测量平差习题集
测量平差习题集
第二部分 自测题第一章 自测题一、判断题(每题2分,共20分)1、 通过平差可以消除误差,从而消除观测值之间的矛盾。
( )2、 观测值i L 与其偶然真误差i ∆必定等精度。
( )3、 测量条件相同,观测值的精度相同,它们的中误差、真误差也相同。
( )4、 或然误差为最或然值与观测值之差。
( )5、 若X 、Y 向量的维数相同,则YX XY Q Q =。
( )6、 最小二乘原理要求观测值必须服从正态分布。
( )7、 若真误差向量的数学期望为0,即0=∆)(E ,则表示观测值中仅含偶然误差。
( ) 8、 单位权中误差变化,但权比及中误差均不变。
( ) 9、 权或权倒数可以有单位。
( )10、相关观测值权逆阵Q 的对角线元素ii Q 与权阵P 的对角线元素ii P 之间的关系为1=ii ii P Q 。
( )二、填空题(每空0.5分,共20分)1、测量平差就是在 基础上,依据 原则,对观测值进行合理的调整,即分别给以适当的 ,使矛盾消除,从而得到一组最可靠的结果,并进行 。
2、测量条件包括 、 、 和 ,由于测量条件的不可能绝对理想,使得一切测量结果必然含有 。
3、测量误差定义为 ,按其性质可分为 、 和 。
经典测量平差主要研究的是 误差。
4、偶然误差服从 分布,它的概率特性为 、 和 。
仅含偶然误差的观测值线性函数服从 分布。
5、最优估计量应具有的性质为 、 和 。
若模型为线性模型,则所得最优估计量称为 ,最优估计量主要针对观测值中仅含 误差而言。
要证明某估计量为最优估计量,只需证明其满足 性和 性即可。
6、限差是 的最大误差限,它的概率依据是 ,测量上常用于制定 的误差限。
7、若已知观测值向量L 或其偶然真误差向量∆的协方差阵为∑,则L 或∆的权阵定义为L P =∆P = ,由于验前精度∑难以精确求得,实用中定权公式有 、 、 ,特别是对独立等精度观测向量L 而言,其权阵可简单取为L P = 。
测量平差所有习题
第二章思考题及习题1.精度的含义是什么?2.为什么不用真误差来衡量观测值的精度而用中误差?3.试比较中误差、平误差作为衡量精度的标准的优缺点。
4.为什么要研究极限误差,极限误差与真误差有什么关系?5.角度的精度可否用相对误差来衡量?为什么?6.平差的原则是什么?观测值的平均误差和中误差。
8.某一三角网共有三十个三角形,在相同条件下进行了观测,由于观测有误差,三角形内角之和就不等于180度,这样就得到了三十个三角形的角度闭合差W(真误差),按绝对值的大小排列如下:+0.5″,-0.6″,+0.8″,-1.0″,+1.4″,+1.7″,-1.8″,+2.1″,+2.5″,-2.7″,+2.8″,+3.0″,+3.2″,-3.6″,+4.2″,-4.8″,-5.3″,+5.9″,-6.1″+6.8″,-6.9″,+7.5″,+8.5″,-9.1″,-9.8″,+11.3″,+12.9″,-14.6″,+18.8″-21″。
①试根据该组误差分析偶然误差的特性;②求三角形内角之和的中误差;③分析最大的偶然误差与中误差的关系;④求三角网中每个角的测角中误差。
9.对三十米的一条边进行了二十次丈量,每次丈量的中误差为±0.02米,另外用同样的方法对60米的一条边进行丈量,其每次丈量的中误差为±0.03米,试问这两条边丈量结果,哪一条边的精度高?10.对30º的一个角观测了十次,每次观测的中误差为±5″。
另外用同样的仪器、同样的方法、同样的次数对60º的一个角观测进行观测,每次观测的中误差为±5″。
试问这两个角度观测结果精度一样吗?11.什么是误差传播定律?12.设一个三角形观测了三个内角,每一个角的测角中误差58''⋅±=βσ,试计算三角形内角和的中误差。
13.在一个三角形中观测了两个角度,其值分别为α=30º20′22″±4″,β=60º24′18″±3″,试求第三个角度γ的角值及其中误差σγ。
测量平差练习题
测量平差练习题1.如图,高差观测值h 1=15.752米±5毫米,h 2=7.305米±3毫米,h 3=9.532米±4毫米,试求A 到D 间的高差及中误差。
2.已知函数式()32121L L L X ++=,式中的()1,2,3i L i =均为等精度独立观测值,其中误差为σ,试求X 的中误差。
3.设函数为44332211L a L a L a L a F +--=,式中观测值L1、L2、L3和L4 相应有权为P1、P2、P3和P4 ,求F 的权倒数。
4.使用两种类型的经纬仪观测某一角度得29331241''±'''︒=L ,84231242''±'''︒=L ,求该角最或是值及其中误差。
5.设观测值L1、L2和L3的权为1、2及4,观测值L2的中误差为6",求观测值L1和L3的中误差。
6.如图,这是一个单结点水准网,A 、B 、C 为已知水准点,其中000.10=A H 米,000.13=B H 米,000.11=C H 米,E 为待定点,高差观测值383.11=h 米、612.12-=h 米、396.03=h 米,试列出改正数条件方程式。
7.如图所示的水准网。
其中A 点为已知高程点,其高程已知值为HA=100.000m ,其余各点为高程未知点。
各条路线的观测高差及路线长如下:h1=0.023m ,S1=5km ; h2=1.114m ,S2=5km ; h3=1.142m ,S3=5km ; h4=0.078m , S 4=2km; h5=0.099m ,S5=2km ; h6=1.216m ,S6=2km 。
①试列出该水准网按条件平差时的条件方程式;②设C=10,确定出各条路线观测高差的权。
8.如图为一大地四边形,试判断各类条件数目并列出改正数条件方程式。
误差理论与测量平差基础习题集
第一章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,而且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪几类?它们各自是怎样定义的?对观测成果有何影响?试举例说明。
1.1.04用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。
1.1.05在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沆。
§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进行多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 高斯于哪一年提出最小二乘法?其主要是为了解决什么问题?1.3.09 自20世纪五六十年代开始,测量平差得到了很大发展,主要表现在那些方面?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学目的是什么?第二章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是一种重要的分布?试写出一维随机变量X的正态分布概率密度式。
§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三角形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,大量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和方差各是多少?§2-3 衡量精度的指标2.3.05 何谓精度?通常采用哪几种指标来衡量精度?2.3.06 在相同的观测条件下,对同一个量进行若干次观测得到一组观测值,这些观测值的精度是否相同?能否认为误差小的观测值比误差大的观测值精度高?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差一定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的水平角α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。
