现代仪器分析检测技术1
现代仪器分析技术在食品安全检测中的应用分析
现代仪器分析技术在食品安全检测中的应用分析随着人们对食品安全的日益关注,食品检测技术成为保障食品安全的重要手段。
现代仪器分析技术(包括色谱、液相色谱、质谱、红外光谱等技术)在食品安全检测中广泛应用,不仅具有极高的分析精度、准确性和可靠性,而且能够快速、高效地进行检测分析。
色谱分析技术是一种分离技术,广泛应用于食品安全检测中。
其中,气相色谱(GC)和液相色谱(HPLC)是最常用的两种色谱分析技术。
1. 气相色谱在食品检测中的应用气相色谱技术通常用于检测食品中的有机污染物,如农药残留、挥发性有机物、环境污染物等。
在农药残留检测中,GC技术可以快速、准确地检测出多种农药残留,如氨基甲酸酯类、氯氰菊酯类、有机磷类等。
此外,在监测食品中的揮發性有機物时,气相色谱技术也得到了广泛的应用,如味精等调味品中的苯甲醛、气体难闻挥发性有机物的检测等。
液相色谱技术通常用于检测食品中的营养成分、添加剂、药物残留等物质。
例如,在检测食品中的添加剂时,HPLC技术可以检测多种食品添加剂,如甜味剂、食品色素等。
质谱是一种分析技术,其原理基于分析物质的分子量和分子结构。
质谱分析技术具有高灵敏度、高分辨率、高重复性、高可靠性等优点,广泛应用于食品安全检测中。
在食品中,质谱分析技术通常用于检测污染物、添加剂、药残等物质。
例如,在瘦肉精检测中,液相质谱(LC-MS)技术可以快速准确地检测出瘦肉精残留,保证消费者的健康。
此外,在检测食品中的添加剂和药物残留时,质谱技术的高灵敏度和高分辨率也使其成为了一种重要的检测手段。
红外光谱技术是一种无损测试技术,通过测量物质在红外区的吸收光谱来分析物质结构和组成。
在食品检测中,红外光谱技术通常可以检测食品中的脂肪、蛋白质、碳水化合物等成分。
例如,在奶制品中,红外光谱技术可以检测出蛋白质含量、氨基酸含量和脂肪含量等信息,为奶制品质量的控制提供了有效的手段。
总之,现代仪器分析技术在食品安全检测中起着重要作用,能够对食品中的污染物、添加剂和营养成分等进行快速准确的检测。
现代仪器分析技术在食品安全检测中的应用分析
现代仪器分析技术在食品安全检测中的应用分析
食品安全是人们日常生活中普遍关注的问题之一。
为了保障公众的健康和安全,现代
仪器分析技术被广泛应用于食品安全检测中。
本文将介绍一些常见的现代仪器分析技术在
食品安全检测中的应用。
一、质谱技术
质谱技术是一种高灵敏度的仪器分析技术,可以用于检测食品中的农药残留、兽药残留、重金属、毒素等有害物质。
通过质谱技术,可以快速准确地确定食品中有害物质的成
分和含量,为食品安全提供可靠的数据支持。
四、原子吸收光谱技术
原子吸收光谱技术是一种检测食品中重金属元素含量的重要手段。
通过原子吸收光谱
技术,可以对食品中的砷、铅、汞等重金属进行定量分析,判断食品中重金属元素的安全性,避免因过量摄入重金属对人体健康产生危害。
五、分子生物学技术
分子生物学技术在食品安全检测中的应用越来越广泛。
PCR技术可以用于检测食品中
的致病微生物,如沙门氏菌、大肠杆菌等,快速准确地判断食品是否存在微生物污染。
分
子生物学技术还可以用于检测转基因食品,判断食品中是否含有转基因成分。
现代仪器分析技术在食品安全检测中的应用非常广泛。
通过使用这些分析技术,可以
对食品中的有害物质进行准确、快速的检测,判断食品的安全性和质量。
在食品安全领域,仪器分析技术的进一步发展将为食品安全提供更加可靠、快速的保障。
现代仪器分析与实验技术复习题
现代仪器分析与实验技术一.名词解释标准曲线:是待测物质的浓度或含量与仪器信号的关系曲线,由于是用标准溶液测定绘制的,所以称为标准曲线。
准确度:是指多次测定的平均值与真值(或标准值)相符合的程度,常用相对误差来表示。
