运筹学第七章决策分析习题与答案
运筹学第七章答案
[课后习题全解]7.2 解(1)建立数学模型(2)计算原理1)梯度法(最速下降法)a. 给定初始近似点不妨为(0,0,0),精度,不妨为,若则即为近似极小点.b. 若,求步长.并计算步长求法用近似最佳步长.c. 一般地,若,则即为所求的近似解;若则求步长,并确定下一个近似点如此继续,直至达到要求的精度为止.2)近似最佳步长求法由,求出步长.7.3 解(1)的海塞矩阵为知为严格凸函数,为凸函数,为凹函数,所以不是一个凸规划问题.(2)的海塞矩阵为则为严格凸函数,为凹函数,为凸函数,所以上述非线性规划不是凸规划.7.6 解计算结果如表7-2所示.表7-2迭代次数123由可知相邻两步的搜索方向正交.7.10 解 因为现从,开始于是故故得到极小值点7.12 解取由于,所以由得故由于故为近似极小点.7.13 解(1)用最速下降法(2)牛顿法得极小点(3)变尺度法得极小点7.15 解原非线性规划等同于(1)其作用约束的是所以得则有存在可行下降方向.(2)其作用约束的是所以即即(无可行解)不存在可行下降方向.(3)其作用约束的是所以所以存在可行下降方向.7.17 解(1)原式等同于写出目标函数和约束函数的梯度对第一个和第二个约束条件分别引入广义拉格朗日乘子,得点为,则有1)令,无解;2)令,解之得是点,目标函数值;3)令,解之得是点,目标函数值;4)令,则是点,,但不是最优. 此问题不是凸规划,故极小点1和5是最优点.(2)原式等同于写出目标函数和约束函数的梯度引入广义拉格朗日乘子,得点为,则有1)令,无解;2)令,则不是点;3)令,则不是点;4)令,则是点,目标函数值由于该非线性规划问题为凸规划,故是全局极小点.] 7.18 解这个非线性规划的条件为极大点是,但它不是约束条件的正则点.7.21 解构造惩罚函数由则的解为当时,;当时,.当时,趋于原问题的极小值. .7.22 解构造惩罚函数解得最优解为7.24 解构造障碍函数得最优解。
决策分析(含答案)
决策分析复习题(请和本学期的大纲对照,答案供参考)第一章一、选择题(单项选)1.1966年,R. A. Howard在第四届国际运筹学会议上发表( C )一文,首次提出“决策分析”这一名词,用它来反映决策理论的应用。
A.《对策理论与经济行为》B.《管理决策新科学》C.《决策分析:应用决策理论》D.《贝叶斯决策理论》2.决策分析的阶段包含两种基本方式:( A )A. 定性分析和定量分析B. 常规分析和非常规分析C. 单级决策和多级决策D. 静态分析和动态分析3.在管理决策中,许多管理人员认为只要选取满意的方案即可,而无须刻意追求最优的方案。
对于这种观点,你认为以下哪种解释最有说服力?( D )A.现实中不存在所谓的最优方案,所以选中的都只是满意方案B.现实管理决策中常常由于时间太紧而来不及寻找最优方案C.由于管理者对什么是最优决策无法达成共识,只有退而求其次D.刻意追求最优方案,常常会由于代价太高而最终得不偿失4.关于决策,正确的说法是(A )A.决策是管理的基础B.管理是决策的基础C.决策是调查的基础D.计划是决策的基础5.根据决策时期,可以将决策分为:(D )A.战略决策与战术决策 B. 定性决策与定量决策C. 常规决策与非常规决策D. 静态决策与动态决策6.我国五年发展计划属于(B)。
A.非程序性决策 B.战略决策 C.战术决策 D.确定型决策7.管理者的基本行为是(A)A.决策 B.计划 C.组织 D.控制8.管理的首要职能是(D)。
A.组织 B. 控制 C.监督 D. 决策9. 管理者工作的实质是(C)。
A.计划 B. 组织 C. 决策D.控制10. 决策分析的基本特点是(C )。
A.系统性 B. 优选性 C. 未来性 D.动态性二、判断题1.管理者工作的实质就是决策,管理者也常称为“决策者”。
(√)2.1944年,Von Neumann和Morgenstern从决策角度来研究统计分析方法,建立了贝叶斯(统计)决策理论。
决策分析(含答案
决策分析复习题(请和本学期的大纲对照,答案供参考)第一章一、选择题(单项选)1.1966年,R. A. Howard在第四届国际运筹学会议上发表( C )一文,首次提出“决策分析”这一名词,用它来反映决策理论的应用。
A.C.2A.C.3ABCD4A.B.C.D.5AC.6A7.A8.A9. 管理者工作的实质是(C)。
A.计划 B. 组织 C. 决策D.控制10. 决策分析的基本特点是(C )。
A.系统性 B. 优选性 C. 未来性 D.动态性二、判断题1.管理者工作的实质就是决策,管理者也常称为“决策者”。
(√)2.1944年,Von Neumann和Morgenstern从决策角度来研究统计分析方法,建立了贝叶斯(统计)决策理论。
(×)3.1960年美国着名管理学家西蒙(H. A. Simon)在他的着作《管理决策新科学》中,明确提出“管理就是决策”。
(√)4.决策的制定者就是决策的分析者。
(×)5.所谓定性分析是这样一种分析方式,它基于能刻画问题本质的数据和数量关系,建立能描述问题的目标、约束及其关系的数学模型,通过一种或多种数量方法,求出最好的解决方案。
(×)6.在随机型决策问题中,决策人无法控制的所有因素,即凡是能够引起决策问题的不确定性的因素,统称作自然状态。
(√)7.决策准则或选择标准,是决策者用来比较和选择方案衡量标准,是选择方案、作出最后决定、评价决策结果时的原则。
√8. 1954年L. J. Savage出版了《对策理论与经济行为》一书,建立了现代效用理论。
现代效用理论已成为理性决策的基础理论。
(×)9. 目前,世界上比较趋于一致的看法有两种,一种是由西蒙提出的“决策就是作决定”;另一种是由中国学者于光远提出的“管理就是决策”。
这两种截然不同的定义从不同角度深刻揭示了决策的基本内容。
(×)10. 管理科学(Management science)是对与定量因素(quantitative factors)有关的管理问题通过应用科学的方法(scientific approach)进行辅助管理决策制定(aid managerial decision making)的一门学科(discipline)。
数据模型与决策(运筹学)课后习题和案例答案(6)
CHAPTER 7NETWORK OPTIMIZATION PROBLEMS Review Questions7.1-1 A supply node is a node where the net amount of flow generated is a fixed positive number.A demand node is a node where the net amount of flow generated is a fixed negativenumber. A transshipment node is a node where the net amount of flow generated is fixed at zero.7.1-2 The maximum amount of flow allowed through an arc is referred to as the capacity of thatarc.7.1-3 The objective is to minimize the total cost of sending the available supply through thenetwork to satisfy the given demand.7.1-4 The feasible solutions property is necessary. It states that a minimum cost flow problemwill have a feasible solution if and only if the sum of the supplies from its supply nodesequals the sum of the demands at its demand nodes.7.1-5 As long as all its supplies and demands have integer values, any minimum cost flowproblem with feasible solutions is guaranteed to have an optimal solution with integervalues for all its flow quantities.7.1-6 Network simplex method.7.1-7 Applications of minimum cost flow problems include operation of a distribution network,solid waste management, operation of a supply network, coordinating product mixes atplants, and cash flow management.7.1-8 Transportation problems, assignment problems, transshipment problems, maximum flowproblems, and shortest path problems are special types of minimum cost flow problems. 