测量平差试题一
协因数阵为 QXˆXˆ
0.25 0.15
0.15 0.75
,且单位权方差
ˆ
2 0
3.0cm2
,
(1)计算 P1 点纵、横坐标中误差和点位中误差;
(2)计算 P1 点误差椭圆三要素E、E、 F ; (3)计算 P1 点在方位角为 90 方向上的位差。
(17 分)
一、FFFFT 二、相等 三、aabcd
六. (1)ˆx
3 2
cm,,ˆ y
1.5cm
ˆ p
3cm
(2)E =74. 5或254. 5,E, 1.54cm F 0.79cm
(3)
ˆ
90
1.5cm
9.定权时 0 可任意给定,它仅起比例常数的作用( )。
10.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高( )。
二、 用“相等”或“相同”或“不等”填空(8 分)。
已知两段距离的长度及其中误差为 300.158m±3.5cm; 600.686m±3.5cm。则:
1.这两段距离的中误差(
的测回数 N=( )。
a) 25
b) 20
c) 45
QQYXXX
Q XY QYY
=
0.5 0.25
0.25
0.5
单位权方差 0 2 =±2.0。则 P 点误差椭圆的方位角 T=( )。
a) 90
b) 135
c) 120
4.设 L 的权为 1,则乘积 4L 的权 P=( )。
)。
2.这两段距离的误差的最大限差(
)。
3.它们的精度(
)。
4.它们的相对精度(
)。
三、 选择填空。只选择一个正确答案(25 分)。
测量平差超级经典试卷含答案汇总
一、填空题(每空1分,共20分) 1、测量平差就是在 多余观测 基础上,依据 一定的 原则,对观测值进行合理的调整,即分别给以适当的 改正数 ,使矛盾消除,从而得到一组最可靠的结果,并进行 精度评估 。
2、条件平差中,条件方程式的选取要求满足 、 。
3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PVVT= ,μ= ,1k p = ,2k p = 。
4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按条件平差进行求解时,条件方程式个数为 ,法方程式个数为 。
5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。
6、间接平差中误差方程的个数等于________________,所选参数的个数等于_______________。
7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。
二、选择题(每题2分,共20分)1、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合.D)观测时的天气状况与观测点地理状况诸因素的综合答:_____2、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于? (A)1/4(B)21/2(D)4答:__3、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于:(A)0.4 (B)2.5(C)3 (D)253答:____4、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。
文档:误差理论与测量平差基础习题集(二期)
误差理论与测量平差基础题库集1.1 设对一段距离丈量了三次,三次结果分别为9.98m ,10.00m ,10.02m ,试根据测量平差概念,按独立等精度最小二乘原理(21min ni i v ==∑)求这段距离的平差值以及消除矛盾时各次结果所得的最或然改正数。
11223311231.1ˆˆˆ 9.98 ˆˆˆ 10 ˆˆˆ 10.0219.98ˆ110110.02ˆ()130103ˆ9.982ˆ100ˆ10.022T T L X V XL X V XL X V XV X XB B B l V Xcm V Xcm V Xcm ->>⎧==-⎪⎪==-⎨⎪==-⎪⎩⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦==⨯==-==-==-=-1.2 一段距离丈量了三次,三次结果分别为9.98m ,10.00m ,10.02m ,令三次结果的权分别为1,2,1,试按独立非等精度最小二乘原理(21min ni i i p v ==∑)求这段距离的平差值以及消除矛盾时各次结果所得的最或然改正数。
111231.21001001000202001001ˆ()1(9.9810210.02)104ˆ9.982ˆ100ˆ10.022T T Q P Q X B PB B Pl V Xcm V Xcm V Xcm -->>⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⇒==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦==⨯+⨯+==-==-==-=-1.3 设一平面三角形三内角观测值为A 、B 、C ,180W A B C =++-︒为三角形闭合差,试根据测量平差概念,按独立等精度最小二乘原理证明三内角的评差值为ˆ3W AA =-、ˆ3W BB =-、ˆ3W C C =-。
()1231231231.3ˆˆˆ18001800011100AB C A V B V C V V V V W V V W V AV W P E Q E>>++-︒=+++++-︒=+++=⎡⎤⎢⎥+=⎢⎥⎢⎥⎣⎦+===按条件平差法有1123()111311313131ˆ31ˆ31ˆ3T T T T V QA K A K A AA W WW W W A A V A W B B V B W C C V C W -===-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥-⎣⎦=+=-=+=-=+=-123ˆˆˆ ˆˆˆ ˆˆˆˆˆ+180 +18010ˆ01ˆ11180ˆˆA A B B A B A B A B A B A X V X A B X V X B C X X V X X C A XV B X C X X ⎧==-⎪⎪==-⎨⎪=--︒=--︒-⎪⎩⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦---︒⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎢⎣⎦按参数平差11()101011010101101111180121801321801331ˆ31ˆ31ˆˆˆ1801803T TB PB B Pl A BC A WA B C A B C B W AA W BB W CA B A W B --=⎥⎡⎤⎡⎤⎛⎫⎛⎫--⎛⎫⎛⎫⎢⎥⎢⎥ ⎪ ⎪= ⎪ ⎪⎢⎥⎢⎥ ⎪ ⎪--⎝⎭⎝⎭ ⎪ ⎪⎢⎥⎢⎥---︒⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤-⎢⎥--+︒⎡⎤==⎢⎥⎢⎥-+-+︒⎣⎦⎢⎥-⎢⎥⎣⎦=-=-=︒--=︒-+-+即132180313W A B C W CC W=︒---++=-1.4 已知独立等精度观测某三角锁段共得15个三角形,其闭合差如下表 所示。
