采样控制系统分析

合集下载

自动控制原理第七章采样控制系统

自动控制原理第七章采样控制系统

第三节 信号复现与零阶保持器
一. 信号保持 把离散信号转换为连续信号,称为信号保持,该装置称
保持器。 保持器:用离散时刻信号复现连续时刻信号。
二. 零阶保持器
1. 作用:把采样信号e*(t) 每一个采样瞬时值e(kT)一直保持到下一个采 样瞬间e[(k+1)T], 从而使采样信号 e*(t)变成 阶梯信号eh(t)。
一阶保持器比零阶保持器信号恢复更
0 T 2T 3T 4T 5T 6T t
精确, 但相位滞后增加, 对稳定性不利.
图7-11 一阶保持器输出特性
第四节 Z变换理论
同拉氏变换一样, 是一种数学变换. 离散信号e*(t)的 拉氏变换为:

E*(s) e(nT )enTs n0
各项均含有 esT 因子,为S的超越函数。为便于应用,对 离散系统的分析一般采用Z变换.
G 0 ( s ) 1 s [ 1 e s] T 1 s 1 e 1 s T 1 s 1 1 s 1 T 1 T sT
零阶保持器的频率特性
信号e(t)在t = nT 及t = (n+1)T 之间的数值可以用一个级数来描述
单位脉冲响应
G h(s)L [gh(t) ]S 1S 1e TS 1 Se TS
G 0(j
)1ejT2sin T/(2 )ejT2 j
幅频特性: G 0(j)Tsi( n/ / ( s)s)2 s si( n/ / ( s)s)
上式是 eTs 的有理函数. 但 eTs是含变量S的超越函数,不便进行分析和运算, 因此常用Z变换代替拉氏变换。
三. 采样定理
从理论上指明了从采样信号中不失真的复现原连续信号 所必需的理论上的最小采样周期T.

零阶保持器

零阶保持器

T / 2
e
自动控制原理
第七章 采样数据控制系统分析
因为
T

s
,所以
j π
2 π sin ( π / s ) G h ( j ) e s π / s
|G h ( j ) |
s
零阶保持器的 频率特性:
T

O -
s
2s
3s
G h ( j )
≥ 2
s
m ax
时,则由采样得到的离散信号能无失真地恢 复到原来的连续信号,这就是采样定理,也 称为香农(Shannon)定理。
自动控制原理
第七章 采样数据控制系统分析
物理意义:如果选择这样一个采样角频率 ≥ 2 ,使得对连续信号中所含的最高 s m ax 频率信号来说,能做到在其一个周期内采 样两次以上,则在经采样所获得的离散信 号中将包含连续信号的全部信息。反之, 如果采样次数太少,就做不到无失真地再 现原连续信号。
自动控制原理
第七章 采样数据控制系统分析
第七章 采样数据控制系统分析
7.1 概 述 一、采样控制系统 采样控制系统,又称断续控制系统、离散 控制系统,它是建立在采样信号基础上的。 如果控制系统中有一处或几处信号是断续 的脉冲或数码,则这样的系统称为离散系统。 通常,把系统中的离散信号是脉冲序列形 式的离散系统,称为采样控制系统; 而把数字序列形式的离散系统,称为数字 控制系统或计算机控制系统。
自动控制原理
第七章 采样数据控制系统分析
7.2 信号的采样与保持 一、采样过程 把连续信号转换成离散信号的过程,叫作 采样过程。 实现采样的装置叫作采样开关或采样器。
e(t) e(t) T e * (t) e * (t)

采样控制系统的稳定性分析

采样控制系统的稳定性分析
1 只有当上述诸条件均满足时,离散系统才是稳定的, 否则系统不稳定。
z 或 w 特征方程的系数,按照下述方法构造(2n-3)行、(n+1)列朱利阵列,见表8-2:
w 1 其中比较常用的代数判据就是劳斯判据。
式中z和w均为复数,分别把它们表示成实部和虚部相加的形式,即
其模等于1,与频率ω无关;其相角为ωT,随频率ω 而改变。
可见,S平面上的虚轴映射到Z平面上,为以原 点为圆心的单位圆。
当s位于S平面虚轴的左边时,σ为负数, z eT
小于1。反之,当s位于s平面虚轴的右半平面时,为 正数,z eT 大于1。s平面的左、右半平面在z平 面上的映像为单位圆的内、外部区域。
z 1 z 1
当动点z在Z平面的单位圆上和单位圆之内时,应满足:
式中z和w均为复数,分别把它们表示成实部和虚部 |a0|< an, |b0|>|bn-1|, |c0|>|cn-2|
可见,S平面上的虚轴映射到Z平面上,为以原点为圆心的单位圆。 082, 满足|b0|>|b3|
根据给定的D(z)知:
相加的形式,即 1(s),试求系统稳定时k的变化范围。
(1)当采样周期T分别为1(s),0.
z x jy
w u jv
因此,必须采用一种新的变换,使z平面上的单位圆,在新的坐标系中的映象为虚轴。
化简后,得W域特征方程
显然,闭环系统特征方程的根λ1、λ2、…λn即是闭环脉冲传递函数的极点。
因此,必须采用一种新的变换,使z平面上的单位圆,在新的坐标系中的映象为虚轴。
线性采样系统稳定的充要条件 图8-21:线性采样系统结构图
线性采样系统如图8-21所示。 其特征方程为
D(z) 1 GH(z) 0