超临界流体:某些具有三相点和临界点的纯物质,当它在高于其临界点即高于其临界温度和临界压力时,就变成了既不是气体也不是液体而是一种性质介于气体和液体之间的流体,称为超临界流体。
延迟荧光:分子跃迁至T1态后,因相互碰撞或通过激活作用又回到S1态,经振动弛豫到达S1的最低振动能级再发射荧光。
这种荧光称为延迟荧光。
精密度:是指在相同条件下用同一方法对同一试样进行的多次平行测定结果之间的符合程度。
灵敏度:指被测组分在低浓度区,当浓度改变一个单位时所引起的测定信号的改变量,它受校正曲线的斜率比较和仪器设备本身精密度的限制。
检出限:是指能以适当的置信度被检出的组分的最低浓度或最小质量。
线性范围:指定量测定的最低浓度到遵循线性响应关系的最高浓度间的范围。
梯度洗脱:指在一个分析周期中,按一定的程序连续改变流动相中溶剂的组成(如溶剂的极性、离子强度、pH等)和配比,使样品中的各个组分都能在适宜的条件下得到分离。
锐线光源:锐线光源是空心阴极灯中特定元素的激发态,在一定条件下发出的半宽度只有吸收线五分之一的辐射光。
自吸收:指当浓度较大时,处于激发光源中心的原子所发射的特征谱线被外层处于基态的同类原子所吸收,使谱线的强度减弱,这种现象称为自吸收。
原子线:原子外层电子吸收激发能后产生的谱线称为原子线。
离子线:离子外层电子从高能级跃迁到低能级时所发射的谱线。
电离能:使原子电离所需要的最小能量。
共振线:在所有原子发射的谱线中凡是由各高能级跃迁到基态时所长生的谱线。
最后线:指样品被测元素的含量如果不断降低,强度弱的谱线就从光谱图上消失,接着是次强的谱线消失,当含量将至一定值后,只剩下最后的谱线称为最后线。
荧光:分子从S1态的最低振动能级跃迁至S0各个振动能级所产生的辐射光称为荧光。
现代仪器分析试验指导书
《现代仪器分析》实验指导书实验一 分光光度法测定高锰酸钾溶液的浓度3. 标准曲线的绘制另取4ml、5ml、6ml高锰酸钾溶液(0.001mol/L),分别加入到3个50ml容量瓶,加水稀释至刻度,充分摇匀;在最大吸收波长处,按浓度从低到高测定各溶液的吸光度A。
以浓度为横坐标,吸光度为纵坐标,绘制标准曲线。
4. 样品的测定取3.5ml待测样品加入到50ml容量瓶,加水稀释至刻度,充分摇匀;在最大吸收波长处测定吸光度。
利用标准曲线求出样品浓度。
四、实验记录及数据处理1、最大吸收峰的测定(1)不同吸收波长下三种浓度的吸光:(2)根据上表作A-λ曲线(吸收曲线),确定最大吸收峰的波长。
2、待测溶液浓度的测定(标准曲线法):根据实验记录作A-c曲线(标准曲线),确定待测液X的浓度Cx。
五、思考题1、λmax在定量分析中的意义是什么?2、本实验参比溶液是什么?实验二 邻二氮菲显色法测定铁的含量一、实验原理邻二氮菲(phen)和Fe2+在pH3~9的溶液中,生成一种稳定的橙红色络合物Fe(phen) 32+,其lgK=21.3,κ508=1.1 × 104L·mol-1·cm-1,铁含量在0.1~6μg·mL-1范围内遵守比尔定律。
其吸收曲线如图1-1所示。
显色前需用盐酸羟胺或抗坏血酸将Fe3+全部还原为Fe2+,然后再加入邻二氮菲,并调节溶液酸度至适宜的显色酸度范围。
有关反应如下:2Fe3++2NH2OH·HC1=2Fe2++N2↑+2H2O+4H++2C1-用分光光度法测定物质的含量,一般采用标准曲线法,即配制一系列浓度的标准溶液,在实验条件下依次测量各标准溶液的吸光度(A),以溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。
在同样实验条件下,测定待测溶液的吸光度,根据测得吸光度值从标准曲线上查出相应的浓度值,即可计算试样中被测物质的质量浓度。
