《数学实验》实验报告——迭代法

合集下载

大学数学实验报告----迭代(一)——方程求解

大学数学实验报告----迭代(一)——方程求解

Do M n , n, 2, 100
运行结果:
M n_Integer : Module y, k , m 2; k m ^ n 1 ;
x Mod k, n ;
Print n, " ", PrimeQ n , " ", x, "
", GCD m, n
Do M n , n, 2, 100
2 True 0 2 3 True 1 1 4 False 0 2 5 True 1 1 6 False 2 2 7 True 1 1 8 False 0 2 9 False 4 1 10 False 2 2 11 True 1 1 12 False 8 2 13 True 1 1 14 False 2 2 15 False 4 1 16 False 0 2 17 True 1 1 18 False 14 2 19 True 1 1 20 False 8 2 21 False 4 1 22 False 2 2 23 True 1 1 24 False 8 2 25 False 16 1 26 False 2 2 27 False 13 1 28 False 8 2 29 True 1 1 30 False 2 2 31 True 1 1 32 False 0 2 33 False 4 1 34 False 2 2 35 False 9 1 36 False 32 2 37 True 1 1 38 False 2 2 39 False 4 1 40 False 8 2
99 False 3 27 100 False 1 67 Null2
m=4 时
输入程序:
M n_Integer : Module y, k , m 4; k m ^ n 1 ; x Mod k, n ; Print n, " ", PrimeQ n , " ", GCD m, n , " ", x Do M n , n, 2, 100

迭代法解线性方程组数值分析实验报告

迭代法解线性方程组数值分析实验报告

迭代法解线性方程组数值分析实验报告一、实验目的本次实验旨在深入研究和掌握迭代法求解线性方程组的基本原理和方法,并通过数值实验分析其性能和特点。

具体目标包括:1、理解迭代法的基本思想和迭代公式的推导过程。

2、掌握雅克比(Jacobi)迭代法、高斯赛德尔(GaussSeidel)迭代法和超松弛(SOR)迭代法的算法实现。

3、通过实验比较不同迭代法在求解不同类型线性方程组时的收敛速度和精度。

4、分析迭代法的收敛性条件和影响收敛速度的因素。

二、实验原理1、线性方程组的一般形式对于线性方程组$Ax = b$,其中$A$ 是$n×n$ 的系数矩阵,$x$ 是$n$ 维未知向量,$b$ 是$n$ 维常向量。

2、迭代法的基本思想迭代法是从一个初始向量$x^{(0)}$出发,按照某种迭代公式逐步生成近似解序列$\{x^{(k)}\}$,当迭代次数$k$ 足够大时,$x^{(k)}$逼近方程组的精确解。

3、雅克比迭代法将系数矩阵$A$ 分解为$A = D L U$,其中$D$ 是对角矩阵,$L$ 和$U$ 分别是下三角矩阵和上三角矩阵。

雅克比迭代公式为:$x^{(k+1)}= D^{-1}(b +(L + U)x^{(k)})$。

4、高斯赛德尔迭代法在雅克比迭代法的基础上,每次计算新的分量时立即使用刚得到的最新值,迭代公式为:$x_i^{(k+1)}=(b_i \sum_{j=1}^{i-1}a_{ij}x_j^{(k+1)}\sum_{j=i+1}^{n}a_{ij}x_j^{(k)})/a_{ii}$。

5、超松弛迭代法在高斯赛德尔迭代法的基础上引入松弛因子$\omega$,迭代公式为:$x_i^{(k+1)}= x_i^{(k)}+\omega((b_i \sum_{j=1}^{i-1}a_{ij}x_j^{(k+1)}\sum_{j=i}^{n}a_{ij}x_j^{(k)})/ a_{ii} x_i^{(k)})$。

《数学实验》实验报告——迭代法

《数学实验》实验报告——迭代法

3.线性方程组的迭代求解
给定一个 n 元线性方程组
a11 x1 a12 x 2 a1 n xn 0 a x a x a x 0 21 1 22 2 2n n am 1 x1 am 2 x 2 amn xn 0

观察序列,并且判断极限。 Mathematica 程序如下:
当 x0=0.1,n=10 时,运行程序得
当 x0=0.5,n=10 时,运行程序得
当 x0=0.9,n=10 时,运行程序得
当 x0=1,n=10 时,运行程序得
实验结论:
10
由以上实验可得,函数 f(x)=x/2+1/x 的极限为 1.41421
运行程序结果如下:
实验结论:
试验中假设矩阵 A 的对角元素 aii<>0,i=1,2,3,…n.令 D=diag(a11,a12,,,….ann),则可以将 方程 Ax=b 转化成 x=(U+L)x+D-1b 其中 U 为下三角阵,L 为上三角阵。如果 U+L 的行列式 最大特征值的绝对值小于 1,则线性方程组有解且唯一。
写成 Ax=b 的形式, 再将其改写成 x=M*x=f 其中 M 是 n 阶矩阵, f=(f1,f2,f3,f4….fn)T 是 n 维列向量,给定 x0,由迭代 x(n+1)=M*x^n+f,n=0,1,2,3,4…..对给定的矩阵 M 数组 f 和 初始值 x0,由 x(n+1)=M*x^n+f,n=0,1,2,3,4…..用 mathematic 可得迭代结果。 迭代程序如下:
《数学实验》实验报告
班级 实验 内容 **** 学号 **** 姓名 实验 类别 **** 成绩 实验 时间

