水箱液位串级控制系统
水箱液位串级控制系统实训报告
实训指导教师:系别:专业:生产进程自动化班级:姓名:实训地点:实训时间:9.2.2 水箱液位串级控制系统1.实训目的(1)熟悉集散控制系统的组成(见附录B)。
(2)学习MACS组态软件的利用方式。
(3)培育学生灵活组态的能力。
(4)掌握系统组态与装置调试的技能。
(5)掌握串级控制系统的组态方式。
2.实训内容(1)水箱液位串级控制系统数据库组态。
(2)水箱液位串级控制系统设备组态。
(3)水箱液位串级控制系统算法组态。
(4)水箱液位串级控制系统画面组态。
(5)水箱液位串级控制系统调试。
3.实训设备和器材(1)THSA-1型生产进程自动化技术综合实训装置。
(2)万用表一个、PC/PPI通信电缆一根。
4.实训接线参照图完成系统接线。
图水箱液位串级控制系统接线图5.实训步骤(1)工程分析水箱液位串级控制系统需要两个输入信号端子和一个输出端子,因此选用一个模拟量输入模块(FM148A)和一个模拟量输出模块(FM151)。
FM148A的通道2收集上水箱液位数据,FM148A的通道3收集中水箱液位数据,控制输出信号由模拟量输出模块(FM151)的通道1送出,去操纵电动控制阀的开度。
(2)成立工程。
①参照图和图,打开数据库组态工具,进入数据库组态界面。
图数据库组态工具打开步骤图数据库组态界面②在数据库总控组态界面中工具栏下单击新建工程按钮,弹出如图所示添加工程的对话框,添入工程名称,单击肯定。
图添加工程③工程成立以后能够在c:\hs2000macs组态软件下看到新建的工程名称。
(3)编辑数据库。
①选择编辑→编辑数据库,在弹出的对话框如图所示,输入用户名Bjhc和密码3dlcz,单击肯定,进入数据库编辑界面。
图进入数据库编辑界面②参照图(a)选择系统→数据操作,单击肯定,弹出如图(b)所示窗口。
因为水箱液位串级控制控制系统利用两个模块,三个通道,所以需要编辑三个点号。
③单击数据操作后,选择模拟量输入,在右边选择项名列表框中,选择必需设置的项目名称,见表,单击肯定并添加记录。
双容水箱液位流量串级控制系统设计
双容水箱液位流量串级控制系统设计一、系统结构1.水箱:系统中最重要的元件之一,用于存储和供应水资源。
2.控制阀:用于调节水箱出口的流量,根据传感器检测到的液位信号来控制阀门的开度。
3.液位传感器:用于检测水箱内部的液位变化,并将其转换为电信号供控制系统使用。
4.流量传感器:用于检测水箱出口的流量,并将其转换为电信号供控制系统使用。
5.控制器:整个系统的核心部分,根据传感器采集到的液位和流量信号,通过控制阀门的开度来调节水箱的液位和流量。
二、系统设计1.控制策略的选择:双容水箱液位流量串级控制系统的控制策略一般选择PID控制算法。
PID控制器可根据传感器采集到的控制量和设定值之间的误差来调节阀门的开度,实现液位和流量的闭环控制。
2.系统参数的确定:首先需要确定水箱的容积和液位范围,以便合理地选择传感器的量程。
然后需要根据水箱的工作条件和流量要求来确定控制阀的参数,如最大流量、最小可调节流量等。
3.传感器的选择与安装:根据系统的要求和工作环境的特点,选择适合的液位传感器和流量传感器,并将其正确安装在水箱中。
液位传感器一般安装在水箱的顶部,流量传感器安装在水箱的出口处。
4.控制器的设计与配置:根据系统需求和控制策略的选择,选择适合的PID控制器,并按照系统参数进行配置。
控制器应具备良好的控制性能和稳定性,能够根据传感器采集到的信号及时调节阀门的开度。
5.控制策略的调整与优化:系统设计完成后,需要通过实际的试验和调整来优化控制策略,提高系统的控制性能。
可以通过调整PID控制器的参数来实现系统的稳定运行和准确控制。
6.故障检测与保护措施:在设计系统时,应考虑到可能发生的故障,如传感器故障、控制阀失效等,并设计相应的故障检测和保护措施,以确保系统的安全可靠运行。
三、系统应用总结:双容水箱液位流量串级控制系统是一种重要的控制系统,在工业生产中起到关键作用。
其设计需要根据实际需求和系统参数进行合理设置,并通过优化控制策略来实现系统的稳定运行和优质控制效果。
双容水箱液位串级控制系统_毕业设计
双容水箱液位串级控制系统_毕业设计
在双容水箱液位串级控制系统中,通常有两个水箱,分别称为主水箱
和副水箱。
主水箱通常是较大的水箱,副水箱是较小的水箱。
系统的目标
是保持主水箱和副水箱的液位稳定在设定值附近。
系统的控制过程可以分为以下几个步骤:
1.流程测量:系统通过测量主水箱和副水箱的液位,获取当前的液位
信号。
2.控制计算:根据测量值和设定值,计算需要调节的阀门开度。
3.阀门控制:根据计算结果,控制阀门的开度,调节水的流入和流出
速度,以实现液位的控制。
4.反馈调整:根据阀门控制后的效果,不断调整阀门开度,使液位稳
定在设定值附近。
在实际的设计中,双容水箱液位串级控制系统通常采用PID控制器来
实现。
PID控制器包括比例(P)、积分(I)和微分(D)三个部分。
比
例部分根据偏差的大小进行调整,积分部分根据偏差的持续时间进行调整,微分部分根据偏差的变化速率进行调整。
通过不断调整PID参数,实现系
统的稳定性和响应速度的平衡。
另外,在实际的设计中,还需要考虑到系统的动态响应、稳定性、静
差和抗干扰性等因素。
可以采用仿真软件进行系统的建模和分析,优化系
统的设计参数。
总之,双容水箱液位串级控制系统作为一种常见的控制系统,在工业、农业和民用领域有着广泛的应用。
通过合理设计和调节控制参数,可以实
现液位的稳定控制,提高系统的稳定性和安全性。
同时,与实际的实验和仿真相结合,可以进一步优化系统的设计和控制策略。
水箱液位串级控制系统
水箱液位串级控制系统一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。