二、仪器和试剂1.仪器 721或722型分光光度计。
现代仪器分析技术在食品安全检测中的应用分析
现代仪器分析技术在食品安全检测中的应用分析1. 引言1.1 背景介绍食品安全一直是社会关注的焦点之一,随着科技的发展,现代仪器分析技术在食品安全检测中扮演着越来越重要的角色。
传统的食品检测方法存在着时间长、费用高、操作复杂等问题,而现代仪器分析技术的应用能够更加准确、快速地检测食品中的各种有害物质,保障人们的饮食安全。
随着生物技术、信息技术、纳米技术等多种技术的迅速发展,现代仪器分析技术在食品安全检测中的应用也变得更加广泛和深入。
从液相色谱-质谱联用技术到核磁共振技术再到光谱技术,这些先进的仪器分析技术为食品安全检测提供了全新的解决方案,为食品行业的发展注入了新的活力。
本文将重点探讨现代仪器分析技术在食品安全检测中的重要性,以及常用的现代仪器分析技术及其在食品中的应用情况。
通过对这些内容的分析和研究,可以更好地了解现代仪器分析技术在食品安全领域的作用和发展趋势,为食品安全领域的进一步研究提供借鉴和参考。
1.2 研究目的食品安全一直备受关注,而现代仪器分析技术在食品安全检测中发挥着至关重要的作用。
本文旨在探讨现代仪器分析技术在食品安全检测中的应用情况,分析其在提高食品安全水平、保障消费者权益方面的重要性。
通过深入研究常用的现代仪器分析技术,如液相色谱-质谱联用技术、核磁共振技术、光谱技术等,以及它们在食品中的具体应用案例,可以为相关研究人员和从业者提供参考和借鉴。
本文还旨在探讨现代仪器分析技术在食品安全检测中的未来发展方向,以期为食品安全领域的发展提供有益建议和帮助。
通过对现代仪器分析技术在食品安全检测中的应用进行深入探讨和分析,有助于推动食品安全领域的科学研究和技术创新,为保障公众健康和食品安全作出贡献。
2. 正文2.1 现代仪器分析技术在食品安全检测中的重要性现代仪器分析技术在食品安全检测中的重要性不言而喻,随着科技的不断进步和发展,食品安全问题日益受到社会的关注。
而现代仪器分析技术的应用在食品安全检测中具有不可替代的作用,其高效、准确、快速的检测能力为保障食品安全提供了重要支撑。
《现代仪器分析》课件
现代仪器分析是一门前沿的科学技术,通过使用现代化的仪器设备,对样品 进行分析和测试,帮助我们更好地了解物质的组成和性质。
课程简介
介绍《现代仪器分析》课程的目标和内容,包括仪器使用的基本原理、实验操作技巧和数据分析方法。
现代仪器分析的基本概念
1 仪器选择
根据不同的分析需求选 择适合的仪器,如质谱 仪、色谱仪等。
环境样品测试
对环境中的污染物进行分析和 检测,保护环境和生态安全。
药物分析
对药物的质量和安全性进行分 析和评估,确保药物的有效性 和可靠性。
结论与总结
通过本课程的学习,我们深入了解了现代仪器分析的基本原理和实际应用,为今后的科学研究和实 践打下了坚实的物理和 化学原理,理解分析手 段和方法。
3 仪器操作
学习正确使用和操作仪 器,保证实验结果的准 确性和可靠性。
常见现代仪器分析技术
质谱技术
通过质谱设备,对样品中的 化合物进行定性和定量分析, 广泛应用于生物医药、环境 科学等领域。
光谱技术
利用不同波长的光与物质相 互作用的特性进行分析,如 紫外可见光谱、红外光谱等。
数据分析与处理
1
数据获取
通过仪器获得样品分析的原始数据,包括光谱图、质谱图等。
2
数据处理
对原始数据进行数据清洗、信号提取和数据变换等处理,以获得有用的信息。
3
数据解释
根据分析结果和相关背景知识,对数据进行解释和评估。
案例分析
化学分析
通过现代仪器对化学反应和反 应产物进行分析,帮助解决实 际问题。
色谱技术
通过分离样品中的化合物, 达到定性和定量分析的目的, 如气相色谱、液相色谱等。
现代仪器分析知识点.