MAAB计算方法迭代法牛顿法二分法实验报告

MAAB计算方法迭代法牛顿法二分法实验报告

MAAB计算方法迭代法牛顿法二分法实验报告实验目的:比较MAAB计算方法中迭代法、牛顿法和二分法的优缺点,探究它们在求解方程中的应用效果。

实验原理:1、迭代法:将方程转化为x=f(x)的形式,通过不断迭代逼近方程的根。

2、牛顿法:利用函数在特定点的切线逼近根的位置,通过不断迭代找到方程的根。

3、二分法:利用函数值在区间两端的异号性质,通过不断二分缩小区间,最终逼近方程的根。

实验步骤:1、选择一元方程进行求解,并根据方程选择不同的计算方法。

2、在迭代法中,根据给定的初始值和迭代公式,进行迭代计算,直到满足预设的迭代精度要求。

3、在牛顿法中,选择初始点,并根据切线方程进行迭代计算,直到满足预设的迭代精度要求。

4、在二分法中,选择区间,并根据函数值的异号性质进行二分,直到满足预设的迭代精度要求。

5、根据计算结果,比较三种方法的求解效果,包括迭代次数、计算时间、求解精度等指标。

实验结果与分析:通过对多个方程进行测试,得到了以下实验结果:1、迭代法的优点是简单易懂,适用范围广,但当迭代公式不收敛时会导致计算结果不准确。

2、牛顿法的优点是收敛速度较快,但需要计算函数的一阶导数和二阶导数,对于复杂函数较难求解。

3、二分法的优点是收敛性较好,不需要导数信息,但收敛速度较慢。

4、对于线性方程和非线性方程的求解,牛顿法和迭代法通常比二分法更快速收敛。

5、对于多重根的方程,二分法没有明显优势,而牛顿法和迭代法能更好地逼近根的位置。

6、在不同的方程和初值选择下,三种方法的迭代次数和求解精度略有差异。

7、在时间效率方面,二分法在收敛速度较慢的同时,迭代次数较少,牛顿法在收敛速度较快的同时,迭代次数较多,而迭代法对于不同方程有较好的平衡。

结论:1、对于不同类型的方程求解,可以根据具体情况选择合适的计算方法。

2、迭代法、牛顿法和二分法各有优缺点,没有绝对的最优方法,需要权衡各种因素选择最适合的方法。

3、在实际应用中,可以根据方程的特点和精度要求综合考虑不同方法的优劣势,以获得较好的求解效果。

数学数学实验Newton迭代法

数学数学实验Newton迭代法

数学实验题目4 Newton 迭代法摘要0x 为初始猜测,则由递推关系产生逼近解*x 的迭代序列{}k x ,这个递推公式就是Newton 法。

当0x 距*x 较近时,{}k x 很快收敛于*x 。

但当0x 选择不当时,会导致{}k x 发散。

故我们事先规定迭代的最多次数。

若超过这个次数,还不收敛,则停止迭代另选初值。

前言利用牛顿迭代法求的根程序设计流程问题1(1 程序运行如下:r = NewtSolveOne('fun1_1',pi/4,1e-6,1e-4,10) r = 0.7391(2 程序运行如下:r = NewtSolveOne('fun1_2',0.6,1e-6,1e-4,10) r = 0.5885问题2(1 程序运行如下:否 是否是是定义()f x输入012,,,x N εε开 始1k =01()f x ε<0100()()f x x x f x =-'102||x x ε-<k N =输出迭代失败标志输出1x输出奇 异标志结 束01x x = 1k k =+ 否r = NewtSolveOne('fun2_1',0.5,1e-6,1e-4,10)r = 0.5671(2)程序运行如下:r = NewtSolveOne('fun2_2',0.5,1e-6,1e-4,20)r = 0.5669问题3(1)程序运行如下:①p = LegendreIter(2)p = 1.0000 0 -0.3333p = LegendreIter(3)p = 1.0000 0 -0.6000 0p = LegendreIter(4)p =1.0000 0 -0.8571 0 0.0857p = LegendreIter(5)p = 1.0000 0 -1.1111 0 0.2381 0②p = LegendreIter(6)p = 1.0000 0 -1.3636 0 0.4545 0 -0.0216r = roots(p)'r= -0.932469514203150 -0.6612 0.9324695142031530.6612 -0.238619186083197 0.238619186083197用二分法求根为:r = BinSolve('LegendreP6',-1,1,1e-6)r = -0.932470204878826 -0.661212531887755 -0.2386200573979590.2386 0.661192602040816 0.932467713647959(2)程序运行如下:①p = ChebyshevIter(2)p = 1.0000 0 -0.5000p = ChebyshevIter(3)p = 1.0000 0 -0.7500 0p = ChebyshevIter(4)p = 1.0000 0 -1.0000 0 0.1250p = ChebyshevIter(5)p = 1.0000 0 -1.2500 0 0.3125 0②p = ChebyshevIter(6)p = 1.0000 0 -1.5000 0 0.5625 0 -0.0313r = roots(p)'r = -0.965925826289067 -0.7548 0.9659258262890680.7547 -0.258819045102521 0.258819045102521用二分法求根为:r = BinSolve('ChebyshevT6',-1,1,1e-6)r = -0.965929926658163 -0.7755 -0.2588289221938780.2588 0.7020 0.965924944196429与下列代码结果基本一致,只是元素顺序稍有不同:j = 0:5;x = cos((2*j+1)*pi/2/(5+1))x =0.965925826289068 0.7548 0.258819045102521-0.258819045102521 -0.7547 -0.965925826289068(3)程序运行如下:①p = LaguerreIter(2)p = 1 -4 2p = LaguerreIter(3)p = 1 -9 18 -6p = LaguerreIter(4)p = 1 -16 72 -96 24p = LaguerreIter(5)p =1.0000 -25.0000 200.0000 -600.0000 600.0000 -120.000②p = LaguerreIter(5)p =1.0000 -25.0000 200.0000 -600.0000 600.0000 -120.000r = roots(p)'r =12.6432 7.8891 3.5964257710407111.4520 0.263560319718141用二分法求根为:r = BinSolve('LaguerreL5',0,13,1e-6)r = 0.263560314567722 1.4789 3.5964257656311507.0720 12.6490(4)程序运行如下:①p = HermiteIter(2)p = 1.0000 0 -0.5000p = HermiteIter(3)p = 1.0000 0 -1.5000 0p = HermiteIter(4)p = 1.0000 0 -3.0000 0 0.7500p = HermiteIter(5)p = 1.0000 0 -5.0000 0 3.7500 0②p = HermiteIter(6)p = 1.0000 0 -7.5000 0 11.2500 0 -1.8750r = roots(p)'r =-2.3587 2.3588 -1.3358490740136961.335849074013698 -0.4367 0.4366用二分法求根为:r = BinSolve('HermiteH6',-3,3,1e-6)r =-2.3516 -1.335849********* -0.43630.4366 1.335848983453244 2.3504所用到的函数function r = NewtSolveOne(fun, x0, ftol, dftol, maxit)% NewtSolveOne 用Newton法解方程f(x)=0在x0附近的一个根%% Synopsis: r = NewtSolveOne(fun, x0)% r = NewtSolveOne(fun, x0, ftol, dftol)%% Input: fun = (string) 需要求根的函数及其导数% x0 = 猜测根,Newton法迭代初始值% ftol = (optional)误差,默认为5e-9% dftol = (optional)导数容忍最小值,小于它表明Newton法失败,默认为5e-9 % maxit = (optional)迭代次数,默认为25%% Output: r = 在寻根区间内的根或奇点if nargin < 3ftol = 5e-9;endif nargin < 4dftol = 5e-9;endif nargin < 5maxit = 25;endx = x0; %设置初始迭代位置为x0k = 0; %初始化迭代次数为0while k <= maxitk = k + 1;[f,dfdx] = feval(fun,x); %fun返回f(x)和f'(x)的值if abs(dfdx) < dftol %如果导数小于dftol,Newton法失败,返回空值r = [];warning('dfdx is too small!');return;enddx = f/dfdx; %x(n+1) = x(n) - f( x(n) )/f'( x(n) ),这里设dx = f( x(n) )/f'( x(n) )x = x - dx;if abs(f) < ftol %如果误差小于ftol,返回当前x为根r = x;return;endendr = []; %如果牛顿法未收敛,返回空值function p = LegendreIter(n)% LegendreIter 用递推的方法计算n次勒让德多项式的系数向量Pn+2(x) = (2*i+3)/(i+2) * x*Pn+1(x) - (i+1)/(i+2) * Pn(x)%% Synopsis: p = LegendreIter(n)%% Input: n = 勒让德多项式的次数%% Output: p = n次勒让德多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %P0(x) = 1p = 1;return;elseif n == 1 %P1(x) = xp = [1 0];return;endpBk = 1; %初始化三项递推公式后项为P0pMid = [1 0]; %初始化三项递推公式中项为P1for i = 0:n-2pMidCal = zeros(1,i+3); %构造用于计算的x*Pn+1pMidCal(1:i+2) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的PnpBkCal(3:i+3) = pBk;pFwd = (2*i+3)/(i+2) * pMidCal - (i+1)/(i+2) * pBkCal; %勒让德多项式三项递推公式Pn+2(x) = (2*i+3)/(i+2) * x*Pn+1(x) - (i+1)/(i+2) * Pn(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把勒让德多项式最高次项系数归一化function p = ChebyshevIter(n)% ChebyshevIter 用递推的方法计算n次勒让德-切比雪夫多项式的系数向量Tn+2(x) = 2*x*Tn+1(x) - Tn(x)%% Synopsis: p = ChebyshevIter(n)%% Input: n = 勒让德-切比雪夫多项式的次数%% Output: p = n次勒让德-切比雪夫多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %T0(x) = 1p = 1;return;elseif n == 1 %T1(x) = xp = [1 0];return;endpBk = 1; %初始化三项递推公式后项为T0pMid = [1 0]; %初始化三项递推公式中项为T1for i = 0:n-2pMidCal = zeros(1,i+3); %构造用于计算的x*Tn+1pMidCal(1:i+2) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的PnpBkCal(3:i+3) = pBk;pFwd = 2*pMidCal - pBkCal; %勒让德-切比雪夫多项式三项递推公式Tn+2(x) = 2*x*Tn+1(x) - Tn(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把勒让德-切比雪夫多项式最高次项系数归一化function p = LaguerreIter(n)% LaguerreIter 用递推的方法计算n次拉盖尔多项式的系数向量Ln+2(x) = (2*n+3-x)*Ln+1(x) - (n+1)*Ln(x)%% Synopsis: p = LaguerreIter(n)%% Input: n = 拉盖尔多项式的次数%% Output: p = n次拉盖尔多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %L0(x) = 1p = 1;return;elseif n == 1 %L1(x) = -x+1p = [-1 1];return;endpBk = 1; %初始化三项递推公式后项为L0pMid = [-1 1]; %初始化三项递推公式中项为L1for i = 0:n-2pMidCal1 = zeros(1,i+3); %构造用于计算的x*Ln+1(x)pMidCal1(1:i+2) = pMid;pMidCal2 = zeros(1,i+3); %构造用于计算的Ln+1(x)pMidCal2(2:i+3) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的Ln(x)pBkCal(3:i+3) = pBk;pFwd =( (2*i+3)*pMidCal2 - pMidCal1 - (i+1)*pBkCal )/ (i+2); %拉盖尔多项式三项递推公式Ln+2(x) = (2*n+3-x)*Ln+1(x) - (n+1)^2*Ln(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把拉盖尔多项式最高次项系数归一化function p = HermiteIter(n)% HermiteIter 用递推的方法计算n次埃尔米特多项式的系数向量Hn+2(x) = 2*x*Hn+1(x) - 2*(n+1)*Hn(x)%% Synopsis: p = HermiteIter(n)%% Input: n = 埃尔米特多项式的次数%% Output: p = n次埃尔米特多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %H0(x) = 1p = 1;return;elseif n == 1 %H1(x) = 2*xp = [2 0];return;endpBk = 1; %初始化三项递推公式后项为L0pMid = [2 0]; %初始化三项递推公式中项为L1for i = 0:n-2pMidCal = zeros(1,i+3); %构造用于计算的x*Hn+1(x)pMidCal(1:i+2) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的Hn(x)pBkCal(3:i+3) = pBk;pFwd =2*pMidCal - 2*(i+1)*pBkCal; %埃尔米特多项式三项递推公式Hn+2(x) = 2*x*Hn+1(x) - 2*(n+1)*Hn(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把拉盖尔多项式最高次项系数归一化function r = BinSolve(fun, a, b, tol)% BinSolve 用二分法解方程f(x)=0在区间[a,b]的根%% Synopsis: r = BinSolve(fun, a, b)% r = BinSolve(fun, a, b, tol)%% Input: fun = (string) 需要求根的函数% a,b = 寻根区间上下限% tol = (optional)误差,默认为5e-9%% Output: r = 在寻根区间内的根if nargin < 4tol = 5e-9;endXb = RootBracket(fun, a, b); %粗略寻找含根区间[m,n] = size(Xb);r = [];nr = 1; %初始化找到的根的个数为1maxit = 50; %最大二分迭代次数为50for i = 1:ma = Xb(i,1); %初始化第i个寻根区间下限b = Xb(i,2); %初始化第i个寻根区间上限err = 1; %初始化误差k = 0;while k < maxitfa = feval(fun, a); %计算下限函数值fb = feval(fun, b); %计算上限函数值m = (a+b)/2;fm = feval(fun, m);err = abs(fm);if sign(fm) == sign(fb) %若中点处与右端点函数值同号,右端点赋值为中点b = m;else %若中点处与左端点函数值同号或为0,左端点赋值为中点a = m;endif err < tol %如果在a处函数值小于tolr(nr) = a; %一般奇点不符合该条件,这样可以去除奇点nr = nr + 1; %找到根的个数递增k = maxit; %改变k值跳出循环endk = k + 1; %二分迭代次数递增endendfunction X = powerX(x,a,b)% powerX 对给定向量(x1, x2,..., xn)返回增幂矩阵(x1^a, x2^a,..., xn^a; x1^a+1, x2^a+1,..., xn^a+1; ...; x1^b, x2^b,..., xn^b;)%% Synopsis: X = powerX(x,a,b)%% Input: x = 需要返回增幂矩阵的向量% a,b = 寻根区间上下限%% Output: X = 增幂矩阵(x1^a, x2^a,..., xn^a; x1^a+1, x2^a+1,..., xn^a+1; ...; x1^b, x2^b,..., xn^b;)if round(a) ~= a | round(b) ~= berror('a,b must be integers');elseif a >= berror('a must be smaller than b!');endx = x(:)';row = b-a+1;col = length(x);X = zeros(row, col);for i = b:-1:aX(b-i+1,:) = x.^i;Endfunction [f, dfdx] = fun1_1(x)f = cos(x) - x;dfdx = -sin(x) - 1;function [f, dfdx] = fun1_2(x)f = exp(-x) - sin(x);dfdx = -exp(-x) - cos(x);function [f, dfdx] = fun2_1(x)f = x - exp(-x);dfdx = 1 + exp(-x);function [f, dfdx] = fun2_2(x)f = x.^2 - 2*x*exp(-x) + exp(-2*x);dfdx = 2*x - 2*exp(-x) + 2*x*exp(-x) - 2*exp(-2*x);function y = LegendreP6(x)p = LegendreIter(6);X = powerX(x,0,6);y = p*X;function y = ChebyshevT6(x)p = ChebyshevIter(6);X = powerX(x,0,6);y = p*X;function y = LaguerreL5(x)p = LaguerreIter(5);X = powerX(x,0,5);y = p*X;function y = HermiteH6(x)p = HermiteIter(6);X = powerX(x,0,6);y = p*X;思考题(1)由于Newton法具有局部收敛性,所以在实际问题中,当实际问题本身能提供接近于根的初始近似值时,就可保证迭代序列收敛,但当初值难以确定时,迭代序列就不一定收敛。