(自动控制原理)采样控制系统

(自动控制原理)采样控制系统
X(s )= M(s ) N(s ) 的多项式, 其中, 其中,M(s )及 N(s )分别为复变量s 的多项式,并
且有 deg M( s ) ≤ deg N( s )以及 deg N( s ) = n . 展开成部分分式和的形式, 将 X(s)展开成部分分式和的形式,即
n
Ai X(s)= ∑ i =1 s + si 式中: 的零点, 的极点, 式中: i 为 N(s)的零点,即 X(s) 的极点,且设为 s
①线性性质 若 Z[ x1(t )] = X 1( z ), Z[ x2(t )] = X 2( z ) , a1, a2为常数 则 Z[a1 x1(t )+ a2 x2(t )] = a1 X 1( z )+ a2 X 2( z ) ②平移定理 若 Z[ x(t )] = X( z )
Z[ x(t + kT )] = z k X( z )− z k − j x( j ) ∑ 则 j =0 Z[ x(t − kT )] = z − k X( z ) 若 k = 1时,有 Z[ x(t + T )] = z[ X( z )− x(0)] Z[ x(t − T )] = z −1 X( z )
若上述级数收敛,则称 E ( z ) 为采样信号的z变换。 为采样信号的z变换。 若上述级数收敛, 为了书写方便, 为了书写方便,通常写成 E ( z ) = Z [e(t )] ,但仍理 变换。 解为是对取 Z 变换。
(2)常用函数的 Z 变换和 Z 变换的性质 变换见表8 1)常用普通时间函数的 Z 变换见表8-1 表8-1 Z 变换表
* n=0
+∞
( n 式中 e nT ) = e t )t = nT , (

自动控制原理第七章采样系统

自动控制原理第七章采样系统

n>m
pi— 极点
Ai— 待定系数
第二节 采样控制系统的数学基础
例 求F(s)的z变换F(z)。
F (s)=
1 S(S+1)
解:
F (s)=
1 S(S+1)
=
1 S

1 S+1
F (z)=
z z–1

z z–e –T
=
z(1–e –T ) (z–1)(z–e–T
)
第二节 采样控制系统的数学基础
例 求F(s)的z变换F(z)。
+
=Σ k=0
8
f
(kT)∫0∞δ(t

kT
)e–stdt
+
=Σ f(kT)e –kTS k=0
第二节 采样控制系统的数学基础
二、求Z变换的方法
1.级数求和法
根据定义式展开
+
F (z)= Σ f (kT) k=0
= f (0)z0 + f (T)z-1 + f (2T)z-2 + f (3T)z-3 + ··· 利用级数求和法可求得常用函数
+(S+2)
S+3 (S+1)(S+2)
z z–eST S=-2
F (z)=
2z z–e –T

z–e
z
–2T
=
z2+z(e-T -2e-2T z2-(e-T +e-2T )z+e
)
-3T
ቤተ መጻሕፍቲ ባይዱ
第二节 采样控制系统的数学基础
三、Z变换的基本定理
例 z变求换Z[的t –基T 本] 定理为z变换的运算 提供了方便。

控制工程基础-计算机采样控制系统(2)

控制工程基础-计算机采样控制系统(2)

11
脉冲传递函数(10)
1.有采样开关分隔的两个环节串联时,其脉冲传递函数等于各 环节的脉冲传递函数之积。
X (z) G1(z) R(z)
C(z) G2 (z) X (z)
将X(z)代入C(z) C(z) G2 (z)G1zRz
Cz Rz
G1
z
G2
z
2.没有采样开关分隔的两环节串联时,其脉冲传递函数为各个
2021/2/20
第九章 计算机采样控制系统
15
脉冲传递函数(14)

G' p s Gp ss
并根据前面介绍的环节串、并联脉冲传递函数求取方法,参照上图
,则带保持器的广义控制对象脉冲传递函数
Gz
C1
z C2 U z
z
G1z
G2
z
G1z
C1 z U z
Z
Gp' s
Z
g p' t
G2z
1 G1H (z)
闭环传递函数 (z) 的推导步骤:
1) 在主通道上建立输出 C(z)与中间变量 E(z)的关系;
2) 在闭环回路中建立中间变量 E(z) 与输入 R(z) 的关系;
3) 消去中间变量 E(z),建立C(z) 和 R(z) 的关系。
2021/2/20
第九章 计算机采样控制系统
21
脉冲传递函数(20)
Gz ZGs
即符号 ZGs、ZL1Gs 和 Z g*(t) 、 ZgkT 是等价的。
Gz Zg*(t) ZgkT ZL1Gs ZGS
2021/2/20
第九章 计算机采样控制系统
7
脉冲传递函数(6)
如果系统的输入为任意函数 的采样脉冲序列 r(kT) ,其Z变换

