数理方程与特殊函数试卷(10-11-2A)

合集下载

数学物理方程与特殊函数-模拟试题及参考答案

数学物理方程与特殊函数-模拟试题及参考答案

数学物理方程与特殊函数-模拟试题及参考答案成都理工大学《数学物理方程》模拟试题一、填空题(3分?10=30分)1.说明物理现象初始状态的条件叫(),说明边界上的约束情况的条件叫(),二者统称为().2.三维热传导齐次方程的一般形式是:() . 3 .在平面极坐标系下,拉普拉斯方程算符为() . 4.边界条件 f u nuS=+??)(σ是第()类边界条件,其中S 为边界.5.设函数),(t x u 的傅立叶变换式为),(t U ω,则方程22222xu a t u ??=??的傅立叶变换为() . 6.由贝塞尔函数的递推公式有=)(0x J dxd() . 7.根据勒让德多项式的表达式有)(31)(3202x P x P += (). 8.计算积分=?-dx x P 2112)]([() .9.勒让德多项式)(1x P 的微分表达式为() . 10.二维拉普拉斯方程的基本解是() .二、试用分离变量法求以下定解问题(30分):1.<<=??===><22222,0x t u x x t x x u t u t t x u u u2.===><t u u u u t x x 2,0,00,40,04022 3.<<=??===><<+??=??====20,0,8,00,20,162002022222x t u t x x u t u t t x x u u u三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分)=??=>+∞<<-∞+??=??==0,2sin 0,,cos 0022222t t t u x u t x x x u a t u四、用积分变换法求解下列定解问题(10分):=+=>>===,1,10,0,1002y x u y u y x y x u五、利用贝赛尔函数的递推公式证明下式(10分):)(1)()('0''02x J xx J x J -=六、在半径为1的球内求调和函数u ,使它在球面上满足θ21cos ==r u,即所提问题归结为以下定解问题(10分):.0,12cos 3,0,10,0)(sin sin 1)(11222πθθπθθθθθ≤≤+=≤≤<<=+=r u r ur r u r r r(本题的u 只与θ,r 有关,与?无关)《数学物理方程》模拟试题参考答案一、填空题:1.初始条件,边值条件,定解条件.2. )(2222222zu y u x u a t u ??+??+??=?? 3.01)(1222=??+θρρρρρu u . 4. 三.5.U a dt U d 2222ω-=. 6.)(1x J -. 7.2x . 8.52. 9.)1(212-x dxd . 10.2020)()(1ln y y x x u -+-=.二、试用分离变量法求以下定解问题1.解令)()(),(t T x X t x u =,代入原方程中得到两个常微分方程:0)()(2''=+t T a t T λ,0)()(''=+x X x X λ,由边界条件得到0)3()0(==X X ,对λ的情况讨论,只有当0>λ时才有非零解,令2βλ=,得到22223πβλn ==为特征值,特征函数3sin )(πn B x X n n =,再解)(t T ,得到32sin 32cos )(;;t n D t n C t T n n n ππ+=,于是,3sin )32sin 32cos(),(1xn t n D t n C t x u n n n πππ+=∑∞=再由初始条件得到0,)1(183sin 332130=-==+?n n n D n xdx n x C ππ,所以原定解问题的解为,3sin )32cos )1(18(),(11xn t n n t x u n n πππ+∞=-=∑2. 解令)()(),(t T x X t x u =,代入原方程中得到两个常微分方程:0)()('=+t T t T λ,0)()(''=+x X x X λ,由边界条件得到0)4()0(==X X ,对λ的情况讨论,只有当0>λ时才有非零解,令2βλ=,得到22224πβλn ==为特征值,特征函数4sin )(πn B x X n n =,再解)(t T ,得到16;22)(t n n n e C t T π-=,于是,4s i n (),(16122x n eC t x u tn n n ππ-∞=∑=再由初始条件得到140)1(164sin 242+-==n n n xdx n x C ππ,所以原定解问题的解为,4sin)1(16),(161122xn e n t x u t n n n πππ-+∞=-=∑3.解由于边界条件和自由项均与t 无关,令)(),(),(x w t x v t x u +=,代入原方程中,将方程与边界条件同时齐次化。

数理方程与特殊函数数理方程复习

数理方程与特殊函数数理方程复习
r
球对称性导致球面波问题
2u t 2
a2
1 r2
r
(r 2
u ) r
u t 0
(r), ut
t 0
(r)
令 v = r u , 则有
2v u 2u r 2 2 r r r 2
所以
1 r
r
(r 2
u ) r
1 r
(2r
u r
r2
2u r 2 )
2v r 2
2u t 2
a2
1 r2
r
Ex20. 上半平面 y > 0 的格林函数
11
1
G(P, M0 )
2
[ln rPM0
ln rPM1
]
P M1
O M0
(x y) ( x0 , y0 )
( x0 , – y0 )
Ex21. 证明
J1/2( x)
2 cos x
x
证:
(1)m x n2m
J n ( x) m0 2n2m m!(n m 1)
n1
L
x
L2
h
Cn
2 L
L 0
4 (L ) n
L2
sin L
d
n≥1
Ex10. 用分离变量法求解
utt u
x
0
uxx 0,
0 x 1, u 0
x1
t
0
u
t0
sin(x),
ut
t0
0
Ex11. 求解方程
uuttx0
a 2uxx g, 0, u
xL
(0 0
x
L,
t
0)
u t0 0, ut t0 0

数学物理方程与特殊函数试题及答案

数学物理方程与特殊函数试题及答案

数学物理方程与特殊函数试题及答案猜你喜欢: 1. 2. 3. 4. 5.数学物理方程与特殊函数是一门专业性比拟强的课程,要学好这门课程,同学们还是要用心去学才能学好数学物理方程与特殊函数。

下面是给大家的数学物理方程与特殊函数试题及答案,欢送大家学习参考。

1.对于一般的二阶线性偏微分方程0(1) 它的特征方程为,假设在域内ACB那么此域内称(1) 椭圆型假设在域内B那么此域内称(1)为抛物型假设在域内 B 那么此域内称(1)为双曲型。

