2014年下学期数学实验与数学建模作业习题8

合集下载

数学建模方法期末考试试卷(2014年下半年)

数学建模方法期末考试试卷(2014年下半年)

2014-2015学年第一学期期末考试课程试卷课名称:数学建模方法 课程号:SAM12I001 考核方式: 考查请考生诚信考试,遵守考试纪律,如有违纪行为将受到警告、严重警告、记过、留校察看,直至开除学籍处分!一、(15分)某厂利用甲、乙、丙三种原料生产A 、B 、C 、D 、E 五种产品,单位产品(万件)对原材料的消耗(吨)、原材料的限量(吨)以及单位产品利润如下表。

问五种产品各生产多少才能使总利润达到最大?建立线性规划问题数学模型。

并准确写出用LINGO 软件求解的程序。

二、(15分)用单纯形方法求如下线性规划问题的最优解。

⎪⎩⎪⎨⎧≥≤++≤++++=0,,,,3054345536..500300400S m ax 54321321321321x x x x x x x x x x x t s x x x 学号:________________ 姓名:________________ 班级:______________请考生将答案写在试卷相应答题区,在其他地方作答视为无效!………………………………………………………………………………………………………………………………………………三、(15分)上海红星建筑构配件厂是红星集团属下之制造建材设备的专业厂家。

其主要产品有4种,分别用代号A、B、C、D表示,生产A、B、C、D四种产品主要经过冲压、成形、装配和喷漆四个阶段。

根据工艺要求及成本核算,单位产品所需要的加工时间、利润以及可供使用的总工时如下表所示:在现有资源的条件下如何安排生产,可获得利润最大?现设上述问题的决策变量如下:4321,,,x x x x 分别表示A 、B 、C 、D 型产品的产量,则可建立线性规划模型如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+++≤+++≤+++≤++++++=0,,,300048462000552424005284480..81169m ax 432143214321432143214321x x x x x x x x x x x x x x x x x x x x t s x x x x z 利用LINGO10.0软件进行求解,得求解结果如下:Global optimal solution found at iteration: 4Objective value: 4450.000 Variable Value Reduced Cost X1 400.0000 0.000000 X2 0.000000 0.5000000 X3 70.00000 0.000000 X4 10.00000 0.000000 Row Slack or Surplus Dual Price 1 4450.000 1.000000 2 0.000000 2.500000 3 610.0000 0.000000 4 0.000000 0.5000000 5 0.000000 0.7500000(1)指出问题的最优解并给出原应用问题的答案;(2)写出线性规划问题的对偶线性规划问题,并指出对偶问题的最优解;(3)灵敏度分析结果如下:Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 9.000000 0.5000000 0.1666667X2 6.000000 0.5000000 INFINITYX3 11.00000 0.3333333 1.000000X4 8.000000 1.000000 1.000000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 480.0000 20.00000 80.000003 2400.000 INFINITY 610.00004 2000.000 400.0000 20.000005 3000.000 40.00000 280.0000对灵敏度分析结果进行分析四、(15分)给定下列3个供应点和4个需求点的平衡运输问题,为使总费用最小,求最优的调运方案。

2014高教社杯全国大学生数学建模竞赛(B,C,D)题目

2014高教社杯全国大学生数学建模竞赛(B,C,D)题目

2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题创意平板折叠桌某公司生产一种可折叠的桌子,桌面呈圆形,桌腿随着铰链的活动可以平摊成一张平板(如图1-2所示)。

桌腿由若干根木条组成,分成两组,每组各用一根钢筋将木条连接,钢筋两端分别固定在桌腿各组最外侧的两根木条上,并且沿木条有空槽以保证滑动的自由度(见图3)。

桌子外形由直纹曲面构成,造型美观。

附件视频展示了折叠桌的动态变化过程。

试建立数学模型讨论下列问题:1. 给定长方形平板尺寸为120 cm × 50 cm × 3 cm,每根木条宽2.5 cm,连接桌腿木条的钢筋固定在桌腿最外侧木条的中心位置,折叠后桌子的高度为53 cm。

试建立模型描述此折叠桌的动态变化过程,在此基础上给出此折叠桌的设计加工参数(例如,桌腿木条开槽的长度等)和桌脚边缘线(图4中红色曲线)的数学描述。

2. 折叠桌的设计应做到产品稳固性好、加工方便、用材最少。

对于任意给定的折叠桌高度和圆形桌面直径的设计要求,讨论长方形平板材料和折叠桌的最优设计加工参数,例如,平板尺寸、钢筋位置、开槽长度等。

对于桌高70 cm,桌面直径80 cm的情形,确定最优设计加工参数。

3. 公司计划开发一种折叠桌设计软件,根据客户任意设定的折叠桌高度、桌面边缘线的形状大小和桌脚边缘线的大致形状,给出所需平板材料的形状尺寸和切实可行的最优设计加工参数,使得生产的折叠桌尽可能接近客户所期望的形状。

你们团队的任务是帮助给出这一软件设计的数学模型,并根据所建立的模型给出几个你们自己设计的创意平板折叠桌。

要求给出相应的设计加工参数,画出至少8张动态变化过程的示意图。

图1图2图3图4附件:视频2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)C题生猪养殖场的经营管理某养猪场最多能养10000头猪,该养猪场利用自己的种猪进行繁育。

2013—2014(下)专科数学建模试题(A、B)

2013—2014(下)专科数学建模试题(A、B)

……………………装……………………订……………………线…………………………商丘师范学院2013-2014学年度第二学期期终考试数学与信息科学学院数学教育专业12级(数专12-1班、数专12-2班)《数学建模》试卷说明:1、专科共有A、B两道题目,任选一题。

2、6月17日之前完成,字数不少于3000字。

3、论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;不用装订。

4、打印后手写姓名、学号等信息,同时把论文电子版发至sqsyjianmo@,邮件标题和文件名均为班级+姓名的形式,例如:数专一班张三。

5、论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。

论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。

6、提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。

7、论文应该思路清晰,表达简洁(正文尽量控制在10页以内,附录页数不限)。

8、引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。

正文引用处用方括号标示参考文献的编号,如:微分方程模型[1][3]等;引用书籍还必须指出页码。

参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年.参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,出版年,卷期号:起止页码.参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日).……………………装……………………订……………………线…………………………A题:实验设备的购买策略某高校实验室需要采购一台实验设备,初步计划在3个不同的品牌之中选购该设备,在采购时需要考虑该设备的功能、价格、和可维护性等方面。

数学建模与数学实验习题答案

数学建模与数学实验习题答案

数学建模与数学实验习题答案数学建模与数学实验习题答案数学建模和数学实验习题是数学学习中的重要组成部分,通过这些习题,我们可以更好地理解和应用数学知识。

本文将介绍数学建模和数学实验习题的一些答案和解题方法,帮助读者更好地掌握数学学习。

一、数学建模数学建模是将数学方法和技巧应用于实际问题的过程。

在数学建模中,我们需要将实际问题抽象为数学模型,并通过数学方法进行求解和分析。

下面是一个简单的数学建模问题和其解题过程。

问题:某工厂生产产品A和产品B,每天的产量分别为x和y。

产品A的生产成本为10x+20y,产品B的生产成本为15x+10y。

如果工厂每天的总成本不超过5000元,且产品A的产量必须大于产品B的产量,求工厂一天最多能生产多少个产品。

解题过程:首先,我们需要建立数学模型来描述这个问题。

设产品A的产量为x,产品B的产量为y,则问题可以抽象为以下数学模型:10x+20y ≤ 5000x > y接下来,我们需要解决这个数学模型。

首先,我们可以通过图像法来解决这个问题。

将不等式10x+20y ≤ 5000和x > y转化为直线的形式,我们可以得到以下图像:(图像略)从图像中可以看出,不等式10x+20y ≤ 5000和x > y的解集为图像的交集部分。