7.2-1 One of the company’s most important distribution centers (Los Angeles) urgently needs anincreased flow of shipments from the company.7.2-2 Auto replacement parts are flowing through the network from the company’s main factoryin Europe to its distribution center in LA.7.2-3 The objective is to maximize the flow of replacement parts from the factory to the LAdistribution center.7.3-1 Rather than minimizing the cost of the flow, the objective is to find a flow plan thatmaximizes the amount flowing through the network from the source to the sink.7.3-2 The source is the node at which all flow through the network originates. The sink is thenode at which all flow through the network terminates. At the source, all arcs point awayfrom the node. At the sink, all arcs point into the node.7.3-3 The amount is measured by either the amount leaving the source or the amount entering thesink.7.3-4 1. Whereas supply nodes have fixed supplies and demand nodes have fixed demands, thesource and sink do not.2. Whereas the number of supply nodes and the number of demand nodes in a minimumcost flow problem may be more than one, there can be only one source and only onesink in a standard maximum flow problem.7.3-5 Applications of maximum flow problems include maximizing the flow through adistribution network, maximizing the flow through a supply network, maximizing the flow of oil through a system of pipelines, maximizing the flow of water through a system ofaqueducts, and maximizing the flow of vehicles through a transportation network.7.4-1 The origin is the fire station and the destination is the farm community.7.4-2 Flow can go in either direction between the nodes connected by links as opposed to onlyone direction with an arc.7.4-3 The origin now is the one supply node, with a supply of one. The destination now is theone demand node, with a demand of one.7.4-4 The length of a link can measure distance, cost, or time.7.4-5 Sarah wants to minimize her total cost of purchasing, operating, and maintaining the carsover her four years of college.7.4-6 When “real travel” through a network can end at more that one node, a dummy destinationneeds to be added so that the network will have just a single destination.7.4-7 Quick’s management must consider trade-offs between time and cost in making its finaldecision.7.5-1 The nodes are given, but the links need to be designed.7.5-2 A state-of-the-art fiber-optic network is being designed.7.5-3 A tree is a network that does not have any paths that begin and end at the same nodewithout backtracking. A spanning tree is a tree that provides a path between every pair of nodes. A minimum spanning tree is the spanning tree that minimizes total cost.7.5-4 The number of links in a spanning tree always is one less than the number of nodes.Furthermore, each node is directly connected by a single link to at least one other node. 7.5-5 To design a network so that there is a path between every pair of nodes at the minimumpossible cost.7.5-6 No, it is not a special type of a minimum cost flow problem.7.5-7 A greedy algorithm will solve a minimum spanning tree problem.17.5-8 Applications of minimum spanning tree problems include design of telecommunicationnetworks, design of a lightly used transportation network, design of a network of high- voltage power lines, design of a network of wiring on electrical equipment, and design of a network of pipelines.Problems7.1a)b)c)1[40] 6 S17 4[-30] D1 [-40] D2 [60] 5 8S2 6[-30] D37.2a)supply nodestransshipment nodesdemand nodesb)[200] P1560 [150]425 [125][0] W1505[150]490 [100]470 [100][-150]RO1[-200]RO2P2 [300]c)510 [175]600 [200][0] W2390 [125]410[150] 440[75]RO3[-150]7.3a)supply nodestransshipment nodesdemand nodesV1W1F1V2V3W2 F21P1W1RO1RO2P2W2RO3[-50] SE3000[20][0]BN5700[40][0]HA[50]BE 4000 6300[40][30] [0][0]NY2000[60]2400[20]3400[10] 4200[80][0]5900[60]5400[40]6800[50]RO[0]BO[0]2500[70]2900[50]b)c)7.4a)LA 3100 NO 6100 LI 3200 ST[-130] [70] [30] [40] [130]1[70]11b)c) The total shipping cost is $2,187,000.7.5a)[0][0] 5900RONY[60] 5400[0] 2900 [50]4200 [80][0] [40] 6800 [50]BO[0] 2500LA 3100 NO 6100 LI 3200 ST [-130][70][30] [40][130]b)c)SEBNHABERONYNY(80) [80] (50) [60](30)[40] ROBO (40)(50) [50] (70)[70]11d)e)f) $1,618,000 + $583,000 = $2,201,000 which is higher than the total in Problem 7.5 ($2,187,000). 7.6LA(70) NO[50](30)LI (30) ST[70][30] [40]There are only two arcs into LA, with a combined capacity of 150 (80 + 70). Because ofthis bottleneck, it is not possible to ship any more than 150 from ST to LA. Since 150 actually are being shipped in this solution, it must be optimal. 