北航自控原理实验五采样系统研究

北航自控原理实验五采样系统研究

北航自控原理实验五采样系统研究
采样系统是指从被测系统采集信号、将其转换为数字信号、利用数字
信号进行信号处理和反馈等。

本次实验要求设计和实现一个采样系统,用
以采集模拟信号,进行数字采样、处理,最后发出控制信号,实施反馈控制。

本次实验使用的采样系统是由工控机、采样卡、示波器、模拟信号源、四路输出模拟量信号和调试软件组成。

工控机用于数据采集与处理,采样
卡用于连接工控机,完成对模拟电压的采样与数据处理;示波器可以用来
监视实验过程中模拟电压和调制调整量的变化;模拟信号源模拟和产生各
种信号,提供给采样系统进行实验;四路输出模拟量信号模块可以输出四
种不同的信号,用于实验测试。

实验步骤:
一、查看实验目的,了解实验中用到的仪器状态
二、设置采样条件,检查模拟源输出的信号
三、用示波器检查采样系统和信号源的连接情况
四、使用调试软件,进行采样,编写采样程序
五、实验验证,随机改变被控对象,检查采样系统反馈控制的效果
六、实验报告,书写实验详细过程,以及采样系统的参数和调试软件的运行结果。

自动控制原理采样数据系统知识点总结

自动控制原理采样数据系统知识点总结

自动控制原理采样数据系统知识点总结自动控制原理采样数据系统是现代控制理论中重要的组成部分,广泛应用于各个领域,如工业控制、仪器仪表和机电设备等。

它通过对被控对象进行采样和处理,实现对系统的控制和监测。

本文将对自动控制原理采样数据系统的相关知识点进行总结。

一、采样基础知识采样是将连续时间的信号转换为离散时间的信号,即在一定时间间隔内对信号进行测量、记录或存储。

采样频率是采样的重要参数,它决定了信号的还原能力。

根据香农采样定理,采样频率应不小于信号最高频率的两倍。

二、理想采样器理想采样器是指对输入信号进行瞬时量化和保持的装置,它的输出是离散时间的序列。

理想采样器的输入输出关系可以用冲激函数表示,即输出等于输入乘以冲激函数。

三、采样定理采样定理是指信号在连续时间和离散时间之间的转换条件。

香农采样定理是其典型例子,它要求采样频率大于信号最高频率的两倍。

违反采样定理会导致混叠现象,即高频信号在离散频谱中出现。

四、模拟滤波器模拟滤波器用于对采样信号进行滤波,以去除混叠现象和噪声。

常见的模拟滤波器包括低通滤波器、带通滤波器和带阻滤波器等。

滤波器的设计要考虑滤波器类型、频率响应和滤波器阶数等参数。

五、采样保持电路采样保持电路用于对输入信号进行保持,使得采样结果能够在采样间隔内有效保存。

采样保持电路一般由开关、电容和运算放大器等组成。

在采样阶段,开关闭合,将输入信号传递到电容上;在保持阶段,开关断开,电容上的电压被保持。

六、数字滤波器数字滤波器用于对采样信号进行滤波和处理,以获取目标信号。

常见的数字滤波器包括FIR滤波器和IIR滤波器等。

滤波器的设计要考虑滤波器类型、截止频率和滤波器阶数等参数。

七、采样数据系统的实现采样数据系统的实现主要包括信号采样、信号处理和控制算法等步骤。

信号采样通过采样器和采样保持电路实现,信号处理通过模拟滤波器和数字滤波器实现,控制算法通过计算机或专用芯片实现。

八、采样数据系统的应用采样数据系统广泛应用于仪器仪表、机电设备和工业控制等领域。

采样周期对控制系统稳定性的影响

采样周期对控制系统稳定性的影响

采样周期对控制系统稳定性的影响采样周期对控制系统稳定性的影响采样周期是指控制系统中每个采样周期内进行一次测量和控制操作的时间间隔。

控制系统的稳定性是指系统在受到外部干扰或系统参数变化时,能够保持输出稳定在期望值附近的能力。

采样周期对控制系统的稳定性有着重要的影响,下面将逐步分析其影响因素。

1. 采样周期与系统动态响应:采样周期的长度会直接影响控制系统的动态响应。

较长的采样周期会导致系统响应迟缓,反馈控制信号的延迟较大,可能会引起系统的超调和振荡。

相反,较短的采样周期能够更快地控制系统响应,减小超调和振荡的可能性。

2. 采样周期与采样误差:采样过程中可能会引入采样误差,即由于测量和模拟过程的离散性而引起的误差。

采样周期越短,采样误差就越小。

因此,较短的采样周期有利于提高控制系统的精确度和稳定性。

3. 采样周期与信号截断:在控制系统中,如果采样周期过长,可能会导致对控制信号的截断。

即使在采样周期内,控制信号的变化可能也无法完整地表示出来。

这种截断会引起控制系统的不稳定行为,可能导致系统振荡或失稳。

4. 采样周期与采样频率:采样周期和采样频率是对采样过程的不同描述。