通过观察图像,我们可以发现交集部分的最大值为x=250,y=125。

因此,工厂一天最多能生产250个产品A和125个产品B。

除了图像法,我们还可以通过代数法来解决这个问题。

将不等式10x+20y ≤ 5000和x > y转化为等式的形式,我们可以得到以下方程组:10x+20y = 5000x = y通过求解这个方程组,我们可以得到x=250,y=125。

因此,工厂一天最多能生产250个产品A和125个产品B。

二、数学实验习题数学实验习题是通过实际操作和实验来学习数学知识和技巧的一种方式。

下面是一个关于概率的数学实验习题和其答案。

习题:一枚硬币抛掷10次,求出现正面的次数为偶数的概率。

数学建模与数学实验课后习题答案

数学建模与数学实验课后习题答案

P594•学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432 人住在C 宿舍。

学生要组织一个10人的委员会,使用Q 值法分配各 宿舍的委员数。

解:设P 表示人数,N 表示要分配的总席位数。

i 表示各个宿舍(分别取 A,B,C ), p i 表 示i 宿舍现有住宿人数, n i 表示i 宿舍分配到的委员席位。

首先,我们先按比例分配委员席位。

23710 A 宿舍为:n A ==2.365 1002 333"0 B 宿舍为:n B =3.323 1002 432X0 C 宿舍为:n C =4.3111002现已分完9人,剩1人用Q 值法分配。

经比较可得,最后一席位应分给 A 宿舍。

所以,总的席位分配应为: A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

QA23722 3= 9361.5 Q B33323 4 = 9240.7 Q C4322 4 5=9331.2商人们怎样安全过河傻麴删舫紬削< I 11山名畝臥蹄峨颂禮训鋤嫌邂 韻靖甘讹岸讎鞍輯毗匍趾曲展 縣確牡GH 錚俩軸飙奸比臥鋪謎 smm 彌鯉械即第紘麵觎岸締熾 x^M 曲颁M 删牘HX …佛讪卜过樹蘇 卜允棘髒合 岡仇卅毘冋如;冋冋1卯;砰=口 於广歎煙船上觸人敦% V O J U;xMmm朗“…他1曲策D 咿川| thPl,2卜允隸策集合 刼為和啊母紳轉 多步贱 就匚叫=1入“山使曲并按 腿翻律由汩3』和騒側),模型求解 -穷举法〜编程上机 ■图解法S={(x ?jOI x=o, j-0,1,2,3;X =3? J =0,1,2,3; X =»*=1,2}J规格化方法,易于推广考虑4名商人各带一随从的情况状态$=(xy¥)~ 16个格点 允许状态〜U )个。

点 , 允许决策〜移动1或2格; k 奇)左下移;&偶,右上移. 右,…,必I 给出安全渡河方案评注和思考[廿rfn片,rfl12 3xmm賤縣臓由上题可求:4个商人,4个随从安全过河的方案。

2014数学建模综合练习题答案

2014数学建模综合练习题答案

E ) r
E ) ,由微分法得知,其最大值在 E = r 时达到最大值. r
2. 甲市的一公司共有五个部门 A、B、C、D、E,由于在各城市的成本有所不同,为了达到 最大的效益,要把某些部门迁到乙市及丙市,单纯由搬迁可获得的利益(单位万元)如下: A B C D E 乙 丙 10 10 15 20 10 15 20 15 5 15
解: 该问题的 Euler 方程为: Ty′′ + g ρ = 0 , 由两端点的条件 y (− = L) 0, y ( = L) 0 解得曲线 方程为: = y
gρ 2 (L − x2 ) 2
位通讯费。则数学模型为
max10000∑∑ Bij xij −∑∑∑∑ C jl Dik yijkl
i= 1 j= 1 i = 1 j = 1 k >i l = 1
5
3
5
3
5
3
(同部门不计费,不同部门不重复计费)
s.t.
5
∑x
j =1
ij
3
ij
= 1 (各部门只搬至一市)
∑x
i =1
≥ 1 (要求每个城市至少一个部门,若无此要求,则不要此约束条件)
3. 设一均匀线密度为 ρ 的轻质细弹性弦,两端分别固定在点(-L,0)及点(L,0)上拉紧, 张力为常数 T,受重力的影响有微小的向下弯曲,曲线用 y=y(x)表示,设 y 轴向下为正,则 根据物理定律,其弹性势能与位能之和达到最小值,即
= J[ y ]
−L
∫ ( 2 ( y′)
L
T
2
− g ρ y )dx 其中 g 为重力加速度常数,求该弹性弦的曲线方程.
yijkl − xij ≤ 0 , yijkl − xkl ≤ 0 , xij + xkl − yijkl ≤ 1 (k > i ) (线性化 yijkl = xij xkl ) xij , yijkl 为零一变量, i, k = 1, 2,3, 4,5. j , l = 1, 2,3.

《数学建模与数学实验》期末考查试卷

《数学建模与数学实验》期末考查试卷

《数学建模与数学实验》考查方案教学部门及专业数学学院11级数学与应用数学专业课程名称数学建模与数学实验教学班级2011级数学与应用数学1、2班考查时间第 19 周考核方式试卷□ 过程评价□ 作业或调查□ 作品 项目任务□ □√一、必做题:(60分)1、简答题:(20分)(1)通过《数学建模与数学实验》课程的学习,请谈谈对数学建模和数学实验的认识,学习《数学建模与数学实验》课程的收获。

(不少于500字)(15分)(2)简要说明数学建模的一般过程或步骤。

(5分)2、(40分) 一阶常微分方程模型——人口模型与预测下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(),0=t 万人。

1016540=N 年198219831984198519861987198819891990人口(万)101654103008104357105851107507109300111026112704114333年19911992199319941995199619971998人口(万)115823117171118517119850121121122389123626124810要求:(1)建立中国人口的指数增长模型,用数据拟合求相应的参数,并用该模型进行预测,与实际人口数据进行比较。

(2)建立中国人口的Logistic 模型,用数据拟合求相应的参数,并用该模型进行预测,与实际人口数据进行比较。

(3)利用MATLAB 图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。

(4)利用MATLAB 图形,画出两种预测模型的误差比较图,并分别标出其误差。

(5)用两个模型估计2015年中国人口。

二、选作题:(40分)(在如下问题中任选一题做建模解答)第1题 送货模型某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C 从某港口(编号⑨)分别运往各个公司。

路线是唯一的双向道路(如图1)。

2013 – 2014 学年第二学期《数学建模与数学实验》期末考察

2013 – 2014 学年第二学期《数学建模与数学实验》期末考察

2013 – 2014 学年第二学期《数学建模与数学实验》期末考察问题A 题某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60台、80台.每季度的生产费用为2f+=x)(bxax(单位:元), 其中x是该季度生产的台数.若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c元.已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=50、b=0.2、c=4,问:工厂应如何安排生产计划,才能既满足合同又使总费用最低.讨论a、b、c变化对计划的影响,并作出合理的解释.B 题讨论资金积累、国民收入与人口增长的关系.(1)若国民平均收入x与人口平均资金积累y成正比,说明仅当总资金积累的相对增长率k大于人口的相对增长率r时,国民平均收入才是增长的.(2)作出k(x)和r(x)的示意图,分析人口激增会导致什么后果.C题交巡警服务平台的设置与调度“有困难找警察”,是家喻户晓的一句流行语。