2. 第一类格林公式第二类格林公式 . 已那么 ;而函数按1xP的展开式4.一维热传导方程可用差分方程似代替。

二维拉普拉斯方程可用差分方0 近似代替。

5. 勒让德多项式的正交性???。

二.用别离变量法求?的解。

(15分) 解:用别离变量法求解,先设满足边界条件且是变量被别离形式的特解为tTxXtxu?代入方程(1)上式左端不含有x,右端不含有t,从而得到两个线性常微分方程解(6)得 x由(2)得,及相应的固有函数为xlnBxXnn?sin? 7?? ,再由(5)得,? 由(7),(8)得由(1),(3)得又由(3) 得所以,原定解问题的解为?三.求方程? 的解。

(15分) 解:对(1)两端积分的通解为任意二阶可导函数,令(4)满足(2),(3)得解之得6(5),(6)代入(4)得u 四.求柯西问题的解。

(12分) 解;先确定所给方程的特征线。

为此,写出它的特征方程 dy2-2dxdy-3dx20 它的两族积分曲线为作特征变换4?经过变换原方程化它的通解为中21ff 是两个任意二次连续可微的函数。

方程(1)的通解为由(2。

西安邮电大学期末数理方程试题+答案

西安邮电大学期末数理方程试题+答案

数学物理方程与特殊函数09级试题选讲一、求解定解问题22200,0,(0,0)x x lt u u a t x u u x l t xx u x ===춶=ﶶﶶï==<<>í¶¶ïï=ïî)()(),(t T x X t x u =)()()()(2t T x X a t T x X ¢¢=¢22)()()()(b -=¢¢=¢x X x X t T a t T 0>b 设,代入原方程得,则)()(22=+¢t T a t T b 0)()(2=+¢¢x X x X b 则,0x x lu u xx==¶¶==¶¶'(0)'()0X X l Þ==又因为得固有值问题2()()0'(0)'()0X x X x X X l b ¢¢ì+=í==î22)(ln pb =()cos 0,1,2,n n n xX x A n lp ==则固有值固有函数,数学物理方程与特殊函数09级试题选讲)()()(2=+¢t T la n t T p 2()()n a tl n T t C ep -Þ=2()01(,)cosn a tln n n x u x t C C elp p ¥-==+å从而0t ux==有因为01cosnn n x x C C lp ¥==+å所以220022[(1)1]cos 12n ln l n x l C x dx l l nl C xdx lp p --====òò2()2212(1)1(,)cos 2n a ntln l l n xu x t enlp p p¥-=--=+å数学物理方程与特殊函数09级试题选讲二、求解定解问题2222,,0(),0(),0(0)(0)t x t x u ut x t t t x ux x u x x =-=춶=-<<>ﶶïï=F £íï=Y ³ïïF =Y î解:特征变换为x t x tx h =-ìí=+î2u x h¶=¶¶原方程化为12()()u f f x h =+则它的通解为00(),()()(),()()2222t xt x ux u x u u h x x h x h x h=-====F =Y +-Þ=F =F =Y =Y 又因为数学物理方程与特殊函数09级试题选讲1212(0)()()2()(0)()2f f f f h h xx +=Y +=F 2112()()(0)2()()(0)2f f f f h h x x ì=Y -ïïÞíï=F -ïî12()()((0)(0))22()()(0)22u f f x t x tx h=F +Y -+-+=F +Y -F 则它的解为三、求解定解问题)0,(,0,3,03202022222>+¥<<-¥ïïïîïïíì=¶¶==¶¶-¶¶¶+¶¶==y x y ux u y uy x u x u y y 解:原方程的特征方程为22()23()0dy dydx dx --=13C x y +=2C x y +-=,则特征线为3x y x yx h =-ìí=+î特征变换20ux h¶=¶¶原方程化为12()()u f f x h =+则它的通解为数学物理方程与特殊函数09级试题选讲12(,)(3)()u x y f x y f x y =-++即203,y y u ux y==¶==¶又因为21212(3)()3(3)()0f x f x xf x f x ì+=í¢¢-+=î则可得C x x f¢-=2149)3(C x x f ¢+=2243)(C x x f¢-=2141)(222234)(34)3(),(yx y x y x y x u +=++-=22()()C Du vv u u v d v u ds n n s ¶¶Ñ-Ñ=-¶¶òòò 四、证明平面上的格林公式其中n 为曲线的外法线向量。

数理方程习题讲议

数理方程习题讲议



a 2 n 2 2 l2
t
n cos x l
数学物理方程与特殊函数
习题
2 u 2 u , 0 x l, t 0 a 2 a 2 n 2 2 t x t n 2 l u ( 0 , t ) u ( l , t ) u C0 Cn e cos x 0 , 0 , t 0 l n 1 x x 0 xl u ( x,0) x, 1 l l n C x d x 0 0 u ( x,0) x C C cos x
a2 于 是: c
令:
u j r 2 u a 2 t x c
2 2
Байду номын сангаас
数学物理方程与特殊函数
习题
习题2:长为 l 的均质杆,两端受压从而长度缩为 l (l 2 ) 放手后,杆自由振动,试写出该问题的定解问题。
解:因为杆作纵向自由振动,即无外力的作用,其泛 定方程为齐次波动方程。
数学物理方程与特殊函数
习题
习题3 设弦的两端固定于x=0及x=l,弦的初始位移如图所示,初速度为 零,没有外力作用,求弦作横向振动时的位移函数u(x,t)。 2 2u 2 u , 0 x l, t 0 2 a 2 x t u (0, t ) 0, u (l , t ) 0, t 0 u ( x,0) 0, 0 xl t u( x, t ) X ( x)T (t ) h 2 x, XT a X T 0 xc c u ( x,0) X 1 T h c xl 2 l x , X a T l c X X 0 X (0) 0, X (l ) 0 2 T a T 0 X X 0, 0 x l u (0, t ) X (0)T (t ) 0 X (l ) 0 X (0) 0, u (l , t ) X (l )T (t ) 0

数理方程与特殊函数例题与习题1

数理方程与特殊函数例题与习题1
4L2
(2n1)
Xn(x)Ancos2L x
cos((1+1/2) x)
1
0.5
0
-0.5
-1
0
0.2
0.4
0.6
0.8
1
x
13/16
固有值问题IV
n

n2
L2
2
XX0, 0xL
X(0)0, X(L)0
Xn(x)Anc
onsx
L
cos( x)
1
0.5
其中, f 和 g 是任意函数
1/16
例1.分离变量法求解 波动方程定解问题
解:利用公式
utt a2uxx,0 x,t 0
u x0 0,u x 0 ut0 sin(3x),ut t0 0
u (x ,t) [C nco as )n (D tnsia n)n s (]itn n )x (
u (x ,t) v W c2 o t ss3 ix n x 2
5/16
热传导方程
第一类边界
ut a2uxx (0 x , t 0)
u sinx2sin3x t0
u 0, u 0
x0
x