2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。
3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。
4.掌握液位串级控制系统采用不同控制方案的实现过程。
二、实验设备(同前)三、实验原理本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。
主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。
副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。
主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。
副调节器的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。
由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。
本实验系统结构图和方框图如图5-2所示。
图5-2 水箱液位串级控制系统(a)结构图(b)方框图四、实验内容与步骤本实验选择中水箱和下水箱串联作为被控对象(也可选择上水箱和中水箱)。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10开至适当开度(40%~90%)、下水箱出水阀门F1-11开至适当开度(30%~80% 要求阀F1-10稍大于阀F1-11),其余阀门均关闭。
具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备有关,可根据实验需要选做或全做。
(一)、智能仪表控制1.将两个SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口1,并按照下面的控制屏接线图连接实验系统。
将“LT2中水箱液位”钮子开关拨到“OFF”的位置,将“LT3下水箱液位”钮子开关拨到“ON”的位置。
双容水箱液位串级控制系统的设计
目录摘要 (1)Abstract: (2)1 概述 (3)1.1 过程控制介绍 (3)1.2 液位串级控制系统介绍 (4)1.3 MATLAB软件介绍 (4)1.4 MCGS组态软件介绍 (5)2 被控对象建模 (7)2.1 水箱模型分析 (7)2.2 阶跃响应曲线法建立模型 (7)3 系统控制方案设计与仿真 (13)3.1 PID控制原理 (13)3.2 系统控制方案设计 (15)3.2 控制系统仿真 (16)4 建立仪表过程控制系统 (20)4.1 过程仪表介绍 (20)4.2 仪表过程控制系统的组建 (21)4.3 仪表过程控制系统调试运行 (24)5 建立计算机过程控制系统 (26)5.1 计算机过程控制系统硬件设计 (26)5.2 MCGS软件工程组态 (28)5.3 计算机过程控制系统调试运行 (38)6 结论 (40)谢词 (41)参考文献 (42)................双容水箱液位串级控制系统的设计摘要:本论文的目的是设计双容水箱液位串级控制系统。
在设计中充分利用自动化仪表技术,计算机技术,通讯技术和自动控制技术,以实现对水箱液位的串级控制。
首先对被控对象的模型进行分析,并采用实验建模法求取模型的传递函数。
其次,根据被控对象模型和被控过程特性设计串级控制系统,采用动态仿真技术对控制系统的性能进行分析。
然后,设计并组建仪表过程控制系统,通过智能调节仪表实现对液位的串级PID控制。
最后,借助数据采集模块﹑MCGS组态软件和数字控制器,设计并组建远程计算机过程控制系统,完成控制系统实验和结果分析。
关键词:液位模型 PID控制仪表过程控制系统计算机过程控制系统Abstract:The purpose of this thesis is to design the liquid level's concatenation control system of the double capacity water tank. This design makes full use of the automatic indicatortechnique ﹑the computer technique﹑the communication technique and the automaticcontrol technique in order to realize concatenation control of water tank's liquid.First, I carry out the analysis of the controlled objects' model, and use theexperimental method to calculate the transfer function of the model .Next, I Designthe concatenation control system and use the dynamic simulation technique to analyzethe capability of control system. Afterwards, I design and set up the indicator processcontrol system, realize PID control of the liquid level with intelligence indicator.Finally, I design and set up the long distance computer control system in virtue ofthe data collection module ﹑MCGS soft and digital PID controller,accomplish controlsystem experiment and analyze the outcome.Keywords:liquid level model PID control indicator process control system computer process control systemzzzzzzzzzzzzzzzzz双容水箱液位串级控制系统的设计1 概述1.1过程控制介绍1.