测量平差习题集答案
测量平差习题集答案测量平差习题集答案在测量工作中,平差是一项非常重要的环节。
它通过对测量数据进行处理和分析,消除误差,得到更加准确的测量结果。
为了帮助大家更好地理解和掌握平差的方法和技巧,下面将为大家提供一些测量平差习题集的答案。
1. 题目:某测量队在进行水平控制网的测量时,测得A、B两点的水平角为α1=90°30'20",α2=269°29'40",A、B两点的距离为1000米。
已知A点的坐标为(1000, 1000),求B点的坐标。
解答:根据水平角的定义,可以得到以下关系式:α1 = α2 + 180°即90°30'20" = 269°29'40" + 180°化简得90°30'20" = 449°29'40"由于角度超过360°,需要将其转化为小于360°的形式,可以通过减去360°来实现,即:90°30'20" - 360° = 89°29'40"所以,B点的水平角为89°29'40"。
接下来,根据已知的A点坐标和AB距离,可以利用正弦定理来求解B点的坐标。
设B点的坐标为(x, y),则有:(x - 1000)^2 + (y - 1000)^2 = 1000^2根据正弦定理,可以得到以下关系式:sin(89°29'40") = (x - 1000) / 1000化简得:(x - 1000) = 1000 * sin(89°29'40")解得:x ≈ 1999.999同理,可得:y ≈ 1000.000所以,B点的坐标为(1999.999, 1000.000)。
测量平差课后练习题(1~3章)2011
《误差理论与测量平差基础》课后测验题第一章 绪论1、什么是观测条件?相同观测条件下进行的观测称为什么观测?2、举出系统误差和偶然误差的例子各5个。
3、观测误差分为几类?分别是如何定义的?4、在测量上为什么要进行多余观测?5、测量平差的任务是什么?第二章 误差分布与精度指标1、什么是真值、真误差?2、简述偶然误差的特性?3、偶然误差服从什么分布?4、衡量精度的指标有哪几种?分别是如何定义的?5、设一段距离为:520m ±2.3mm 代表什么意思?相对误差是多少?6、对于在相同的观测条件下进行的一系列的观测,误差有大有小,是否代表精度不同?7、在测距仪的检定中,要对基线场两固定观测墩点间的精确距离进行多次观测,设精确距离为326.750米,观测了10次,得距离如下:326.758m 326.754m 326.745m 326.755m 326.762m326.749m 326.743m 326.740m 326.751m 326.756m求测量距离的中误差?8、在采用J6经纬仪进行角度测量时,规定半测回角值之差不超过36",测回间角值之差不超过24",分别代表什么误差?9、什么是协方差?协方差是描述观测值之间什么关系的?10、在什么情况下,观测值之间相互独立与不相关是等价的?11、什么是方差协方差阵?其是有什么组成的?有何特点?12、何谓准确度?何谓精确度?何谓不确定性?第三章 协方差传播率及其权1、设观测向量T L L L L ]3,2,1[=的方差协方差阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=411121113LLD ,求21L σ、22L σ、21L L σ。
2、写出协方差传播律的主要公式?3、当观测值的函数为非线性时,如何处理?4、简述协方差传播律的应用步骤?5、 已知独立观测值2,1L L 的中误差分别为1L σ、2L σ,求下列函数的中误差:(1)2513L L y +=(2)21L L y =6、设观测向量T L L L L ]3,2,1[=的方差协方差阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=411121113LL D , 求(1)325131L L L y ++=(2)212L L y -=的1y σ、2y σ、21y y σ、21L y σ7、已知随机变量y 、z 都是观测值L=[L1、L2、L3]T 的函数,函数关系如下:3162101733241L L L z L L L y +-=++=,已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=420231012D ,证明y 、z 间互不相关。
(整理)测量平差习题
20、已知观测值向量的权阵为:
(1)试问这三个观测值中有无不相关的观测值,指出哪些是不相关的观测值;
(2)设以L1,L2组成观测向量=,试写出它的权阵PL′及权P3。
21、设已知=,=,Z=,权阵Pz为:
试求权阵Px及Py。
22、设有观测向量Z=,其中,X=,Y=,已知协因数阵Qz为:
38、已知同精度独立观测值的权阵为:
试求算术平均值X=[L]/n的权PX。其中,[L]=L1+L2+…+Ln。
39、已知不等精度独立观测值Li的权为pi(I=1,2,…,n),试求带权平均值Y=[PL]/[P]的权PY。其中,[P]=p1+p2+…+pn。
40、已知随机量X1,X2的函数及其协因数阵为:Y=KX1,Z=FX2,
DL=
试求的方差阵。
30、在高级水准点A,B间(其高程无误差)进行水准测量,如图2-2。路线长为S1=2km,S2=6km,S3=4km,设每里观测高差的中误差为 。试求将闭合差ω=(HB-HA)-(h1+h2+h3),按距离成比例分配后P1至P2点间高差的中误差。
31、已知独立观测值L1,L2的中误差均为σ,试求函数X=2L1+5,Y= L2-2L2,Z=X+Y的中误差σX,σy,σZ。
437.59 437.61 437.60 437.55 437.59 437.62 437.64 437.62
437.64 437.61 437.69 437.63 437.61 437.62 437.61 437.60
437.56 437.68 437.65 437.58
试计算该距离的算术平均值X及其方差与中误差估值。
误差理论与测量平差基础习题集
第五章条件平差§5-1条件平差原理条件平差中求解的未知量是什么?能否由条件方程直接求得5. 1. 02 设某一平差问题的观测个数为n.必要观测数为t,若按条件平差法进行平差,其条件方程、法方程及改正数方程的个数各为多少?5. 试用符号写出按条件平差法平差时,单一附合水准路线中(如图5-1所示)各观测值平差值的表达式。
图5-15. 1. 04 在图5-2中,已知A ,B的高程为Ha = m , Hb=11. 123m,观测高差和线路长度为:图5-2S1=2km,S2=Ikm,S3=,h1=,h2= m,h3= m,求改正数条件方程和各段离差的平差值。
在图5-3的水准网中,A为已知点B、C、D为待定点,已知点高程HA=,观测了5条路线的高差:h1=,h2=0. 821 m,h3=,h4=,h5= m。
各观测路线长度相等,试求:(1)改正数条件方程;(2)各段高差改正数及平差值。
有水准网如图5-4所示,其中A、B、C三点高程未知,现在其间进行了水准测量,测得高差及水准路线长度为h1=1 .335 m,S1=2 km;h2= m,S2=2 km;h3= m,S3=3km。
试按条件平差法求各高差的平差值。
如图 5-5 所示,L1=63°19′40″,=30″;L2=58°25′20″,=20″;L3=301°45′42″,=10″.(1)列出改正数条件方程;(2)试用条件平差法求∠C的平差值(注: ∠C是指内角)。
5-2条件方程5. 对某一平差问题,其条件方程的个数和形式是否惟一?列立条件方程时要注意哪些问题?如何使得一组条件方程彼此线性无关?. 10 指出图5-6中各水准网条件方程的个数(水准网中P i表示待定高程点,h i表示观测高差)。
(a) (b)图5-65. 2. 11指出图5-7中各测角网按条件平差时条件方程的总数及各类条件的个数(图中P i 为待定坐标点)。