方程的Fourier解
u(x,t)
Be(na)2t n
利用初值条件

Cns
n1
n
in( L
x)0
7/16
na n

Cn
=
n1
0
LD nsin L(x)x(Lx)
na 2L
n
LD nL0x(Lx)sin Lxdx
L
n
LL
n
0x (L x )siL n x d nx 0(L 2 x )co L x s dx

北京理工大学2011-2012学年第二学期数学物理方程与特殊函数期末试题(A卷)

北京理工大学2011-2012学年第二学期数学物理方程与特殊函数期末试题(A卷)

课程编号: 07000125 北京理工大学2011-2012学年第二学期2010级数学物理方程与特殊函数期末试题(A 卷)班级_______________学号_______________姓名______________成绩_____________一、简答下列各题(直接写出结果,无需推导求解,每题5分,共计15分)1.设正方形薄板上下两面绝热,板的两边(0x =,x a =)始终保持零度,另外两边(0y =,y a =)的温度分别为()f x 和()g x ,请写出板内稳恒状态下的温度分布所满足的定解问题。

2. 长为1的均匀细杆侧表面绝热,0x =端有恒定热流q 进入,1x =端绝热,杆的初始温度为()f x , 试写出杆内温度分布的定解问题。

3.长度为2的均匀细弦两端固定,作自由振动,初位移如图所示,初速度为零,请写出该振动的定解问题。

hx1 2二、(15分)用分离变量法求解如下定解问题:220101, 01, 0,0, 1,.x x t u ux t t x u u u x ===⎧∂∂=-<<>⎪∂∂⎪⎪==⎨⎪=⎪⎪⎩三、(15分)用特征线法解下列定解问题:0020, , 0,|sin , |0.tt xt xx t t t u u u x t u x u ==+-=-∞<<+∞>⎧⎨==⎩四、(15分)用积分变换法求解如下定解问题:001,0,0,|1,| 1.xy x y u x y u y u ===>>⎧⎪=+⎨⎪=⎩附:常用的拉普拉斯变换五、(15分)求拉普拉斯方程第一边值问题在半空间1y >-内的格林函数,并求解定解问题:01,(1)().xx yy zz u u u y u x z f x z x z ++=>-⎧⎨-=-∞<<+∞⎩,,,,, ,六、(15分) 设(1,2,)i i α= 是一阶贝塞尔函数1()J x 的正零点,将函数3()(01)f x x x =≤≤ 展开成贝塞尔函数1()i J x α的级数。

数理方程与特殊函数(10-11-2A)参考答案

数理方程与特殊函数(10-11-2A)参考答案

10---11-2 数学物理方程与特殊函数(A 卷)参考答案一.填空题1,自由项,齐次方程,非齐次方程,初值条件,(第三类)边界条件,初边值(混合)问题; 2,函数()t z y x u u ,,,= 1),具有二阶连续偏导函数;2),满足方程; 3,()xt t x w =,;4,)cos(t x π-;5,[]1,1-,t x t ≤≤-;6,4122≤+<y x ;122<+y x ; 7,()x x 35213-;()32331481-x dxd ;无界的; 8,⎪⎩⎪⎨⎧=+≠;,122,,0n m n n m ()()().,2,1,021211 =+⎰-n dx x P x f n n 二.解:相应方程的特征方程为:0)(2)(322=-+dt dxdt dx ,即:31=dt dx ,1-=dtdx。

由此得积分曲线:13C t x =-,2C t x =+。

作特征变换:t x -=3ξ,t x +=η,则:ηξ∂∂+∂∂-=∂∂u u t u ,ηξ∂∂+∂∂=∂∂u u x u 3;22222222ηηξξ∂∂+∂∂∂-∂∂=∂∂u u u t u , 22222223ηηξξ∂∂+∂∂∂+∂∂-=∂∂∂u u u x t u ,222222239ηηξξ∂∂+∂∂∂+∂∂=∂∂uu u x u 。

代入原方程,整理得:02=∂∂∂ηξu,则通解为:()()ηξ21f f u +=,其中21,f f 是任意两个连续二次可微函数。

因此原方程通解为: ()()()t x f t x f t x u ++-=213,。

由初值条件有: ()()22133x x f x f =+,()()0321='+'-x f x f 。

由微分方程有:()()C x f x f =-2133 因此 ()449321Cx x f +=,()44121C x x f +=,()44322C x x f -=。

数理方程与特殊函数试卷 3套

数理方程与特殊函数试卷  3套

2010年6月一、填空题(20分)1、微分方程的固有值为____________,固有函数为____________。

2、勒让德多项式的母函数为________________________。

3、一长为的均匀直金属杆,x=0端固定,x=l端自由,则纵向震动过程中的边界条件为________________________。

4、二阶线性偏微分方程属于____________型方程。

5、微分方程,在条件下的拉氏变换表达式为____________________________________。

6、埃尔米特多项式的微分表达式为____________________________________。

7、函数是区域内的调和函数,它在上有一阶连续偏导数,则____________.8、定解问题的解为________________________。

9、在第一类奇次边界条件下=____________。

10、=____________,=____________。

二、证明题(10分)三、建立数学物理方程(10分)一长为l、截面积为s、密度为、比热容为的均匀细杆,一端保持零度,另一端有恒定的热量q流入,初始温度为试建立热传导方程,写出定界条件(要有必要的步骤)。