工业过程控制的发展概况自本世纪30年代以来,伴随着自动控制理论的日趋成熟,自动化技术不断地发展并获得了惊人的成就,在工业生产和科学发展中起着关键性的作用。
基于MATLAB的三容水箱液位串级控制系统的设计
基于MATLAB的三容水箱液位串级控制系统的设计摘要:本文以三容水箱液位串级控制系统为研究对象,结合MATLAB软件进行模拟仿真和控制系统设计,通过对三个水箱的液位进行测量和控制,实现液位的稳定控制。
本文首先介绍了三容水箱液位控制系统的工作原理和液位传感器的工作原理,然后详细阐述了MATLAB仿真实验的搭建和参数调整,最后通过对比实验结果进行分析,验证了该控制系统的稳定性和可行性。
一、引言随着工业自动化的发展,液位控制在工业生产过程中起着重要的作用。
液位控制系统可以自动控制液位的高低,从而减少人工干预,提高工作效率和安全性。
液位控制系统的设计需要充分考虑系统的稳定性和响应速度,保证液位能够在设定值范围内稳定控制。
二、系统原理三容水箱液位串级控制系统由三个水箱和相应的液位传感器组成。
其中,第一个水箱的液位被称为主液位,第二个水箱的液位被称为副液位1,第三个水箱的液位被称为副液位2、主液位通过传感器测量液位,然后根据控制算法调整副液位1和副液位2的液位来稳定控制主液位。
三、MATLAB仿真实验1.实验搭建利用MATLAB软件建立三容水箱液位串级控制系统的仿真模型。
通过添加水箱模型和液位传感器模型,并根据系统的物理参数设置系统的初始值。
2.参数调整在仿真实验中,需要根据实际情况调整系统的控制参数。
主要包括控制器增益和采样时间等参数。
通过多次试验,逐步调整参数,使系统达到稳态,并且具有良好的响应速度。
四、实验结果分析实验结果表明,通过合理设定控制参数和调节算法,在MATLAB仿真环境下可以实现三容水箱液位串级控制系统的稳定控制。
在设定液位值的条件下,液位的波动范围在一定的误差范围内,系统能够快速响应和调节,具有较高的稳定性和可靠性。
五、结论本文通过对三容水箱液位串级控制系统进行MATLAB仿真实验和参数调整,验证了该系统的稳定性和可行性。
实验结果表明,在设定液位范围内,系统能够稳定保持液位的控制,并且具有较高的响应速度和稳定性。
双容水箱液位串级控制系统_毕业设计
双容水箱液位串级控制系统_毕业设计1. 设计题目双容水箱液位串级控制系统设计2. 设计任务图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。
试设计串级控制系统以维持下水箱液位的恒定。
1图1 双容水箱液位控制系统示意图3. 设计要求1) 已知上下水箱的传递函数分别为:111()2()()51p H s G s U s s ∆==∆+,22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+。
要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s 后施加的均值为0、方差为0.01的白噪声);2) 针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID 参数的整定要求写出整定的依据(选择何种整定方法,P 、I 、D 各参数整定的依据如何),对仿真结果进行评述;3) 针对该受扰的液位系统设计串级控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。
4.设计任务分析系统建模基本方法有机理法建模和测试法建模两种,机理法建模主要用于生产过程的机理已经被人们充分掌握,并且可以比较确切的加以数学描述的情况;测试法建模是根据工业过程的实际情况对其输入输出进行某些数学处理得到,测试法建模一般较机理法建模简单,特别是在一些高阶的工业生产对象。
对于本设计而言,由于双容水箱的数学模型已知,故采用机理建模法。
在该液位控制系统中,建模参数如下:控制量:水流量Q ;被控量:下水箱液位;控制对象特性: 111()2()()51p H s G s U s s ∆==∆+(上水箱传递函数); 22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+(下水箱传递函数)。
DCS课程设计水箱液位串级控制解析
目录1 题目背景与意义 01.1 题目背景 01.2 课题意义 02 设计题目简介 (1)2.1设计内容和规定 (1)2.2 集散控制系统基本构成 (1)2.3 设计原理及分析 (4)3 系统设计方案 (7)3.1双容水箱控制 (8)3.2串级控制 (8)4 系统硬件设计 (10)4.1数据采集模块 (10)4.1.1 模拟量输入模块 (10)4.1.2 模拟量输出模块 (11)4.2仪表和执行机构选型 (13)4.3系统连线 (13)4.3.1 模拟量输入模块FM148A接线 (13)4.3.2模拟量输出模块FM151A接线 (14)5 系统软件设计 (15)5.1组态画面旳设计 (13)5.2通讯设置 (15)6 系统仿真调试 (17)7 结论 (16)参照文献........................................... 错误!未定义书签。