警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。

为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。

每个交巡警服务平台的职能和警力配备基本相同。

由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。

试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:(1) 附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。

请为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。

(2) 对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源,对进出该区的13条交通要道实现快速全封锁。

实际中一个平台的警力最多封锁一个路口,请给出该区交巡警服务平台警力合理的调度方案。

2014数学建模题目

2014数学建模题目

2014年数学建模模拟训练4【A题】举世瞩目的2014年世界杯决赛阶段的比赛2014年6月12日至7月13日在南美洲国家巴西举行。

巴西世界杯共有32支球队参赛。

除去东道主巴西自动获得参赛资格以外,其他31个国家需通过参加2011年6月开始的预选赛获得参赛资格。

巴西世界杯期间,总共在巴西境内举办共计64场比赛角逐出冠军。

假如你是中国体育彩票中心研究员,请根据赛制、赛程安排、分组形势及各自的实力,请建立数学模型进行分析,并给出:1.中国体育彩票中心设计若干世界杯竞猜游戏,并分析各种奖项出现的可能性,奖项和奖金额设置对彩民的吸引力等各因素评价游戏的合理性。

例如:给出本次世界杯32强的各级(32进16,16进8,8进4,4进2,夺冠)赔率。

2.给足球彩民写一篇短文,供买彩票参考。

【B题】众所周知,吸烟不仅危害自身健康,而且由此引起的被动吸烟更是危害公众身心健康的主要原因。

为此,如何帮助相关人士摆脱烟瘾的困扰也就成为一个重要的研究课题。

本文研究数据涉及234人,他们都自愿表示戒烟但还未戒烟。

在他们戒烟的这一天,测量了每个人的CO(一氧化碳)水平并记下他们抽最后一支烟到CO 测定时间.。

CO的水平提供了一个他们先前抽烟数量的客观指标,但其值也受到抽最后一支烟的时间的影响, 因此抽最后一支烟的时间可以用来调整CO的水平。

记录下研究对象的性别、年龄及自述每日抽烟支数。

这个调查跟踪1年, 考察他们一直保持戒烟的天数, 由此估计这些人中再次吸烟的累加发病率, 也就是原吸烟者戒烟一段时间后又再吸烟的比例. 其中假设原烟民戒烟的可信度是很低的(更恰当地说多数是再犯者)戒烟天数是从0到他(她)退出戒烟或研究截止时间(1 年)的天数。

假定他们全部没有人中途退出研究。

请回答下列问题:1)试分析上述234人中再次吸烟的累加发病率分布情况(如不同年龄段、不同性别等因素下的累加发病率分布情况)。

2)你认为年龄、性别、每日抽烟支数及调整的CO浓度等因素会影响戒烟时间(天数)长短吗?如果影响请利用附录中的数据,分别给出戒烟时间与上述你认为有影响的因素之间的定量分析结果。

2014北京二模第八题第十二题

2014北京二模第八题第十二题

8.右图表示一个正方体的展开图,下面四个正方体中只有一个符合要求,那么这个正方体是A .B .C .D .12.如图,在平面直角坐标系xOy 中,已知抛物线y =-x (x -3)(0≤x ≤3)在x 轴上方的部分,记作C 1,它与x 轴交于点O ,A 1,将C 1绕点A 1旋转180°得C 2,C 2与x 轴交于另一点A 2.请继续操作并探究:将C 2绕点A 2旋转180°得C 3,与x 轴交于另一点A 3;将C 3绕点A 2旋转180°得C 4,与x 轴交于另一点A 4,这样依次得到x 轴上的点A 1,A 2,A 3,…,A n ,…,及抛物线C 1,C 2,…,C n ,….则点A 4的坐标为 ;C n 的顶点坐标为 (n 为正整数,用含n 的代数式表示) .一. 海淀区8.如图1,AB 是半圆O 的直径,正方形OPNM 的对角线ON 与AB 垂直且相等,Q 是OP 的中点. 一只机器甲虫从点A 出发匀速爬行,它先沿直径爬到点B ,再沿半圆爬回到点A ,一台微型记录仪记录了甲虫的爬行过程. 设甲虫爬行的时间为t ,甲虫与微型记录仪之间的距离为y ,表示y 与t 的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的 A. 点MB. 点NC. 点PD. 点Q12.平面直角坐标系中有一点(1, 1)A ,对点A 进行如下操作:第一步,作点A 关于x 轴的对称点1A , 延长线段1AA 到点2A ,使得122A A =1AA ; 第二步,作点2A 关于y 轴的对称点3A , 延长线段23A A 到点4A ,使得34232A A A A =; 第三步,作点4A 关于x 轴的对称点5A , 延长线段45A A 到点6A ,使得56452A A A A =;A B C D1-1E-2(2,0)xyO·······则点2A 的坐标为________,点2014A 的坐标为________.二. 东城区8.矩形ABCD 中,AD =8 cm ,AB =6 cm .动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动至点B 停止,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:cm 2),则y 与x 之间的函数关系用图象表示大致是下图中的12.如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点A (2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2次相遇地点坐标是 ;第2014次相遇地点的坐标是 .三. 朝阳区A B C D四.丰台区8. 如图,正方形ABCD的边长为2cm,在对称中心O处有一个钉子.动点P、Q同时从点A出发,点P沿A-B-C方向以每秒2cm的速度运动,到C点停止,点Q沿A-D方向以每秒1cm的速度运动,到D点停止.PQ两点用一条可伸缩的细橡皮筋联结,当遇到钉子后,橡皮筋会自动弯折。

2014高教社杯全国大学生数学建模竞赛题目

2014高教社杯全国大学生数学建模竞赛题目

2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题嫦娥三号软着陆轨道设计与控制策略嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。

嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。

在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。

嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m。

嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。

其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段,要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。

根据上述的基本要求,请你们建立数学模型解决下面的问题:(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。

(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。

(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。

根据计划,嫦娥三号将在北京时间12月14号在月球表面实施软着陆。

嫦娥三号如何实现软着陆以及能否成功成为外界关注焦点。

目前,全球仅有美国、前苏联成功实施了13次无人月球表面软着陆。

北京时间12月10日晚,嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一次轨道调整。

在实施软着陆之前,嫦娥三号还将在这条近月点高度约15公里、远月点高度约100公里的椭圆轨道上继续飞行。

期间,将稳定飞行姿态,对着陆敏感器、着陆数据等再次确认,并对软着陆的起始高度、速度、时间点做最后准备。

2014年下学期数学实验与数学建模作业习题8

2014年下学期数学实验与数学建模作业习题8

2014年下学期数学实验与数学建模作业习题81.轮船的甲板成近似半椭圆面形为了得到甲板的面积。

首先测量得到横向最大相间8.534米;然后等间距地测得纵向高度,自左向右分别为:0.914, 5.060, 7.772, 8.717, 9.083, 9.144, 9.083, 8.992, 8.687, 7.376, 2.073,计算甲板的面积。

【1】命令:x=0:0.711:8.534;y2=[0,0.914^2,5.060^2,7.772^2,8.717^2,9.083^2,9.144^2,9.083^2,8.992^2,8.687^2,7.376^2,2.073^2,0];%plot(x,y2,'*');a=polyfit(x,y2,2)【2】结果:a =-5.2832 46.5248 -16.7465得y^2=-5.2832*x^2+46.5248*x-16.7465,即y^2/85.68+(x-4.4031)^2/16.2175=1故面积=0.5*a*b*pi=58.56.2.物体受水平方向外力作用,在水平直线上运动。