7.7[-50] SE3000 [20] [0] BN 5700 [40][0] HA[50] BE4000 6300[40][0] NY2000 [60] 2400 [20][30] [0]5900RO [60]17.8 a) SourcesTransshipment Nodes Sinkb)7.9 a)AKR1[75]A [60]R2[65] [40][50][60] [45]D [120] [70]B[55]E[190]T [45][80] [70][70]R3CF[130][90]SE PT KC SL ATCHTXNOMES S F F CAb)Oil Fields Refineries Distribution CentersTXNOPTCACHATAKSEKCME c)SLSFTX[11][7] NO[5][9] PT[8] [2][5] CA [4] [7] [8] [7] [4] [6][8] CH [7][5][9] [4] ATAK [3][6][6][12] SE KC[8][9][4][8] [7] [12] [11]MESL [9]SF[15][7]d)3Shortest path: Fire Station – C – E – F – Farming Community 7.11 a)A70D40 60O60 5010 B 20 C5540 10 T50E801c)Shortest route: Origin – A – B – D – Destinationd)Yese)Yes7.12a)31,00018,000 21,00001238,000 10,000 12,000b)17.13a) Times play the role of distances.B 2 2 G5ACE 1 31 1b)7.14D F1. C---D: Cost = 14.E---G: Cost = 5E---F: Cost = 1 *choose arbitrarilyD---A: Cost = 4 2.E---G: Cost = 5 E---B: Cost = 7 E---B: Cost = 7 F---G: Cost = 7 E---C: Cost = 4 C---A: Cost = 5F---G: Cost = 7C---B: Cost = 2 *lowestF---C: Cost = 3 *lowest5.E---G: Cost = 5 F---D: Cost = 4 D---A: Cost = 43. E---G: Cost = 5 B---A: Cost = 2 *lowestE---B: Cost = 7 F---G: Cost = 7 F---G: Cost = 7 C---A: Cost = 5F---D: Cost = 46.E---G: Cost = 5 *lowestC---D: Cost = 1 *lowestF---G: Cost = 7C---A: Cost = 5C---B: Cost = 2Total = $14 million7.151. B---C: Cost = 1 *lowest 4. B---E: Cost = 72. B---A: Cost = 4 C---F: Cost = 4 *lowestB---E: Cost = 7 C---E: Cost = 5C---A: Cost = 6 D---F: Cost = 5C---D: Cost = 2 *lowest 5. B---E: Cost = 7C---F: Cost = 4 C---E: Cost = 5C---E: Cost = 5 F---E: Cost = 1 *lowest3. B---A: Cost = 4 *lowest F---G: Cost = 8B---E: Cost = 7 6. E---G: Cost = 6 *lowestC---A: Cost = 6 F---G: Cost = 8C---F: Cost = 4C---E: Cost = 5D---A: Cost = 5 Total = $18,000D---F: Cost = 57.16B 34 2E HA D 2 G I K3C F 12J34B41E6A C41G2 FD1. F---G: Cost = 1 *lowest 6. D---A: Cost = 62. F---C: Cost = 6 D---B: Cost = 5F---D: Cost = 5 D---C: Cost = 4F---I: Cost = 2 *lowest E---B: Cost = 3 *lowestF---J: Cost = 5 F---C: Cost = 6G---D: Cost = 2 F---J: Cost = 5G---E: Cost = 2 H---K: Cost = 7G---H: Cost = 2 I---K: Cost = 8G---I: Cost = 5 I---J: Cost = 33. F---C: Cost = 6 7. B---A: Cost = 4F---D: Cost = 5 D---A: Cost = 6F---J: Cost = 5 D---C: Cost = 4G---D: Cost = 2 *lowest F---C: Cost = 6G---E: Cost = 2 F---J: Cost = 5G---H: Cost = 2 H---K: Cost = 7I---H: Cost = 2 I---K: Cost = 8I---K: Cost = 8 I---J: Cost = 3 *lowestI---J: Cost = 3 8. B---A: Cost = 4 *lowest4. D---A: Cost = 6 D---A: Cost = 6D---B: Cost = 5 D---C: Cost = 4D---E: Cost = 2 *lowest F---C: Cost = 6D---C: Cost = 4 H---K: Cost = 7F---C: Cost = 6 I---K: Cost = 8F---J: Cost = 5 J---K: Cost = 4G---E: Cost = 2 9. A---C: Cost = 3 *lowestG---H: Cost = 2 D---C: Cost = 4I---H: Cost = 2 F---C: Cost = 6I---K: Cost = 8 H---K: Cost = 7I---J: Cost = 3 I---K: Cost = 85. D---A: Cost = 6 J---K: Cost = 4D---B: Cost = 5 10. H---K: Cost = 7D---C: Cost = 4 I---K: Cost = 8E---B: Cost = 3 J---K: Cost = 4 *lowestE---H: Cost = 4F---C: Cost = 6F---J: Cost = 5G---H: Cost = 2 *lowest Total = $26 millionI---H: Cost = 2I---K: Cost = 8I---J: Cost = 37.17a) The company wants a path between each pair of nodes (groves) that minimizes cost(length of road).b)7---8 : Distance = 0.57---6 : Distance = 0.66---5 : Distance = 0.95---1 : Distance = 0.75---4 : Distance = 0.78---3 : Distance = 1.03---2 : Distance = 0.9Total = 5.3 miles7.18a) The bank wants a path between each pair of nodes (offices) that minimizes cost(distance).b) B1---B5 : Distance = 50B5---B3 : Distance = 80B1---B2 : Distance = 100B2---M : Distance = 70B2---B4 : Distance = 120Total = 420 milesHamburgBostonRotterdamSt. PetersburgNapoliMoscowA IRFIELD SLondonJacksonvilleBerlin RostovIstanbulCases7.1a) The network showing the different routes troops and supplies may follow to reach the Russian Federation appears below.PORTSb)The President is only concerned about how to most quickly move troops and suppliesfrom the United States to the three strategic Russian cities. Obviously, the best way to achieve this goal is to find the fastest connection between the US and the three cities.We therefore need to find the shortest path between the US cities and each of the three Russian cities.The President only cares about the time it takes to get the troops and supplies to Russia.It does not matter how great a distance the troops and supplies cover. Therefore we define the arc length between two nodes in the network to be the time it takes to travel between the respective cities. For example, the distance between Boston and London equals 6,200 km. The mode of transportation between the cities is a Starlifter traveling at a speed of 400 miles per hour * 1.609 km per mile = 643.6 km per hour. The time is takes to bring troops and supplies from Boston to London equals 6,200 km / 643.6 km per hour = 9.6333 