采样周期是指采样点之间的时间间隔,而采样频率是指在单位时间内进行采样的次数。

较高的采样频率意味着较短的采样周期,可以提高控制系统的稳定性和性能。

5. 采样周期与系统带宽:控制系统的带宽是指系统能够有效响应输入信号的频率范围。

较短的采样周期可以增加系统的带宽,提高系统对高频输入信号的响应能力。

然而,过短的采样周期可能会引起采样噪声和混叠效应,从而降低系统的稳定性。

综上所述,采样周期对控制系统的稳定性有着重要的影响。

较短的采样周期可以提高系统的响应速度、精确度和稳定性,但也可能引入额外的采样误差和噪声。

控制系统设计时需要根据实际需求和系统特性选择合适的采样周期,以达到最佳的控制性能和稳定性。

采样控制系统分析

采样控制系统分析

自动控制原理实验报告(七)采样控制系统分析班级:自动1002班学号:06101049姓名:强倩瑶3.5 采样控制系统分析一.实验目的1.了解判断采样控制系统稳定性的充要条件。

2.了解采样周期T对系统的稳定性的影响及临界值的计算。

3 观察和分析采样控制系统在不同采样周期T时的瞬态响应曲线。

三、实验内容及步骤1.闭环采样系统构成电路如图3-5-1所示。

了解采样周期T对系统的稳定性的影响及临界值的计算,观察和分析采样控制系统在不同采样周期T时的瞬态响应曲线。

2.改变采样控制系统的被控对象,计算和测量系统的临界稳定采样周期T。

图3-5-1 闭环采样系统构成电路闭环采样系统实验构成电路如图3-5-1所示,其中被控对象的各环节参数:积分环节(A3单元)的积分时间常数Ti=R2*C2=0.2S,惯性环节(A5单元)的惯性时间常数T=R1*C1=0.5S,增益K=R1/R3=5。

(1)用函数发生器(B5)单元的方波输出作为系统振荡器的采样周期信号。

(D1)单元选择“方波”,(B5)“方波输出”孔输出方波。

调节“设定电位器1”控制相应的输出频率。

(2)用信号发生器(B1)的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号R(t):B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0/+5V阶跃)。

阶跃信号输出(B1-2的Y测孔)调整为2.5V(调节方法:调节电位器,用万用表测量Y测孔)。

(3)构造模拟电路;(4)运行、观察、记录:①运行LABACT程序,选择自动自动控制菜单下的采样系统分析实验项目,就会弹出虚拟示波器的界面,点击开始后将自动加载相应源文件,即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。

②调节“设定电位器1”,D1单元显示方波频率,将采样周期T(B5方波输出)依次调整为15ms(66.6Hz) 、30ms(33.3Hz)和90ms(11.1Hz),按下信号发生器(B1)阶跃信号按钮(0→+2.5V阶跃),使用虚拟示波器CH1观察A6单元输出点OUT(C)的波形。

采样控制系统的优点

采样控制系统的优点

长安大学信息工程学院
自动控制理论
第八章
第二节 保持器 信号的复现: 把采样信号恢复为原来的连续信号称为信号的复现。 实现方法: 理想滤波器 保持器
实际使用的方法:
零阶保持器(恒值外推) 保持器 一阶保持器(线性外推)
CHANG’AN UNIVERSITY
长安大学信息工程学院
自动控制理论
第八章
一、零阶保持器
自动控制理论
第八章
第三节 差分方程
保持器为零阶保持器
eh (t ) e(kT )
kT t (k 1)T
在该周期下,系统输出为
c(t ) c(kT ) e(kT )(t kT ) kT t (k 1)T c[(k 1)] c(k ) Te(k ) c[(k 1)T ] c(kT ) Te(kT ) e(k ) r (k ) c(k ) c(k 1) (T 1)c(k ) Tr (k )
1 1 Gh ( s ) 1 T 2s2 s 1 Ts 2
CHANG’AN UNIVERSITY
取前两项
Ts 1 2 T T 2s2 1 Ts 2
取前三项
长安大学信息工程学院
自动控制理论
第八章
取前三项时用无源网络实现形式
更高阶的近似,使无源网络变得非常复杂。
n n
e(nT ) (t nT)

L[e* (t )] E * ( s) e(nT )e nTs
n 0

采样过程的特点: 1、采样过程相当于一个脉冲调制过程 2、采样的输出信号可表示两个信号的乘积
T (t )
e(nT )