实验报告四 线性方程组的求解-迭代法

实验报告四 线性方程组的求解-迭代法

浙江大学城市学院实验报告课程名称 科学计算实验项目名称 线性方程组的求解-迭代法实验成绩 指导老师(签名 ) 日期 2014/11/17一. 实验目的和要求1. 掌握Jacobi 迭代方法,Gauss-Seidel 迭代方法,SOR 迭代方法的编程思想,能够分别用分量形式和矩阵形式编写相关程序。

2. 观察SOR 迭代法中松弛因子变化情况对收敛的影响。

3. 了解Hilbert 矩阵的病态性和作为线性方程组系数矩阵的收敛性。

二. 实验内容和原理编程题2-1要求写出Matlab 源程序(m 文件),并有适当的注释语句;分析应用题2-2,2-3,2-4要求将问题的分析过程、Matlab 源程序和运行结果和结果的解释、算法的分析写在实验报告上。

2-1 编程注释设11121121222212,n n n n nn n a a a b a a a b A b a a a b ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 对下述求解线性方程组的Matlab 程序添上注释语句,其中A 和b 分别为线性方程组的系数矩阵和右端向量;0x 为迭代初始向量(0)X ;max N 为容许迭代最大次数,eps 为迭代终止条件的精度(容许误差),终止条件为前后两次迭代解的差的向量2-范数。

1) Jacobi 迭代:Jacobimethod(A,b,x0,Nmax,eps)2) Gauss-Seidel 迭代:GaussSeidelmethod(A,b,x0,Nmax,eps)2-2 分析应用题利用2-1中的程序来分析用下列迭代法解线性方程组:123456410100014101050141012101410501014120010146x x x x x x --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----=⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 的收敛性,并求出使(1)()20.0001k k XX +-≤的近似解及相应的迭代次数,其中取迭代初始向量(0)X 为零向量。

迭代——方程求解(mathematica数学实验报告)

迭代——方程求解(mathematica数学实验报告)

0,1称为(f、迭代法函数的迭代是数学研究中的一个非常重要的思想工具,哪怕是对一个相当简单的函数进行迭代,都可以产生异常复杂的行为,并由此而衍生了一些崭新的学科分支,如分.同时,迭代在各种数值计算算法以及其它学科领域的诸多算法中处于核心的本实验的基本理论是分形几何学程序运行如下:练习2:利用迭代公式1(),0,1,...()n n g x x x n g x +=-=' 得到()^32g x x =-的迭代序列,其中01x =,10n =,程序运行如下:练习3:对给定的矩阵M ,数组f 和初始向量0x ,由迭代公式1n n x Mx f +=+得到的迭代序列如下:练习4:利用迭代公式11()x L D A X D b --=-+将方程组⎪⎩⎪⎨⎧=++=++11111111.......................................b x a x a b x a x a n nn n n n 即Ax b =改成多种等价形式x Mx f =+做迭代,观察其收敛状况。

给定(){}1,2,2,(1,1,1),(2,2,1)A =-与(){}2,1,1,(1,1,1),(1,1,2)A =--,运行结果如下:练习5:同练习4,给定(){}1,2,2,(1,1,1),(2,2,1)A =-与(){}2,1,1,(1,1,1),(1,1,2)A =--,利用迭代公式111()()x I L Ux I L D b ---=-+-对方程组Ax b =做迭代。

程序运行如下:实验结果和结果分析:对于书上给出的例题程序,要实际上机亲自操作一次,从而了解不同命令的不同作用,对于相似的命令要区分明白他们的不同之处。

这一章小的命令比较多,也比较杂,需要分门别类区分开,并且分别运行一下。

书后的练习题离不开前面的例题,要在掌握好例题的情况下,多练习一些习题,加深记忆。

Mathematica 在迭代法解方程组非常方。

第一次实验报告-迭代法

第一次实验报告-迭代法
四、源程序调试过程和(或)实验分析
结果提交:a=-1,a=121,a=3三种情况的结果截屏。
实验题目
结构化程序设计
实验时间
实验地点
实验成绩
实验性质
□验证性√设计性□综合性
教师评价:
□算法/实验过程正确;□源程序/实验内容提交□程序结构/实验步骤合理;
□实验结果正确;□语法、语义正确;□报告规范;
其他:
评价教师签名:
一、实验目的
1)通过上机实验,认识软件开发环境,掌握开发工具的操作方法;
2)了解编译程序原理,以及源程序、目标程序和执行程序的特点;
3)验证程ห้องสมุดไป่ตู้的正确性;
4)学习上机调试程序的方法和技术;
5)学习顺序、条件、循环三种基本结构的应用。
二、实验项目内容(实验题目)
已知平方根迭代公式Xn +1=0.5*(Xn+ a/Xn)且x0=a/2。编写程序输入a值计算其平方根。迭代的结束条件是Xn +1- Xn<10-5
三、源程序(实验过程或算法)