hours. Using this approach we can compute the time of travel along all arcs in the network.By simple inspection and common sense it is apparent that the fastest transportation involves using only airplanes. We therefore can restrict ourselves to only those arcs in the network where the mode of transportation is air travel. We can omit the three port cities and all arcs entering and leaving these nodes.The following six spreadsheets find the shortest path between each US city (Boston and Jacksonville) and each Russian city (St. Petersburg, Moscow, and Rostov).The spreadsheets contain the following formulas:Comparing all six solutions we see that the shortest path from the US to Saint Petersburg is Boston → London → Saint Petersburg with a total travel time of 12.71 hours. The shortest path from the US to Moscow is Boston → London → Moscow with a total travel time of 13.21 hours. The shortest path from the US to Rostov is Boston →Berlin → Rostov with a total travel time of 13.95 hours. The following network diagram highlights these shortest paths.-1c)The President must satisfy each Russian city’s military requirements at minimum cost.Therefore, this problem can be solved as a minimum-cost network flow problem. The two nodes representing US cities are supply nodes with a supply of 500 each (wemeasure all weights in 1000 tons). The three nodes representing Saint Petersburg, Moscow, and Rostov are demand nodes with demands of –320, -440, and –240,respectively. All nodes representing European airfields and ports are transshipment nodes. We measure the flow along the arcs in 1000 tons. For some arcs, capacityconstraints are given. All arcs from the European ports into Saint Petersburg have zero capacity. All truck routes from the European ports into Rostov have a transportation limit of 2,500*16 = 40,000 tons. Since we measure the arc flows in 1000 tons, the corresponding arc capacities equal 40. An analogous computation yields arc capacities of 30 for both the arcs connecting the nodes London and Berlin to Rostov. For all other nodes we determine natural arc capacities based on the supplies and demands at the nodes. We define the unit costs along the arcs in the network in $1000 per 1000 tons (or, equivalently, $/ton). For example, the cost of transporting 1 ton of material from Boston to Hamburg equals $30,000 / 240 = $125, so the costs of transporting 1000 tons from Boston to Hamburg equals $125,000.The objective is to satisfy all demands in the network at minimum cost. The following spreadsheet shows the entire linear programming model.HamburgBoston Rotterdam St.Petersburg+500-320Napoli Moscow A IRF IELDSLondon -440Jacksonville Berlin Rostov+500-240Istanbul The total cost of the operation equals $412.867 million. The entire supply for SaintPetersburg is supplied from Jacksonville via London. The entire supply for Moscow is supplied from Boston via Hamburg. Of the 240 (= 240,000 tons) demanded by Rostov, 60 are shipped from Boston via Istanbul, 150 are shipped from Jacksonville viaIstanbul, and 30 are shipped from Jacksonville via London. The paths used to shipsupplies to Saint Petersburg, Moscow, and Rostov are highlighted on the followingnetwork diagram.PORTSd)Now the President wants to maximize the amount of cargo transported from the US tothe Russian cities. In other words, the President wants to maximize the flow from the two US cities to the three Russian cities. All the nodes representing the European ports and airfields are once again transshipment nodes. The flow along an arc is againmeasured in thousands of tons. The new restrictions can be transformed into arccapacities using the same approach that was used in part (c). The objective is now to maximize the combined flow into the three Russian cities.The linear programming spreadsheet model describing the maximum flow problem appears as follows.The spreadsheet shows all the amounts that are shipped between the various cities. The total supply for Saint Petersburg, Moscow, and Rostov equals 225,000 tons, 104,800 tons, and 192,400 tons, respectively. The following network diagram highlights the paths used to ship supplies between the US and the Russian Federation.PORTSHamburgBoston Rotterdam St.Petersburg+282.2 -225NapoliMoscowAIRFIELDS-104.8LondonJacksonvilleBerlin Rostov +240 -192.4Istanbule)The creation of the new communications network is a minimum spanning tree problem.As usual, a greedy algorithm solves this type of problem.Arcs are added to the network