采样系统

采样系统

典型的采样控制系统方框 图如图8—1所示。其中,误 差e是时间的连续信号,经过 采样时间为T的采样开关之后, 变成一组脉冲序列e*,脉冲 控制器将离散的误差信号处 理后,得到离散的控制信号, 该信号经保持器变换为连续 信号去控制被控对象。采样 开关每隔时间T开闭一次,每 次闭合时间为ε,则称T为采 样周期,ε为采样时间, ε<T,f s=1/T,ωs=2π/T分别成为采样频率和采样 角频率。这样图8-2 a所示模拟量e被采样后变成了图8-2 b所 示的脉冲序列e*。本图中,采样周期T是固定的,我们称为等 周期采样,另外还有多阶采样、多速采样、及随机采样等, 本书只介绍常用的等周期采样。
xoBox
式中 T——采样周期 n——整数 脉冲调制器(采样器)的输出信 号e*(t)可表示为
在控制系统中,当t<0时。e(t)=0。因此式(8-2)可 以改写为
对式(8-3)取拉氏变换得
xoBox
为了建立 与E(s)的关系,可求周期函数δT(t)的富 氏级数,其复数形式为
式中 ——富氏系数 这样,式(8-2)可以写成下式
§8—5
脉冲传递函数
一、基本概念 在线性连续系统理论中,把初始条件为零的情况下系统输 出信号的拉普拉斯变换与输入信号的拉普拉斯变换之比,定 义为传递函数。 与此相类似,在线性采样系统理论 中,把初始条件为零的情况下系统的 离散输出信号的z变换与离散输入信 号的z变换之比,定义为脉冲传递函 数,或称z传递函数。它是线性采样 系统理论中的一个重要概念。 对于图8-8所示的采样系统,脉冲传递函数为
例8-3 用Z变换求积分环节 为使信息不丢失,需加保持器,即:
的差
xoBox
五、Z反变换 和拉氏反变换类似,Z反变换可以表示为
Z反变换的方法有,长除法、部分分式法及留数计算法等, 其中以部分分式法最常用。 例8-3 用部分分式法求 的Z反变换。

自动控制原理第七部分采样系统

自动控制原理第七部分采样系统

稳定性判据
用于判断采样系统的稳定性,如 Nyquist稳定判据和Bode图分析方法。
稳定性分析方法
通过分析采样系统的极点和零点分布、 频率响应特性等,评估系统的稳定性。
03
采样系统的性能分析
采样系统的频率响应
频率响应
描述了系统对不同频率输入信号的响应特性, 通常用频率特性函数表示。
带宽
指系统能够处理的最高频率,决定了系统处 理信号的能力。
只有稳定的系统才能在实际应用中得到有效 控制。来自采样系统的动态性能分析
阶跃响应和脉冲响应
描述了系统对阶跃信号和脉冲信号的响应特 性。
动态性能的定义
系统对输入信号的响应速度和超调量等动态 特性。
动态性能的优化
通过调整系统参数,改善系统的动态性能, 以满足实际应用需求。
04
采样系统的设计
采样系统的设计原则
在航空航天控制中的应用
导航与定位
采样系统能够实时采集航空航天器的位置、速度、姿态等数据,通 过导航与定位算法,实现航空航天器的精确导航和定位。
姿态控制
采样系统能够实时采集航空航天器的姿态数据,通过姿态控制算法, 实现航空航天器的稳定飞行和精确机动。
自主决策
采样系统能够实时采集航空航天器周围的环境信息,通过自主决策 算法,实现航空航天器的自主避障、路径规划等任务。
采样系统的基本原理
采样系统基于时间离散化原理,通过 在等间隔时间点上获取输入和输出信 号的样本值,再根据这些样本值进行 计算和控制,以实现对连续时间系统 的近似或重构。
采样系统的组成
采样器
采样器是采样系统的核心部件, 负责在等间隔时间点上采集输入 和输出信号的样本值。
保持器
保持器用于在两次采样间隔期间 保持输出信号不变,以实现连续 时间系统的近似或重构。