四、写出下列定解问题的解(35分)1、2、3、五、将函数展开为广义傅里叶级数(25分)1、设是的正零点,试将函数展开成的傅里叶贝塞尔级数。

2将函数按埃尔米特多项式展开成级数。

2009年6月一、填空题(20分)11、微分方程的固有值为____________,固有函数为____________。

12、勒让德多项式的母函数为________________________。

13、一长为的均匀直金属杆,x=0端温度为零,x=l端有恒定的热流流出,则热传导过程中的边界条件为________________________。

14、二阶线性偏微分方程属于____________型方程。

数学物理方程与特殊函数 华中科技大学 数理方程复习

数学物理方程与特殊函数 华中科技大学 数理方程复习

8
下午3时11分
HUST 数学物理方程与特殊函数
复习
4. 求解下列定解问题 x 0, y 0 u xy 1, u (0, y ) y 1, y 0 u ( x,0) 1, x0 解法一(积分变换法) 记 Ly [u( x, y)] U ( x, p) ,则 d d 1 x pU ( x, p) 1 1 p U ( x, p ) U ( x, p ) 2 C dx p dx p p 1 1 由于 U (0, p) Ly [ y 1] 2 ,于是 U ( x, p) x 1 1 p p p2 p2 p 从而所求解为:
u (0, t ) X (0)T (t ) 0 u (l , t ) X (l )T (t ) 0
1
X X 0, 0 x l X (l ) 0 X (0) 0,
下午3时11分
HUST 数学物理方程与特殊函数
复习
0
X X 0, 0 x l X (l ) 0 X (0) 0, X 0 X ( x) Ax B AB0
X X 0
4
T a 2 T 0
X X 0 0 x l X (0) 0, X (l ) 0下午3时11分
HUST 数学物理方程与特殊函数
复习
X X 0 0 x l X (l ) 0 X (0) 0, 0 X Ax B X B0 X 0 X A sin x B cos x 2 0 X 2 X 0 X (0) A 0 X (l ) B sin l 0 2 n n n 2 x n n , n 1,2,3, X n Bn cos n l l l T a 2T 0

研究生期末数理方程与特殊函数2010期末考试试卷题

研究生期末数理方程与特殊函数2010期末考试试卷题

XXXXX 大学研究生试卷(考试时间: 至 ,共 小时)课程名称 数理方程与特殊函数 学时60 学分 3教学方式 闭卷 考核日期 2010年 12 月 30 日 成绩1.化方程230xx xy yy u u u +-=为标准形并写出其通解. (10分)2. 求下面固有值问题:(10分)2()()0(0)0,()0X x X x X X l λ''⎧+=⎨'==⎩ .第 1页3.求稳恒状态下由直线10,x x l ==与20,y y l ==围成的矩形板内各点的温度分布。

已学 号 姓 名 学 院 教师 座位号……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………知10,x x l ==及0y =三边温度保持零度,而2y l =边上温度为()x ϕ,其中(0)0ϕ=,1()0l ϕ=.(20分)4.求下面的定解问题:(15分)00sin ,(,0)0,sin tt xx t t t u u t x x R t u u x==-=∈>⎧⎪⎨==⎪⎩.第2页5.求证22214F e x a t a tω---⎡⎤⎣⎦,其中1F ()-∙表示Fourior 逆变换.(15分)6.求1225s L s s -⎛⎫ ⎪-+⎝⎭,其中1L -为Laplace 逆变换.(10分)第3页学 号 姓 名 学 院 教师 座位号……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………7.写出平面的第一象限的Dirichlets问题对应的Green函数及其定解问题.(10分)8.计算41()x J x dx.(10分).第4页。

研究生数理方程与特殊函数考题2014

研究生数理方程与特殊函数考题2014

科技大学研究生试卷(考试时间: 至 ,共 2小时)课程名称 数理方程与特殊函数 教师 学时60 学分 3 教学方式 闭卷 考核日期 2014年 12 月 日 成绩 考核方式: (学生填写)1.化简方程22222(,)(,)(,)1280u x y u x y u x y x x y y ∂∂∂++=∂∂∂∂并求其通解. (10分)2. 设有一长度为L 的均匀细棒,其侧面和两端均绝热,初始温度分布为已知。

(1)求以后时刻的温度分布;(2)证明:当初始温度分布为常数时,以后时刻的温度分布也必为常数. (20分)第 1页3.求解定解问题:(15分)学 号 姓 名 学 院 教师 座位号……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………200000(0,0),t xx x x lt u a u x l t q u u u k u u ===⎧=<<>⎪⎪==⎨⎪⎪=⎩,00,,,a u k q 均为常数.4.求函数()()21()13fs s s =+- 的Laplace 逆变换.(10分)第2页5.求下面的定解问题:(15分)号效……………………200,(,0),sin tt xx t t t u a u x at x R t u x u x==⎧-=+∈>⎪⎨==⎪⎩.6.求3()J x dx ⎰.(10分)第3页7.写出平面第一象限的Dirichlets 问题对应的Green 函数及其定解问题.(10分)8.用legendre多项式展开函数4=+.(10分)f x x()1第4页。

数理方程与特殊函数

数理方程与特殊函数
(一)、热传导方程 (二)、稳态场方程 (三)、影响物理系统的其它条件
2
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
常用物理规律(二)
1、热传导定律
dQ kun (M , t)dSdt
定义热流密度:
q
dQ dSdt
kun (M , t )
3
1
0.5 n 0
(2)、[t1,t2] 里导热体升温需要的热量Q2计算 导热体微元dV在dt时间升温需要的热量为:
dQ2 cdV u(x, y, z,t dt) u(x, y, z,t)
cdVutdt
[t1,t2] 里导热体升温需要的热量Q2为:
t2
Q2 cutdV dt
t1 V
12
1
0.5 n 0
0.5
00
1 0.8
0.6 0.4 x 0.2
取一个包含ΔS的上下底平行的高为Δh的扁平盒:
由于Δh可以很小,因此,通过侧面的电通量忽略! 于是由高斯公式有: D1 • (nS ) D2 • (nS ) Q f S f
而: D E u
24
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
如果方程中对时间的导数为n阶,则需要n个初始条 件表达式。
31
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
作业
P26习题2.2第1,2,3,4; P30习题2.3第1,2,4。
32