第一章、绪论分析信息:分析所依据的样品特征在分析科学中就是分析信息。
分析信号:仪器分析并不直接测定待测量,而是通过分析仪器,测定这些物理或物化特征,得到与样品待测量相关的电学、光学、热学等物理、物化参数,以这些物理量来承载分析信息,分析中它们是分析信息的载体称为分析信号。
仪器分析的一般流程:一、分析的准备 1、确定分析目标 2、选择分析技术,设计实验方法3、制备标样,采集存储样品二、分析信息的采集 4、样品的前处理 5、操作仪器,获取分析数据三、分析信息的提取 6、与标样比对,校正分析数据 7、运用数学方法,提取样品信息 8、分析数据表达为需要的分析结果 9、对分析结果的解释研究与利用仪器分析信息传递的环节:分析信息的加载、转换、关联与解析。
分析仪器的基本结构:分析信号发生器、信号检测器、信号处理器与输出信号显示器。
第二章、光谱分析导论光谱分析通过测定待测物的某种光谱,分别由样品光谱中的波长特征和强度特征进行定性、定量分析。
光学分析:凡是待测物受到某种能量作用后,产生光信号或引起光信号变化,或待测物受到光作用后,产生某种分析信号(如光声光谱分析中的声波)的分析方法,可称为光学分析。
光的波动性:时间参数:频率γ和周期Τ——描述振动状态在时间上的重复性特征;空间参数:波长λ和波数σ——描述振动状态在空间上的重复性特征;(时间参数仅取决于光源,空间参数取决于光源和传播光的介质);振幅Α——表现为宏观的光强度;相位θ c =λν =ν/σ,σ =1/λ;描述单色(只有一种波长成分)平行光的波动方程是:Y(x,t)=A cos 2π(νt-σx+θ)= A cos 2π(t/T-x/λ+θ)式中:Y(x,t)为时间t离开光源距离为x 处的电场强度;A为振幅;θ为初相位。
频率υ、周期T均为时间参数,分别指每单位时间内电场振动的次数与电场每振动一次所需时间。
υ与T互为倒数,即υ=1/T。
波数σ、波长λ均为空间参数,分别指在空间每单位(cm)中含有波的数目(单位:cm﹣1),与振动状态在一个周期内传播的距离。
现代仪器分析技术在食品安全检测中的应用分析
现代仪器分析技术在食品安全检测中的应用分析随着人民生活水平的不断提高,食品安全问题日益成为人们关注的焦点。
食品中的化学物质、微生物和其他污染物质对人体健康构成潜在威胁,因此食品安全检测变得至关重要。
传统的食品安全检测方法通常费时费力,且检测结果不够准确,这就需要现代仪器分析技术的应用。
本文将围绕现代仪器分析技术在食品安全检测中的应用进行分析。
1. 气相色谱-质谱联用技术(GC-MS)气相色谱-质谱联用技术是一种广泛应用于食品安全检测的分析方法。
它结合了气相色谱(GC)和质谱(MS)两种技术的优势,可以有效地分离和鉴定食品中的化学成分。
通过GC-MS技术,可以快速准确地检测食品中的农药残留、重金属、有机污染物以及食品添加剂等物质,为食品安全提供了可靠的数据支持。
3. 原子吸收光谱技术(AAS)原子吸收光谱技术是一种常用的重金属元素分析方法,也被广泛应用于食品安全检测中。
通过AAS技术,可以对食品中的铅、镉、汞等重金属元素进行准确测定,帮助人们了解食品的重金属污染程度,保障食品安全。
5. 分子生物学检测技术分子生物学检测技术通过检测食品中的微生物DNA、RNA等分子信息,能够对食品中的致病菌和毒素进行快速准确的鉴定。
该技术具有高灵敏度、高特异性的特点,对保障食品安全具有重要意义。
1. 高灵敏度现代仪器分析技术具有高灵敏度的特点,能够对食品中微量的化学成分和污染物质进行快速准确的检测。
这为食品安全检测提供了更为可靠的数据支持,有助于发现食品中的潜在安全隐患。
2. 高效性现代仪器分析技术具有高效性的特点,能够快速完成对食品样品的分析,大大提高了检测的效率。
这对于监管部门和食品生产企业而言,都是一种重要的优势。
3. 多元化现代仪器分析技术种类繁多,可以满足对食品中不同类型化学成分和污染物质的综合检测需求。