采样控制系统的分析试题及答案

采样控制系统的分析试题及答案

采样控制系统的分析试题及答案【课后自测】8-1 求下列拉氏变换式的Z 变换。

(1)1()()()E s s a s b =++ (2)21()(1)E s s s =+(3)21()s E s s += (4)21()(1)se E s s s --=+ (5)3()(1)(2)s E s s s +=++解:(1)1111()()()E s s a s b b a s a s b ⎛⎫==- ⎪++-++⎝⎭,查表知11,()()aT bTz zZ Z s a z e s b z e --⎛⎫⎛⎫== ⎪ ⎪+-+-⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得11()()aTbT z z Z s a s b b a z ez e --⎛⎫⎛⎫=- ⎪ ⎪++---⎝⎭⎝⎭ (2)221111()(1)(1)1E s s s s s s ==--+++,查表知 22111,,11(1)()T T T z z Tze Z Z Z s z s z e s z e ---⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪-+-+-⎝⎭⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得221(1)1()T T Tz Tze zZ s s z z e z e---⎛⎫=-- ⎪+---⎝⎭ (3)22111()s E s s s s+==+,查表知 2211,1(1)z Tz Z Z s z s z ⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得2211(1)s z Tz Z s z z +⎛⎫=+ ⎪--⎝⎭(4)()221111()1(1)1s s e E s e s s s s s ---⎛⎫==--+ ⎪++⎝⎭,查表知22111,,1(1)1Tz Tz z Z Z Z s z s z s z e -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪--+-⎝⎭⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得12211(1)(1)1s TT e Tz z z Z z s s z z z e ---⎛⎫⎛⎫⎛⎫-=--+ ⎪ ⎪ ⎪+---⎝⎭⎝⎭⎝⎭ (5)311()(1)(2)12s E s s s s s +==+++++,查表知 211,12T Tz z Z Z s z e s z e --⎛⎫⎛⎫== ⎪ ⎪+-+-⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得23(1)(2)T Ts z zZ s s z ez e --⎛⎫+=+ ⎪++--⎝⎭ 8-2 求下列函数的Z 反变换。

第七章 自动控制系统的采样控制系统

第七章 自动控制系统的采样控制系统
引入新变量则有我们称为的z变换并记作????????dtetfsfst0??????ktttftfk????????0??tf??????dtektttfsfstk?????????????????00????dtekttktfstk??????????00??ktskektf??????0ktse?tsez?????kkzktfzf??????0??zf??tf???????tfzzf??第二节采样控制系统的数学基础722求z变换的方法1
图7-3 数字控制系统结构图
第一节
采样控制系统的基本概念
系统中的连续误差信号通过A/D转换器转换成数字量, 经过计算机处理后,再经D/A转换器转换成模拟量,然后 对被控对象进行控制。这里,若将A/D转换器和D/A转换 器的比例系数合并到系统的其他系数中去,则A/D转换器 相当于一个采样开关,D/A转换器相当于一个保持器,此 时图7-3可改画成图7-4所示。
采样控制系统的数学基础
5z 的反变换。 2 z 3z 2
F (z )
5 z 1 可以写为 F ( z ) 1 3z 1 2 z 2
用 F z 的分子除以分母,得
F ( z) 5z 1 15z 2 35z 3 75z 4 ...
图7-6
零阶保持器的输入输出特性
第二节
采样控制系统的数学基础
7.2.1 z变换的定义
对连续函数 f t 进行拉氏变换,即
k 0
F s
f t e st dt 0
对离散函数 f t f t t kT 进行拉氏变换,即
kTs st st F s f t t kT e dt f kT t kT e dt f Kt e 0 k 0 k 0 0 k 0

自动控制原理 第七章 第四讲 采样系统理论小结

自动控制原理 第七章 第四讲 采样系统理论小结
采样开关。采样过程可用下图表示。 采样开关。采样过程可用下图表示。 e(t) e(t) S t e*(t) t e*(t)
e*(t)=e(t)δr(t),
e ( t ) = ∑ e( nT )δ ( t − nT )
* n= 0 ∞
δ T ( t ) = ∑ δ ( t − nT )
n= 0

E ( s) = L[e (t )] = ∑ e(nT )e − nTs
D(z) = 1 − Φ e (z) Φ(z) = G ( z )Φ e ( z ) G ( z )Φ e ( z )
采样系统数字校正的过程: 是零阶保持器和被控对象所固有的, 由上两式,G(z)是零阶保持器和被控对象所固有的 不能改变, 是零阶保持器和被控对象所固有的 不能改变, 现在只需要根据采样系统性能指标的要求,确定 现在只需要根据采样系统性能指标的要求,确定Φ(z)或Φe(z), 根据采样系统性能指标的要求 或 , 就可以求得满足要求的D(z)。 。 就可以求得满足要求的
C(s)
G( z) =
C( z) = Z [G1 ( s )G2 ( s )] = G1G2 ( z ) = G2G1 ( z ) R( z )
2. 有零阶保持器的情况
G(z) C* (s) R(s) T R*(s)
− sT 1 − e X(s) GG1(s) = h (s) s
G (s G p2(s) )
由此可得典型输入信号Z变换的一般形式为: 由此可得典型输入信号 变换的一般形式为: 变换的一般形式为
R( z ) =
A( z ) (1 − z −1 ) m
(#)
其中, 是不包含(1-z-1)的z-1的多项式。 其中 A(z)是不包含 是不包含 的 的多项式。 将上式代入式(*), 则有 则有: 将上式代入式

采样控制系统

采样控制系统
五.Z反变换
添加标题
01
长除法
添加标题
02
分子除以分母,将商按z-1的升幂排列:
添加标题
03
将F(z)的分子,分母多项式按z的降幂形式排列。
添加标题
04
实际应用中,常常只需计算有限的几项就够了。