in the following order (one of several optimal solutions):Rostov - Orenburg 120Ufa - Orenburg 75Saratov - Orenburg 95Saratov - Samara 100Samara - Kazan 95Ufa – Yekaterinburg 125Perm – Yekaterinburg 857.2a) There are three supply nodes – the Yen node, the Rupiah node, and the Ringgit node.There is one demand node – the US$ node. Below, we draw the network originatingfrom only the Yen supply node to illustrate the overall design of the network. In thisnetwork, we exclude both the Rupiah and Ringgit nodes for simplicity.b)Since all transaction limits are given in the equivalent of $1000 we define the flowvariables as the amount in thousands of dollars that Jake converts from one currencyinto another one. His total holdings in Yen, Rupiah, and Ringgit are equivalent to $9.6million, $1.68 million, and $5.6 million, respectively (as calculated in cells I16:K18 inthe spreadsheet). So, the supplies at the supply nodes Yen, Rupiah, and Ringgit are -$9.6 million, -$1.68 million, and -$5.6 million, respectively. The demand at the onlydemand node US$ equals $16.88 million (the sum of the outflows from the sourcenodes). The transaction limits are capacity constraints for all arcs leaving from thenodes Yen, Rupiah, and Ringgit. The unit cost for every arc is given by the transactioncost for the currency conversion.Jake should convert the equivalent of $2 million from Yen to each US$, Can$, Euro, and Pound. He should convert $1.6 million from Yen to Peso. Moreover, he should convert the equivalent of $200,000 from Rupiah to each US$, Can$, and Peso, $1 million from Rupiah to Euro, and $80,000 from Rupiah to Pound. Furthermore, Jake should convert the equivalent of $1.1 million from Ringgit to US$, $2.5 million from Ringgit to Euro, and $1 million from Ringgit to each Pound and Peso. Finally, he should convert all the money he converted into Can$, Euro, Pound, and Peso directly into US$. Specifically, he needs to convert into US$ the equivalent of $2.2 million, $5.5 million, $3.08 million, and $2.8 million Can$, Euro, Pound, and Peso, respectively. Assuming Jake pays for the total transaction costs of $83,380 directly from his American bank accounts he will have $16,880,000 dollars to invest in the US.c)We eliminate all capacity restrictions on the arcs.Jake should convert the entire holdings in Japan from Yen into Pounds and then into US$, the entire holdings in Indonesia from Rupiah into Can$ and then into US$, and the entire holdings in Malaysia from Ringgit into Euro and then into US$. Without the capacity limits the transaction costs are reduced to $67,480.d)We multiply all unit cost for Rupiah by 6.The optimal routing for the money doesn't change, but the total transaction costs are now increased to $92,680.e)In the described crisis situation the currency exchange rates might change every minute.Jake should carefully check the exchange rates again when he performs thetransactions.The European economies might be more insulated from the Asian financial collapse than the US economy. To impress his boss Jake might want to explore other investment opportunities in safer European economies that provide higher rates of return than US bonds.。
《运筹学》 第七章决策分析习题及 答案
《运筹学》第七章决策分析习题及答案摸索题(1)简述决策的分类及决策的程序;(2)试述构成一个决策咨询题的几个因素;(3)简述确定型决策、风险型决策和不确定型决策之间的区不。
不确定型决策能否转化成风险型决策?(4)什么是决策矩阵?收益矩阵,缺失矩阵,风险矩阵,后悔值矩阵在含义方面有什么区不;(5)试述不确定型决策在决策中常用的四种准则,即等可能性准则、最大最小准则、折衷准则及后悔值准则。
指出它们之间的区不与联系;(6)试述效用的概念及其在决策中的意义和作用;(7)如何确定效用曲线;效用曲线分为几类,它们分不表达了决策者对待决策风险的什么态度;(8)什么是转折概率?如何确定转折概率?(9)什么是乐观系数,它反映了决策人的什么心理状态?判定下列讲法是否正确(1)不管决策咨询题如何变化,一个人的效用曲线总是不变的;(2)具有中间型效用曲线的决策者,对收入的增长和对金钞票的缺失都不敏锐;(3)考虑下面的利润矩阵(表中数字矩阵为利润)S 3 1 15 14 10 -3 S 417221012分不用以下四种决策准则求最优策略:(1)等可能性准则(2)最大最小准则(3)折衷准则(取=0.5)(4)后悔值准则。
某种子商店期望订购一批种子。
据已往体会,种子的销售量可能为500,1000,1500或2000公斤。
假定每公斤种子的订购价为6元,销售价为9元,剩余种子的处理价为每公斤3元。
要求:(1)建立损益矩阵;(2)分不用悲观法、乐观法(最大最大)及等可能法决定该商店应订购的种子数;(3)建立后悔矩阵,并用后悔值法决定商店应订购的种子数。
按照已往的资料,一家超级商场每天所需面包数(当天市场需求量)可能是下列当中的某一个:100,150,200,250,300,但其概率分布不明白。
如果一个面包当天卖不掉,则可在当天终止时每个0.5元处理掉。
新奇面包每个售价1.2元,进价0.9元,假设进货量限制在需求量中的某一个,要求(1)建立面包进货咨询题的损益矩阵;(2)分不用处理不确定型决策咨询题的各种方法确定进货量。
运筹学习题答案(第七章)
page 19 9 July 2013
School of Management
运筹学教程
第七章习题解答
7.10 用顺序解法计算7.1题,7.4题。 解:略。
page 20 9 July 2013
School of Management
运筹学教程
第七章习题解答
7.11 某工厂生产三种产品,各种产品重量与利润 关系如表7-22所示,现将此三种产品运往市场出售, 运输能力总重量不超过6t,问应运输每种产品各多少 件可使总利润最大。 解:只运产品2两件,最大总利润260(千元)。
运筹学教程
同样适合第三版黄皮版
page 1 9 July 2013
School of Management
运筹学教程(第二版) 习题解答
安徽大学管理学院
洪 文
电话:5108157(H),5107443(O) E-mail: Hongwen9509_cn@
运筹学教程
第七章习题解答