不同的分析技术可以相互补充,形成更为完善的食品安全检测体系。
4. 自动化现代仪器分析技术的自动化程度较高,能够减少人为操作对检测结果的干扰,提高了检测的准确性。
现代仪器分析技术在环境监测中的应用
现代仪器分析技术在环境监测中的应用一、前言现代仪器分析技术是一种高科技手段,它可以快速、准确地检测出环境中的各种有害物质。
比如我们可以通过大气采样器采集空气中的污染物,然后使用质谱仪、色谱仪等仪器对这些污染物进行分析,从而了解空气质量的状况。
同样我们也可以用类似的方法来监测水质、土壤等方面的污染情况。
当然要想让这些现代仪器发挥出最大的作用,我们还需要有专业的人员来进行操作和维护。
这就需要我们加强对相关人员的培训和管理,提高他们的专业素质和技术水平。
1. 环境监测的重要性及目的环境监测的重要性不言而喻,随着科技的发展和人类活动的不断增多,环境污染问题日益严重,空气污染、水污染、土壤污染等各类环境问题层出不穷。
这些污染物不仅对人类的身体健康造成威胁,还对生态环境造成了极大的破坏。
因此我们有责任也有义务对环境进行监测,及时发现和解决环境问题,确保人类和自然和谐共生。
那么现代仪器分析技术在环境监测中起到了怎样的作用呢?简单来说现代仪器分析技术可以帮助我们更准确、更快速地了解环境中的各种污染物的种类、数量和分布情况,从而为制定相应的环境保护政策和措施提供科学依据。
通过运用各种先进的仪器设备,如气相色谱仪、液相色谱仪、原子吸收光谱仪等,我们可以对大气中的有害气体、水中的重金属离子、土壤中的有毒物质等进行精确检测,为环境保护工作提供有力支持。
环境监测是我们保护地球家园的重要手段,而现代仪器分析技术则是实现环境监测目标的关键工具。
让我们共同努力,用科技的力量守护我们美丽的家园吧!2. 现代仪器分析技术的发展历程话说在很久很久以前,环境监测还是一件非常繁琐、费时费力的事情。
那时候人们只能通过观察天空的颜色、闻闻空气中的味道来判断环境是否受到污染。
然而随着科技的进步,人类逐渐掌握了一些简单的检测方法。
到了20世纪初,科学家们开始研究一些基于物理原理的检测方法,比如电化学分析法、光学分析法等。
这些方法虽然比以前的方法要先进很多,但是仍然有很多局限性。
现代仪器分析技术在食品安全检测中的应用分析
现代仪器分析技术在食品安全检测中的应用分析1. 引言1.1 背景介绍食品安全一直是人们关注的焦点之一。
随着社会经济的发展和人们生活水平的提高,对食品安全的重视度也在不断增加。
由于食品生产加工环节繁杂复杂,以及市场监管不到位等原因,食品安全问题时有发生,给人们的身体健康造成了极大的威胁。
为了保障人们的食品安全,现代科技的发展为食品安全检测提供了强大支撑。
现代仪器分析技术的应用已经成为食品安全检测的重要手段之一。
通过仪器分析技术可以对食品中的各种有害物质进行快速准确的检测,为食品安全提供可靠的保障。
本文将重点探讨现代仪器分析技术在食品安全检测中的应用,以及质谱分析技术、光谱分析技术、色谱分析技术等不同仪器分析技术在食品安全检测中的具体应用。
通过对现代仪器分析技术在食品安全检测中的作用及意义进行深入分析,可以更好地了解这一领域的发展现状,为未来的食品安全工作提供参考和借鉴。
1.2 现代仪器分析技术的发展现代仪器分析技术的发展是食品安全检测领域的重要里程碑,随着科技的不断进步和仪器技术的不断创新,各种先进的仪器分析技术不断涌现,为食品安全检测提供了更加准确、快速和可靠的方法。
在过去,食品安全检测主要依靠人工观察和传统的化学方法,这种方法存在着检测时间长、操作复杂、易受到干扰等问题。
随着现代仪器分析技术的发展,这些问题逐渐得到了解决。
仪器分析技术的精度和灵敏度不断提高。
随着科技的进步,各种新型的仪器分析设备不断推出,这些设备在检测样品时能够实现更高的精度和灵敏度,能够更准确地检测出微量的有害物质。