2.部分分式法
步 骤 ① ② 对 进行部分分式展开 ③ 将 同乘以 z 后变为F(z) ④ 由典型信号的z变换可求出 f *(t) 或 f (kT)
相角滞后可达-180°,使闭环系统的稳定性变差。
添加标题
理想低通滤波器
时间延迟
零阶保持器的输出为阶梯信号eh(t) ,其平均响应为 e[t-(T/2)] ,表明输出在时间上要滞后输入T/2,相当于 给系统增加了一个延迟环节,不利于系统的稳定性。
§8-2 Z变换
一. Z变换的定义 f(t) —— 连续信号 —— 采样(离散)信号 —— 采样点上的信号值 习惯上称为f(t)的Z变换。
T
采样控制系统
e(t)*:离散信号
采样周期。 采样开关每隔时间T闭合一次,每次闭合时间为τ
r(t) e(t) e(nT) u(nT) u(t) c(t) A/D 数字计算机 D/A 被控对象 b (t) 检测环节
02
e *(t) eh (t)
03
T 2T …….. t 0 T 2T ……….. t
关于函数F(z)zk-1在极点处的留数计算方法如下:
若pi为单极点,则
若F(z)zk-1有ri 阶重极点,则
例 8-11:设z变换函数 ,试用留数法求其z反变换。
解:因为函数 有p1=-1 ,p2=-2两个极点,极点处的留数
c*(t)

自动控制原理 第七章 采样系统理论

自动控制原理 第七章 采样系统理论
2. 幂级数法(综合除法) n -1 -2 由Z变换的定义 E ( z ) e(nT )z e (0) e (T)z e (2T)z
b0 b1 z b2 z bm z m 而 E( z) (m n) c0 c1z-1 c2z-2 1 a 1 z 1 a 2 z 2 a n z n
t 0 z
(7) 终值定理 若e (t)的z变换为E(z),函数序列e(nT)为有限值(n=0,1,2,…), 且极限 lim e ( nT ) 存在,则
n
lim[e( nT )] lim( z 1) E ( z )
n z 1
离散系统的数学模型
脉冲传递函数 脉冲传函定义
第七章
采样系统理论
离散系统的相关概念 离散系统的数学模型 离散系统的稳定性分析 离散系统的稳态误差计算
离散系统的校正
信号的采样与保持
采样过程与采样定理
采样过程
e(t) S e*(t) T e(t) e*(t)

0
t
0

T 2T
t
(a)
(b)
(c)
基本概念:
1)采样周期:采样开关经一定时间T,重复闭合,每次闭合时间为τ, τ<T,T称为采样周期。f=1/T为采样频率。 2)采样角频率:ωs=2π/T rad/s。 3)采样脉冲序列:连续时间函数经采样开关采样后变成重复周期T的时 间序列,称为采样脉冲序列。 4)采样过程:将连续时间函数经过采样开关的采样而变成脉冲序列的 过程,称为采样过程。
R(s) + - T
K s(s 4)
C(s)
K K 1 1 Z G(z) Z s( s 4) 4 s s 4 K z z K 1 e 4T 4T 4 z 1 z e 4 ( z 1)(z e 4T )

自动控制原理第七部分采样系统

自动控制原理第七部分采样系统
n 0
1 1 1 1 2 3 ....... z z z
上式是一个公比为 1 ,首项为 1 的几何级数 ,其和为: z 1 z E( z) . z 1 -1 1- z z -1
例7-5
求理想脉冲序列
T (t )
n 0
的z变换
e(t ) T (t ) (t nT )
E ( z)
1 z ( z 1 1) 1 z 1 z 1
e* (t )
从例7-4和例7-5可见,相同的z变换 E(z) 对应于相同的采样函数 ,但是不一定对应于相同的连续函数 e(t).
例7-6
求指数函数
e(t ) e-at
anT
的 z变换
解:
E( z) e
解: 因为 T 为采样周期,故
*
e (t ) T (t ) (t nT )
由拉氏变换知 因此
E * ( s ) e nsT
n 0
E ( z ) z n 1 z 1 z 2
的z变换为 (t )
T
n 0
n 0
把上式写成闭合形式.得
iii、z变换的收敛和特性
z变换定义为 E ( z ) e(nT ) z n
以z为自变量的罗朗级数。 收敛条件 z 1
n 0

7.3.2
z 变换方法
⑴ 级数求和法(从定义出发) 例7-4 求单位阶跃函数的z变换
解 : 因为e(t ) 1(t ) 所以E ( z ) Z 1(t ) 1(nT ) z n
图7-9 零阶保持器的频率特 性 ③ 时间滞后特性.零阶保持器的输出为阶梯信号eh(t),其平均响应