华中科技大学数理方程与特殊函数课后答案

华中科技大学数理方程与特殊函数课后答案

29.0(,)11cos ,sin (,)(cos ,sin ),cos sin ;sin cos .sin cos ;s xx yy rr r r x y x y x r y laplace u u r u u u r rx r y r u x y u r r u u u u r u r u u u u ru θθθθθθθθθθθθθθθ+=++==⎧⎨=⎩∴==+⎧⎪⎨=−+⎪⎩=−⇒=∵ 证明方程在极坐标下为 证明: sin cos ;cos cos in .sin .sin ()cos ()sin sin cos cos r xx x r r u u r y r r u u u x x r r x u u r r r r θθθθθθθθθθθθθθθθθθ⎧∂∂∂⎛⎞⎧=−⎜⎟⎪⎪∂∂∂⎝⎠⎪⎪⇒⎨⎨∂∂∂⎛⎞⎪⎪+=+⎜⎟⎪⎪⎩∂∂∂⎝⎠⎩∂∂∂∂∂⎛⎞==−⎜⎟∂∂∂∂∂⎝⎠∂∂∂∂⎛⎞⎛=−−⎜⎟⎜∂∂∂∂⎝⎠⎝ 从而2222222222222sin cos sin cos sin cos sin cos sin cos sin .cos ()sin ()sin yy u u u u r r r r r r u u ur r r r u u u y y r r y θθθθθθθθθθθθθθθθθθθ⎞⎟⎠∂∂∂∂=+−+∂∂∂∂∂∂∂∂−++∂∂∂∂∂∂∂∂∂⎛⎞==+⎜⎟∂∂∂∂∂⎝⎠= 2222222222222cos cos sin sin cos sin cos cos sin sin cos sin cos cos .1u u r r r r u u u u r r r r r r u u ur r r r u u u u θθθθθθθθθθθθθθθθθθθθθθ∂∂∂∂⎛⎞⎛⎞++⎜⎟⎜⎟∂∂∂∂⎝⎠⎝⎠∂∂∂∂=−++∂∂∂∂∂∂∂∂+−+∂∂∂∂+=+ 所以 10.u +=习题二21.(01,0),(0,)(1,)0,1,0.(2)2(,0)11,1,2(,0)(1);tt xx tu a u x t u t u t x x u x x x u x x x ⎧=<<>⎪==⎪⎪⎧⎪<≤⎪⎨⎪=⎨⎪⎪⎪−<<⎪⎩⎪⎪=−⎩求下列问题的解22(,)()().()()0,()()0.(0)(1)0.()()0,(0)(1)0.(),()si n n n u x t X x T t T t a T t X x X x X X X x X x X X n X x B λλλλπ=′′+=′′+===′′+=⎧⎨==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 111212202n (1,2,).()cos sin (1,2,).(,)(cos sin )sin .42sin (1)sin sin .2n n n n n n n n x n T t C an t D an t n u x t a an t b an t n x n a x n xdx x n xdx n ππππππππππ∞===+==+⎡⎤=+−=⎢⎥⎣⎦∑∫∫ 代入另一常微分方程,得则其中 ()()14402244124(1)sin 11.44(,)(sin cos 11sin )sin .2nn nn b x x n xdx an n a n u x t an t an t n x n n a πππππππππ∞=⎡⎤=−=−−⎣⎦⎡⎤=+−−⎣⎦∫∑ 因此,所求定解问题的解为2(0,0),(0,)(,)0,(3)35(,0)3sin6sin ,22(,0)0.tt xx x t u a u x l t u t u l t x xu x l l u x ππ⎧=<<>⎪==⎪⎪⎨=+⎪⎪=⎪⎩ ()22(,)()().()()0,()()0.(0)()0.()()0,(0)()0.21(),(2n n u x t X x T t T t a T t X x X x X X l X x X x X X l n X l λλλπλ=′′+=′′+=′==′′+=⎧⎨′==⎩+=解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, ()()()()()()121)sin (0,1,2,).22121()cossin (0,1,2,).22212121(,)(cossin )sin .222235(3sin6sin 22n n n n n n n n n x B x n la n a n T t C t D t n l la n a n n u x t a tb t x l l l x x a l l ππππππππ∞=+==++=+=+++=+=+∑ 代入另一常微分方程,得则 其中 ()03,1;21)sin 6,2;20,12.0.3355(,)3cos sin 6cos sin .2222l n n n xdx n l l n b a a u x t t x t x l l l lπππππ=⎧+⎪==⎨⎪≠⎩==+∫、 因此,所求定解问题的解为3.4(0,0),(2)(0,)0,(,)0,(,0)().t xx x x u u x l t u t u l t u x x l x =<<>⎧⎪==⎨⎪=−⎩求下列定解问题的解:2(,)()().()4()0,()()0.(0)()0.()()0,(0)()0.(),()n n u x t X x T t T t T t X x X x X X l X x X x X X l n X x A lλλλπλ=′+=′′+=′′==′′+=⎧⎨′′==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 222()2()012000cos (0,1,2,).()(0,1,2,).1(,)cos .222().62()cos n n t ln n n t ln n l l n n x n l T t D e n n u x t a a e x l l a x l x dx l n a x l x xd l l πππππ−∞−=====+=−==−∑∫∫ 代入另一常微分方程,得则 其中 2222222()2212[1(1)].2[1(1)](,)cos .6n n n t ln l x n l l n u x t e x n lππππ∞−=−−+−=−−+−=+∑ 因此,所求定解问题的解为2110(01),,0,(1,)0,.,.rr r u u u r r r A u A θθθαθαθπα⎧++=<<⎪⎪⎨⎧≤≤⎪⎪=⎨⎪<≤⎪⎩⎩其中为已知常数22(,)()().()()()0,()()0.()()0,()(2).(),()cos sin n n n n u r R r r R r rR r R r n X x A n B n θθλθλθθλθθθπλθθ=Φ′′′+−=′′Φ+Φ=′′Φ+Φ=⎧⎨Φ=Φ+⎩==+解:应用分离变量法,令 代入方程分离变量,得求解固有值问题得,()2010(0,1,2,).()()()0,(0).()(0,1,2,).1(,)cos sin .212n n n n n n n n n r R r rR r R r R R r C r n u r a a n b n r Aa Ad a ααλθθθαθππ∞=−=′′′⎧+−=⎨<+∞⎩===++==∑∫ 代入另一常微分方程的定解问题得, 则 其中 112cos sin ,1sin 0.2(,)sin cos .n nn AA n d n n b A n d A A u x t r n n n ααααθθαππθθπααθππ−−∞======+∫∫∑ 因此,所求定解问题的解为0(0,0),(0,)0,(,)0(0),(,0)(1),lim (,)0(0),.xx yy y u u x l y u y u l y y x u x A u x y x l l A →∞⎧+=<<<<∞⎪⎪==≤<∞⎨⎪⎪=−=<<⎩其中为已知常数 2(,)()().()()0,()()0.(0)()0.()()0,(0)()0.(),()sin n n n u x y X x Y y X x X x Y y Y y X X l X x X x X X l n X x B lλλλπλ=′′+=′′−===′′+=⎧⎨==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 10(1,2,).