MATL新编计算方法迭代法牛顿法二分法实验报告

MATL新编计算方法迭代法牛顿法二分法实验报告

M A T L新编计算方法迭代法牛顿法二分法实验报告 Prepared on 22 November 2020姓名 实验报告成绩评语:指导教师(签名)年 月 日说明:指导教师评分后,实验报告交院(系)办公室保存。

实验一 方程求根一、 实验目的用各种方法求任意实函数方程0)(=x f 在自变量区间[a ,b]上,或某一点附近的实根。

并比较方法的优劣。

二、 实验原理(1)、二分法对方程0)(=x f 在[a ,b]内求根。

将所给区间二分,在分点2a b x -=判断是否0)(=x f ;若是,则有根2ab x -=。

否则,继续判断是否0)()(<•x f a f ,若是,则令x b =,否则令x a =。

否则令x a =。

重复此过程直至求出方程0)(=x f 在[a,b]中的近似根为止。

(2)、迭代法将方程0)(=x f 等价变换为x =ψ(x )形式,并建立相应的迭代公式=+1k x ψ(x )。

(3)、牛顿法若已知方程 的一个近似根0x ,则函数在点0x 附近可用一阶泰勒多项式))((')()(0001x x x f x f x p -+=来近似,因此方程0)(=x f 可近似表示为+)(0x f 0))(('0=-x x x f 设0)('0≠x f ,则=x -0x )(')(00x f x f 。

取x 作为原方程新的近似根1x ,然后将1x 作为0x 代入上式。

迭代公式为:=+1k x -0x )(')(k k x f x f 。

三、 实验设备:MATLAB 软件四、 结果预测 (1)11x = (2)5x = (3)2x =0,09052五、 实验内容(1)、在区间[0,1]上用二分法求方程0210=-+x e x 的近似根,要求误差不超过3105.0-⨯。

(2)、取初值00=x ,用迭代公式=+1k x -0x )(')(k k x f x f ,求方程0210=-+x e x 的近似根。

迭代法求解方程问题实验报告

迭代法求解方程问题实验报告

迭代法求解方程问题实验报告姓名:殷伯旭 班级:信计0801班 学号:u200810065一. 实验目的运用数学知识与matlab 相结合,运用数学方法,建立数学模型,用matlab 软件辅助求解模型,解决实际问题。

二. 实验任务求方程1020x e x +-=的一个近似解,误差不超过410-,要求: 设计4种求解的迭代法,讨论其收敛性,并求出满足精度的近似解;三. 实验分析与求解题目要求设计四种迭代方法,我们考虑用书上的四种迭代思想:方法一:用Steffenson 迭代法,首先构造函数:2()10xe g x -=, 则迭代公式为:21(())k k k k k k kg x x x x +-=- 方法二:一般的迭代法,1210k k x e x +-=方法三:单点弦截法法,固定01()()()()0.25,f a b a f b f a a x x --==-, 其中端点120,a b ==,则迭代公式为:010()()()()k k k k k f x x x x x f x f x +=--- 方法四:双点弦截法法,迭代公式为:111()()()()k k k k k k k f x x x x x f x f x +--=--- 实验程序:function shiyan112%%%%%方法一: stefften 迭代x0=0.25;g0=(2-exp(x0))/10;gg0=(2-exp(g0))/10;x1=x0-(g0-x0)^2/(gg0-2*g0+x0);n1=0;while abs(x1-x0)>0.00001x0=x1;g0=(2-exp(x0))/10;gg0=(2-exp(g0))/10;x1=x0-(g0-x0)^2/(gg0-2*g0+x0);n1=n1+1;x(n1)=x1;endn1x0=x1%%%%%方法二: 一般迭代x20=0.25;x21=(2-exp(x20))/10;n2=0;while abs(x21-x20)>0.00001x20=x21;x21=(2-exp(x20))/10;n2=n2+1;endn2x20=x21%%%%%方法三: 单点弦截法x30=0.25;a=0;b=0.5;n3=0;fa=exp(a)+10*a-2;fb=exp(b)+10*b-2;x31=a-fa*(b-a)/(fb-fa);f30=exp(x30)+10*x30-2;f31=exp(x31)+10*x31-2;x32=x31-f31*(x31-x30)/(f31-f30); while abs(x32-x31)>0.00001x31=x32;f31=exp(x31)+10*x31-2;x32=x31-f31*(x31-x30)/(f31-f30);n3=n3+1;endn3x30=x32%%%%%%%方法四:双点弦截法x40=0.25;x41=0.5;n4=0;f40=exp(x40)+10*x40-2;f41=exp(x41)+10*x41-2;x42=x41-f41*(x41-x40)/(f41-f40);while abs(x42-x41)>0.00001x40=x41;x41=x42;f40=exp(x40)+10*x40-2;f41=exp(x41)+10*x41-2;x42=x41-f41*(x41-x40)/(f41-f40);n4=n4+1;endn4x40=x42运行结果:(1) 方法一: x =0.0905 ; 迭代次数: n1 = 2(2)方法二: x =0.0905 ; 迭代次数: n2 = 5(3) 方法三: x =0.0905 ; 迭代次数: n3 = 2(4) 方法四: x =0.0905 ; 迭代次数: n4 =33)实验总结通过自主学习matlab,编程能力有了较大提高,并将其应用于数值代数刚学的一种思想,在加深对该领域印象的同时对matlab有了更深一层的了解。

数学实验-迭代(方程求解)

数学实验-迭代(方程求解)

实验六 迭代(方程求解)一.实验目的:认识迭代数列,考察迭代数列的收敛性.并学会用Mathematica 系统对线性和非线性的方程组进行迭代求解.二.实验环境:计算机,Mathematica 数学软件,Word 文档,课本。

三.实验的基本理论和方法:给定迭代函数f(x)以及一个初值0x 利用1(),0,1,n n x f x n +==⋅⋅⋅迭代得到数列n x ,0,1,n =⋅⋅⋅.如果数列n x 收敛与某个*x ,则有**()x f x =.即*x 是方程()x f x =的解.由此用如下的方法求方程()0g x =的近似解。