(整理)测量平差习题集
第二部分 自测题第一章 自测题一、判断题(每题2分,共20分)1、 通过平差可以消除误差,从而消除观测值之间的矛盾。
( )2、 观测值i L 与其偶然真误差i ∆必定等精度。
( )3、 测量条件相同,观测值的精度相同,它们的中误差、真误差也相同。
( )4、 或然误差为最或然值与观测值之差。
( )5、 若X 、Y 向量的维数相同,则YX XY Q Q =。
( )6、 最小二乘原理要求观测值必须服从正态分布。
( )7、 若真误差向量的数学期望为0,即0=∆)(E ,则表示观测值中仅含偶然误差。
( ) 8、 单位权中误差变化,但权比及中误差均不变。
( ) 9、 权或权倒数可以有单位。
( )10、相关观测值权逆阵Q 的对角线元素ii Q 与权阵P 的对角线元素ii P 之间的关系为1=ii ii P Q 。
( )二、填空题(每空0.5分,共20分)1、测量平差就是在 基础上,依据 原则,对观测值进行合理的调整,即分别给以适当的 ,使矛盾消除,从而得到一组最可靠的结果,并进行 。
2、测量条件包括 、 、 和 ,由于测量条件的不可能绝对理想,使得一切测量结果必然含有 。
3、测量误差定义为 ,按其性质可分为 、 和 。
经典测量平差主要研究的是 误差。
4、偶然误差服从 分布,它的概率特性为 、 和 。
仅含偶然误差的观测值线性函数服从 分布。
5、最优估计量应具有的性质为 、 和 。
若模型为线性模型,则所得最优估计量称为 ,最优估计量主要针对观测值中仅含 误差而言。
要证明某估计量为最优估计量,只需证明其满足 性和 性即可。
6、限差是 的最大误差限,它的概率依据是 ,测量上常用于制定 的误差限。
7、若已知观测值向量L 或其偶然真误差向量∆的协方差阵为∑,则L 或∆的权阵定义为L P =∆P = ,由于验前精度∑难以精确求得,实用中定权公式有 、 、,特别是对独立等精度观测向量L 而言,其权阵可简单取为L P = 。
8、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。
测量平差练习题及答案
计算题1、如图,图中已知A 、B 两点坐标,C 、D 、E 为待定点,观测了所有内角,试用条件平差的方法列出全部条件方程并线性化。
解:观测值个数 n =12,待定点个数t =3,多余观测个数r =n -2t =6① 图形条件4个:)180(0)180(0)180(0)180(0121110121110987987654654321321-++-==-++-++-==-++-++-==-++-++-==-++L L L w w v v v L L L w w v v v L L L w w v v v L L L w w v v v d d c c b b a a② 圆周条件1个:)360(0963963-++-==-++L L L w w v v v e e③ 极条件1个:ρ''--==----++)sin sin sin sin sin sin 1(0cot cot cot cot cot cot 852741774411885522L L L L L L w w v L v L v L v L v L v L f f3、如图所示水准网,A 、B 、C 三点为已知高程点, D 、E 为未知点,各观测高差及路线长度如下表所列。
用间接平差法计算未知点D 、E 的高程平差值及其中误差;C3、解:1)本题n=6,t=2,r=n-t=4;选D 、E 平差值高程为未知参数21ˆˆX X 、 则平差值方程为:1615142322211ˆˆˆˆˆˆˆˆˆˆˆˆˆX H hH X h H X h H X h H X h X X h AA BAB -=-=-=-=-=-=则改正数方程式为:6165154143232221211ˆˆˆˆˆˆˆl xv l x v l x v l x v l x v l x xv --=-=-=-=-=--=取参数近似值 255.24907.2220221011=+==++=h H X h h H X B B 、令C=1,则观测值的权阵:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=10111101P ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=010*********B ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------=+-=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=7551000)()()()()()()(016015014023022020110654321X H h H X h H X h H X h H X h X X h d BX h l l l l l l l C A B A B组法方程0ˆ=-W xN ,并解法方程: ⎪⎪⎭⎫ ⎝⎛--==3114PB B N T⎪⎪⎭⎫ ⎝⎛-==107Pl B W T⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛==-311074113111ˆ1W N x求D 、E 平差值:m x X X H m x X X H D C 258.24ˆˆˆ906.22ˆˆˆ20221011=+===+== 2)求改正数:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=-=664734ˆl xB v 则单位权中误差为:mm r pv v T 36.64162ˆ0±=±=±=σ则平差后D 、E 高程的协因数阵为:⎪⎪⎭⎫⎝⎛==-41131111ˆˆNQ X X 根据协因数与方差的关系,则平差后D 、E 高程的中误差为:mmmm Q mm mm Q E D 84.311229ˆˆ32.322669ˆˆ220110±=±==±=±==σσσσ4、如图,在三角形ABC 中,同精度观测了三个内角:4000601'''︒=L ,5000702'''︒=L ,7000503''''︒=L ,按间接平差法列出误差方程式。
测量平差超级经典试卷含答案汇总
测量平差超级经典试卷含答案汇总⼀、填空题(每空1分,共20分) 1、测量平差就是在多余观测基础上,依据⼀定的原则,对观测值进⾏合理的调整,即分别给以适当的改正数,使⽭盾消除,从⽽得到⼀组最可靠的结果,并进⾏精度评估。
2、条件平差中,条件⽅程式的选取要求满⾜、。
3已知条件平差的法⽅程为024322421=??+??k k ,则PV V T = ,µ= ,1k p =,2k p = 。
4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按条件平差进⾏求解时,条件⽅程式个数为,法⽅程式个数为。
5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独⽴参数按具有参数的条件平差进⾏求解,则函数模型个数为,联系数法⽅程式的个数为;若在22个独⽴参数的基础上,⼜选了4个⾮独⽴参数按具有条件的参数平差进⾏求解,则函数模型个数为,联系数法⽅程式的个数为。
6、间接平差中误差⽅程的个数等于________________,所选参数的个数等于_______________。
7、已知真误差向量1n 及其权阵P ,则单位权中误差公式为,当权阵P 为此公式变为中误差公式。