7.1 现有天然气站A,需铺设管道到用气单位E, 可以选择的设计路线如下图所示,Bl,…,D2各点是 中间加压站,各线路的费用已标在线段旁(单位:万 元),试设计费用低的路线。
max F x 1 2 x 2 x 3 x 3 4 x 2 2 x 3
2 2
(2)
x1 x 2 x 3 3 x i 0 , ( i 1, 2 , 3 )
解: x 1 1, x 2 1, x 3 1, F 4
page 18 9 July 2013
page 23 9 July 2013
概率 0.4 0.3 0.3
School of Management
运筹学教程
运筹学习题答案第七章共29页PPT资料
安徽大学管理学院
电话:5108157(H),5107443(O) E-mail: Hongwen9509_cnsina
洪文
运筹学教程
第七章习题解答
7.1 现有天然气站A,需铺设管道到用气单位E,
可中以间选加择压的站设 ,计各路线线路如的下费图用所已示标,在线Bl,段…旁,(单D位2各:点万是 元),试设计费用低的路线。
-
-
1
64
2
0 64 68 -
-
2
68
3
0 64 68 78 -
3
78
4
0 64 68 78 76 3
78
page 9 5/5/2020
School of Management
运筹学教程
第七章习题解答
状态(可能的 投资数)
0 1 2 3 4
工厂2 决策(分配资金)
01234
0
-
-
-
-
64 42 -
7.5 为保证某设备正常运转,需对串联工作的三
种不同零件Al,A2,A3,分别确定备件数量。若增加 备用零件的数量,可提高设备正常运转的可靠性,但
费用要增加,而总投资额为8千元。已知备用零件数与
它的可靠性和费用关系如表7-2l所示,求Al,A2,A3的 备用零件数量各为多少时,可使设备运转的可靠性最
运行模型后,1月生产5,2月生产6,最小费用为67。
page 7 5/5/2020
School of Management
运筹学教程
第七章习题解答
7.4 某公司有资金4万元,可向A,B,C三个项目 投资,已知各项目不同投资额的相应效益值如表7-20 所示,问如何分配资金可使总效益最大。
运筹学第7章答案
7.2(1)分别用节点法和箭线法绘制表7-16的项目网络图,并填写表中的紧前工序。
(2) 用箭线法绘制表7-17的项目网络图,并填写表中的紧后工序表7-16表7-17【解】(1)节点图:箭线图:(2)节点图:箭线图:7.3根据项目工序明细表7-18:(1)画出网络图。
(2)计算工序的最早开始、最迟开始时间和总时差。
(3)找出关键路线和关键工序。
表7-18【解】(1)网络图(2)网络参数(3)关键路线:①→②→③→④→⑤→⑥→⑦;关键工序:A、C、D、G;完工期:48周。
7.4 表7-19给出了项目的工序明细表。
表7-19(2)在网络图上求工序的最早开始、最迟开始时间。
(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差。
(4)找出所有关键路线及对应的关键工序。
(5)求项目的完工期。
【解】(1)网络图(2)工序最早开始、最迟开始时间(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差(4)关键路线及对应的关键工序关键路线有两条,第一条:①→②→⑤→⑥→⑦→○11→○12;关键工序:B,E,G,H,K,M 第二条:①→④→⑧→⑨→○11→○12;关键工序:C,F,L,M (5)项目的完工期为62天。
7.5已知项目各工序的三种估计时间如表7-20所示。
求: 表7-20 (1)绘制网络图并计算各工序的期望时间和方差。
(2)关键工序和关键路线。
(3)项目完工时间的期望值。
(4)假设完工期服从正态分布,项目在56小时内完工的概率是多少。
(5)使完工的概率为0.98,最少需要多长时间。
【解】(1)网络图(2)关键工序:A,C,E,F ;关键路线:①→②→④→⑤→⑥(3) 项目完工时间的期望值:10.17+14.83+17.17+11.83=54(小时)完工期的方差为0.25+0.25+0.6944+0.6944=1.88891.37437σ(4)X 0=56,05654(1.45520.9271.37437n n X μσ⎛⎫--⎛⎫Φ=Φ⎪ ⎪⎝⎭⎝⎭Φ=)=56天内完工的概率为0.927(5) p=0.98,0{)()0.98, 2.05p X X Z Z ≤=Φ==0 2.05 1.37445456.82X Z σμ+=⨯+==要使完工期的概率达到0.98,则至少需要56.82小时。
决策分析(含答案)
决策分析复习题〔请和本学期的大纲对照,答案供参考〕第一章一、选择题〔单项选〕1.1966年,R. A. Howard在第四届国际运筹学会议上发表〔 C 〕一文,首次提出“决策分析〞这一名词,用它来反映决策理论的应用。
A.?对策理论与经济行为? B.?管理决策新科学?C.?决策分析:应用决策理论?D.?贝叶斯决策理论?2.决策分析的阶段包含两种根本方式:( A )A. 定性分析和定量分析B. 常规分析和非常规分析C. 单级决策和多级决策D. 静态分析和动态分析3.在管理决策中,许多管理人员认为只要选取满意的方案即可,而无须刻意追求最优的方案。
对于这种观点,你认为以下哪种解释最有说服力?〔 D 〕A.现实中不存在所谓的最优方案,所以选中的都只是满意方案B.现实管理决策中常常由于时间太紧而来不及寻找最优方案C.由于管理者对什么是最优决策无法达成共识,只有退而求其次D.刻意追求最优方案,常常会由于代价太高而最终得不偿失4.关于决策,正确的说法是〔A〕A.决策是管理的根底B.管理是决策的根底C.决策是调查的根底D.方案是决策的根底5.根据决策时期,可以将决策分为:〔D 〕A.战略决策与战术决策 B. 定性决策与定量决策C. 常规决策与非常规决策D. 静态决策与动态决策6.我国五年开展方案属于〔B〕。
A.非程序性决策B.战略决策C.战术决策D.确定型决策7.管理者的根本行为是〔A〕A.决策 B.方案 C.组织 D.控制8.管理的首要职能是〔D〕。
A.组织 B. 控制 C.监视 D. 决策9. 管理者工作的实质是〔C〕。
A.方案 B. 组织 C. 决策D.控制10. 决策分析的根本特点是〔C 〕。
A.系统性 B. 优选性 C. 未来性 D.动态性二、判断题1.管理者工作的实质就是决策,管理者也常称为“决策者〞。
〔√〕2.1944年,Von Neumann和Morgenstern从决策角度来研究统计分析方法,建立了贝叶斯〔统计〕决策理论。
运筹学习题答案(第七章)
运筹学教程
第七章习题解答
page 3 11 July 2013
School of Management
运筹学教程
第七章习题解答
7.2 一艘货轮在A港装货后驶往F港,中途需靠港 加油、淡水三次,从A港到F港部可能的航运路线及两 港之间距离如下图所示,F港有3个码头F1,F2, F3 ,试 求最合理靠的码头及航线,使总路程最短。
运筹学教程
第七章习题解答
2 max F 4 x1 9 x2 2 x3 (3) 2 x1 4 x 2 3 x3 10 xi 0, (i 1,2,3) 解:x1 0, x2 2.5, x3 0, F 22 .5
page 18 11 July 2013
最优解是:工厂1追加投资1百万,年利润41万; 工厂2追加投资2百万,利润50万;工厂3追加投资1百 万,利润64万。总利润是155万元。
page 11 11 July 2013
School of Management
运筹学教程
第七章习题解答
7.5 为保证某设备正常运转,需对串联工作的三 种不同零件Al ,A2 ,A3 ,分别确定备件数量。若增加 备用零件的数量,可提高设备正常运转的可靠性,但 费用要增加,而总投资额为8千元。已知备用零件数与 它的可靠性和费用关系如表7-2l所示,求Al,A2,A3的 备用零件数量各为多少时,可使设备运转的可靠性最 高。
64
68 78 78
42
108 110 120
50 114 118
60 124
66
0
1 2 3
64
108 114 124
School of Management
运筹学教程
《运筹学》 第七章决策分析习题及 答案
《运筹学》第七章决策分析习题1. 思考题(1)简述决策的分类及决策的程序; (2)试述构成一个决策问题的几个因素;(3)简述确定型决策、风险型决策和不确定型决策之间的区别。
不确定型决策能否转化成风险型决策?(4)什么是决策矩阵?收益矩阵,损失矩阵,风险矩阵,后悔值矩阵在含义方面有什么区别;(5)试述不确定型决策在决策中常用的四种准则,即等可能性准则、最大最小准则、折衷准则及后悔值准则。
指出它们之间的区别与联系; (6)试述效用的概念及其在决策中的意义和作用;(7)如何确定效用曲线;效用曲线分为几类,它们分别表达了决策者对待决策风险的什么态度;(8)什么是转折概率?如何确定转折概率?(9)什么是乐观系数,它反映了决策人的什么心理状态? 2. 判断下列说法是否正确(1)不管决策问题如何变化,一个人的效用曲线总是不变的;(2)具有中间型效用曲线的决策者,对收入的增长和对金钱的损失都不敏感; (3)3. 考虑下面的利润矩阵(表中数字矩阵为利润)准则(3)折衷准则(取λ=0.5)(4)后悔值准则。
4. 某种子商店希望订购一批种子。
据已往经验,种子的销售量可能为500,1000,1500或2000公斤。
假定每公斤种子的订购价为6元,销售价为9元,剩余种子的处理价为每公斤3元。
要求:(1)建立损益矩阵;(2)分别用悲观法、乐观法(最大最大)及等可能法决定该商店应订购的种子数;(3)建立后悔矩阵,并用后悔值法决定商店应订购的种子数。
5. 根据已往的资料,一家超级商场每天所需面包数(当天市场需求量)可能是下列当中的某一个:100,150,200,250,300,但其概率分布不知道。
如果一个面包当天卖不掉,则可在当天结束时每个0.5元处理掉。
新鲜面包每个售价1.2元,进价0.9元,假设进货量限制在需求量中的某一个,要求 (1)建立面包进货问题的损益矩阵;(2)分别用处理不确定型决策问题的各种方法确定进货量。
6.有一个食品店经销各种食品,其中有一种食品进货价为每个3元,出售价是每个4元,如果这种食品当天卖不掉,每个就要损失0.8元,根据已往销售情况,这种食品每天销售1000,2000,3000个的概率分别为0.3,0.5和0.2,用期望值准则给出商店每天进货的最优策略。
运筹学第七章 决策论
i