将方程()0g x =改写为等价的方程()x f x =,然后选取一初值利用1(),0,1,n n x f x n +==⋅⋅⋅做迭代.迭代数列n x 收敛的极限就是()0g x =的解.线性方程组以及非线性方程组的求解与单变量的方程求解方法类似.实验内容和步骤四.实验内容与结果 1.线性方程组⑴编写给定初值0x 及迭代函数()f x ,迭代n 次产生相应的序列.⑵给函数()(2/)f x x x =+初值为0进行迭代80次所产生的迭代序列并显示. 输入程序:Iterate f_,x0_,n_Integer :Module t ,i,temp x0,AppendTo t,temp ;For i1,in,i ,tempf temp ;AppendTo t,temp;tf x_:x 2x2;Iterate f,1.,80运行结果得:1.,1.5,1.41667,1.41422,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421,1.41421输入程序:NTIterate g_,x0_,n_Integer :Modulei,var x0,t ,h,h x_Dt g x ,x;For i 1,i n,i ,AppendTo t,var ;If h var0,var N var g var h var ,20, Print"Divided by Zero after",i,"'s iterations.";Break ;tg x_:x^32;NTIterate g,1,40运行结果得:1,1.3333333333333333333,1.2638888888888888889,1.2599334934499769665,1.259921050017769774,1.259921049894873165,1.259921049894873165,1.259921049894873165,1.25992104989487316,1.25992104989487316,1.25992104989487316,1.2599210498948732,1.2599210498948732,1.2599210498948732,1.259921049894873,1.259921049894873,1.259921049894873,1.259921049894873,1.25992104989487,1.25992104989487,1.25992104989487,1.2599210498949,1.2599210498949,1.2599210498949,1.259921049895,1.259921049895,1.259921049895,1.259921049895,1.25992104989,1.25992104989,1.25992104989,1.2599210499,1.2599210499,1.2599210499,1.259921050,1.259921050,1.259921050,1.259921050,1.25992105, 1.259921052. 非线性方程组⑴对于给定的矩阵M ,数组f 和初始向量0x ,由迭代1n n x Mx f +=+编写迭代程序,并选择初值分别迭代20和50次所产生的序列. 迭代40次运行结果: 输入程序:LSIterate m_,f_List,f0_List,n_Integer :Modulei,var f0,t Table ,i,n,For i1,in,i,tivar;varm.varf ;t m1,0.4,0.5,1;f1,1;f00,0;LSIterate m,f,f0,40运行结果得:0,0, 1.,1., 2.4,2.5, 4.4,4.7,7.28,7.9,11.44,12.54,17.456,19.26,26.16,28.988,38.7552,43.068,56.9824,63.4456,83.3606,92.9368,121.535,135.617,176.782,197.385,256.736,286.776,372.446,416.144,539.904,603.367,782.251,874.319,1132.98,1266.44,1640.56,1833.93,2375.13,2655.21,3438.22,3843.78,4976.73,5563.88,7203.28,8053.25,10425.6,11655.9,15088.9,16869.7,21837.8,24415.1,31604.9,35335.,45739.9,51138.5,66196.3,74009.4,95801.,107109.,138645.,155010.,200650.,224334.,290385.,324660.,420250.,469854.,608192.,679980.,880185.,984077.,1.27382106,1.42417106, 1.84349106,2.06108106,2.66792106,2.98282106,3.86105106,4.31678106迭代60次运行结果输入程序:LSIterate m_,f_List,f0_List,n_Integer:Modulei,var f0,t Table,i,n,For i1,i n,i,t i var;var m.var f;tm1,0.4,0.5,1;f1,1;f00,0;LSIterate m,f,f0,60运行结果得:1,1.3333333333333333333,1.2638888888888888889,1.2599334934499769665,1.259921050017769774,1.259921049894873165,1.259921049894873165,1.259921049894873165,1.25992104989487316,1.25992104989487316,1.25992104989487316,1.2599210498948732,1.2599210498948732,1.2599210498948732,1.259921049894873,1.259921049894873,1.259921049894873,1.259921049894873,1.25992104989487,1.25992104989487,1.25992104989487,1.2599210498949,1.2599210498949,1.2599210498949,1.259921049895,1.259921049895,1.259921049895,1.259921049895,1.25992104989,1.25992104989,1.25992104989,1.2599210499,1.2599210499,1.2599210499,1.259921050,1.259921050,1.259921050,1.259921050,1.25992105,1.25992105⑵改写矩阵的等价形式,给定数组f 和初始向量0x ,运用迭代格式11()x I D A x D b --=-+编写迭代程序。

迭代法实验报告

迭代法实验报告

迭代法实验报告 一. 实验目的:掌握迭代方法的用处 二. 实验环境:Cfree5.0 三. 实验时间:2013年6月20日 四. 实验地点:电子信息楼1201教室 五. 实验内容:运用编程实现迭代方法可以更好的解线性方程组,得到线性方程的解。

六. 实验理论依据:高斯-赛德尔(Gauss-Seidel )迭代公式我们注意到在雅可比迭代法中并没有对新算出的分量11k x +,12k x +,,11k i x +-进行充分利用.不妨设想,在迭代收敛的条件下,我们把(1)()()()11211331111(1)()()()22112332222(1)()()()1122,111()1(1(k k k k n n k k k k n n k k k k n n n n n n nn x a x a x a x b a x a x a x a x b a x a x a x a x b a +++--⎧=---+⎪⎪⎪=---+⎪⎨⎪⎪⎪=---+⎪⎩式中第一个方程算出的11k x +立即投入到第二个方程中,代替()1k x 进行计算,当12k x +算出后代替()2k x 马上投入到第三个方程中计算,依次进行下去,这样也许会得到更好的收敛效果.根据这种思路建立的一种新的迭代格式,我们称为高斯-赛德尔(Gauss-Seidel )迭代公式,高斯=赛德尔迭代法的分量形式:(1)()()()11211331111(1)(1)()()22112332222(1)(1)(1)(1)1122,111()1(1(k k k k n n k k k k n n k k k k n n n n n n nn x a x a x a x b a x a x a x a x b a x a x a x a x b a +++++++--⎧=---+⎪⎪⎪=---+⎪⎨⎪⎪⎪=---+⎪⎩高斯-赛德尔迭代法的矩阵形式:(1)(),(0,1,2,)k k x Bx f k +=+=其中1()B D L U -=-,1()f D L b -=- B 称为高斯-赛德尔迭代矩阵,f 称为高斯-赛德尔迭代常量..七. 运行代码如下:#include"stdio.h"#include"math.h"int main(){bool pan1=true;int n,n1,n2=0,k=0;doublenum[100][100],L[100][100],U[100][100],x[100],y[100],num1=0,b[100],D[100][100],x1[200][200],x2[200][200];printf("\n");printf("*******************************高斯迭代法解如下********************************");printf("输入要输入矩阵的阶数为(按Enter 输入矩阵数字):");//输入矩阵的阶数scanf("%d",&n1);for(int i=0;i<n1;i++)//输入矩阵的数{printf("输入第%d行数字为(按Enter进入下一行的输入):",i+1);for(int j=0;j<n1;j++){scanf("%lf",&num[i][j]);}}//输入矩阵的数结束for(int i=0;i<n1;i++)//求解对角线上的矩阵数{for(int j=0;j<n1;j++){if(i==j){D[i][j]=num[i][j];L[i][j]=0;U[i][j]=0;}if(i>j){L[i][j]=-num[i][j];}if(i<j){U[i][j]=-num[i][j];}}}//求解对角线上的矩阵数结束printf("=================================输出D的矩阵为==================================");for(int i=0;i<n1;i++)//输出D矩阵 {for(int j=0;j<n1;j++){printf("%10lf",D[i][j]);}printf("\n");}printf("\n");printf("=================================输出L的矩阵为==================================");for(int i=0;i<n1;i++)//输出L矩阵{for(int j=0;j<n1;j++){printf("%10lf",L[i][j]);}printf("\n");}printf("\n");printf("=================================输出U的矩阵为==================================");for(int i=0;i<n1;i++)//输出U矩阵{for(int j=0;j<n1;j++){printf("%10lf",U[i][j]);}printf("\n");}printf("输入矩阵右端常数为(以空格隔开,按回车进行下一步):");//输入b的值for(int i=0;i<n1;i++){scanf("%lf",&b[i]);}//输入b的值结束printf("输入初始化x(0)的矩阵值(以空格隔开,按回车得到结果):");//输入x的值for(int i=0;i<n1;i++){scanf("%lf",&x2[0][i]);}while(pan1)//高斯迭代法的for语句部分 {for(int i=0;i<n1;i++){for(int j=0;j<i;j++){num1+=num[i][j]*x2[k+1][j];}for(int j1=i+1;j1<n1;j1++){num1+=num[i][j1]*x2[k][j1];}x2[k+1][i]=(b[i]-num1)/num[i][i];num1=0;}for(int i=0;i<n1;i++) {if(fabsf(x2[k+1][i]-x2[k][i])<0.002) {n2++;}}if(n2==n1){pan1=false; }else{k++;pan1=true; }}//高斯迭代法的for语句部分结束printf("迭代次数k的值为:%d\n",k);//输出迭代次数printf("输出的迭代法解的结果为:\n"); for(int i=0;i<n1;i++)//输出x的解{printf("第%d个x的值为:%lf\n",i+1,x2[k][i]);}printf("\n");}八.运行结果如下:九.实验心得:高斯=赛德尔迭代法其系数矩阵是严格对角占优的,所以高斯=赛德尔迭代法有很好的收敛性。

迭代法实验报告

迭代法实验报告

一、课题名称Matlab解线性方程组的迭代法二、目的和意义1、通过上机计算体会迭代法求解线性方程组的特点,并能和消去法比较;2、运用所学的迭代法算法,解决各类线性方程组,编出算法程序;3、体会上机计算时,终止步骤(予给的迭代次数),对迭代法敛散性的意义;4、体会初始解 x(,松弛因子的选取,对计算结果的影响三、实验要求1、体会迭代法求解线性方程组,并能与消去法做以比较;2、分别对不同精度要求,如由迭代次数体会该迭代法的收敛快慢; 54310,10,10−8722 .−s23 =ε3、对方程组2,3使用SOR方法时,选取松弛因子ω=0.8,0.9,1,1.1,1.2等,试看对算法收敛性的影响,并能找出你所选用的松弛因子的最佳者;4、给出各种算法的设计程序和计算结果。