⼆、选择题(每题2分,共20分)1、观测条件是指:A)产⽣观测误差的⼏个主要因素:仪器,观测者,外界条件等的综合B)测量时的⼏个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合C)测量时的外界环境:温度,湿度,⽓压,⼤⽓折光……等因素的综合. D)观测时的天⽓状况与观测点地理状况诸因素的综合答:_____2、已知观测向量()L L L T=12的协⽅差阵为D L =--?? ?3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于?(A)1/4 (B)2)1/2(D )43、已知观测向量()L L L T=12的权阵P L =--?? ??2113,单位权⽅差σ025=,则观测值L1的⽅差σL 12等于:(A)0.4 (B)2.5(C)3 (D)253答:____4、已知测⾓⽹如下图,观测了各三⾓形的内⾓,判断下列结果,选出正确答案。
误差理论与测量平差基础习题集
第一章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,而且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪几类?它们各自是怎样定义的?对观测成果有何影响?试举例说明。
1.1.04用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。
1.1.05在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沆。
§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进行多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 高斯于哪一年提出最小二乘法?其主要是为了解决什么问题?1.3.09 自20世纪五六十年代开始,测量平差得到了很大发展,主要表现在那些方面?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学目的是什么?第二章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是一种重要的分布?试写出一维随机变量X的正态分布概率密度式。
§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三角形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,大量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和方差各是多少?§2-3 衡量精度的指标2.3.05 何谓精度?通常采用哪几种指标来衡量精度?2.3.06 在相同的观测条件下,对同一个量进行若干次观测得到一组观测值,这些观测值的精度是否相同?能否认为误差小的观测值比误差大的观测值精度高?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差一定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的水平角α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。
误差理论与测量平差基础习题集-二期
误差理论与测量平差基础习题集1.1 设对一段距离丈量了三次,三次结果分别为9.98m ,10.00m ,10.02m ,试根据测量平差概念,按独立等精度最小二乘原理(21min ni i v ==∑)求这段距离的平差值以及消除矛盾时各次结果所得的最或然改正数。
11223311231.1ˆˆˆ 9.98 ˆˆˆ 10 ˆˆˆ 10.0219.98ˆ110110.02ˆ()130103ˆ9.982ˆ100ˆ10.022T T L X V XL X V XL X V XV X X B B B l V Xcm V Xcm V Xcm ->>⎧==-⎪⎪==-⎨⎪==-⎪⎩⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦==⨯==-==-==-=-1.2 一段距离丈量了三次,三次结果分别为9.98m ,10.00m ,10.02m ,令三次结果的权分别为1,2,1,试按独立非等精度最小二乘原理(21min ni i i p v ==∑)求这段距离的平差值以及消除矛盾时各次结果所得的最或然改正数。
111231.21001001000202001001ˆ()1(9.9810210.02)104ˆ9.982ˆ100ˆ10.022T T Q P Q X B PB B Pl V Xcm V Xcm V Xcm -->>⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⇒==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦==⨯+⨯+==-==-==-=-1.3 设一平面三角形三内角观测值为A 、B 、C ,180W A B C =++-︒为三角形闭合差,试根据测量平差概念,按独立等精度最小二乘原理证明三内角的评差值为ˆ3W A A =-、ˆ3W B B =-、ˆ3W C C =-。
()1231231231.3ˆˆˆ18001800011100AB C A V B V C V V V V W V V W V AV W P E Q E>>++-︒=+++++-︒=+++=⎡⎤⎢⎥+=⎢⎥⎢⎥⎣⎦+===按条件平差法有1123()111311313131ˆ31ˆ31ˆ3T T T T V QA K A K A AA W WW W W A A V A W B B V B W C C V C W -===-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥-⎣⎦=+=-=+=-=+=-123ˆˆˆ ˆˆˆ ˆˆˆˆˆ+180 +18010ˆ01ˆ11180ˆˆA A B B A B A B A B A B A X V X A B X V X B C X X V X X C A XV B X C X X ⎧==-⎪⎪==-⎨⎪=--︒=--︒-⎪⎩⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦---︒⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎢⎣⎦按参数平差11()101011010101101111180121801321801331ˆ31ˆ31ˆˆˆ1801803T TB PB B Pl A BC A W A B C A B C B W AA W BB W CA B A W B --=⎥⎡⎤⎡⎤⎛⎫⎛⎫--⎛⎫⎛⎫⎢⎥⎢⎥ ⎪ ⎪= ⎪ ⎪⎢⎥⎢⎥ ⎪ ⎪--⎝⎭⎝⎭ ⎪ ⎪⎢⎥⎢⎥---︒⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤-⎢⎥--+︒⎡⎤==⎢⎥⎢⎥-+-+︒⎣⎦⎢⎥-⎢⎥⎣⎦=-=-=︒--=︒-+-+即132180313W A B C W CC W=︒---++=-1.4 已知独立等精度观测某三角锁段共得15个三角形,其闭合差如下表 所示。
测量平差课后练习题(1~3章)2011
[L1, L2, L3]T
的方差协方差阵为 D LL
1
2
1
,求
1 1 4
设对A 观测 4 个测回的测角精度(中误差)为 3,权为 2,问观 测 9 个测回的精度为多少?权为多少?单位权观测为多少
《误差理论与测量平差基础》课后测验题
第一章 绪论 1、什么是观测条件?相同观测条件下进行的观测称为什么观测? 2、举出系统误差和偶然误差的例子各 5 个。
3、观测误差分为几类?分别是如何定义的?