()(1,2,).(,)sin.22()sin .lim (,)0n n y y lln n n n n y y l ln n n l n n y n x n l Y y C e D e n n u x y a e b e x l x n A a b A l xdx l l l n u x y a ππππππππ−∞−=→∞==+=⎛⎞=+⎜⎟⎝⎠+=−==⇒∑∫ 代入另一常微分方程,得则 其中 10.2(,)sin .n n y l n A n u x t e x n l πππ∞−===∑因此,所求定解问题的解为()22228.-10.cos ,sin ,111(0),0.{cos sin }.,()xx yy x y a rr r r an a u u u x r y r u u u r a r r u A n B n u r a r θθθθθθθ+==+====⎧++=−<<⎪⎨⎪=⎩+= 在以原点为心,为半径的圆内,试求泊松方程 的解,使它满足边界条件解:令作极坐标变换,得由固有函数法,相应的固有函数系为 因此,设方程的解为[]()()()()()()()0002222cos ()sin .11,110,0210,323()0()n n n n n n n n n nn n nn n n n b r n a a r n a a a n r r nb b b r r a r A r B r n b r C r D θθ∞=−+⎧′′′+=−⎪⎪⎪′′′+−=≠⎨⎪⎪′′′+−=⎪⎩=+≠=+∑ 代入方程,得方程,的通解:, ()()2000(0),()0;(0),()0.()00()0.11()ln ,4(0),()n n n n n n n n r a a a b b a a r n b r a r A r B r a a a −<+∞=<+∞==≠==+−<+∞=. 由有界性条件及边界条件,得 , 方程的通解: 由有界性条件及边界条件,()()()()()220222220.1().41,.41,.a r a r u r a r u x y a x y θ=−=−⎡⎤=−+ 得 则定解问题的解为 化成直角坐标,则得21210.sin ,(2)(0,)0,(,)0(0),(,0)0,(,0)0(0);{sin }.(,)()sin .tt xx tn n n u a u t x l u t u l t t u x u x x l n x ln u x t u t x l n a u u l ππππ∞=⎧=+⎪⎪==≥⎨⎪==≤≤⎪⎩=⎛⎞′′+⎜⎟⎝⎠∑求下列问题的解:解:由固有函数法,相应的固有函数系为 设方程的解为 代入原方程,得()2111020(1),.(0)(0)0(1,2,),1()0;1()sin sin .n n n n t n a u u t l u u n n u t l an u t t d al l l a t t a a l ππτττππππ=≠⎛⎞′′+=⎜⎟⎝⎠′===≠===−⎛⎞⎛⎞=−⎜⎟⎜⎟⎝⎠⎝⎠∫"" 由初始条件,得当时, 当时, 2(,)sin sin l l a u x t t t x a a l l ππππ⎛⎞⎛⎞=−⎜⎟⎜⎟⎝⎠⎝⎠ 故所求的解为2110(0,0),(3)(0,)0,(,)0,(,0)0.,{sin}.(,)()sin .sin 22sin [1(t xx n n n n l n u a u A x l t u t u l t u x n x ln u x t u t x l n A A A x l n A A A xdx l l n πππππ∞=∞=⎧=+<<>⎪==⎨⎪=⎩====−∑∑∫ 解:由固有函数法相应的固有函数系为 设方程的解为 并将展为: ,其中 222()023321)].2[1(1)],(0)0.2()[1(1)]2[1(1)][1].(,n n n n n n a t tn l n n a t n ln a A u u l n u Au t e d n Al e n au x πτπππτππ⎛⎞−−⎜⎟⎝⎠⎛⎞−⎜⎟⎝⎠−⎧⎛⎞′+=−−⎪⎜⎟⎨⎝⎠⎪=⎩=−−=−−−∫ 代入原方程可得得: 故所求的解为2233212)[1(1)][1]sin .n a tnl n Al n t e x n alπππ⎛⎞∞−⎜⎟⎝⎠==−−−∑()2211.224sin cos ,(2)(0,)0,(,)(0),(,0),(,0)()(0).(,)(,)().224sin cos ,(0,)(0ttxx t ttxx u a u x x l lu t u l t B t Bu x x u x x l x x l l u x t v x t w x v a v w x x l lv t w ππππ⎧=+⎪⎪==≥⎨⎪⎪==−≤≤⎩=+′′=+++求下列问题的解解:设问题的解为 将其代入上面的定解问题,得22222)0,(,)(),(,0)(),(,0)().224sincos 0,(0)0().4()sin.8(0,)0,(,)0,(,0)t tt xx v l t w l B Bv x w x x v x x l x l a w x x l lw w l B B l w t x x l a l v a v v t v l t v x ππππ⎧⎪⎪=+=⎨⎪⎪+==−⎩⎧′′+=⎪⎨⎪==⎩=+==== 化成下面两个问题:(1) , 解得: (2) 12222022340(),(,0)().(,)cos sin sin .0,4;24sin sin 8, 4.824()sin t n n n l n l n Bx w x v x x l x l n a n a n v x t a t b t x l l l n l n a x xdx l l a l l n an l b x l x xdx n a l n ππππππππππ∞=⎧⎪⎪⎨⎪⎪−=−⎩⎛⎞=+⎜⎟⎝⎠≠⎧⎪=−⋅=⎨−=⎪⎩=−⋅=∑∫∫ 解得: 其中, ()()43222441222[11].4[11]44(,)cos sin sin sin .844(,)(,)()1cossin 8nn n al l a n a n v x t t x t x a l l n a l l B l a u x t v x t w x x t x l a l l πππππππππ∞=−−−−=−+⎛⎞=+=+−⎜⎟⎝⎠∑ 则 因此,原问题的解为14..0,(2)(-)(),(-)().0().:0X X X X X X X x Be Ae Be A B λππππλ′′+=⎧⎨′′==⎩<=++=+−=−==⇒求下列问题的固有值与固有函数解:当时,方程的通解为 由边界条件,有, ; 得0()0.0().-0.:().0().sin ,X x X x Ax B A B A B A X x C X x A B A B A Bλππλ===++=+⇒==>=+−=++=− 当时,方程的通解为 由边界条件,有 得当时,方程的通解为 由边界条件,有22sin ;()0sin 0(1,2,);()cos sin .(0,1,2,),()cos sin .n n n n n n n n X x n n X x A nx B nx n n X x A nx B nx λλ+====+===+"""" 要不恒等于,则,得故,固有值 固有函数222()()0,(3)(1)()0.ln ,()0.0()00:x y x xy x y y y e x e x d y y d y x Be Bx A B Be τλτλττλ′′′⎧++=⎨==⎩==+=<=+=++=+=解:方程通过自变量代换 或 得: 当时,方程的通解为 由边界条件,有 , ; 得))0()0.0()ln .0,0.:()0.0()cos ln sin ln .0,A B y x y x A B A x B B A y x y x A B A x B x A λτλ==⇒===+=+===>=+=+= 当时,方程的通解为 由边界条件,有 得当时,方程的通解为 由边界条件,有()()2220;()00(1,2,);()sin ln .(1,2,),()sin ln .n n n n n n B y x n n y x B n x n n y x B n x λππλπ========"""" 要不恒等于,则,得 故,固有值 固有函数。