71 题目背景与意义1.1 题目背景集散控制系统(Distributed control system), 是以多种微处理机为基础运用现代网络技术、现代控制技术、图形显示技术和冗余技术等实现对分散控制对象旳调整、监视管理旳控制技术。
其特点是以分散旳控制适应分散旳控制对象, 以集中旳监视和操作到达掌握全局旳目旳。
系统具有较高旳稳定性、可靠性和可扩展性。
该系统将若干台微机分散应用于过程控制, 所有信息通过通信网络由上位管理计算机监控, 实现最优化控制, 整个装置继承了常规仪表分散控制和计算机集中控制旳长处, 克服了常规仪表功能单一, 人-机联络差以及单台微型计算机控制系统危险性高度集中旳缺陷, 既实现了在管理、操作和显示三方面集中, 又实现了在功能、负荷和危险性三方面旳分散。
DCS系统在现代化生产过程控制中起着重要旳作用。
伴随工业自动化水平旳不停提高, 计算机旳广泛运用, 人们对工业自动化旳规定也越来越高。
而DCS又有延续性和可扩充性, 易学易用性和通用性, 使得DCS得到长足旳发展。
双容水箱液位串级控制系统的设计
双容水箱液位串级控制系统的设计双容水箱液位串级控制系统是一种常用于水处理、供水和污水处理等领域的控制系统。
它可以通过自动控制水泵的开关来实现水箱液位的稳定控制,从而保证水箱的安全运行。
本文将详细介绍双容水箱液位串级控制系统的设计。
首先,液位传感器的选择是系统设计的关键。
液位传感器是用于测量水箱液位的装置,常见的液位传感器包括浮球式传感器和压力传感器。
浮球式传感器适合用于小型水箱,而压力传感器适合用于大型水箱。
在选择液位传感器时,需要考虑液位测量的精度、可靠性和适应性等因素。
其次,PID控制器的设计是系统稳定性的关键。
PID控制器是一种常用的自动控制算法,通过不断调整控制器的输出值,使得系统的实际值与期望值之间的误差最小化。
PID控制器的设计需要根据系统的特点和需求来确定参数,包括比例、积分和微分的系数。
一般情况下,可以通过试错法来逐步调整这些参数,从而实现系统的稳定控制。
水泵控制策略是双容水箱液位串级控制系统的核心部分。
水泵控制策略的目标是根据水箱液位的实际情况,自动地调整水泵的开关状态,以实现水箱液位的稳定控制。
常见的水泵控制策略包括固定间隔控制、比例控制和模糊控制等。
在选择水泵控制策略时,需要考虑系统的特点和要求,以及水泵的工作状态和性能等因素。
最后,安全保护措施是系统设计中不可忽视的部分。
双容水箱液位串级控制系统在运行过程中,需要根据液位传感器的信号来判断水泵的工作状态,并及时采取相应的控制措施。
为了保证系统的安全性和可靠性,需要在系统中设置相应的报警装置和故障检测装置,以应对可能出现的各种故障情况。
总之,双容水箱液位串级控制系统的设计需要考虑液位传感器的选择、PID控制器的设计、水泵控制策略的选择和安全保护措施的设计等方面。
通过合理的系统设计和系统参数的调整,可以实现水箱液位的稳定控制,从而保证双容水箱的安全运行。
基于PLC的三容水箱液位串级控制系统设计
基于PLC的三容水箱液位串级控制系统设计
本系统的主要功能是实现三个水箱之间液位的串联控制,保证三个水箱中的水位保持平衡。
该系统采用PLC作为控制器,通过读取水位传感器获取水箱中的液位,经过控制算法对泵进行控制,保持水箱中水位的均衡。
下面是该系统的具体设计步骤:
1. 系统硬件设计
系统硬件包括三个水箱、水位传感器、PLC控制器、三个水泵和连接线路等。
其中,水位传感器放置在每个水箱内部,用于实时监测液位高度。
三个水泵用于对水箱进行加水或抽水操作,保持水箱内的液位相同。
2. PLC程序设计
PLC程序主要包括以下几个部分:
a. 采集水箱液位信号,根据液位信号实现控制算法,并输出控制信号控制泵的运行。
b. 根据液位的设定值与当前液位的差值,来确定是否需要打开或关闭泵。
c. 如果液位超出了安全范围,需要发出警报并停止泵的运行。
3. 系统测试
搭建好系统后,需要进行系统测试,检验系统在不同液位高度情况下的控制效果。
具体测试方法为在水箱中放入不同数量的水,观察系统是否能够在不同的液位条件下正常工作。
以上就是基于PLC的三容水箱液位串级控制系统设计的具体步骤。
双容水箱液位流量串级控制系统设计
双容水箱液位流量串级控制系统设计引言:双容水箱液位流量串级控制系统是一种用于控制液位和流量的自动化系统。
该系统通过对水泵和阀门的控制,实现对水箱液位和流量的精确调节。
在工业生产中,液位和流量的稳定控制对于保证生产过程的正常运行至关重要。
因此,设计一个可靠的双容水箱液位流量串级控制系统具有重要的实际意义。
系统设计:1.系统硬件组成-水泵:负责将水从源头输送至水箱中。
-水箱:承装和储存水,通过液位传感器测量液位。
-液位传感器:用于测量水箱液位,将测量结果传输给控制器。
-流量传感器:用于测量水流量,将测量结果传输给控制器。
-控制阀:通过控制水流量来调节水箱液位。
-控制器:根据液位和流量传感器的反馈信号,控制水泵和控制阀的启停和开关。
2.系统工作原理双容水箱液位流量串级控制系统的工作原理是通过液位和流量传感器实时监测水箱液位和水流量的变化,并将测量结果传输给控制器。
控制器根据设定的目标液位和流量值,计算出所需的水泵和控制阀的工作状态。
当实际液位或流量低于目标值时,控制器启动水泵和控制阀以增加水流量,从而提高液位;反之,当实际液位或流量高于目标值时,控制器关闭水泵和控制阀以减少水流量,以降低液位。
3.系统控制策略双容水箱液位流量串级控制系统的控制策略可以采用PID控制器。
PID控制器是一种常用的控制算法,它通过对比实际测量值和目标值,计算出一个控制量,然后对被控对象进行控制。
其算法由比例(P)、积分(I)和微分(D)三个部分组成,可以有效地控制系统稳定性和响应速度。