4、在测量上为什么要进行多余观测?
5、测量平差的任务是什么?
第二章 误差分布与精度指标
1、什么是真值、真误差?
36,测回间角值之差不超过 24,分别代表什么误差?
9、什么是协方差?协方差是描述观测值之间什么关系的?
10、在什么情况下,观测值之间相互独立与不相关是等价的?
11、什么是方差协方差阵?其是有什么组成的?有何特点?
12、何谓准确度?何谓精确度?何谓不确定性?
第三章 协方差传播率及其权
3 1 1
1、设观测向量 L
2、简述偶然误差的特性?
3、偶然误差服从什么分布?
4、衡量精度的指标有哪几种?分别是如何定义的?
5、设一段距离为:520m2.3mm 代表什么意思?相对误差是多少?
6、对于在相同的观测条件下进行的一系列的观测,误差有大有小,
是否代表精度不同?
7、在测距仪的检定中,要对基线场两固定观测墩点间的精确距离
进行多次观测,设精确距离为 326.750 米,观测了 10 次,得距离
如下:
326.758m
326.754m
326.745m
326.755m
326.762m
误差理论与测量平差基础习题集5(参考答案)
参考答案第一章1.1.04 (1)系统误差。
当尺寸大于标准尺长时,观测值小,符号为“+”;当尺长小于标准尺长时,观测值大,符号为“-”。
(2)系统误差,符号为“-”。
(3)偶然误差,符号为“+”或“-”。
(4)系统误差,符号为“-”。
(5)系统误差,符号为“-”。
1.1.05 (1)系统误差。
当i角为正值时,符号为“-”;当i角为负值时,符号为“+”。
(2)系统误差,符号为“+”。
(3)偶然误差,符号为“+”或“-”。
(4)系统误差,符号为“-”。
第二章2.3.08 σ=3.62″2.3.09 真误差可能出现的范围是|△|45mm,或写为-45mm,1/23045.2.3.10 他们的真误差不一定相等,相对精度不相等,后者高于前者。
2.6.17 θ1 =2.4,θ2 =2.4,σ 1 =2.7,σ 2 =3.6。
两组观测值的平均误差相同,而中误差不同。
由于中误差对大的误差反应灵敏,故通常采用中误差作为衡量精度的指标。
本题中,σ1σ2,因此,第一组观测值的精度高。
2.6.18 Dxx22=4229(秒2)2.6.19 σL1 =2 σL2 =3 σL3 =4 σL1L2 =-2 σL1L3 =0 σL2L3 =-3第三章3.2.07 (1)σX = 32σ (2)σx =L 12L 22 L 12L 32 L 22L 32L 32σ3.2.08 σx=2σ σy = 5σ σz = L 12L 22σ σt = 13σ3.2.09 (1)σx = σ124σ22(2)σy = (L1 L2)2σ12L 12σ22(3)σx = sin²L2σ12sin²L1 cos²(L1 L2)σ22sin²(L1 L2)3.2.10 (1)DF1 =22 (2)DF2 =18L 2227L 323.2.12 (2)DXL =ADLLDYL = BADLL 或DYL =ADLXBT DXY =ADLLATBT 或DXY =ADLXBT 3.2.13 D φ1 =4L 12+ 3L 22D φ2 =18 D φ1φ2 =7L2 – L13.2.14 DWW = XXXY XZ YX YY YZ ZX ZYZZ D D D D D D DD D ⎛⎫ ⎪ ⎪ ⎪⎝⎭= TT T 111213T T 212223TTT 313233AD A AD B AD C BD ABD B BD CD A CD A CD A ⎛⎫⎪ ⎪ ⎪⎝⎭TC3.2.15 X σy σ3.2.16 122222AB y 113''223S =cos L +sin L cot L sin L σρ⋅()22y2=1σ(秒)y1y2=0σ3.2.17 c =185.346(m )C σ=0.154(m )3.2.18 S σ=123.2.19 令p 点坐标X 、Y 的协方差阵为22x xy yz y σσσσ⎛⎫ ⎪ ⎪⎝⎭式中:2222222022()AP xS AP AP X Y Y S βσσσσρρ∆=+∆-+∆222222222()+X X oAP yS AP AP X S βσσσσρρ∆=∆+∆222222o AP AP xy S AP AP AP AP X Y X Y X Y S βσσσσρρ∆∆=-∆∆-∆∆yz xyσσ=3.2.20 (1)22111121()3112LLD ∧∧-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦秒(2) 1321()3L L D ∧∧=-秒 3.3.24 (1)2hσ=1.73(mm) (2)1H ρσ=1.29(mm)3.3.25 最多可设25站 3.3.26 16km 3.3.27ρσ=0.097(m)3.3.28 在增加5个测回 3.3.29 S =4 635.563(m2) S σ=2.88(m)3.3.30ασ=βσ=3.34(秒)3.4.35 P1 P2 P3 σ0 =2.0’’ 1.0 0.25 4.0 σ0 =4.0’’ 4.0 1.0 16.0 σ0 =1.0’’ 0.25 0.0625 1.0 按各组权分别计算得X ∧= 3041’17.2’’ σS =0.87’’3.4.36 P1 =4.0 P2 =5.0 P3 =10.0 σ0 = 40σ(km) 3.4.37 P =np 3.4.38 PD =dD3.4.39 PC(平差前) =140PC (平差后)=1203.4.40 σ0 =5.66’’ σA =11.31’’3.4.41 (1)观测∠A 两次的算术平均值 (2)σ0 =1.70’’ (3)N =12(次)3.4.42 不对。
测量平差期末考试题及答案
测量平差期末考试题及答案一、选择题(每题2分,共20分)1. 平差的基本目的是()。
A. 确定测量数据的准确度B. 确定测量误差的来源C. 消除测量误差D. 优化测量数据的分布答案:C2. 测量误差的来源主要包括()。