四、问题描述给出下列几个不同类型的线性方程组,请用适当算法计算其解。

a=[4 -1 0 0 0 0 0 0 0 0 ;-1 4 -1 0 0 0 0 0 0 0;0 -1 4 -1 0 0 0 0 0 0;0 0 -1 4 -1 0 0 0 0 0;0 0 0 -1 4 -1 0 0 0 0; 0 0 0 0 -1 4 -1 0 0 0; 0 0 0 0 0 -1 4 -1 0 0;0 0 0 0 0 0 -1 4 -1 0; 0 0 0 0 0 0 0 -1 4 -1; 0 0 0 0 0 0 0 0 -1 4];b=[7 5 -13 2 6 -12 14 -4 5 -5];n=10;x=[0 0 0 0 0 0 0 0 0 0];六、实验程序设计Jacobi 迭代法function z=chap8_7(a,b,n,x)for k=1:19for i=1:ns=0;for j=1:nif j~=i,s=s+a(i,j)*x(j);endendy(i)=(b(i)-s)/a(i,i);endx=y;x;endz=x计算方程组一>>a=[4,2,-3,-1,2,1,0,0,0,0;8,6,-5,-3,6,5,0,1,0,0;4,2,-2,-1,3,2,-1,0,3,1;0,-2,1, 5,-1,3,-1,1,9,4;-4,2,6,-1,6,7,-3,3,2,3;8,6,-8,5,7,17,2,6,-3,5;0,2,-1,3,-4,2,5,3 ,0,1;16,10,-11,-9,17,34,2,-1,2,2;4,6,2,-7,13,9,2,0,12,4;0,0,-1,8,-3,-24,-8,6,3, -1];>> b=[5;12;3;2;3;46;13;38;19;-21];>> n=10;>> x=[0 0 0 0 0 0 0 0 0 0]';>> z=chap8_7(a,b,n,x);z =1.0e+012 *Columns 1 through 9-0.0809 -0.1452 -0.3955 0.8764 0.5509 0.2161 0.1732 1.9353 0.2550Column 10-1.8123计算方程组二>> a=[4 2 -4 0 2 4 0 0 ; 2 2 -1 -2 1 3 2 0; -4 -1 14 1 -8 -3 5 6;0 -2 1 6 -1 -4 -3 3; 2 1 -8 -1 22 4 -10-3; 4 3 -3 -4 4 11 1 -4;0 2 5 -3 -10 1 14 2;0 0 6 3 -3 -4 2 19];>> b=[0 -6 20 23 9 -22 -15 45];>> n=8;>> x=[0 0 0 0 0 0 0 0]';>> z=chap8_7(a,b,n,x);z =1.0e+005 *-2.6705 -4.0285 1.0957 1.5976 -0.6513 -1.7472 -0.0556 0.5478计算方程组三>> a=[4 -1 0 0 0 0 0 0 0 0 ;-1 4 -1 0 0 0 0 0 0 0;0 -1 4 -1 0 0 0 0 0 0;0 0 -1 4 -1 0 0 0 0 0;0 0 0 -1 4-1 0 0 0 0; 0 0 0 0 -1 4 -1 0 0 0; 0 0 0 0 0 -1 4 -1 0 0;0 0 0 0 0 0 -1 4 -1 0; 0 0 0 0 0 0 0 -1 4 -1; 0 00 0 0 0 0 0 -1 4];>> b=[7 5 -13 2 6 -12 14 -4 5 -5];>> n=10;>> x=[0 0 0 0 0 0 0 0 0 0];>> z=chap8_7(a,b,n,x);z =2.0000 1.0000 -3.0000 -0.0000 1.0000 -2.0000 3.0000 -0.0000 1.0000 -1.0000Gauss-Seidol迭代法function z=chap8_8(a,b,n,x)for k=1:19for i=1:ns=0;for j=1:i-1s=s+a(i,j)*y(j);ends1=0;for j=i+1:ns1=s1+a(i,j)*x(j);endy(i)=(b(i)-s-s1)/a(i,i);endx=y;x;endz=x计算方程组一>>a=[4,2,-3,-1,2,1,0,0,0,0;8,6,-5,-3,6,5,0,1,0,0;4,2,-2,-1,3,2,-1,0,3,1;0,-2,1,5,-1,3,-1,1,9,4;-4,2,6,-1,6, 7,-3,3,2,3;8,6,-8,5,7,17,2,6,-3,5;0,2,-1,3,-4,2,5,3,0,1;16,10,-11,-9,17,34,2,-1,2,2;4,6,2,-7,13,9,2,0,1 2,4;0,0,-1,8,-3,-24,-8,6,3,-1];>> b=[5;12;3;2;3;46;13;38;19;-21];>> n=10;>> x=[0 0 0 0 0 0 0 0 0 0]';>> z=chap8_8(a,b,n,x);z =1.0e+024 *0.0088 -0.0144 0.1171 -0.2433 -0.3164 0.1669 -0.2330 1.1938 0.0220 3.9729计算方程组二>> a=[4 2 -4 0 2 4 0 0 ; 2 2 -1 -2 1 3 2 0; -4 -1 14 1 -8 -3 5 6;0 -2 1 6 -1 -4 -3 3; 2 1 -8 -1 22 4 -10 -3; 4 3 -3 -4 4 11 1 -4;0 2 5 -3 -10 1 14 2;0 0 6 3 -3 -4 2 19];>> b=[0 -6 20 23 9 -22 -15 45];>> n=8;>> x=[0 0 0 0 0 0 0 0]';>> z=chap8_8(a,b,n,x);z =12.8578 -12.8010 4.3202 -3.8776 1.9548 -3.6841 -0.1256 1.1627计算方程组三>> a=[4 -1 0 0 0 0 0 0 0 0 ;-1 4 -1 0 0 0 0 0 0 0;0 -1 4 -1 0 0 0 0 0 0;0 0 -1 4 -1 0 0 0 0 0;0 0 0 -1 4 -1 0 0 0 0; 0 0 0 0 -1 4 -1 0 0 0; 0 0 0 0 0 -1 4 -1 0 0;0 0 0 0 0 0 -1 4 -1 0; 0 0 0 0 0 0 0 -1 4 -1; 0 0 0 0 0 0 0 0 -1 4];>> b=[7 5 -13 2 6 -12 14 -4 5 -5];>> n=10;>> x=[0 0 0 0 0 0 0 0 0 0];>> z=chap8_8(a,b,n,x);z =2.0000 1.0000 -3.0000 -0.0000 1.0000 -2.0000 3.0000 -0.0000 1.0000 -1.0000七、实验结果分析直接法得到的解是理论上准确的,但是我们可以看得出,它们的计算量都是n3数量级,存储量为n2量级,这在n比较小的时候还比较合适(n<1000 , 1G/s , 15秒 , 8M),但是对于现在的很多实际问题,往往要我们求解很大的n的矩阵,而且这些矩阵往往是系数矩阵就是这些矩阵含有大量的0元素。

包含迭代的实验报告

包含迭代的实验报告

实验名称:迭代算法在图像处理中的应用一、实验目的1. 熟悉迭代算法的基本原理;2. 掌握迭代算法在图像处理中的应用;3. 分析迭代算法在图像处理中的优缺点。

二、实验原理迭代算法是一种通过不断重复执行某一操作来逼近目标值的方法。

在图像处理中,迭代算法常用于图像滤波、边缘检测、图像增强等方面。

本实验主要探讨迭代算法在图像滤波中的应用。

三、实验步骤1. 准备实验数据:选择一张含噪声的图像作为实验数据。

2. 实现迭代算法:(1)设计迭代滤波器,例如均值滤波器、中值滤波器等;(2)编写迭代算法程序,实现滤波过程。

3. 实验分析:(1)分析不同迭代次数对滤波效果的影响;(2)比较不同迭代算法的滤波效果;(3)总结迭代算法在图像处理中的优缺点。

四、实验结果与分析1. 实验数据:选择一张含噪声的图像作为实验数据,如图1所示。

图1 原始图像2. 迭代滤波器设计:(1)均值滤波器:将图像中每个像素点周围的像素值求平均值,作为该像素点的滤波结果;(2)中值滤波器:将图像中每个像素点周围的像素值排序,取中值作为该像素点的滤波结果。