在双容水箱液位流量串级控制系统中,可以将液位作为主要控制量,流量作为辅助控制量。
首先,通过对液位传感器和流量传感器的测量值进行PID控制,控制水泵的启动和停止,以满足目标液位和流量的要求。
接下来,根据控制阀的反馈信号,通过控制阀的开关来实现对水箱液位的精确调节。
4.系统安全性和可靠性双容水箱液位流量串级控制系统设计中,应考虑系统的安全性和可靠性。
水箱液位串级控制系统讲解
长沙学院CHANGSHA UNIVERSITY专业训练与创新实习报告过程控制系统实习系部:电子信息与电气工程系专业年级班级:11 电气 3 班学生姓名:学号:指导教师:成绩评定:(指导教师填写)2014年11 月实验目录实验一单闭环流量定值控制系统实验二单容液位定值控制系统实验三水箱液位串级控制系统实验一单闭环流量定值控制系统一、实验目的1.了解单闭环流量控制系统的结构组成与原理。
2.掌握单闭环流量控制系统调节器参数的整定方法。
3.研究调节器相关参数的变化对系统静、动态性能的影响。
4.研究P、PI、PD和PID四种控制分别对流量系统的控制作用。
5.掌握同一控制系统采用不同控制方案的实现过程。
二、实验设备实验对象及控制屏、各类电路挂件、计算机一台、万用表一个、导线若干;三、实验原理图4-1 单闭环流量定值控制系统(a)结构图(b)方框图本实验系统结构图和方框图如图4-1所示。
被控量为电动调节阀支路(也可采用变频器支路)的流量,实验要求电动阀支路流量稳定至给定值。
将涡轮流量计FT1检测到的流量信号作为反馈信号,并与给定量比较,其差值通过调节器控制电动调节阀的开度,以达到控制管道流量的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI控制,并且在实验中PI 参数设置要比较大。
四、实验内容图4-2 智能仪表控制单闭环流量定值控制实验接线图本实验选择电动阀支路流量作为被控对象。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-8、F1-11全开,其余阀门均关闭。
将“FT1电动阀支路流量”钮子开关拨到“ON”的位置。
具体实验内容与步骤可根据本实验的目的与原理参照前面的单闭环定值控制中相应方案进行,下面只给出实验的接线图。
五、实验数据曲线图4-3 单闭环流量定值控制曲线图六、实验总结单闭环流量定值控制的数据曲线中,流量设定值SV=10.0r/min,比例系数P=60,积分时间I=20,先是等幅振荡,外加一个干扰信号,数据曲线经过智能调节仪的调节后,渐渐接近稳定。
上下水箱液位串级控制系统
实验六上下水箱液位串级控制一、实验目的1、了解复杂过程控制系统的构成。
2、掌握复杂过程控制一—串级控制方法。
3、控制要求:超调量σ<20%,调节时间Ts≤3T,余差<5%。
二、实验设备及参考资料1、PCS-B过程控制实验装置(使用其中:电动调节阀、DDC控制单元、上下水箱及液位变送器、水泵1系统等)。
2、电动调节阀的操作说明书、液位变送器的调试(一般出厂之前已调试好)方法。
三、实验系统流程图:四、实验原理本实验采用计算机控制,将下水箱液位控制在设定高度。
串级回路是由内反馈组成的双环控制系统,属于复杂控制范畴。
在计算机中设置了两个虚拟调节器作为主副调节器。
将下水箱的液位信号输出作为主调节器输入,主调节器的输出作为副调节器的输入,在串级控制系统中,两个调节器任务不同,因此要选择调节器的不同调节规律进行控制,副调节器主要任务是快速动作,迅速抵制进入副回路的扰动,至于副回路的调节不要求一定是无静差。
主调节器的任务是准确保持下水箱液位在设定值,因此,主调节器采用PI调节器也可考虑采用PID调节器。
串级控制系统的方块原理图如图1。
图1串级控制系统的方块原理图串级控制系统的参数整定①. 两步整定法第一步整定副回路的副控制器;第二步整定主回路的主控制器。
a. 在系统工作状况稳定,主、副回路主控制器在纯比例作用的条件下,将副控制器的比例带δ取100%,再逐渐降低副控制器的比例带,用整定单回路的方法来整定副回路。
如用4:1衰减法来整定副回路,则求出副参数在4:1衰减时的副控制器比例带δ2S和操作周期T2S。
b.使主控制比例带置于δ1S的数值上,逐渐降低主控制器的比例带δ1S,求出同样衰减比时主回路的过渡过程曲线,记录此时主控制器的比例带δ1S和操作周期T1S。
c.将上述步骤中求出的δ1S、T1S、δ2S、T2S按所用的4:1衰减曲线的整定方法,求出主、副控制器的整定参数。
d.按照“先副后主,先比例次积分后微分”的原则,将计算机得出的控制器参数置于各种控制器之上。
基于MATLAB的三容水箱液位串级控制系统的设计毕业设计
基于MATLAB的三容水箱液位串级控制系统的设计毕业设计三容水箱液位串级控制系统是一种常见的液位控制系统,通过对三个水箱的液位进行测量和控制,实现液位的稳定和自动控制。
本文将以MATLAB为工具,设计一个基于MATLAB的三容水箱液位串级控制系统。
首先,我们需要明确三容水箱液位串级控制系统的控制目标。
液位控制系统的目标是使得三个水箱中的液位保持在一定的目标水位,并实现液位的自动调节和稳定。
因此,我们需要设计一个液位控制器,通过测量和控制液位,使得三个水箱的液位能够维持在目标水位。
为了设计液位控制器,我们首先需要建立三个水箱的数学模型。
假设三个水箱的进水速率和出水速率是已知的,并且假设水箱的液位变化满足一阶惯性动态特性。
我们可以使用微分方程描述水箱的液位变化。
通过设计适当的参数和初始条件,我们可以模拟出三个水箱的液位变化情况。
在MATLAB中,我们可以使用StateSpace类来建立水箱的数学模型。
StateSpace类可以定义线性系统的状态空间方程,并且可以使用控制设计工具箱来进行控制设计和分析。