测得位移与受力如表8.1求(a) 物体从位移为0到0.4所做的功;(b) 位移为0.4时的速度是多少?【1】命令:x=0:0.1:1.0;f=[20,21,21,20,19,18.5,18.0,13.5,9,4.5,0];plot(x,f,'*');hold on;a=polyfit(x,f,2)f2=-34.4988*x.*x+14.8625*x+19.5979;plot(x,f2);syms ty=-34.4988*t.*t+14.8625*t+19.5979;w=vpa(int(y,t,0,0.4),8)V=diff(y);t=2;v=eval(V)【2】结果:a = -34.4988 14.8625 19.5979w = 8.2921856v = -123.13273.火车行驶的路程、速度数据如表8.2,计算从静止开始20 分钟内走过的路程。

数学_2014年某校高考数学八模试卷(理科)(含答案)

数学_2014年某校高考数学八模试卷(理科)(含答案)

2014年某校高考数学八模试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分)1. 集合A ={0, 2, a},B ={1, a 2},若A ∪B ={0, 1, 2, 4, 16},则a 的值为( ) A 0 B 1 C 2 D 42. 命题“对任意x ∈R ,都有x 2−2x +4≤0”的否定为( )A 对任意x ∈R ,都有x 2−2x +4≥0B 对任意x ∈R ,都有x 2−2x +4≤0C 存在x 0∈R ,使得x 02−2x 0+4>0 D 存在x 0∈R ,使x 02−2x 0+4≤0 3. 已知向量a →=(2, 3),b →=(−1, 2),若ma →+4b →与a →−2b →共线,则m 的值为( ) A 12B 2C −12D −24. 对于函数f(x)=sin 2(x +π4)−cos 2(x +π4),下列选项中正确的是( ) A f(x)在(π4, π2)上是递增的 B f(x)的图象关于原点对称 C f(x)的最小正周期为2π D f(x)的最大值为25. 如图,若N =5时,则输出的数等于( )A 54 B 45 C 65 D 566. 某师傅用铁皮制作一封闭的工件,其三视图如图所示(单位:cm ,图中水平线与竖线垂直),则制作该工件用去的铁皮的面积为(制作过程铁皮的损耗和厚度忽略不计)( )A 100(3+√5)cm 2B 200(3+√5)cm 2C 300(3+√5)cm 2D 300cm 2 7.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y ̂=b 为9.4,据此模型预报广告费用为6万元时销售额为( )A 63.6万元B 65.5万元C 67.7万元D 72.0万元8. 已知等比数列{a n }的公比为q ,则“a 1>0且q >1”是“{a n }为递增数列”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件 9. 已知“渐升数”是指每一位数字比其左边的数字大的正整数(如236),那么任取一个三位数,它是渐升数的概率为( ) A 1425 B 775 C 760 D 71010. 已知函数f(x)={−x 2+2x ,x ≤0ln(x +1),x >0,若f(x)=ax 有且只有一个实数解,则a 的取值范围是( )A [1, 2]B (−∞, 0]C (−∞, 0]∪[1, 2]D (−∞, 2]二、填空题(本大题共4小题,每小题5分,共25分.考生注意:请在15.16.17三题中任选一题作答,如果多做,则按所做的第一题评分).11. 设复数z 1=1+i ,z 2=x +2i(x ∈R),若z 1z 2为纯虚数,则x =________. 12. 设x ,y 满足{x +y <1y ≤x y ≥0,则z =3x +y 的最大值是________.13. 已知抛物线y 2=2px(p >0)的焦点是双曲线x 216−y 2m =1的右焦点F ,且双曲线的右顶点A 到点F 的距离为1,则p =________.14. 已知f(x)=xe x ,f 1(x)=f ′(x),f 2(x)=[f 1(x)]′,⋯,f n+1(x)=[f n (x)]′,n ∈N ∗,经计算f 1(x)=1−x e x,f 2(x)=x−2e x,f 3(x)=3−x e x,⋯,照此规律,则f n (x)=________.【不等式选做题】15. (不等式选做题) 已知x 、y 均为正数,且x +y =1,则√3x +√4y 的最大值为________.【几何证明选做题】16. 如图,CD 是圆O 的切线,切点为C ,点A 、B 在圆O 上,BC =1,∠BCD =30∘,则圆O 的面积为________.【坐标系与参数方程选做题】17. 在极坐标系中,若过点(1, 0)且与极轴垂直的直线交曲线ρ=4cosθ于A、B两点,则|AB|=________.三、解答题(本大题共6小题,共75分)18. 如图,在梯形ABCD中,AD // BC,AB=5,AC=9,∠BCA=30∘,∠ADB=45∘.(1)求sin∠ABC;(2)求BD的长度.19. 已知{a n}是正数组成的数列,a1=1,且点(√a n, a n+1)(n∈N∗)在函数y=x2+1的图象上.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若列数{b n}满足b1=1,b n+1=b n+2n a,求证:b n⋅b n+2<b n+12.20. 某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为10作为样本(样本容量为n)进行统计.按照[50, 60),[60, 70),[70, 80),[80, 90),[90, 100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50, 60),[90, 100]的数据).(Ⅰ)求样本容量n和频率分布直方图中x、y的值;(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含8的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设ξ表示所抽取的3名同学中得分在[80, 90)的学生个数,求ξ的分布列及其数学期望.21. 如图,已知菱形ACSB中,∠ABS=60∘.沿着对角线SA将菱形ACSB折成三棱锥S−ABC,且在三棱锥S−ABC中,∠BAC=90∘,O为BC中点.(1)证明:SO⊥平面ABC;(2)求平面ASC与平面SCB夹角的余弦值.22. 如图,椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,右顶点、上顶点分别为点A、B,且|AB|=√52|BF|.(1)求椭圆C的离心率;(2)若点M(−1617, 217)在椭圆C内部,过点M的直线l交椭圆C于P、Q两点,M为线段PQ的中点,且OP⊥OQ.求直线l的方程及椭圆C的方程.23. 已知函数f(x)=e x−x2+a,x∈R的图象在点x=0处的切线为y=bx.(e≈2.71828).(1)求函数f(x)的解析式;(2)g(x)=f(x)x,x∈(0, +∞),讨论函数g(x)的单调性与极值;(3)若k∈Z,且f(x)+12(3x2−5x−2k)≥0对任意x∈R恒成立,求k的最大值.2014年某校高考数学八模试卷(理科)答案1. D2. C3. D4. B5. D6. A7. B8. A9. B10. C11. 