A. 测量仪器的误差B. 测量方法的误差C. 测量环境的误差D. 以上都是答案:D3. 测量平差中,权的概念是指()。
A. 测量数据的可靠性B. 测量数据的准确性C. 测量数据的重要性D. 测量数据的稳定性答案:A4. 测量平差中,最小二乘法的基本原理是()。
A. 使得测量误差的绝对值之和最小B. 使得测量误差的平方和最小C. 使得测量误差的平均值最小D. 使得测量误差的方差最小答案:B5. 在测量平差中,观测值的改正数是指()。
A. 观测值与真值之差B. 观测值与平均值之差C. 观测值与预测值之差D. 观测值与估计值之差答案:A...(此处省略其他选择题)二、填空题(每空2分,共20分)1. 平差的基本任务是_________测量误差,以获得_________的测量结果。
答案:消除或减小;准确可靠2. 测量误差可以分为系统误差和_________误差。
答案:随机3. 权的倒数称为_________。
答案:权的倒数4. 最小二乘法是一种常用的平差方法,其核心思想是使观测值的_________达到最小。
答案:残差平方和5. 测量平差中,观测值的改正数是指观测值与_________之差。
答案:平差值...(此处省略其他填空题)三、简答题(每题10分,共30分)1. 简述最小二乘法在测量平差中的应用。
答案:最小二乘法在测量平差中是一种常用的数据处理方法,它通过最小化观测值的残差平方和来寻找最佳估计值。
在应用时,首先需要建立观测方程,然后通过求解线性方程组来得到未知参数的估计值。
这种方法在处理多个观测数据时,能够合理地分配误差,使得所有观测数据的误差总和最小,从而得到更加准确的测量结果。
2. 解释什么是权,它在测量平差中的作用是什么。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二部分 自测题第一章 自测题一、判断题(每题2分,共20分)1、 通过平差可以消除误差,从而消除观测值之间的矛盾。
( )2、 观测值i L 与其偶然真误差i ∆必定等精度。
( )3、 测量条件相同,观测值的精度相同,它们的中误差、真误差也相同。
( )4、 或然误差为最或然值与观测值之差。
( )5、 若X 、Y 向量的维数相同,则YX XY Q Q =。
( )6、 最小二乘原理要求观测值必须服从正态分布。
( )7、 若真误差向量的数学期望为0,即0=∆)(E ,则表示观测值中仅含偶然误差。
( ) 8、 单位权中误差变化,但权比及中误差均不变。
( ) 9、 权或权倒数可以有单位。
( )10、相关观测值权逆阵Q 的对角线元素ii Q 与权阵P 的对角线元素ii P 之间的关系为1=ii ii P Q 。
( )二、填空题(每空0.5分,共20分)1、测量平差就是在 基础上,依据 原则,对观测值进行合理的调整,即分别给以适当的 ,使矛盾消除,从而得到一组最可靠的结果,并进行 。
2、测量条件包括 、 、 和 ,由于测量条件的不可能绝对理想,使得一切测量结果必然含有 。
3、测量误差定义为 ,按其性质可分为 、 和 。
经典测量平差主要研究的是 误差。
4、偶然误差服从 分布,它的概率特性为 、 和 。
仅含偶然误差的观测值线性函数服从 分布。
5、最优估计量应具有的性质为 、 和 。
若模型为线性模型,则所得最优估计量称为 ,最优估计量主要针对观测值中仅含 误差而言。
要证明某估计量为最优估计量,只需证明其满足 性和 性即可。
6、限差是 的最大误差限,它的概率依据是 ,测量上常用于制定 的误差限。
7、若已知观测值向量L 或其偶然真误差向量∆的协方差阵为∑,则L 或∆的权阵定义为L P =∆P = ,由于验前精度∑难以精确求得,实用中定权公式有 、 、,特别是对独立等精度观测向量L 而言,其权阵可简单取为L P = 。
8、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。
式中,1⨯∆n 可以为同一观测量的真误差,也可以为 观测量的真误差。
9、已知独立非等精度观测向量1⨯n L 的非线性函数变量为)(L f z =,则2z m = ,zp 1= 。
10、已知某量z 的权倒数zp 1及单位权中误差μ,则z m = 。
三、选择题(每题2分,共20分)1、已知方位角1213245''±'''=οAP T ,±=km s AP 10 时点位纵横向精度基本相同(5102⨯≈ρ)。
A 、1mB 、1cmC 、5cmD 、5mm2、已知)180(3ˆο-++=-=C B A W WA A,m m m m C B A ===,m m W 3=,则A m ˆ= 。
A 、m 32 B 、m 32C 、m 32 D 、m 23 3、长方形地块的面积由长和宽得到,已知长度的测量值cm m a 14±=,若要求面积的中误差25dm m S ≤,则宽度测量值m b 3=的中误差应限制在 范围。
A 、1cmB 、2cmC 、3cmD 、4cm4、A 、B 两点按双次观测得高差'i h 、"i h )8,,2,1(K =i ,各高差之间相互独立,每一高差的中误差均为mm 2±,则全长高差算术中数的中误差为± 。
A 、2mmB 、4mmC 、8mmD 、16mm5、水准测量中,10km 观测高差值权为8,则5km 高差之权为 。
A 、2B 、4C 、8D 、16 6、已知⎥⎦⎤⎢⎣⎡=∆3112P ,则2L p = 。
A 、2B 、3C 、25D 、35 7、已知三角形闭合差向量1⨯n W 及其相关权阵W P ,i W 中i A 的权为i p ,则i A 的中误差为。
A 、n W P W W T ±B 、i W T np W P W ±C 、nWP W W T 3± D 、i W T np W P W 3±8、已知观测值L 的中误差为L m ,L x 2=,2L y =,则xy m = 。
A 、24L Lm B 、L Lm 4 C 、22L Lm D 、L Lm 29、已知),,2,1(n i L x v i i K =-=,[]nL x =,观测值iL 独立等精度,其权均为1,则21v v p=。