通过定义三个水箱的状态空间方程,并设置合适的参数和初始条件,我们可以在MATLAB中模拟出三个水箱的液位变化情况。
接下来,我们需要设计液位控制器。
在三容水箱液位串级控制系统中,可以采用传统的PID控制器来进行控制。
PID控制器基于三个控制参数:比例项、积分项和微分项。
这些参数可以通过试探法或优化方法进行调节,以实现液位的稳定和自动控制。
在MATLAB中,我们可以使用Control System Toolbox来进行PID控制器的设计和调整。
该工具箱提供了稳定性分析、频率响应分析和自动调节功能,可以帮助我们设计出合适的PID控制器。
通过调整PID控制器的参数,我们可以使得三个水箱的液位能够稳定在目标水位,并实现液位的自动调节。
最后,我们需要在MATLAB中进行仿真和实验。
通过使用Simulink工具箱,我们可以建立三容水箱液位串级控制系统的仿真模型,并进行仿真实验。
双容水箱液位流量串级控制系统设计要点
双容水箱液位流量串级控制系统设计要点双容水箱液位流量串级控制系统是一种在液位和流量之间进行联动控制的系统。
该系统通常由两个水箱、两个阀门和两个流量计组成。
其中,一个水箱用于控制液位,另一个水箱用于控制流量。
双容水箱液位流量串级控制系统的设计要点包括以下几个方面:1.系统结构设计:双容水箱液位流量串级控制系统的结构应该合理、紧凑,方便安装和维护。
系统中的各个组件应该布局合理,阀门、流量计与水箱的位置应该便于操作和读取数据。
2.控制策略设计:双容水箱液位流量串级控制系统的控制策略应该能够实现液位和流量之间的联动控制。
一般采用控制阀门的开度来调节流量,通过调节水泵的转速或者阀门的开度来调节液位。
控制策略应该具有良好的稳定性和鲁棒性,能够快速而准确地响应输入信号的变化。
3.传感器选择与布置:双容水箱液位流量串级控制系统中的传感器用于检测液位和流量。
液位传感器的选择应该考虑到水箱的工作范围和要求,以及精度和可靠性的要求。
流量传感器的选择应该根据流量范围和要求,以及精度和可靠性的要求。
传感器的布置应该能够准确地测量液位和流量,避免干扰和误差。
4.控制器选择与配置:双容水箱液位流量串级控制系统的控制器是实现控制策略的核心部件。
控制器应该具有良好的性能,包括计算能力、通信能力和抗干扰能力。
控制器的配置应该考虑到系统的需求和性能要求,以及可靠性和可扩展性的要求。
5.阀门和流量计选择与定位:双容水箱液位流量串级控制系统中的阀门和流量计是实现液位和流量调节的关键装置。
阀门的选择应该考虑到流量范围和要求,以及可靠性和响应速度的要求。
流量计的选择应该根据流量范围和要求,以及精度和可靠性的要求。
阀门和流量计的定位应该根据液位和流量的控制策略,使其能够和其他组件紧密配合,实现精确的调节和测量。
通过以上要点的设计,可以有效实现双容水箱液位流量串级控制系统的运行稳定和精确控制。
同时,设计过程中还需要考虑到系统的安全性和可靠性,以及经济性和可维护性的要求。
实验四 水箱液位串级控制系统
实验四水箱液位串级控制系统一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。
2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。
3.研究阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。
4.掌握液位串级控制系统采用不同控制方案的实现过程。
二、实验设备1、THJ-2 型高级过程控制系统实验装置2、计算机、上位机MCGS 组态软件、RS232-485 转换器1 只、串口线1 根3、万用表1 只三、实验原理本实验为水箱液位的串级控制系统,它是由主、副两个回路组成。
每一个回路中都有一个属于自己的调节器和控制对象,即主回路中的调节器称主调节器,控制对象为下水箱,作为系统的被控对象,下水箱的液位为系统的主控制量。
副回路中的调节器称副调节器,控制对象为中水箱,又称副对象,它的输出是一个辅助的控制变量。
本系统控制的目的不仅使系统的输出响应具有良好的动态性能,且在稳态时,系统的被控制量等于给定值,实现无差调节。
当有扰动出现于副回路时,由于主对象的时间常数大于副对象的时间常数,因而当被控制量(下水箱的液位)未作出反映时,副回路已作出快速响应,及时地消除了扰动对被控制量的影响。
此外,如果扰动作用于主对象,由于副回路的存在,使副对象的时间常数大大减小,从而加快了系统的响应速度,改善了动态性能。
本实验系统结构图和方框图如图所示。
图1 水箱液位串级控制系统(a)结构图 (b)方框图四、实验内容与步骤1、本实验选择中水箱和下水箱串联作为被控对象(也可选择上水箱和中水箱)。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10开至适当开度(40%~90%)、下水箱出水阀门F1-11开至适当开度(30%~80% 要求阀F1-10稍大于阀F1-11),其余阀门均关闭。
2、按照实验图接线,将主、副控仪表设置为自动,主控制器Sn=33,addrss=1,CF=0 ,DF=0;副控制器Sn=32,addrss=2,CF=8,DF=0;合上三相电源空气开关,磁力驱动泵上电打水,上位机的主控制器,下水箱的液位设定值8—15cm。
实验3上、中水箱液位串级控制系统实验
实验3 上、中水箱液位串级控制系统实验一、实验目的1、掌握串级控制系统的基本概念和组成;2、掌握串级控制系统的投运与参数整定方法;3、研究阶跃扰动分别作用在副对象和主对象时对系统主被控量的影响。
二、实验设备AE2000B型过程控制实验装置、万用表一只三、实验原理上水箱液位作为副调节器调节对象,中水箱液位作为主调节器调节对象。