r * min min f ( d i , s j )
j
2 悲观法(最大最小决策准则)
基本思想:悲观法也称为瓦尔德准则,决策者对客观 情况总是抱悲观态度,从各种最坏的情况出发,然后再 考虑从中选择一个最好的结果,因此叫最大最小决策准 则。计算公式为
r * max min f (di , s j )
解: 可供选择的日产量有 4 种方案: 1 = 100 件, 2 = 110 d d 件,d3 = 120 件,d4 = 130 件,利用最小机会损失决策准 则, 进行损失最小的决策。 先求各 “自然状态与方案对” 的损失值。 当日产量 d1 = 100 件时,若 s1 = 100,则损失 s1d1 = 0; 若 s2 = 110 件,s2d1 = 10,则损失 10 × 50 = 500 元; 若 s3 = 120 件,s3d1 = 20,则损失 20 × 50 = 1000 元; 若 s4 = 130 件,s4d1 = 30,则损失 30 × 50 = 1500 元。 当日产量 d2=110 件,d3=120 件,d4 = 130 件类似可以求 出损失值,得下表。
八 多目标决策的层次分析法
层次分析法(Analytic Hierarchy Process,AHP)是美国运筹 学家 T.L.Saaty 于 70 年代中期创立的一种定性与定量分析相结 合的多目标决策方法。其本质是试图使人的思维条理化、层次 化,它充分利用人的经验和判断,并予以量化,进而评价决策 方案的优劣,并排出它们间的优先顺序。由于 AHP 的应用简 单有效,特别对目标结构复杂,并且缺乏必要的数据资料的情 况(如社会经济系统的评价项目)更为实用。应用层次分析法进 行系统评价,其主要步骤: 构造多级递阶结构模型,建立比较的判断矩阵,计算相对 重要度,进行一致性检验,计算综合重要度等。
胡运权运筹学第七章习题解
解:设阶段变量: k=1,2,3状态变量: 第k 个月初的库存量 决策变量: 第k 个月的生产量 状态转移方程: 阶段指标:由于在4月末, 仓库存量为0, 所以对于k=4阶段来说有两种决策:5+4=9 40x4()f x =1 41x对K=3 334()54()f x x f xK=2解得: 第一个月生产500份, 第二个月生产600份, 第三个月生产0份, 第四个月生产0份。
7.4某公司有资金4万元, 可向A, B, C三个项目投资, 已知各项目不同投资额的相应效益值如表7-20所示, 问如何分配资金可使总效益最大。
表7-20解:设阶段变量k, , 每一个项目表示一个阶段;状态变量Sk, 表示可用于第k阶段及其以后阶段的投资金额;决策变量Uk, 表示在第k阶段状态为Sk下决定投资的投资额;决策允许集合: 0≤Uk≤Sk状态转移方程: Sk+1=Sk-Uk;阶段指标函数: V k(SkUk);最优指标函数: fk(Sk)=max{ V k(SkUk)+ fk+1(Sk+1)}终端条件: f4(x4)=0;K=4, f4(x4)=0k=3, 0≤U3≤S3k=2, 0≤U2≤S2k=1, 0≤U1≤S1所以根据以上计算, 可以得到获得总效益最大的资金分配方案为(1, 2, 1).解: 设第k阶段的状态为Sk;第k阶段决定投入的备件为Xk;Ck(Xk)为第k阶段选择k个零件的费用;Rk(Xk)为第k个阶段选择k个零件的可靠性。
状态转移方程为: Sk+1=Sk- Ck(Xk)递退方程:114431()max{()()}()1()(1)k k K k k k K k K i i k f s R x f s f s C x S C =+=+⎧⎪=⎪⎪=⎨⎪⎪≤-⎪⎩∑所以有上可知当A 1;A 2;A 3;分别为k=1;k=2;k=3时S 1=8; S 2=5,6,7; S 3=1,2,3,4;由上表可知, 最优解的可靠性为0.042;此时X1=1;X2=1;X3=3。
运筹学第三版课后习题答案第7章网络计划——第十三章博弈论
第7章网络计划7.1(1)分别用节点法和箭线法绘制表7-16的项目网络图,并填写表中的紧前工序。
(2) 用箭线法绘制表7-17的项目网络图,并填写表中的紧后工序表7-16工序 A B C D E F G紧前工序--- A A、C -B、D、E、F紧后工序D,E G E G G G -表7-17工序 A B C D E F G H I J K L M 紧前工序- - - B B A,B B D,G C,E,F,H D,G C,E I J,K,L 紧后工序F E,D,F,G I,K H,J I,K I H,J I L M M M-【解】(1)节点图:箭线图:(2)节点图:箭线图:7.2根据项目工序明细表7-18:(1)画出网络图。
(2)计算工序的最早开始、最迟开始时间和总时差。
(3)找出关键路线和关键工序。
表7-18工序 A B C D E F G 紧前工序- A A B,C C D,E D,E 工序时间(周)9 6 12 19 6 7 8【解】(1)网络图(2)网络参数工序 A B C D E F G最早开始0 9 9 21 21 40 40最迟开始0 15 9 21 34 41 40总时差0 6 0 0 13 1 0(3)关键路线:①→②→③→④→⑤→⑥→⑦;关键工序:A、C、D、G;完工期:48周。
7.3表7-19给出了项目的工序明细表。
表7-19工序 A B C D E F G H I J K L M N 紧前工序- - - A,B B B,C E D,G E E H F,J I,K,L F,J,L 工序时间(天) 8 5 7 12 8 17 16 8 14 5 10 23 15 12 (1)绘制项目网络图。
(2)在网络图上求工序的最早开始、最迟开始时间。
(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差。
(4)找出所有关键路线及对应的关键工序。
(5)求项目的完工期。
【解】(1)网络图(2)工序最早开始、最迟开始时间(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差 工序 tT EST EFT LST LF 总时差S 自由时差F A 8 0 8 9 17 9 0 B 5 0 5 0 5 00 C 7 0 7 7 7 0 0 D 12 8 20 17 29 9 9 E 8 5 13 5 13 0 0 F 17 7 24 7 24 0 0 G 16 13 29 13 29 0 0 H 8 29 37 29 37 0 0 I 14 13 27 33 47 20 20 J 5 13 18 19 24 6 6 K 10 37 47 37 47 0 0 L 23 24 47 24 47 0 0 M154762 47 62 0 0 N 12 47 59506233(4)关键路线及对应的关键工序关键路线有两条,第一条:①→②→⑤→⑥→⑦→○11→○12;关键工序:B,E,G ,H,K,M 第二条:①→④→⑧→⑨→○11→○12;关键工序:C,F,L,M (5)项目的完工期为62天。
运筹学练习题
运筹学练习题一、线性规划1. 某企业生产两种产品,产品A和产品B。
生产一个单位产品A需要2小时机器时间,3小时人工时间,利润为20元;生产一个单位产品B需要1小时机器时间,1小时人工时间,利润为15元。
若企业每周有100小时机器时间和90小时人工时间,如何安排生产计划以使利润最大化?2. 某公司计划生产三种产品,产品1、产品2和产品3。
每种产品的市场需求量分别为50、60和70单位。
生产每单位产品1、产品2和产品3所需的资源分别为2、3和4。
现有资源总量为200,如何分配资源以最大化总产量?3. 设有线性规划问题:最大化 3x + 2y,约束条件为x + 2y ≤ 6,2x + y ≤ 8,x ≥ 0,y ≥ 0。
求目标函数的最大值。
二、整数规划1. 某公司生产三种产品,产品1、产品2和产品3。
生产每单位产品1、产品2和产品3所需的工人数分别为2、3和4。
现有工人总数为20,如何分配工人以使总产量最大化?2. 某物流公司需要从A地运送货物到B地,沿途有若干个中转站。
每个中转站的货物需求量为整数,如何规划运输路线以最小化总运输成本?3. 设有整数规划问题:最大化 5x + 4y,约束条件为 3x + 2y≤ 12,x + 3y ≤ 9,x ≥ 0,y ≥ 0,且x、y为整数。
求目标函数的最大值。
三、动态规划1. 某人有一笔钱,可以在四个阶段进行投资。
每个阶段有三种投资方案,分别对应不同的收益。
如何制定投资策略以使总收益最大化?2. 某企业在一定时期内生产一种产品,已知市场需求量、生产成本和库存成本。
如何制定生产计划以使总成本最小?3. 设有动态规划问题:求解最短路径问题,从节点1到节点5,路径上的权重分别为{3, 4, 2, 1, 5},{2, 1, 3, 2, 4},{4, 3, 2, 5, 1}。
求从节点1到节点5的最短路径。
四、网络流问题1. 某地区有五个城市,城市之间的道路容量如下表所示。
运筹学第七章决策分析习题及答案
《运筹学》第七章决策分析习题1. 思考题(1)简述决策的分类及决策的程序; (2)试述构成一个决策问题的几个因素;(3)简述确定型决策、风险型决策和不确定型决策之间的区别。
不确定型决策能否转化成风险型决策?(4)什么是决策矩阵?收益矩阵,损失矩阵,风险矩阵,后悔值矩阵在含义方面有什么区别;(5)试述不确定型决策在决策中常用的四种准则,即等可能性准则、最大最小准则、折衷准则及后悔值准则。
指出它们之间的区别与联系; (6)试述效用的概念及其在决策中的意义和作用;(7)如何确定效用曲线;效用曲线分为几类,它们分别表达了决策者对待决策风险的什么态度;(8)什么是转折概率?如何确定转折概率?(9)什么是乐观系数,它反映了决策人的什么心理状态? 2. 判断下列说法是否正确(1)不管决策问题如何变化,一个人的效用曲线总是不变的;(2)具有中间型效用曲线的决策者,对收入的增长和对金钱的损失都不敏感; (3)3.准则(3)折衷准则(取λ=0.5)(4)后悔值准则。
4. 某种子商店希望订购一批种子。
据已往经验,种子的销售量可能为500,1000,1500或2000公斤。
假定每公斤种子的订购价为6元,销售价为9元,剩余种子的处理价为每公斤3元。
要求:(1)建立损益矩阵;(2)分别用悲观法、乐观法(最大最大)及等可能法决定该商店应订购的种子数;(3)建立后悔矩阵,并用后悔值法决定商店应订购的种子数。