212. 313. 1014. (−1)n(x−n)e x15. √716. π17. 2√318. 解:(1)在△ABC中,由正弦定理,得ABsin∠BCA =ACsin∠ABC,∴ sin∠ABC=ACsin∠BCAAB =9sin30∘5=910.(2)∵ AD // BC,∴ ∠BAD=180∘−∠ABC,sin∠BAD=sin(180∘−∠ABC)=sin∠ABC=910,在△ABD中,由正弦定理,得ABsin∠ADB =BDsin∠BAD,∴ BD =ABsin∠BAD sin∠ADB=5×910√22=9√22.19. 解法一:(1)由已知得a n+1=a n +1、即a n+1−a n =1,又a 1=1, 所以数列{a n }是以1为首项,公差为1的等差数列. 故a n =1+(n −1)×1=n .(2)由(Ⅰ)知:a n =n 从而b n+1−b n =2n .b n =(b n −b n−1)+(b n−1−b n−2)+...+(b 2−b 1)+b 1 =2n−1+2n−2+...+2+1=1−2n 1−2=2n −1 ∵ b n ⋅b n+2−b n+12=(2n −1)(2n+2−1)−(2n+1−1)2 =(22n+2−2n −2n+2+1)−(22n+2−2⋅2n+1+1) =−2n <0∴ b n ⋅b n+2<b n+12解法二:(1)同解法一. (2)∵ b 2=1b n ⋅b n+2−b n+12=(b n+1−2n )(b n+1+2n+1)−b n+12=2n+1⋅b n+1−2n ⋅b n+1−2n ⋅2n+1 =2n (b n+1−2n+1) =2n (b n +2n −2n+1) =2n (b n −2n ) =…=2n (b 1−2) =−2n <0∴ b n ⋅b n+2<b n+1220. (1)由题意可知,样本容量n =80.016×10=50,y =250×10=0.004,x =0.1−0.004−0.010−0.016−0.04=0.030.(2)由题意可知,分数在[80, 90)有5人,分数在[90, 100)有2人,共7人. 抽取的3名同学中得分在[80, 90)的学生个数ξ的可能取值为1,2,3,则 P(ξ=1)=C 51C22C 73=535=17,P(ξ=2)=C 52C21C 73=2035=47,P(ξ=3)=C 53C 73=1035=27.所以,ξ的分布列为所以,Eξ=1×17+2×47+3×27=157.21. (本题满分12分)解:(1)证明:由题设AB =AC =SB =SC =SA ,连结OA ,△ABC 为等腰直角三角形, 所以OA =OB =OC =√22SA ,且AO ⊥BC ,又△SBC 为等腰三角形,故SO ⊥BC ,且SO =√22SA , 从而OA 2+SO 2=SA 2.所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BO =O .所以SO ⊥平面ABC .…(2)以O 为坐标原点,射线OB ,OA 分别为x 轴、y 轴的正半轴, 建立如图的空间直角坐标系O −xyz .设B(1, 0, 0),则C(−1, 0, 0),A(0, 1, 0),S(0, 0, 1). SA →=(0,1,−1),SC →=(−1,0,−1). 设平面SAC 的法向量n →=(x, y, z),由{n →⋅SC →=−x −z =0˙,令x =1,得n →=(1, −1, −1), 由(1)可知AO ⊥平面SCB ,因此取平面SCB 的法向量m →=OA →=(0,1,0).… 设平面ASC 与平面SCB 的夹角为θ, 则cosθ=|cos <n →,m →>|=|−1√3|=√33. ∴ 平面ASC 与平面SCB 夹角的余弦值为√33.… 22. (本题满分13分) 解:(1)由已知|AB|=√52|BF|, 即√a 2+b 2=√52a , 4a 2+4b 2=5a 2,4a 2+4(a 2−c 2)=5a 2, ∴ e =ca =√32.… (2)由(1)知a 2=4b 2, ∴ 椭圆C:x 24b 2+y 2b 2=1. 设P(x 1, y 1),Q(x 2, y 2),由x 124b 2+y 12b 2=1,x 224b 2+y 22b 2=1,得x 12−x 224b 2+y 12−y 22b 2=0,即(x 1+x 2)(x 1−x 2)4b 2+(y 1+y 2)(y 1−y 2)b 2=0,即−3217(x 1−x 2)4+417(y 1−y 2)=0,从而k PQ =y 1−y2x 1−x 2=2,进而直线l 的方程为y −217=2[x −(−1617)], 即2x −y +2=0.…由{2x −y +2=0x 24b 2+y 2b 2=1⇒x 2+4(2x +2)2−4b 2=0,即17x 2+32x +16−4b 2=0. △=322+16×17(b 2−4)>0⇔b >2√1717.x 1+x 2=−3217,x 1x 2=16−4b 217.∵ OP ⊥OQ ,∴ OP →⋅OQ →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0,5x 1x 2+4(x 1+x 2)+4=0. 从而5(16−4b 2)17−12817+4=0,解得b =1,∴ 椭圆C 的方程为x 24+y 2=1.…23. 解:(1)f(x)=e x −x 2+a ,f ′(x)=e x −2x .由已知{f(0)=1+a =0f′(0)=1=b ⇒{a =−1b =1,f(x)=e x −x 2−1.…(2)由(1)知,g(x)=f(x)x,x >0,则g′(x)=xf′(x)−f(x)x 2=x(e x −2x)−(e x −x 2−1)x 2=(x−1)(e x −x−1)x 2.令y =e x −x −1,y ′=e x −1>0在x ∈(0, +∞)恒成立,从而y =e x −x −1在(0, +∞)上单调递增,y >e 0−0−1=0. 令g ′(x)>0,得x >1;g ′(x)<0,得0<x <1.∴ g(x)的增区间为(1, +∞),减区间为(0, 1).极小值为g(1)=e −2,无极大值.… (3)f(x)+12(3x 2−5x −2k)≥0对任意x ∈R 恒成立,⇔e x +12x 2−52x −1−k ≥0对任意x ∈R 恒成立,⇔k ≤e x +12x 2−52x −1对任意x ∈R 恒成立.…令ℎ(x)=e x +12x 2−52x −1,ℎ′(x)=e x +x −52,易知ℎ′(x)在R 上单调递增, 又ℎ′(0)=−32<0,ℎ′(1)=e −32>0,ℎ′(12)=e 12−2<0,ℎ′(34)=e 34−74>2.5634−74=1.632−74=√512125−74>2−74=14>0,∴ 存在唯一的x0∈(12,34),使得ℎ′(x0)=0,…且当x∈(−∞, x0)时,ℎ′(x)<0,x∈(x0, +∞)时,ℎ′(x)>0.即ℎ(x)在(−∞, x0)单调递减,在(x0, +∞)上单调递增,ℎ(x)min=ℎ(x0)=e x0+12x02−52x0−1,又ℎ′(x0)=0,即e x0+x0−52=0,e x0=52−x0.∴ ℎ(x0)=52−x0+12x02−52x0−1=12(x02−7x0+3),∵ x0∈(12,34),∴ ℎ(x0)∈(−2732,−18).k≤e x+12x2−52x−1对任意x∈R恒成立,⇔k≤ℎ(x0),又k∈Z,∴ k max=−1.…。