控制框图如图1所示:图1 上水箱中水箱液位串级控制框图四、实验内容与步骤1、设备的连接和检查:1)将AE2000B 实验对象的储水箱灌满水(至最高高度);2)打开以丹麦泵、电动调节阀、涡轮流量计组成的动力支路至上水箱的出水阀,关闭动力支路上通往其他对象的切换阀;3)打开上水箱和下水箱的出水阀至适当开度;4)检查电源开关是否关闭。
2、系统连线图:1)将I/O信号接口板上的下水箱液位的钮子开关打到OFF位置,上水箱液位的钮子开关打到ON位置;2)按图2所示连线;3)将主调节仪的4~20mA输出接至I/O信号面板的温度变送器转换电阻上转换成1~5V 电压信号,再将此转换信号接至另一调节仪(副调节器)的1端和2端作为外部给定,上水箱液位信号转换为1~5V的信号后接入副调节器的1~5V和地两端。
调节器输出的4~20mA接电动调节阀的4~20mA控制信号两端。
3、启动实验装置:1)将实验装置电源插头接到220V的单相电源上;2)打开电源单带漏电保护空气开关,电压表指示220V;3)打开总电源开关,即可开启电源。
4、实验步骤1)开启电动调节阀电源、24V电源、智能调节仪电源,调整好仪表各项参数;图2、实验接线2)设定主控参数和副控参数。
主调节器的参数与单回路闭环控制设定方法一样;3)启动动力支路,待系统稳定后,在上水箱给一个阶跃信号,观察实时曲线的变化,并记录此曲线;4)系统稳定后,在副回路上加干扰信号,观察主回路和副回路上的实时曲线的变化。
记录并保存曲线。
五、实验报告要求分析串级控制和单回路PID控制不同之处?六、注意事项1、实验线路接好后,必须经指导老师检查认可后方可接通电源;2、系统连接好以后,在老师的指导下,运行串级控制实验;3、为保护仪表及用电设备的使用寿命实验完毕,先关闭所有电源开关,再关电源总开关。
双容水箱液位串级控制系统课程设计完整版
双容水箱液位串级控制系统课程设计HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】双容水箱液位串级控制系统课程设计1. 设计题目双容水箱液位串级控制系统设计2. 设计任务图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。
试设计串级控制系统以维持下水箱液位的恒定。
图1 双容水箱液位控制系统示意图3. 设计要求1) 已知上下水箱的传递函数分别为:111()2()()51p H s G s U s s ∆==∆+,22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+。
要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s 后施加的均值为0、方差为的白噪声);2) 针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID 参数的整定要求写出整定的依据(选择何种整定方法,P 、I 、D 各参数整定的依据如何),对仿真结果进行评述;3) 针对该受扰的液位系统设计串级控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。
4.设计任务分析系统建模基本方法有机理法建模和测试法建模两种,机理法建模主要用于生产过程的机理已经被人们充分掌握,并且可以比较确切的加以数学描述的情况;测试法建模是根据工业过程的实际情况对其输入输出进行某些数学处理得到,测试法建模一般较机理法建模简单,特别是在一些高阶的工业生产对象。
对于本设计而言,由于双容水箱的数学模型已知,故采用机理建模法。
在该液位控制系统中,建模参数如下:控制量:水流量Q ;被控量:下水箱液位;控制对象特性:111()2()()51p H s G s U s s ∆==∆+(上水箱传递函数);22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+(下水箱传递函数)。
双容水箱液位串级控制系统
一、设计题目双容水箱液位流量串级控制系统设计二、设计任务如图所示的两个大容量水箱。
要求水箱2水位稳定在一定高度,水流量经常波动,作为扰动量存在。
试针对该双容水箱系统设计一个液位流量串级控制方案。
自来水流出水箱1 水箱2系统示意图三、设计任务分析系统建模基本方法有机理法建模和测试法建模两种。
由于双容水箱的数学模型已知,故采用机理法建模。
在该液位控制系统中,建模参数如下:控制量:水流量Q;被控量:下水箱液位;主被控对象(水箱2水位)传递函数W1=1/(100s+1)副被控对象(流量)传递函数W2=1/(10s+1)液位传感器传递函数为Gm1=1/(0.1s+1)控制器:流量传感器传递函数为Gm2=1/(0.1s+1)单回路闭环系统的建模如图:双容水箱单闭环实施方案如图:串级控制系统框图如图:主PID1/(100s+1)1/(10s+1)二水箱水位检测给定值+-被控变量干扰副PID控制阀一水箱流量检测XX双容水箱液位流量串级系统实施方案如图:四、设计内容1单回路PID 控制的设计 无干扰情况下:先对控制对象进行PID 参数整定,采用衰减曲线法,衰减比为10:1.1、将MATLAB 中I 参数调为0,K 为较小值。
2、待系统稳定后,做阶跃响应,阶跃响应如下图:周期Ts=34s ,K=403、根据衰减曲线法整定计算公式,得K1=50,Ti=68s4、使用以上PID 整定参数得到阶跃响应曲线如下:观察可知,经参数整定后,系统的性能有了很大的改善。
现用控制变量法,分别改变P、I、D参数。
1、保持I、D参数为定值,改变P参数,阶跃响应曲线如下:2、保持P、I参数为定值,改变D参数,阶跃响应曲线如下:现向控制系统中加入干扰,以检测系统的抗干扰能力,阶跃响应曲线如下:观察以上曲线,并与无干扰时的系统框图比较可知,系统稳定性下降较大。