3. 迭代算法程序实现:(1)编写均值滤波器迭代算法程序;(2)编写中值滤波器迭代算法程序。

4. 实验结果分析:(1)不同迭代次数对滤波效果的影响:在图2和图3中,分别展示了均值滤波器和中值滤波器在迭代次数分别为1、3、5、7、9次时的滤波效果。

从图中可以看出,随着迭代次数的增加,滤波效果逐渐变好,但同时也可能引入更多的边缘模糊现象。

图2 均值滤波器不同迭代次数的滤波效果图3 中值滤波器不同迭代次数的滤波效果(2)不同迭代算法的滤波效果比较:在图4中,展示了均值滤波器和中值滤波器在迭代次数为5次时的滤波效果。

可以看出,中值滤波器在去除噪声的同时,能较好地保留图像边缘信息,而均值滤波器则容易导致边缘模糊。

图4 均值滤波器与中值滤波器滤波效果比较(3)迭代算法在图像处理中的优缺点:优点:1. 迭代算法简单易实现;2. 能够有效去除图像噪声;3. 适用于多种图像处理任务。

实验报告迭代

实验报告迭代

一、实验背景随着计算机技术的不断发展,图像处理技术在各个领域得到了广泛的应用。

图像处理过程中,如何提高算法的效率和质量成为研究的热点。

迭代算法作为一种有效的算法,在图像处理领域具有广泛的应用前景。

本文以迭代算法在图像处理中的应用为研究对象,通过实验验证迭代算法在图像处理中的优越性。

二、实验目的1. 研究迭代算法在图像处理中的应用。

2. 分析迭代算法在图像处理中的性能和优势。

3. 优化迭代算法,提高图像处理效果。

三、实验原理迭代算法是一种通过不断迭代计算来逼近问题的解的方法。

在图像处理中,迭代算法可以用于图像增强、图像去噪、图像分割等任务。

本文主要研究迭代算法在图像去噪和图像分割中的应用。

1. 图像去噪图像去噪是图像处理中的基本任务之一。

迭代算法可以通过以下步骤实现图像去噪:(1)初始化去噪图像;(2)根据噪声图像计算去噪图像的梯度;(3)根据梯度信息更新去噪图像;(4)重复步骤(2)和(3)直到满足收敛条件。

2. 图像分割图像分割是将图像划分为若干个区域的过程。

迭代算法可以通过以下步骤实现图像分割:(1)初始化分割区域;(2)根据分割区域计算图像的梯度;(3)根据梯度信息更新分割区域;(4)重复步骤(2)和(3)直到满足收敛条件。

四、实验环境与数据1. 实验环境操作系统:Windows 10开发工具:Python 3.7图像处理库:OpenCV 3.4.102. 实验数据实验数据为两组彩色图像,一组为含噪声的图像,另一组为原始图像。

五、实验步骤1. 导入图像处理库;2. 读取实验数据;3. 应用迭代算法进行图像去噪;4. 应用迭代算法进行图像分割;5. 保存实验结果;6. 分析实验结果。

六、实验结果与分析1. 图像去噪实验结果如图1所示,其中(a)为含噪声的图像,(b)为迭代算法去噪后的图像。

从实验结果可以看出,迭代算法能够有效去除图像噪声,提高图像质量。

2. 图像分割实验结果如图2所示,其中(a)为原始图像,(b)为迭代算法分割后的图像。

迭代法实验报告

迭代法实验报告

迭代法实验报告迭代法实验报告引言:迭代法是一种常见的数值计算方法,通过反复迭代逼近解的过程,来解决一些复杂的数学问题。

本实验旨在通过实际操作,深入理解迭代法的原理和应用,并通过实验数据验证其有效性。

一、实验目的本实验的主要目的有以下几点:1. 掌握迭代法的基本原理和步骤;2. 熟悉迭代法在数值计算中的应用;3. 理解迭代法的收敛性和稳定性;4. 验证迭代法在实际问题中的有效性。

二、实验原理迭代法是一种通过不断逼近解的方法,其基本原理可概括为以下几步:1. 选择一个初始值作为迭代的起点;2. 根据问题的特点和要求,构造一个递推公式;3. 通过不断迭代计算,逐步逼近解;4. 判断迭代过程是否收敛,并确定最终的解。

三、实验步骤1. 选择合适的初始值。

初始值的选择对迭代的结果有重要影响,通常需要根据问题的特点进行合理选取。

2. 构造递推公式。

根据问题的数学模型,建立递推公式,将问题转化为迭代求解的形式。

3. 进行迭代计算。

根据递推公式,进行迭代计算,直到满足收敛条件或达到预定的迭代次数。

4. 判断迭代结果。

根据实际问题的要求,判断迭代结果是否满足精度要求,并进行相应的调整和优化。

四、实验结果与分析通过实验操作,我们得到了一组迭代计算的结果。

根据实验数据,我们可以进行以下分析:1. 收敛性分析。

通过观察迭代过程中的数值变化,我们可以判断迭代法的收敛性。

如果数值逐渐趋于稳定,且与理论解的误差在可接受范围内,说明迭代法收敛。

2. 稳定性分析。

迭代法的稳定性是指在初始值变化时,迭代结果是否保持稳定。

通过改变初始值,我们可以观察迭代结果的变化情况,从而评估迭代法的稳定性。

3. 精度分析。

迭代法的精度取决于迭代过程中的误差累积情况。

通过与理论解的比较,我们可以评估迭代法的精度,并对迭代过程进行优化。

五、实验结论通过本次实验,我们深入了解了迭代法的原理和应用,通过实际操作验证了迭代法在数值计算中的有效性。

实验结果表明,迭代法在解决复杂数学问题中具有较高的准确性和稳定性,能够满足实际应用的需求。

数值分析实验报告之迭代法求非线性方程的根

数值分析实验报告之迭代法求非线性方程的根

数值分析实验报告之迭代法求非线性方程的根1.实验目的掌握迭代法求非线性方程根的基本原理和使用方法,加深对数值计算方法的理解与应用。

2.实验原理迭代法是一种通过不断逼近的方法求解非线性方程的根。

根据不同的函数特点和问题需求,可以选择不同的迭代公式进行计算,如牛顿迭代法、二分法、弦截法等。

3.实验内容本次实验使用牛顿迭代法求解非线性方程的根。

牛顿迭代法基于函数的局部线性逼近,通过不断迭代逼近零点,直至满足收敛条件。

具体步骤如下:Step 1:选择初始点X0。

Step 2:计算函数f(x)在X0处的导数f'(x0)。

Step 3:计算迭代公式Xn+1 = Xn - f(Xn) / f'(Xn)。

Step 4:判断收敛准则,若满足则迭代结束,输出解Xn;否则返回Step 2,继续迭代。

Step 5:根据实际情况判断迭代过程是否收敛,并输出结果。

4.实验步骤步骤一:选择初始点。

根据非线性方程的特点,选择恰当的初始点,以便迭代公式收敛。

步骤二:计算导数。

根据选择的非线性方程,计算函数f(x)的导数f'(x0),作为迭代公式的计算基础。

步骤三:迭代计算。

根据迭代公式Xn+1=Xn-f(Xn)/f'(Xn),计算下一个迭代点Xn+1步骤四:判断收敛。

判断迭代过程是否满足收敛条件,通常可以通过设置迭代次数上限、判断前后两次迭代结果的差值是否足够小等方式进行判断。

步骤五:输出结果。

根据实际情况,输出最终的迭代结果。

5.实验结果与分析以求解非线性方程f(x)=x^3-x-1为例,选择初始点X0=1进行迭代计算。

根据函数f(x)的导数计算公式,得到导数f'(x0)=3x0^2-1,即f'(1)=2根据迭代公式Xn+1=Xn-f(Xn)/f'(Xn),带入计算可得:X1=X0-(X0^3-X0-1)/(3X0^2-1)=1-(1-1-1)/(3-1)=1-0/2=1根据收敛准则,判断迭代结果是否满足收敛条件。

数字逻辑实验 迭代法

数字逻辑实验 迭代法

数字逻辑实验迭代法
迭代法是一种逐步逼近目标值的方法,多用于数值计算领域。

在数字逻辑实验中,迭代法可以用于逻辑电路的设计和优化。

以逻辑门的设计为例,假设我们要设计一个4输入与门,其中每一个输入都只能为0或1。

传统的方法是使用布尔代数化简
并得到最简表达式,然后使用逻辑门的基本组合方法实现。

但是对于复杂的逻辑电路,这种方法会变得非常繁琐。

迭代法可以帮助我们更快速地实现这个逻辑电路。

首先,我们可以将每个输入看作一个变量,并随机给出一个初始估计值。

然后,我们使用逻辑门的基本组合方法计算出这些输入的逻辑函数,并将得到的函数值与实际输出进行比较。

如果存在误差,则根据误差大小调整输入的估计值。

这个过程重复进行,直到误差足够小或者达到迭代次数的上限。

使用迭代法的优点包括能够处理复杂的逻辑电路、能够自适应地处理不确定的输入、能够有效减小误差等。

然而,需要注意的是,迭代法的收敛性和正确性需要严格的证明。

同时,迭代法的实现需要考虑计算的复杂度和算法的稳定性等问题。

实验二:迭代法、初始值与收敛性

实验二:迭代法、初始值与收敛性

实验二:迭代法、初始值与收敛性一:实验要求考虑一个简单的代数方程210,x x --=针对上述方程,可以构造多种迭代法,如211111,1,1n n n n n nx x x x x x +++=-=+=+等。