数学建模matlab例题参考及练习

数学建模matlab例题参考及练习

数学建模matlab例题参考及练习数学实验与数学建模实验报告学院:专业班级:姓名:学号:完成时间:年⽉⽇承诺书本⼈承诺所呈交的数学实验与数学建模作业都是本⼈通过学习⾃⾏进⾏编程独⽴完成,所有结果都通过上机验证,⽆转载或抄袭他⼈,也未经他⼈转载或抄袭。

若承诺不实,本⼈愿意承担⼀切责任。

承诺⼈:年⽉⽇数学实验学习体会(每个⼈必须要写字数1200字以上,占总成绩的20%)练习1 ⼀元函数的图形 1.画出x y arcsin =的图象.2.画出x y sec =在],0[π之间的图象. 3.在同⼀坐标系中画出x y =,2x y =,3x y =,3x y =,x y =的图象.4.画出3232)1()1()(x x x f ++-=的图象,并根据图象特点指出函数)(x f 的奇偶性.5.画出)2ln(1++=x y 及其反函数的图象.6.画出321+=x y 及其反函数的图象.练习2 函数极限1.计算下列函数的极限.(1)xxx1lim4-+π→.程序:sym x;f=(1+sin(2*x))/(1-cos(4*x)); limit(f,x,pi/4)运⾏结果:lx21ans =1(2).程序:sym x;f=(1+cos(x))^(3*sec(x)); limit(f,x,pi/2)运⾏结果:lx22ans =exp(3)(3)22)2xx-ππ→.程序:sym x;f=log(sin(x))/(pi-2*x)^2; limit(f,x,pi/2)运⾏结果:lx23ans =-1/8(4)212lim xxex→.程序:x xx sec32)sym x ;f=x^2*exp(1/x); limit(f,x,0) limit(f,x,0,'right') limit(f,x,0,'left')运⾏结果:lx24ans = NaNans = Infans = 0%左极限为零,存在,右极限为⽆穷⼤,在x 趋近于零时函数没有极限(5))215(lim 122x x x x +-∞→.程序:sym x ;f=5*x^2/(1-x^2)+2^(1/x); limit(f,x,inf)运⾏结果:>> lx25ans = -4(6)x x x x x -+-→32112lim .程序:sym x ;f=(x^2-2*x+1)/(x^3-x); limit(f,x,1)运⾏结果:>> lx26ans = 0(7)x x x 11lim 20-+→.程序:sym x ;f=(sqrt(1+x^2)-1)/x; limit(f,x,0))3sin(cos 21lim 3π--π→x x x . 程序:sym x ;f=(1-2*cos(x))/sin(x-pi/3); limit(f,x,pi/3)运⾏结果:>> lx28ans = 3^(1/2)(9)tgxx x )1(lim 0+→.程序:sym x ;f=(1/x)^tan(x); limit(f,x,0,'right')运⾏结果:>> lx29ans =(10)xx arctgx )2(lim π+∞→.程序:sym x ;f=(2/pi*atan(x))^x; limit(f,x,inf,'left')运⾏结果:>> lx210ans =Inf2.解⽅程012=-?x x . 程序:sym x ;X=solve(x*2^x-1)运⾏结果:>> lx202 X =lambertw(0, log(2))/log(2)%⽅程有两个解X=solve(3*sin(x)+1-x)运⾏结果:>> lx203 X =-0.53847936154.解⽅程03=++q px x .(p 、q 为实数) 程序:X=solve('x^3+p*x+q=0','x')运⾏结果: X =((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3) - p/(3*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) p/(6*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) -((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)/2 - (3^(1/2)*i*(p/(3*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) + ((p^3/27 + q^2/4)^(1/2) -q/2)^(1/3)))/2 p/(6*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) - ((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)/2 + (3^(1/2)*i*(p/(3*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) + ((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)))/2练习 3 导数及偏导数计算1.求下列函数的导数.(1))11)(1(-+=x x y程序:sym x ;f=(sqrt(x)+1)*(1/sqrt(x)-1); diff(f)运⾏结果:>> lx31ans =(1/x^(1/2) - 1)/(2*x^(1/2)) - (x^(1/2) + 1)/(2*x^(3/2))(2)x x x y ln sin =程序:sym x ;f=x*sin(x)*log(x); diff(f)运⾏结果:>> lx32ans =sin(x) + log(x)*sin(x) + x*cos(x)*log(x)2.求下列参数⽅程所确定的函数的导数.(1)??==t y t x 44程序:ans =1/t^3(2)??-=+=arctgt t y t x )1ln(2程序:sym t ;f1=log(1+t^2);f2=t-atan(t); diff(f2)/diff(f1)运⾏结果:>> lx322ans =-((t^2 + 1)*(1/(t^2 + 1) - 1))/(2*t) 3.求下列隐函数的导数.(1)22ln y x xyarctg+=程序:syms x y ;f=atan(y/x)-log(sqrt(x^2+y^2));yx=-diff(f,x)/diff(f,y)运⾏结果;>> lx331 yx =(x/(x^2 + y^2) + y/(x^2*(y^2/x^2 + 1)))/(1/(x*(y^2/x^2 + 1)) - y/(x^2 + y^2)) (2)x y y x=程序:syms x y ; f=x^y-y^xyx=-diff(f,x)/diff(f,y)运⾏结果:>> lx332 f =x^y - y^x yx =f=exp(x)*sin(x); diff(f,x,4)运⾏结果:>> lx34 ans =(-4)*exp(x)*sin(x)5.验证x e y xsin =满⾜关系式:022=+'-''y y y程序:sym x ;f=exp(x)*sin(x); y2=diff(f,x,2); y1=diff(f,x,1); y=f;y2-y1*2+2*y=='0' 运⾏结果:>> lx35ans =1%运⾏结果为1表⽰y2-y1*2+2*y=='0'成⽴6.设)ln(y x x u +=,求22x u ??,22y u,y x u 2. 程序:syms x y ; f=x*log(x+y); uxx=diff(f,x,2) uyy=diff(f,y,2) f1=diff(f,x); uxy=diff(f1,y)运⾏结果: >> lx36uxx =2/(x + y) - x/(x + y)^2uyy =-x/(x + y)^2uxy =1/(x + y) - x/(x + y)^27.求下列多元隐函数的偏导数y zx z ,.(1)1cos cos cos 222=++z y x程序:syms x y z ;-(cos(x)*sin(x))/(cos(z)*sin(z)) zy =-(cos(y)*sin(y))/(cos(z)*sin(z))(2)xyz e z= 程序:syms x y z ; f=exp(z)-x*y*zzx=-diff(f,x)/diff(f,z) zy=-diff(f,y)/diff(f,z)运⾏结果:>> lx372 f =exp(z) - x*y*z zx =(y*z)/(exp(z) - x*y) zy =(x*z)/(exp(z) - x*y) 8.证明函数22)()(lnb y a x u -+-=(b a ,为常数)满⾜拉普拉斯⽅程:02222=??+??y u x u (提⽰:对结果⽤simplify 化简)练习4 积分计算1.计算下列不定积分.(1)?+dxx x 12 (2)+x xdx 2sin 12sin2.计算下列定积分.(1)?exdxx 1ln (2)ππ342sin dxxx3.求?+tdx x x x4.求摆线)cos 1(),sin (t a y t t a x -=-=的⼀拱(π≤≤20t )与x 轴所围成的图形的⾯积.5.计算⼆重积分 (1)??≤++122)(y x dxdyy x (2)??≤++xy x dxdyy x 22)(226.计算?+Ldsy x 22 L 为圆周)0(22>=+a ax y x7.计算?++-L dy y x dx y x )()(2222,其中L 为抛物线2x y =上从点(0,0)到点(2,4)的⼀段弧.练习5 matlab ⾃定义函数与导数应⽤1.建⽴函数x x a a x f 3sin 31sin ),(+=,当a 为何值时,该函数在3π=x 处取得极值,它是极⼤值还是极⼩值,并求此极值.2.确定下列函数的单调区间.(1)7186223---=x x x y (2))0(82>+=x xx y3.求下列函数的最⼤值、最⼩值.(1)2332x x y -=41≤≤-x(2)312824≤≤-+-=x x x y练习6 matab 矩阵运算与数组运算1.计算(1)???--521111204321+???21(2)??-01301213?03010*******????? ??-205101(3)52422??- 2.设????? ??-=243121013A ,??-=112111201B ,求满⾜关系B X A =-23的X .练习7 矩阵与线性⽅程组1.求下列矩阵的秩.(1)???-321110021 (2)4820322513454947513253947543173125 2.求下列矩阵的⾏列式,如可逆,试⽤不同的⽅法求其逆矩阵.(1)??--285421122 (2)??---6201111121324321 3.设X ????? ?-111012111==--+=+-+=+-+=+-+6223312433862344224221432143214321x x x x x x x x x x x x x x x x (2)-=+--=+--=-+-212201432143214321x x x x x x x x x x x x练习8 常微分⽅程与级数求1-6题微分⽅程的通解1.1222+='y y y x 2.x y x y dx dy -+= 3.x xx y y +='cos 4.1)2sin cos (='+y y y x 5.x e y y y x2cos 3=-'+'' 6.x x y y sin 14++=+'' 求7、8题初值问题的解7.==-++-+=10)2(212222x y dx dy x xy y y xy x8.===++==0000222,02V dt dx x x x a dt dxn dtx d t t9.给出函数x x e x f xx cos 2sin )(+=在点0=x 的7阶taylor 展开式以及在x=1处的 5阶taylor 展开式.10.判别下列级数的敛散性,若收敛求其和.(1)+++311(2)∑∞=+112n nntgπ11.求幂级数∑∞=--22)1(nnnnnx的和函数.12.求函数项级数∑∞=-1nnnn xπ的和函数.。

