故选: C.
4.(4 分)已知函数 f(x)=axlnx,x∈( 0,+∞),其中 a 为实数, f ′( x)为 f
访了四位歌手,甲说: “是乙或丙获奖. ”乙说: “甲、丙都未获奖. ”丙说: “我
获奖了. ”丁说: “是乙获奖. ”四位歌手的话只有两句是对的,则获奖的歌手
是
.
16.( 4 分)已知抛物线 C:y2=8x 的焦点为 F,准线为 l,P 是 l 上一点, Q 是直
第 2 页(共 15 页)
线 PF与 C 的一个交点,若 =4 ,则 | QF|
D.﹣ 2
∴曲线 y= 在点( 3,2)处的切线的斜率 k=﹣ ,
∵曲线 y= 在点( 3,2)处的切线与直线 ax+y+1=0 垂直,
∴直线 ax+y+1=0 的斜率 k′﹣=a× 故选: D.
=﹣1,即 a=﹣ 2.
12.( 4 分)设椭圆 C:
的左右焦点分别为 F1,F2,过点 F1
的直线与 C 交于点 P,Q.若| PF2| =| F1F2| ,且 3| PF1| =4| QF1| ,则 的值为( )
A.
B.
C.
D.
【解答】 解:如图所示,
∵ | PF2| =| F1F2| ,
∴ | PF2| =2c,则 | PF1| =2a﹣2c. ∵ 3| PF1| =4| QF1| ,
∴ | QF1| =
,
则
.
在等腰△ PF1F2 中,可得 cos∠PF1F2=
=.
在△ QF1F2 中,由余弦定理可得: cos∠QF1F2=
故选: C.
10.(4 分)过点 M(1,1)作斜率为﹣ 的直线与椭圆 C: + =1(a>b>0)
相交于 A,B,若 M 是线段 AB的中点,则椭圆 C 的离心率为(
)
A.
B.
C.
D.
【解答】 解:设 A( x1,y1),B(x2, y2),则
,
∵过点 M (1,1)作斜率为﹣ 的直线与椭圆 C: + =1(a> b> 0)相交于
D.命题 “若 x=y,则 cosx=cosy的”逆命题为假命题 【解答】 解: A.命题 “若 x2>1,则 x>1”否命题为 “若 x2≤1,则 x≤1”,∴ A 错
误. B.命题 “若 x0∈R,x02>1”的否定是 “? x∈R,x2≤ 1”,∴ B 错误.
C.“若 x=y,则 cosx=cosy 正”确,即原命题正确,则逆否命题也正确,∴ C 错误.
.
三、解答题(本大题共 4 小题,共 36 分) 17.( 8 分)给定两个命题,命题 p:对任意实数 x 都有 ax2+ax+1>0 恒成立,命
题 q:关于 x 的方程 x2﹣x+a=0 有实数根,如果 p∨q 为真命题, p∧ q 为假命
题,求实数 a 的取值范围.
18.( 8 分)设函数
,曲线 y=f( x)在点( 1,f(1))处的切线方程为
3x﹣ y﹣4=0. (Ⅰ) 求 f(x)的解析式; (Ⅱ) 证明:曲线 f( x)上任一点处的切线与直线 x=0 和直线 y=x 所围成的三
角形面积为定值. 19.( 10 分)如图,已知四边形 ABCD内接于抛物线 x2=y,点 C(3,9),AC 平
行于 x 轴, BD 平行于该抛物线在点 C 处的切线,∠ BAD=9°0. (Ⅰ)求直线 BD 的方程; (Ⅱ)求四边形 ABCD的面积.
命题① p∧q;② p∨q;③ p∧(¬ q);④(¬ p)∨ q 中,真命题是(
)
A.①③
B.①④
C.②③
ห้องสมุดไป่ตู้
D.②④
4.(4 分)已知函数 f(x)=axlnx,x∈( 0,+∞),其中 a 为实数, f ′( x)为 f
(x)的导函数,若 f ′(1)=3,则 a 的值为( )
A.4
B.3
C.2
D.1
第 5 页(共 15 页)
则 a 的值为( )
A.1
B.2
C.3
D.4
【解答】 解:函数 f (x) =ax3+x+1 的导数为 f ′(x)=3ax2+1,
图象在点( 1,f( 1))的切线斜率为 3a+1,切点为( 1, a+2),
由切线经过( 2,7),可得
=3a+1,
解得 a=1. 故选: A.
c=2, 设 | PF1| =2| PF2| =2m,则根据双曲线的定义, | PF1| ﹣| PF2| =2a 可得 m=2 , ∴ | PF1| =4 ,| PF2| =2 , ∵ | F1F2| =2c=4,
∴ cos∠ F1PF2=
=
= =.
第 6 页(共 15 页)
故选: C.
9.(4 分)若动圆 C 过定点 A(4,0),且在 y 轴上截得弦 MN 的长为 8,则动圆
2015-2016 学年甘肃省兰州一中高二 (上)期末数学试卷 (文科)
一、选择题(本大题共 12 小题,每小题 4 分,共 48 分)
1.(4 分)下列说法正确的是(
)
A.命题 “若 x2>1,则 x> 1”否命题为 “若 x2> 1,则 x≤1”
B.命题 “若 x0∈R,x02>1”的否定是 “? x∈R,x02>1”
第 1 页(共 15 页)
则 cos∠ F1PF2=( )
A.
B.
C.
D.
9.(4 分)若动圆 C 过定点 A(4,0),且在 y 轴上截得弦 MN 的长为 8,则动圆
圆心 C 的轨迹方程是(
)
A. C.y2=8x
B. D.y2=8x( x≠ 0)
10.(4 分)过点 M(1,1)作斜率为﹣ 的直线与椭圆 C: + =1(a>b>0)
7.(4 分)过双曲线 x2﹣ =1 的右焦点且与 x 轴垂直的直线,交该双曲线的两
条渐近线于 A、B 两点,则 | AB| =(
A.
B.2
) C.6
D.4
【解答】 解:双曲线 x2﹣ =1 的右焦点( 2, 0),渐近线方程为 y=
,
过双曲线 x2﹣ =1 的右焦点且与 x 轴垂直的直线, x=2,
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
【解答】 解:当 a=0 时, f(x)=| x| ,在区间( 0,+∞)内单调递增.
当 a<0 时,
,
结合二次函数图象可知函数 f(x)=| (ax﹣1)x| 在区间( 0,+∞)内单调递增. 若 a>0,则函数 f (x) =| (ax﹣1) x| ,其图象如图
A,B 两点,
M 是线段 AB 的中点,