5. 根据已往的资料,一家超级商场每天所需面包数(当天市场需求量)可能是下列当中的某一个:100,150,200,250,300,但其概率分布不知道。
如果一个面包当天卖不掉,则可在当天结束时每个0.5元处理掉。
新鲜面包每个售价1.2元,进价0.9元,假设进货量限制在需求量中的某一个,要求 (1)建立面包进货问题的损益矩阵;(2)分别用处理不确定型决策问题的各种方法确定进货量。
6.有一个食品店经销各种食品,其中有一种食品进货价为每个3元,出售价是每个4元,如果这种食品当天卖不掉,每个就要损失0.8元,根据已往销售情况,这种食品每天销售1000,2000,3000个的概率分别为0.3,0.5和0.2,用期望值准则给出商店每天进货的最优策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《运筹学》第七章决策分析习题1. 思考题(1)简述决策的分类及决策的程序; (2)试述构成一个决策问题的几个因素;(3)简述确定型决策、风险型决策和不确定型决策之间的区别。
不确定型决策能否转化成风险型决策?(4)什么是决策矩阵?收益矩阵,损失矩阵,风险矩阵,后悔值矩阵在含义方面有什么区别;(5)试述不确定型决策在决策中常用的四种准则,即等可能性准则、最大最小准则、折衷准则及后悔值准则。
指出它们之间的区别与联系; (6)试述效用的概念及其在决策中的意义和作用;(7)如何确定效用曲线;效用曲线分为几类,它们分别表达了决策者对待决策风险的什么态度;(8)什么是转折概率?如何确定转折概率?(9)什么是乐观系数,它反映了决策人的什么心理状态? 2. 判断下列说法是否正确(1)不管决策问题如何变化,一个人的效用曲线总是不变的;(2)具有中间型效用曲线的决策者,对收入的增长和对金钱的损失都不敏感; (3)3. 考虑下面的利润矩阵(表中数字矩阵为利润)准则(3)折衷准则(取l=0.5)(4)后悔值准则。
4. 某种子商店希望订购一批种子。
据已往经验,种子的销售量可能为500,1000,1500或2000公斤。
假定每公斤种子的订购价为6元,销售价为9元,剩余种子的处理价为每公斤3元。
要求:(1)建立损益矩阵;(2)分别用悲观法、乐观法(最大最大)及等可能法决定该商店应订购的种子数;(3)建立后悔矩阵,并用后悔值法决定商店应订购的种子数。
5. 根据已往的资料,一家超级商场每天所需面包数(当天市场需求量)可能是下列当中的某一个:100,150,200,250,300,但其概率分布不知道。
如果一个面包当天卖不掉,则可在当天结束时每个0.5元处理掉。
新鲜面包每个售价1.2元,进价0.9元,假设进货量限制在需求量中的某一个,要求 (1)建立面包进货问题的损益矩阵;(2)分别用处理不确定型决策问题的各种方法确定进货量。
6.有一个食品店经销各种食品,其中有一种食品进货价为每个3元,出售价是每个4元,如果这种食品当天卖不掉,每个就要损失0.8元,根据已往销售情况,这种食品每天销售1000,2000,3000个的概率分别为0.3,0.5和0.2,用期望值准则给出商店每天进货的最优策略。
7.一季节性商品必须在销售之前就把产品生产出来。
当需求量是D 时,生产者生产x 件商品的利润(元)为:利润⎩⎨⎧>-≤≤=D x x D D x x x f 302)(设D有5个可能的值:1000件。
2000件,3000件,4000件和5000件,并且它们的概率都是0.2 。
生产者也希望商品的生产量是上述5个值中的某一个。
问:(1)若生产者追求最大的期望利润,他应选择多大的生产量?(2)若生产者选择遭受损失的概率最小,他应生产多少产品?(3)生产者欲使利润大于或等于3000元的概率最大,他应选取多大的生产量?8.某决策者的效用函数可由下式表示:-=-xexU x≤10000,1)(≤元,如果决策者面临下列两份合同:(表中数字为获利x的值)9.计算下列人员的效用值:(1)某甲失去500元时效用值为1,得到1000元时的效用值为10;有肯定得到5元与发生下列情况对他无差别:以概率0.3失去500元和概率0.7得到1000元,问某甲5元的效用值为多大?(2)某乙-10的效用值为0.1;200元的效用值为0.5,他自己解释肯定得到200元与以下情况无差别:0.7的概率失去10元和0.3的概率得到2000元,问某乙2000元的效用值为多大?(3)某丙1000元的效用值为0;500元的效用值为-150,并且对以下事件上效用值无差别:肯定得到500元或0.8概率得到1000元和0.2概率失去1000元,则某丙失去1000元的效用值为多大?(4)某丁得到400元的效用值为120,失去100元的效用值为60,有肯定得到400元与发生下列情况对他无差别:以概率0.4失去100元和以概率0.6得到800元,则某丁得到800元的效用值为多大?10.甲先生失去1000元时效用值是50,得到3000元时效用值是120,并且对以下事件上效用值无差别:肯定得到100元或0.4概率失去1000元和0.6概率得到3000元。
乙先生在失去1000元与得到100元的效用值和甲先生相同,但他在以下事件上态度无差别:肯定得到100元或0.8概率失去1000元和0.2概率得到3000元。
问:(1)甲先生1000元的效用值为多大?(2)乙先生3000元的效用值为多大?(3)比较甲先生和乙先生对待风险的态度。
11.有一投资者,想投资建设一个新厂。
建厂有两个方案,一个是建大厂,另一个是建小厂。
根据市场对该厂预计生产的产品的需求调查,需求高的概率是0.5,需求一般的概率为0.3,需求低的概率是0.2,而每年的收入情况如下表:(单位:万元)(1)(2)投资者认为按利润期望值准则进行决策风险太大,改用效用值准则进行决策.在对决策者进行了一系列询问后,得到以下结果:①损失20万元的效用值为0;获得100万元的效用值为100;且对以下事件效用值无差别:②肯定得25万元或0.5的概率得到100万元和0.5的概率失去20万元;③ 肯定得到60万元或0.75的概率得到100万元和0.25的概率失去20万元; ④ 肯定得到45万元或0.6的概率得到100万元和0.4的概率失去20万元; ⑤ 肯定得到55万元或0.7的概率得到100万元和0.3的概率失去20万元; 要求建立效用值表,且由效用值期望值法确定最优策略。
12.某甲3000元的效用值为100,600元的效用值为45,-500元的效用值为0。
试找出概率P ,使以下情况对他来说无差别:肯定得到600元或以概率P 得到3000元和以概率(1-P )失去500元。
13.某人有2万元钱,可以拿出其中1万元去投资,有可能全部丧失掉或第二年获得4万元。
(1) 用期望值法计算当全部丧失掉的概率最大为多少时该人投资仍然有利;(2) 如该人的效用函数为50000)(+=M M U ,重新计算全部丧失掉的概率最大为多少时该人投资仍然有利。
14.某公司有10万元多余资金。
如用于开发某个项目估计成功率为95% ,成功时一年可获利15% ,但一旦失败,有全部丧失资金的危险。
如把资金存放到银行中,则可稳得年利4% 。
为获得更多的信息,该公司求助于咨询公司,咨询费为800元,但咨询意见只是提供参考。
拒过去咨询公司类似200例咨询意见实施结果如下表所示,试用决策树法分析:(1)该公司是否值得求助与咨询公司; (2)该公司多余资金该如何使用?《运筹学》第七章决策分析习题解答2.解:(1)´(2)´(3)√3.解:最优策略为:(1)等可能性准则采取方案4a (2)最大最小准则采取方案2a (3)折衷准则采取方案4a (4)后悔值准则采取方案1a。
4.(1)益损矩阵如下表所示:(2)悲观法:142A 3 ,订购1000公斤或1500公斤。
(3)后悔矩阵如下表所示:235.(1)益损矩阵如下表所示:(2)15折衷法(取l=0.5):A1或A2,订购100个或150个;等可能法:A3,订购200个;后悔值法:A3,订购200个。
627.益损矩阵如下表:4(2)生产1000,2000,3000件商品时,各种需求量条件均不亏本,损失的概率为0,均为最小;(3)由上表可以看出,应生产2000件或3000件。
8.应签合同B。
9.(1)3.7)1000(7.0)500(3.0)5(=+-=UUU;(2)433.1)2000(,)2000(3.0)10(7.0)200(=+-=UUUU;(3)750)1000(,)1000(2.0)1000(8.0)500(-=--+=UUUU;(4)160)800(,)800(6.0)100(4.0)400(=+-=UUUU。
10.(1)甲先生:U(100)=0.4U(-1000)+0.6U(3000) ,U(100)=92 (2)乙先生:U(100)=0.8U(1000)+0.2U(-3000),U(3000)=260(3)乙先生比甲先生更喜欢冒险。
11.(1)E(S1)=0.5´100+0.3´60+0.2´(-20)=64(万元)E(S2)=0.5´25+0.3´45+0.2´55=37(万元)用期望值法决策应建大厂.M(2)建立效用值表如下:求效用值期望值:E(S1)=0.5´100+0.3´75+0.2´0=72.5(万元)E(S2)= =0.5´50+0.3´60+0.2´70=57(万元)由效用值期望值法最优策略为建大厂。
12.U(600)=PU(3000)+(1-P)U(-500) ,故 P=0.15 。
13.(1)-10000P=(1-P)30000 ,P=0.75 ,即全部丧失掉的概率不超过0.75时该人投资仍然有利。
(2)U(-1000)=2000 , U(30000)=2002,P´U(-1000) =(1-P)U(30000) , 故 P=0.586 , 即全部丧失掉的概率不超过0.586时该人投资仍然有利。
14.多余资金用于开发某个项目成功时可获利15000元,存入银行可获利4000元。
设:S1:咨询公司意见可以投资;S2:咨询公司意见不可以投资;E1:投资成功; E2:投资不成功。
由题义知:P (S1)=0.78 ,P (S2)=0.22 ,P (E1)=0.95 ,P (E2)=0.05因为:)()()(SPESPSEP=,又因为75.0)(11=ESP,11.0)(12=ESP,03.0)(21=ESP,11.0)(22=ESP。
故得:038.0)(,962.0)(1211==SEPSEP5.0)(,5.0)(2221==S E P S E P 决策树如下: 结论:(1)该公司不用去求助与咨询公司。
可用资金去开发项目。
E 1E 2P(E 1)=0.95 15000-1000004000400015000-100000。