数学建模与数学实验课程设计题目与参考答案

数学建模与数学实验课程设计题目与参考答案

数学建模与数学实验课程设计题目1、一元线性回归问题在某产品表明腐蚀刻线,下表是试验活得的腐蚀时间(x)与腐蚀深度(y)间的一组数据。

试研究两变量(x,y)之间的关系。

其中:(秒)()。

要求:1)画出散点图,并观察y与x的关系;=+,求出a与b的值;2)求y关于x的线性回归方程:y a bx3)对模型和回归系数进行检验;4)预测x=120时的y的置信水平为0.95的预测区间。

5)编程实现上述求解过程。

注:参考书目:1、《概率论与数理统计》,浙江大学编,高等教育出版社。

2、《数学实验》,萧树铁主编,高等教育出版社。

2、 多元线性回归问题根据下述某猪场25头育肥猪4个胴体性状的数据资料,试进行瘦肉量y 对眼肌面积(x1)画出散点图y 与x1,y 与x2,y 与x3并观察y 与x1,x2, x3的关系;2)求y 关于x1,x2, x3的线性回归方程:0112233y a a x a x a x =+++-----(1),求出0123,,,a a a a 的值;3)对上述回归模型和回归系数进行检验;4)再分别求y 关于单个变量x1,x2, x3的线性回归方程:10111y a a x =+----(2),20222y a a x =+-----(3),30333y a a x =+--- --(4)求出ij a 的值;分别求y 关于两个变量x1,x2, x3的线性回归方程:10111122y a a x a x =++----(2’),20211222y a a x a x =++---(3’),30311322y a a x a x =++ --- --(4’)求出系数ij a 的值;并说明这六个回归方程对原来问题求解的优劣。

5)编程实现上述求解过程。

注:参考书目:1、《概率论与数理统计》,浙江大学编,高等教育出版社。

2、《数学实验》,萧树铁主编,高等教育出版社。

3、优化理论中的线性规划问题---生产安排。

(完整word版)数学建模方法期末考试试卷参考答案(2014年下半年)

(完整word版)数学建模方法期末考试试卷参考答案(2014年下半年)

2014-2015学年第一学期期末考试课程试卷参考答案课名称: 数学建模方法 课程号: SAM12I001 考核方式: 考查一、设计划生产生产A 、B 、C 、D 、E 五种产品分别为 单位, 则可建立线性规划问题数学模型: ⎪⎪⎩⎪⎪⎨⎧≥≤++++≤+++≤+++++++=0,,,,2122222423102..2119132518max 54321543215431532154321x x x x x x x x x x x x x x x x x x t s x x x x x SMax=18*x1+25*x2+13*x3+19*x4+21*x5; X1+2*x2+x3+x5<10; X1+x3+3*x4+2*x5<24 ;X1+2*x2+2*x3+2*x4+2*x5<21 ;二、首先引进松弛变量 、 , 将线性规划问题化成标准型: ⎪⎩⎪⎨⎧≥=+++=+++++=0,,,,3054345536..500300400S max 5432153214321321x x x x x x x x x x x x x t s x x x得最优解: 。

去掉松弛变量, 得到原线性规划问题的最优解: 。

三(1)问题的最优解为: 。

即:最有生产方案为生产A 型号产品400单位、C 型号产品70单位、D 型号产品10单位, B 型号产品不生产。

可使利润达到最大, 最大利润为4450元。

(2)对偶线性规划问题为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥+++≥+++≥+++≥++++++=0,,,84551185264289644..300020002400480min 432143214321432143214321y y y y y y y y y y y y y y y y y y y y t s y y y y w对偶问题的最优解为:4450min ;75.0,5.0;0,5.24321=====w y y y y 。

2014年数学建模题目

2014年数学建模题目

2014年数学建模题目
2014年全国研究生数学建模竞赛A题是关于小鼠视觉感受区电位信号(LFP)与视觉刺激之间的关系研究。

题目要求探究数十亿个神经元的信息,以期对知觉、行动以及意识等有更进一步的了解,并可能为各种精神疾病研究出新的治疗方法。

具体而言,需要解决的问题包括:
1. 脑电波介绍:脑是支配人和高级动物活动的司令部和信息中心,神经系统承担着感受外界刺激,产生、处理、传导和整合信号,实现各种认知活动(如知觉、学习、记忆、情绪、语言、意思和思维等),以及运动控制等众多功能。

2. 脑电波的应用:脑电波可以用来研究大脑的活动和功能,包括神经元的信息传递和整合。

脑电波的应用范围广泛,包括神经科学、心理学、生理学、医学等领域。

对于这个题目,需要运用数学建模的方法,结合脑电波数据和视觉刺激数据,分析小鼠视觉感受区的电位信号与视觉刺激之间的关系,探究大脑的信息处理机制。

具体而言,需要解决的问题包括:
1. 数据预处理:对脑电波数据进行预处理,包括滤波、去噪、归一化等操作,以提高数据的质量和可靠性。

2. 特征提取:从脑电波数据中提取出与视觉刺激相关的特征,包括时域和频域特征。

3. 模型建立与优化:根据提取的特征,建立数学模型,并不断优化模型参数和结构,以提高预测准确率和稳定性。

4. 结果解释与讨论:对模型的结果进行解释和讨论,探究小鼠视觉感受区的电位信号与视觉刺激之间的关系,以及大脑的信息处理机制。

总之,2014年全国研究生数学建模竞赛A题是一个具有挑战性和重要意义的题目,需要运用数学建模的方法,结合脑电波数据和视觉刺激数据,分析小鼠视觉感受区的电位信号与视觉刺激之间的关系,探究大脑的信息处理机制。

2014年《数学建模与数学实验》课程期末考试论文(设计)

2014年《数学建模与数学实验》课程期末考试论文(设计)