北京理工大学2010-2011学年第二学期数学物理方程与特殊函数期末试题(A卷)

北京理工大学2010-2011学年第二学期数学物理方程与特殊函数期末试题(A卷)

课程编号: 07000125 北京理工大学2010-2011学年第二学期2009级数学物理方程期末试题(A 卷)班级_______________学号_______________姓名______________成绩_____________一、简答下列各题(直接写出结果,无需推导求解,每题6分,共计18分) 1. 长为2l 的均匀细杆,侧表面绝热,x l =-端有恒定热流q 进入,x l =端绝热,杆的初始温度为σ( x ), 试写出这个热传导问题的定解问题。

2. 一圆环形平板内半径为r ,外内半径R ,其上下侧面绝热,内部无热源。

若其内圆周边上的温度保持为1度,外圆周边绝热,请写出平面极坐标下该圆环形平板的稳恒温度分布的定解问题。

3. 长为2的均匀弦在阻尼介质中做微小横振动,已知阻尼力与速度成正比,即uF Rt∂=-∂,R 为阻力系数。

弦在0x =一端自由,在2x =按照sin t 的规律做简谐振动,初位移、初速度都为零,试写出弦的阻尼振动问题。

二’ (15分)用分离变量法求解如下定解问题:22222000sin 20,0|0,|0 |0,|0t t t x x lu ua x x t t x u u u u π====∂∂⎧-=<<>⎪∂∂⎪==⎨⎪==⎪⎩三、(15分)设,0x y -∞<<+∞>,求解定解问题:2222200210, 2y y u u ux x y y u u xy ==⎧∂∂∂--=⎪∂∂∂∂⎪⎨∂⎪==⎪∂⎩四、(15分)设()u u x y =,,用积分变换法求解下面问题:222222000,()lim 0y x y u u y x x y u h x u =+→∞⎧∂∂+=>-∞<<∞⎪∂∂⎪⎪=⎨⎪=⎪⎪⎩五、(15分)求拉普拉斯方程在半空间x a >内的格林函数;并求解定解问题:2222220()(,)u u ux axy z u a y z y z y z ψ⎧∂∂∂++=>⎪∂∂∂⎨⎪=-∞<<∞⎩,,,, , 六(15分) 设(1,2,)i i α= 是零阶贝塞尔函数0()J x 的正零点,将函数2()1(01)f x x x =-≤≤ 展开成贝塞尔函数0()i J x α的级数七、(10分)在扇形域0,1r θα<<<内求解稳恒热传导问题,已知其满足如下条件:01|0,|0,r u u u u r θθαθ===∂⎛⎫==+=- ⎪∂⎝⎭。

数理方程与特殊函数(A)参考答案

数理方程与特殊函数(A)参考答案

10---11-2 数学物理方程与特殊函数(A 卷)参考答案一.填空题1,自由项,齐次方程,非齐次方程,初值条件,(第三类)边界条件,初边值(混合)问题; 2,函数()t z y x u u ,,,= 1),具有二阶连续偏导函数;2),满足方程; 3,()xt t x w =,;4,)cos(t x π-;5,[]1,1-,t x t ≤≤-;6,4122≤+<y x ;122<+y x ; 7,()x x 35213-;()32331481-x dx d ;无界的; 8,⎪⎩⎪⎨⎧=+≠;,122,,0n m n n m ()()().,2,1,021211Λ=+⎰-n dx x P x f n n 二.解:相应方程的特征方程为:0)(2)(322=-+dt dxdt dx ,即:31=dt dx ,1-=dtdx。

由此得积分曲线:13C t x =-,2C t x =+。

作特征变换:t x -=3ξ,t x +=η,则:ηξ∂∂+∂∂-=∂∂u u t u ,ηξ∂∂+∂∂=∂∂u u x u 3;22222222ηηξξ∂∂+∂∂∂-∂∂=∂∂u u u t u , 22222223ηηξξ∂∂+∂∂∂+∂∂-=∂∂∂u u u x t u ,222222239ηηξξ∂∂+∂∂∂+∂∂=∂∂uu u x u 。

代入原方程,整理得:02=∂∂∂ηξu,则通解为:()()ηξ21f f u +=,其中21,f f 是任意两个 连续二次可微函数。

因此原方程通解为: ()()()t x f t x f t x u ++-=213,。

由初值条件有: ()()22133x x f x f =+,()()0321='+'-x f x f 。

由微分方程有:()()C x f x f =-2133 因此 ()449321Cx x f +=,()44121C x x f +=,()44322C x x f -=。

特殊函数练习题

特殊函数练习题

特殊函数练习题一、简答题1. 什么是特殊函数?特殊函数是指在数学和物理学中出现频率较高,具有特殊形式和特殊性质的函数。

这些函数通常由解决某些特定问题的微分方程或积分方程得到,常见的特殊函数包括:阶乘函数、幂函数、指数函数、对数函数、三角函数、贝塞尔函数等。

2. 特殊函数有哪些应用领域?特殊函数在科学和工程领域有广泛的应用,以下是一些典型的应用领域:- 物理学:特殊函数被广泛应用于描述物理现象,如波函数、量子力学、电磁场等。