由此可见,单回路控制系统,在有干扰的情况下,很难保持系统的稳定性能。
2串级控制系统的设计主控制器的选择:选用PI控制规律副控制器的选择:选用P控制规律采用一步整定法(1)在系统纯比例作用的情况下,根据K02/δ2=0.5这一关系式,通过副过程放大系数K02,求取副调节器的比例放大系数δ2,并将其设置在副回路调节器上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水箱液位串级控制系统
一、实验目的
1.通过实验了解水箱液位串级控制系统组成原理。
2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。
3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。
4.掌握液位串级控制系统采用不同控制方案的实现过程。
二、实验设备(同前)
三、实验原理
本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。
主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。
副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。
主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。
副调节器的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。
由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。
本实验系统结构图和方框图如图5-2所示。
图5-2 水箱液位串级控制系统
(a)结构图(b)方框图
四、实验内容与步骤
本实验选择中水箱和下水箱串联作为被控对象(也可选择上水箱和中水箱)。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10开至适当开度(40%~90%)、下水箱出水阀门F1-11开至适当开度(30%~80% 要求阀F1-10稍大于阀F1-11),其余阀门均关闭。
具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备有关,可根据实验需要选做或全做。
(一)、智能仪表控制
1.将两个SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口1,并按照下面的控制屏接线图连接实验系统。
将“LT2中水箱液位”钮子开关拨到“OFF”的位置,将“LT3下水箱液位”钮子开关拨到“ON”的位置。
图5-3 智能仪表控制“水箱液位串级控制”实验接线图
2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、单相Ⅲ空气开关,给电动调节阀及智能仪表1上电。
3.打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验十、水箱液位串级控制系统”,进入“实验十”的监控界面。
4.将主控仪表设置为“手动”,并将输出值设置为一个合适的值,此操作可通过调节仪表实现。
5.合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少主调节器的输出量,使下水箱的液位平衡于设定值,且中水箱液位也稳定于某一值(此值一般为3~5cm,以免超调过大,水箱断流或溢流)。
6.按本章第一节中任一种整定方法整定调节器参数,并按整定得到的参数进行调节器设定。
7.待液位稳定于给定值时,将调节器切换到“自动”状态,待液位平衡后,通过以下几种方式加干扰:
(1)突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;
(2)打开阀门F2-1、F2-4(或F2-5),用变频器支路以较小频率给中水箱(或下水箱)打水。
(干扰作用在主对象或副对象)
(3)将“阀F1-5、F1-13”开至适当开度(改变负载);
(4)将电动调节阀的旁路阀F1-4(同电磁阀)开至适当开度;
以上几种干扰均要求扰动量为控制量的5%~15%,干扰过大可能造成水箱中水溢出或系统不稳定。
加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(后面三种干扰方法仍稳定在原设定值),记录此时的智能仪表的设定值、输出值和仪表参数,下水箱液位的响应过
程曲线将如图5-4所示。
图5-4 下水箱液位阶跃响应曲线
8.适量改变主、副控调节仪的PID参数,重复步骤7,用计算机记录不同参数时系统的响应曲线。
五、实验报告要求
1.画出水箱液位串级控制系统的结构框图。
2.用实验方法确定调节器的相关参数,并写出整定过程。
3.根据扰动分别作用于主、副对象时系统输出的响应曲线,分析系统在阶跃扰动作用下的静、动态性能。
4.分析主、副调节器采用不同PID参数时对系统性能产生的影响。
6.综合分析五种控制方案的实验效果。
六、思考题
1.试述串级控制系统为什么对主扰动(二次扰动)具有很强的抗扰能力?如果副对象的时间常数与主对象的时间常数大小接近时,二次扰动对主控制量的影响是否仍很小,为什么?
2.当一次扰动作用于主对象时,试问由于副回路的存在,系统的动态性能比单回路系统的动态性能有何改进?
3.串级控制系统投运前需要作好那些准备工作?主、副调节器的正反作用方向如何确定?
4.为什么本实验中的副调节器为比例(P)调节器?
5.改变副调节器的比例度,对串级控制系统的动态和抗扰动性能有何影响,试从理论上给予说明。
6.评述串级控制系统比单回路控制系统的控制质量高的原因?
v。