自动控制原理--脉冲传递函数及采样系统的分析

自动控制原理--脉冲传递函数及采样系统的分析

系统输出
Y
(z)
G1G2
(
z)E(z)
1
G1G2 (z) G1G2H (z)
R(z)
闭环系统的误差脉冲传递函数
E(z)
1
Ge (z) R(z) 1 G1G2H (z)
闭环系统脉冲传递函数为
GB (z)
Y (z) R(z)
G1G2 (z) 1 G1G2H (z)
当系统有扰动作用时 ,可得闭环系统的误差与扰动间 的脉冲传递函数为
2
r t
et T
e* t
1 eTs s
100.5s 1
yt
s2
解:系统的开环脉冲传递函数为
G(z)
(1
z 1 ) Z
10(0.5s s3
1)
z
1 5T 2z(z 1)
z
(z 1)3
5Tz (z 1)2
解:系统的开环脉冲传递函数为
G(z)
(1
z 1 ) Z
10(0.5s s3
1)
x
x
x
xx
x
暂态响应与极点位置关系
• 1)当闭环脉冲传递函数的极点位于z平面上以 原点为圆心的单位圆内时,其对应的暂态分量是 衰减的。
• 2)要使控制系统具有比较满意的暂态响应,其闭 环极点应尽量避免分布在Z平面单位圆内的左 半部,最好分布在单位圆内的右半部。
• 3)极点尽量靠近坐标原点,相应的暂态分量衰减 速度较快。
二、串联环节的脉冲传函
1、两个环节有采样开关时
rt
r*t G1s y1t
y1*t G2s
y*t yt
根据脉冲传递函数的定义:
G(z)
Y (z) R(z)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京联合大学
实验报告
实验名称:采样控制系统分析
学院:自动化专业:物流工程姓名:学号:
同组人姓名:学号:
班级:成绩:
实验日期:2014年12月18日
完成报告日期:2014年12月21日
实验5 采样控制系统分析
一.实验目的
1. 掌握判断采样控制系统稳定性的充要条件。

2. 掌握采样周期T对系统的稳定性的影响及临界值的计算。

3. 观察和分析采样控制系统在不同采样周期T时的瞬态响应曲线。

二、实验内容及步骤
1.闭环采样系统构成电路如图5-1所示。

掌握采样周期T对系统的稳定性的影响及临界值的计算,观察和分析采样控制系统在不同采样周期T 时的瞬态响应曲线,填入表中。

2. 改变采样控制系统的被控对象,计算和测量系统的临界稳定采样周期T,填入表中。

图5-1 闭环采样系统构成电路
[a].闭环采样系统实验构成电路如图5-1所示,其中被控对象的各环节
参数:
积分环节(A3单元)的积分时间常数Ti=R2*C2=0.2S,
惯性环节(A5单元)的惯性时间常数T=R1*C1=0.5S,增益K=R1/R3=5。

实验步骤:注:(B5)单元的‘S ST’不能用‘短路套’短接!
(1)用函数发生器(B5)单元的方波输出作为系统振荡器的采样周期信号。

(D1)单元选择“方波”,(B5)“方波输出”孔输出方波。

调节“设定电位器1”控制相应的输出频率。

(2 ) 用信号发生器(B1)的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号R(t):
B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0/+5V 阶跃)。

阶跃信号输出(B1单元的Y测孔)调整为2.5V(调节方法:调节电位器,用万用表测量Y测孔)。

(3)构造模拟电路:按图5-1安置短路套及测孔联线,表如下。

(4)运行、观察、记录:
三、数据处理(现象分析)
①运行LABACT程序,选择自动自动控制菜单下的采样系统分析实验项目,就会弹出虚拟示波器的界面,点击开始后将自动加载相应源文件,即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。

②调节“设定电位器1”,D1单元显示方波频率,将采样周期T(B5方波输出)依次调整为15ms(66.6Hz) 、30ms(33.3Hz)和90ms(11.1Hz),按下信号发生器(B1)阶跃信号按钮(0→+2.5V阶跃),使用虚拟示波器CH1观察A6单元输出点OUT(C)的波形。

观察相应实验现象,记录波形,并判断其稳定性,填入表5-1。

T=66.6Hz
T=11.8Hz T=11.1Hz
[b].,两个闭环采样系统的被控对象参数分别为:
(1)闭环采样系统实验构成电路如图5-1所示。

积分环节(A3单元)的积分时间常数Ti=R2*C2=0.2S,
惯性环节(A5单元)的惯性时间常数T=R1*C1=0.5S,增益K=R1/R3=5。

(2)改变图5-1所示闭环采样系统积分环节(A3单元),惯性环节(A5单元)参数构成实验系统:
积分环节(A3单元)的积分时间常数Ti=R2*C2=0.1S,
惯性环节(A5单元)的惯性时间常数T=R1*C1=0.2S,增益K=R1/R3=2。

计算和测量两组系统的临界稳定采样周期T,填入表5-2。

表5-2
T=8.9Hz
四、实验结论。

相关文档
最新文档