2013—2014学年下学期《数学建模与数学实验》课程期末考试论文(设计)题目:数学建模与数学实验院(系):数学学院专业:数学与应用数学年级:2011级学生姓名:xxxxxx学号:**********日期:二零一四年六月目录摘要.............................................................. ..- 1 - 第一章对《数学建模与数学实验》课程学习的认识.. (2)1.1 对数学建模和数学实验的认识 (2)1.1.1数学建模的概念 (2)1.1.2数学建模的全过程 (2)1.1.3数学模型的分类 (3)1.1.4数学建模论文的撰写方法 (3)1.1.5学习数学建模的意义 (4)1.2学习《数学建模与数学实验》课程的收获 (5)1.2.1对MATLAB软件的初步认识 (5)1.2.2对LINGO软件的初步认识 (6)1.3简要说明数学建模的一般过程或步骤 (6)第二章一阶常微分方程模型 (7)2.1人口模型与预测 (7)2.1.1问题的提出 (7)2.1.2模型的假设 (7)2.1.3模型的建立 (8)2.1.4模型的求解 (9)2.1.5模型参数的估计 (9)2.1.6模型检验: (10)2.1.7模型应用: (10)第三章多元回归模型 (12)3.1商品销售 (12)3.1.1问题的提出 (12)3.1.2模型的假设与符号说明 (12)3.1.3模型的建立 (13)3.1.4模型的求解 (13)3.1.5模型分析 (14)3.1.6模型的预测 (17)参考文献 (18)附录 (19)摘要数学建模,是本学期的一个重要专业课程,在老师详细的讲解之下,我对数建模有了一个初步的认识。

此文主要是针对学生对数学建模与数学实验课程一个学期的学习考察,考察学生们一个学期中对数学建模知识的掌握程度。

并设有三个数学建模问题来进行考察,同时也将其作为本次数学建模的期末成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年下学期数学实验与数学建模作业习题8
1.轮船的甲板成近似半椭圆面形为了得到甲板的面积。

首先测量得到横向最大相间8.534米;然后等间距地测得纵向高度,自左向右分别为:0.914, 5.060, 7.772, 8.717, 9.083, 9.144, 9.083, 8.992, 8.687, 7.376, 2.073,计算甲板的面积。

【1】命令:
x=0:0.711:8.534;
y2=[0,0.914^2,5.060^2,7.772^2,8.717^2,9.083^2,9.144^2,9.083^2,8.992^2,
8.687^2,7.376^2,2.073^2,0];
%plot(x,y2,'*');
a=polyfit(x,y2,2)
【2】结果:
a =
-5.2832 46.5248 -16.7465
得y^2=-5.2832*x^2+46.5248*x-16.7465,即y^2/85.68+(x-4.4031)^2/16.2175=1
故面积=0.5*a*b*pi=58.56.
2.物体受水平方向外力作用,在水平直线上运动。

测得位移与受力如表8.1
求(a) 物体从位移为0到0.4所做的功;
(b) 位移为0.4时的速度是多少?
【1】命令:
x=0:0.1:1.0;
f=[20,21,21,20,19,18.5,18.0,13.5,9,4.5,0];
plot(x,f,'*');hold on;
a=polyfit(x,f,2)
f2=-34.4988*x.*x+14.8625*x+19.5979;
plot(x,f2);
syms t
y=-34.4988*t.*t+14.8625*t+19.5979;
w=vpa(int(y,t,0,0.4),8)
V=diff(y);t=2;v=eval(V)
【2】结果:
a = -34.4988 14.8625 19.5979
w = 8.2921856
v = -123.1327
3.火车行驶的路程、速度数据如表8.2,计算从静止开始20 分钟内走过的路程。

表8.2
t(分) 2 4 6 8 10 12 14 16 18 20
v(km/h) 10 18 25 29 32 20 11 5 2 0
【1】命令:%梯形积分法
t=linspace(0,1/3,11); v=[0 10 18 25 29 32 20 11 5 2 0];
ti=0:0.000001:1/3;
vi=interp1(t,v,ti,'spline');
plot(t,v,'o',ti,vi);
s=trapz(ti,vi)%或s=sum((ti(2)-ti(1)).*vi)
xlabel('t');ylabel('v');
【2】结果:
s = 5.1066 km
4.确定地球与金星之间的距离
天文学家在1914年8月份的7次观测中,测得地球与金星之间距离(单位:米),并取其常用对数值,与日期的一组历史数据如表8.3。

表8.3
日期(号)18 20 22 24 26 28 30
距离对数9.9617724 9.9543645 9.9468069 9.9390950 9.9312245 9.9231915 9.9149925
由此推断何时金星与地球的距离(米)的对数值为9.9351799?
【1】命令:
t=[18 20 22 24 26 28 30];
s=[9.9617724 9.9543645 9.9468069 9.9390950 9.9312245 9.9231915 9.9149925];
plot(t,s,'*');
t=interp1(s,t,9.9351799,'linear')
【2】结果:
由图像可知t和s在该区间内近似满足线性关系,故可用线性插值直接求出:
t =24.9949 即为25号。

5.日照时间分布表7.4的气象资料是某一地区1985-1998年间不同月份的平均日照时间的观测数据(单位:小时/月),试分析日照时间的变化规律。

月份 1 2 3 4 5 6 7 8 9 10 11 12 日照80.9 67.2 67.1 50.5 32.0 33.6 36.6 46.8 52.3 62.0 64.1 71.2
m=[1 2 3 4 5 6 7 8 9 10 11 12];
t=[80.9 67.2 67.1 50.5 32.0 33.6 36.6 46.8 52.3 62.0 64.1 71.2];
plot(m,t,'*');hold on;
a=polyfit(m,t,5)
x=1:12;
f=0.0069*x.^5-0.2669*x.^4+3.7108*x.^3-20.8889*x.^2+36.2143*x+60.0136;
plot(x,f);
【2】结果:
大致符合
f=0.0069*x.^5-0.2669*x.^4+3.7108*x.^3-20.8889*x.^2+36.2143*x+60.0136;
的分布,呈现夏季短日照冬季长日照,春秋居中的规律。

1-6月份递减,6-12月份递增。

6.山区地貌图在某山区(平面区域(0,2800) (0,2400)内,单位:米)测得一些地点的高程(单位:米)如表8.5,试作出该山区的地貌图和等高线图。

表8.5
2400 2000 1600 1200 800 400 0 1430 1450 1470 1320 1280 1200 1080 940 1450 1480 1500 1550 1510 1430 1300 1200 1460 1500 1550 1600 1550 1600 1600 1600 1370 1500 1200 1100 1550 1600 1550 1380 1270 1500 1200 1100 1350 1450 1200 1150 1230 1390 1500 1500 1400 900 1100 1060 1180 1320 1450 1420 1400 1300 700 900
Y/X 0 400 800 1200 1600 2000 2400 2800
X=[0 400 800 1200 1600 2000 2400 2800];
Y=[0 400 800 1200 1600 2000 2400];
[x,y]=meshgrid(X,Y);
z=[1180 1320 1450 1420 1400 1300 700 900;... 1230 1390 1500 1500 1400 900 1100 1060;... 1270 1500 1200 1100 1350 1450 1200 1150;... 1370 1500 1200 1100 1550 1600 1550 1380;... 1460 1500 1550 1600 1550 1600 1600 1600;... 1450 1480 1500 1550 1510 1430 1300 1200;... 1430 1450 1470 1320 1280 1200 1080 940]; figure(1);
meshz(x,y,z)
title('源数据点')
xi=[0:40:2800]; yi=[0:40:2400];
zc=interp2(x,y,z,xi,yi','spline');
figure(2);
surfc(xi,yi,zc);
title('地貌图');
figure(3);
contour(xi,yi,zc);
【2】结果:
/link?url=UGLNrMaDxsLNWJoLJev8lRFaExA12czDDu9hkr1DK9ldS74KgQVn4 QHumyDr2o6kTw9wKjfp-vz8B592n6p3zyyjCyfYLI-gZg_Zgh77_b3。

相关文档
最新文档