- 工程学:特殊函数用于解决工程问题,如电路模型、信号处理、图像处理等。

- 统计学:特殊函数在统计学中有重要的应用,如正态分布函数、伽马函数等。

- 金融学:特殊函数用于金融衍生品的定价和风险管理,如布莱克-斯科尔斯模型中的正态分布函数。

- 计算机科学:特殊函数被广泛应用于计算机图形学、计算机视觉、模式识别等领域。

3. 请简述贝塞尔函数的特点及其应用。

贝塞尔函数是特殊函数的一种,主要用于解决圆对称问题、球对称问题以及柱对称问题。

其特点包括:- 贝塞尔函数具有无穷多个解,在不同的问题中,会出现不同的解。

- 贝塞尔函数的值和导数的值在圆内是有界的。

- 贝塞尔函数满足贝塞尔微分方程和贝塞尔积分方程。

贝塞尔函数的应用非常广泛,常见的应用领域包括:- 圆形天线的辐射和阻抗计算。

- 圆柱波的散射和传播。

- 圆盘振动的模态分析。

- 气体和液体中的声学传播。

- 球内外的电场分布计算。

二、计算题1. 计算一阶贝塞尔函数J1(x)的前5个零点。

首先,贝塞尔函数J1(x)的定义为:J1(x) = (1/x) * dJ0(x)/dx根据贝塞尔函数的性质,我们可以使用数值方法计算其零点。

以下是J1(x)的前5个零点的计算结果:x1 ≈ 3.83171x2 ≈ 7.01559x3 ≈ 10.1735x4 ≈ 13.3237x5 ≈ 16.47062. 计算贝塞尔函数J0(x)在x=1和x=2处的值。

贝塞尔函数J0(x)的定义为:J0(x) = 1/π * ∫[0,π] cos(xsinθ) dθ计算J0(x)在x=1和x=2处的值可以使用积分近似方法,根据定义进行计算得到以下结果:J0(1) ≈ 0.76520J0(2) ≈ 0.22389三、证明题证明:阶乘函数的极限特性阶乘函数n!定义为:n! = n * (n-1) * (n-2) * ... * 3 * 2 * 1我们来证明阶乘函数在无穷大时的极限特性。

数理方程期末试题-07-08-2-B-答案

数理方程期末试题-07-08-2-B-答案

数理方程期末试题-07-08-2-B-答案2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷(B )(参考答案)学院_ ____________ 专业___________________ 班级________ _________________姓名 _______________ 学号一、 计算题(共80分;每题16分)1. 求下列定解问题(15分)2222201200,0,0,|,|,|0,|0.x x l t t u ua A x l t t x u M u M u u t ====⎧∂∂=+<<>⎪∂∂⎪⎪==⎨⎪∂⎪==⎪∂⎩2. 用积分变换法及性质;求解半无界弦的自由振动问题:(15分)2,0,0,(,0)0,(,0)0,(0,)(),lim (,)0.tt xx t x u a u x t u x u x u t t u x t φ→+∞⎧=<<+∞>⎪==⎨⎪==⎩ 3. 设弦的两端固定于0x =及x l =;弦的出示位移如下图所示。

初速度为零;又没有外力作用。

求弦做横向振动时的位移(,)u x t 。

[ 解 ] 问题的定解条件是1(,)(cos sin )sin n a n a n n n l l l n u x t C t D t x πππ∞==+∑由初始条件可得0, 1,2,...n D n ==222202()sin d ()sin d =sin, 1,2,...c lh n h n n lc l l c l c hl n c lc l c n C x x x x l x x n ππππ--⎡⎤=+--⎢⎥⎣⎦=⎰⎰4. 证明在变换, x at x at ξη=-=+下;波动方程xx tt u a u 2=具有形式解0=n u ξ;并由此求出波动方程的通解。

5. 用分离变量法解下列定解问题⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂===><<+∂∂=∂∂====0|,0|0|,0|00sin sin 0002222222t t l x x l a l t uu u u t l x t x x u a t u ,,ππ [ 提示:1) 可以直接给出问题的固有函数;不必推导;2) 利用参数变易法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5,波动方程初值问题:()()⎪⎪⎩
⎪⎪⎨⎧=∂∂=>+∞<<-∞∂∂=∂∂==,,,0,,10002
222x t u x u t x x u
t u t t ϕϕ在t x -平面上,点()1,0在初始轴
0=t 上的依赖区间是 ;初始轴0=t 上点)1,0(的影响区域是 。

6,二阶线性偏微分方程()02y 314292222222=∂∂++∂∂+∂∂∂---∂∂x u x y u y x u y x x
u ,当
时,是椭圆型方程,当 时,是双曲型方程。

7,Legendre 方程0122)1(2
22
=+--y dx dy
x dx
y d x 的通解()()x Q C x P C y 21+=,则第一类 Legendre 函数()=x P ;其Rodrigues 表达式为 ; 而第二类Legendre 函数()x Q 在闭区间[]1,1-上是 。

8,对于Legendre 多项式()x P n 有:()()⎰
-=1
1
dx x P x P n m ;由此可知,若函
数()x f 可以展开为()(),11,0
<<-=∑∞
=x x P C x f n n
n
则=n
C。

二、(本题10分)求解初值问题:⎪⎪⎩
⎪⎪⎨⎧=∂∂==∂∂-∂∂∂-∂∂==.0,3,031320202
2222t t t u x u x u
x t u t u
三、(本题20分)求解非齐次波动方程初边值问题:

⎩⎪
⎨⎧≤≤==>==><<=--====.
0,0,sin ,0,0,0,0,0,sin 62000πππx u x u t u u t x x e u u u t t t x x t t xx tt
四、(本题10分)用Fourier 积分变换法求解初值问题:
()⎪⎩⎪⎨
⎧==>ℜ∈===.
0,,0,,002
t t t xx tt
u x u t x u a u ϕ
五、(本题10分)设()000,y x M 是半平面0>y 内一点,1M
是0M 关于-x 轴的对称点,对()y x M ,,证明函数
()1ln MM r M v = 满足该半平面内的Dirichlet 问题:⎪⎩⎪⎨⎧=>=∇==.ln ,
0,000
2
0y MM y r v y v
六、(本题10分)半径为1的薄均匀圆盘内温度分布情况可归结为求
解定解问题:()⎪⎩⎪⎨⎧≤≤==><≤∂∂+
∂∂=∂∂==.10,,0,0,10),1(01
22
2r r u
u t r r u r r
u a t u t r ϕ 根据物理意义,写出此问题的自然条件并求出满足方程和边界条件的变量被分离的特解。

相关文档
最新文档