在实轴上取初值,分别用以上迭代做实验,记录各算法的迭代过程。

二:实验要求及实验结果(1) 取定某个初始值,按如上迭代格式进行计算,它们的收敛性如何?重复选取不同放入初始值,反复实验。

请读者自行设计一种比较形象的记录方式(如何利用Matlab 的图形功能),分析三种迭代法的收敛性与初值的选取关系。

(2) 对三个迭代法中的某一个,取不同的初值进行迭代,结果如何?试分析对不同的初值是否有差异?实验内容:ⅰ)对211n n x x +=-进行迭代运算,选取迭代次数n=20;分别选择初值-0.6, 1.6进行实验,并画出迭代结果的趋势图。

编写MATLAB 运算程序如下:%迭代法求解 %令x=x^2-1 clearn=30; x=-0.5;x1=x^2-1; for i=1:nx1=x1^2-1;xx(i)=x1;endm=linspace(0,29,n);plot(m,xx) title('x=-0.5')2468101214161820-1-0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.10x=-0.602468101214161820-1-0.500.511.5x=1.6如上图所示,选取初值分别为-0.6、1.6时,结果都是不收敛的。

分析:2()1n g x x =-,'()2g x x =,要想在某一邻域上'()21,[1,1]g x x x =<∀∈-则但是()[1,1]g x ∉-,所以不存在某个邻域使得该迭代公式收敛。

即迭代公式对任何初值都是发散的。

ⅱ)对111n nx x +=+进行迭代运算,选取迭代次数n=30;分别选择初值=-0.7, 2.1进行实验,并画出迭代结果的趋势图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

观察序列,并且判断极限。 Mathematica 程序如下:
当 x0=0.1,n=10 时,运行程序得
当 x0=0.5,n=10 时,运行程序得
当 x0=0.9,n=10 时,运行程序得
当 x0=1,n=10 时,运行程序得
实验结论:
10
由以上实验可得,函数 f(x)=x/2+1/x 的极限为 1.41421
《数学实验》实验报告
班级 实验 内容 **** 学号 **** 姓名 实验 类别 **** 成绩 实验 时间
迭代法
自选实验
2011.6.7
实验问题:
n 元线性方程组
a11 x1 a12 x 2 a1 n xn 0 a x a x a x 0 21 1 22 2 2n n am 1 x1 am 2 x 2 amn xn 0
其中,f[x_]:=为所求迭代函数,迭代n次产生相应是序列,并观察。
(3)线性方程组的迭代求解 对给定的矩阵 M、 数组 f 和初始向量 x0, 由 X^(n+1)=Mx^n+f,n=0,1,2,3……给定的结 果 其 Matheatica 程序如下:

实验过程:
1.迭代序列 ( 1 ) 给 定 的 实 数 域 上 光 滑 的 实 值 函 数 f(x) 以 及 初 值 x0, 定 义 数 列 x(n+1)=f(x0),n=0,1,2,3,……. 对函数 f(x)= (25*x - 85)/(x + 3)的迭代过程,可以形象地用蜘蛛网图像来直观地显示,运 行以下程序:
2.方程求根
用迭代序列求 g(x)=x^3-2*x+1 的根,其 matheatic 程序如下:
当 x0=0.1,n=10 时,运行程序得
当 x0=0.5,n=10 时,运行程序得 当 x0=1.0,n=10 时,运行程序得
当 x0=1.5,n=10 时,运行程序得
当 x0=2.5,n=10 时,运行程序得

(2)以下是给定初值 x0 为 5.0
得到函数 f(x)=(25*x-85)/(x+3)的蜘蛛网图 如图:

(3)以下给定初值 x0 是 5.5
得到函数 f(x)=(25*x-85)/(x+3)的蜘蛛网图 如图:

(4)以下给定初值 x0 是 10
得到函数 f(x)=(25*x-85)/(x+3)的蜘蛛网图
பைடு நூலகம்实验目的:
(1)了解、掌握迭代法并且会熟练运用迭代法。 (2)通过多个实例研究知道的迭代数列的收敛性,比较多次实验的结果,继而得出相应结 论。 (3)通过理论知识以及多个实例,结合目的(2)学习线性方程组的迭代求解,通过多次举例 实验得出相应结论。 (4)同目的(3)类似学习非线性方程组的迭代求解,同样通过理论实例得出相应结论。
问题分析:
本实验通过给定的一个实数域上光滑的实值函数 f(x)以及一个初值 X0,之后,将 X0 代入所给的 f(x)得到一个函数值 f(x0)记为 X1;再将得到的 X1 代入函数 f(x)中得到 f(x1), 记为 X2;将 X2 代入 f(x)中得到 f(x2)记为 X3,再将 X3 代入函数 f(x)…….. 重复上述过程, 当将 Xn 代入 f (x) 中得到 Xn+1 即 Xn+1=f(Xn)。 其中{Xn} (n=0 1 2 3 ..) 为 f(x)的一个迭代序列。通过得到的迭代序列{Xn},可以了解迭代序列{Xn}的敛散性:当 n 趋向无穷大时,如果{Xn}收敛于某个 X*,则得到 X*=f(X*),即:X*为 X=f(X)的解。 由以上理论支撑就可以利用迭代法求解某个方程的根继而就可以求解线性方程组的 解、非线性方程组的解。 求解线形方程时,线形方程组的系数矩阵 A 的行列式非零时方程组有唯一解,将方程组 改写成 x=Mx+f 的形式(f 为 n 阶矩阵,f=(f1,f2,……,fn)T 是 n 维列向量,给定 x0,由迭 代方程 X^(n+1)=M*X^n+f,n=0,1,2,….. 确定向量序列 x^n, 如果 x^n 收敛至向量 x*, 则有
当 x0=15,n=50 时,运行程序得
当 x0=22,n=100 时,运行程序得
11
由以上实验可得,函数 g(x)=x^3-2*x+1 收敛到 1
实验结论:
由所给 x0 代入方程 g(x)=x^3-2*x+1 得到 x1, 再将得到的 x1 代入方程 g(x)=x^3-2*x+1 得 到 x2 , 再 将 得 到 的 x2 代 入 方 程 g(x)=x^3-2*x+1 得 到 x3….. 重 复 上 述 过 程 得 到 x1,x2,x3,x4…..如果 x1,x2,x3,x4…..收敛到 x,则 x 即 为方程的根,如果 x1,x2,x3,x4…..不收 敛,则换初始值重复上述过程即可,直到得出收敛的 x.

如图:
(5)以下给定初值 x0 是 16
得到函数 f(x)=(25*x-85)/(x+3)的蜘蛛网图

如图:
(6)以下给定初值 x0 是 17
得到函数 f(x)=(25*x-85)/(x+3)的蜘蛛网图

如图:
实验验证:
(1)程序如下:
运行结果:
实验结论
(1):当初始值 x0 在 5.0~17.0 之间时,都可通过迭代法得知蜘蛛网均落在两直线之间(即收 敛) ,而当初始值 x0 落在 5.0~17.0 之外时其蜘蛛网落在两直线之外(即发散)。 (2) 对给定的初值 x0 及迭代函数 f(x)=x/2+1/x,迭代 n 次产生相应的序列,

x*=Mx*+f,即 x*为方程组的解。 求解非线性方程组时,其可能有很多解,求解过程同求解线性方程组类似。
实验步骤:
(1)方程求根 用迭代序列求解,其编写程序如下:
其中,f[x_]:=所给方程, x0为所给初始值(x0应该给多组,用不同的初始值代入所给 函数,观察其结果。 (2)迭代序列的极限 用迭代序列求解,其编写程序如下:
3.线性方程组的迭代求解
给定一个 n 元线性方程组
a11 x1 a12 x 2 a1 n xn 0 a x a x a x 0 21 1 22 2 2n n am 1 x1 am 2 x 2 amn xn 0
相关文档
最新文档