A 、nB 、n -C 、n 1 D 、n1- 10、随机向量1⨯n X 的协方差阵X ∑还可写为 。
A 、)()()(X E X E X X E T T -B 、)()(X E X E TC 、)()(X E X E TD 、)()()(XE X E XX E TT-第二章 自测题一、判断题(每题2分,共20分)1、参数平差中,当误差方程为线性时,未知参数近似值可以任意选取,不会影响平差值及其精度。
( )2、 观测值i L ),,2,1(n i K =之间误差独立,则平差值iL ˆ之间也一定误差独立。
( ) 3、提高平差值精度的关键是增加观测次数。
( )4、参数平差中要求未知参数i x ˆ之间函数独立,所以它们之间的协方差一定为0。
( )5、对于一定的平差问题,一定有∆∆≤P PV V TT。
( )6、参数平差中,若X F Z Tˆδ=,则)(1F N F tn PV V T T Z --=∑。
( )7、 参数平差中,当观测值之间相互独立时,若某一误差方程式中不含有未知参数,但自由项不为0,则此误差方程式对组成法方程不起作用。
( )8、 数平差定权时,随单位权中误差的选取不同,会导致观测量平差值的不同。
( ) 9、 差值的精度一定高于其观测值的精度。
( )10、因为V L L +=ˆ,故V L LQ Q Q +=ˆ。
( )二、填空题(每空1分,共25分)1、参数平差中,未知参数的选取要求满足 、 。
2、已知某平差问题,观测值个数为79,多余观测量个数为35,则按参数平差进行求解时,误差方程式个数为 ,法方程式个数为 。
3、非线性误差方程式i t i i L x x x f v -=)ˆ,,ˆ,ˆ(21K 的线性化形式为 。
未知参数的近似值越靠近 ,线性化程度就越高;当线性化程度不高时,可以采用 法进行求解。
4、参数平差中,已知⎥⎦⎤⎢⎣⎡=4223N ,2±=μ,则=1ˆx p ,=1ˆx m ,=2ˆx p ,=2ˆx m 。
若1ˆˆ221++=x x z ,则=z p ,=z m 。
5、已知36=Pl l T,4=n ,法方程为024ˆˆ322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡x x δδ,则PV V T= ,μ= ,1ˆx m = ,2ˆx m = 。
6、设观测值的权阵为P ,将其各元素同乘以某大于0的常数λ后重新进行平差,则下列各量:X ˆ、V 、μ、Xˆ∑、V Q 中,数值改变的有 、 ,数值不改变的有 、 、 。
7、V L ˆ∑= ,V X ˆ∑= ,LV ∑= 。
三、选择题(每题2分,共10分)1、参数平差的法方程可以写为 。
A 、0ˆˆ=+U X Q XB 、0ˆˆ=+U P X XC 、0ˆ=+U Q X UD 、0ˆ=+U X Q U2、参数平差中,已知⎥⎦⎤⎢⎣⎡=211121ˆX P ,41ˆ±=xm ,则±=μ。
A 、1B 、2C 、4D 、83、以L m 、∆m 、v m 分别表示某一量的观测值、真误差、观测值残差的中误差,则2L m 、2∆m 、2v m 之间的关系为 。
A 、222∆<=m m m v LB 、222v L m m m >=∆ C 、222∆==m m m v L D 、222L v m m m <=∆4、参数平差中,L Q ˆ= 。
A 、TA AN 1- B 、A N A T1-C 、T A AN P11--- D 、A N A P T 11---5、参数平差中,L X Q ˆ= 。
A 、TA AN 1- B 、A N A T1-C 、1-NA TD 、T A N1-第三章 自测题一、判断题(每题2分,共20分)1、 同一平差问题,参数平差与条件平差所得观测值的平差值及其绝对精度一定相同。
( )2、若n n L k L k L k z ˆˆˆ2211+++=Λ,则2ˆ22ˆ222ˆ21221nL n L Lz m k m k m k m +++=Λ。
( ) 3、条件平差中,0)(>∆-V B 。
( )4、条件平差中,一定有∆∆≤P PV V TT 。
( )5、若某一条件方程式的闭合差为0,则此条件方程式对求解不起作用。
( )6、若有条件方程为011101021140151=⎥⎦⎤⎢⎣⎡-+⎥⎥⎦⎤⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡--v v M ,观测值间相互独立,则2L 一定不得改正数。
( )7、 若参数平差模型为l X A V +=ˆδ,条件平差模型为0=+W BV ,则Bl W -=。
( )8、 无论参数平差还是条件平差,均有0=LV Q 。
( ) 9、 条件平差中,若0)(=∆E ,则0)(=W E 。
( ) 10、条件平差中,P Q V 为幂等阵。
( )二、填空题(每空1分,共20分)1、条件平差中,条件方程式的选取要求满足 、 。
2、已知某平差问题,观测值个数为79,必要观测量个数为35,则按条件平差进行求解时,条件方程式个数为 ,法方程式个数为 。
3、非线性条件方程式in i f L L L f 021)ˆ,,ˆ,ˆ(=K (i f 0为常数)的线性化形式为 。
4、测量平差中,为消除多余观测所引起的矛盾,当所列方程为 方程时,称为参数平差;当所列方程为 方程时,称为条件平差。
由于单纯消除矛盾而给的观测值改正数有无穷多组,为求出唯一估值,参数平差和条件平差都必须依据 原则求出极值,一般称参数平差的极值问题为 极值,条件平差的极值问题为 极值。
5、已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= ,1k p = ,2k p = ,=21k k m 。
若21k k z +=,则=z m 。
6、V L ˆ∑= ,L K ˆ∑= ,L W ˆ∑= ,WK Q = 。
三、选择题(每题2分,共10分)1、条件平差的法方程等价于 。
A 、0=+W K Q KB 、0=+W Q K WC 、0=+W P K WD 、0=+W P K K2、条件平差中,已知⎥⎦⎤⎢⎣⎡=8224W Q ,2±=μ,则±=1k m 。