仪器分析技术的检测速度不断加快。
传统的检测方法需要较长的时间才能出结果,而现代仪器分析技术则能够在短时间内完成检测,大大提高了检测效率。
现代仪器分析技术的自动化程度也在不断提高。
自动化的仪器设备在检测过程中能够减少人为干扰,提高检测的准确性和可靠性,为食品安全检测提供了更好的保障。
现代仪器分析技术的发展为食品安全检测提供了强大的支撑,使得食品安全检测更加科学化、标准化和高效化。
现代仪器分析-仪器分析
THANKS FOR WATCHING
感谢您的观看
智能的分析。
02
仪器分析的分类
光学分析法
原子吸收光谱法
利用原子对特定光的吸收进行定量分析的方 法。
紫外-可见光谱法
利用物质对紫外和可见光的吸收特性进行分 析的方法。
原子发射光谱法
通过测量原子或离子在电场或磁场中发出的 光来进行分析的方法。
红外光谱法
利用物质对红外光的吸收特性进行分析的方 法。
电化学分析法
能源与资源利用
对工业生产中的能源和资源利用进行监测和优化,提高能源利用 效率和资源利用率,降低生产成本。
04
仪器分析的未来发展
高通量和高灵敏度仪器分析技术
高通量仪器分析技术
通过并行处理和自动化技术,提高分析速度和效率,适用于大规模样本检测和 筛选。
高灵敏度仪器分析技术
利用高灵敏度检测器,降低检测限,提高对微量和痕量成分的检测能力。
薄层色谱法
将固定相涂布在薄板上,通过 色谱分离技术进行分析的方法 。
凝胶色谱法
利用凝胶作为固定相的色谱分 析方法。
质谱分析法
01
02
03
有机质谱法
利用电离源将有机分子电 离成离子,然后通过质谱 仪测量离子的质量-电荷比 来进行分析的方法。
同位素质谱法
利用同位素作为标记物, 通过测量标记物的丰度来 进行分析的方法。
仪器分析的重要性
为科学研究提供准确数据
仪器分析为科学研究提供了精确的实 验数据,帮助科学家深入了解物质性 质和变化规律。
保障人类健康与安全
促进工业生产与发展
仪器分析在工业生产中发挥着关键作 用,提高了产品质量和生产效率。
仪器分析在食品、药品、环境等领域 的应用,保障了人类健康与安全。
现代仪器分析方法及应用
现代仪器分析方法及应用一、分光光度法分光光度法利用物质对光的吸收、散射、干涉、闪烁等现象进行分析。
常用的分光光度法有紫外可见分光光度法、红外吸收分光光度法、原子吸收分光光度法等。
分光光度法广泛应用于药物分析、环境分析、食品分析等领域。
二、电化学方法电化学方法通过测定电极上物质的电荷转移过程或与电极表面发生的电化学反应来进行分析。
常用的电化学方法有电位滴定法、电化学溶液分析法、恒定电流伏安法等。
电化学方法在药物分析、环境分析、金属离子检测等方面具有广泛应用。
三、质谱分析法质谱分析法通过测定样品中物质的质量与电荷比来进行分析。
常用的质谱分析法有质子化质谱法、电喷雾质谱法、时间飞行质谱法等。
质谱分析法在有机化合物的结构分析、食品中农药残留的检测以及毒性物质的鉴定等方面具有重要应用。
四、色谱分析法色谱分析法通过分离和测定化合物混合物中不同组分的相对含量来进行分析。
常用的色谱分析法有气相色谱法、液相色谱法、超高效液相色谱法等。
色谱分析法广泛应用于药物分析、食品分析、环境分析等领域。
五、核磁共振法核磁共振法利用原子核间的磁耦合和原子核的磁共振现象来进行分析。
常用的核磁共振法有氢核磁共振波谱法、碳核磁共振波谱法等。
核磁共振法在有机化合物结构鉴定、药物分析和生物分子结构研究等方面具有重要应用。
六、质量光谱法质量光谱法通过测定物质的质量与电荷比来进行定性和定量分析。
常用的质谱法有线性离子阱质谱法、四级杆质谱法等。
质谱法广泛应用于有机物质的结构分析、药物代谢研究以及环境污染物的检测等领域。
以上是现代仪器分析方法的几个主要方向,这些方法在现代化学分析中具有重要的地位和作用。
随着科学技术的不断发展,这些方法将进一步提高其灵敏度、准确性和快速性,为化学分析提供更多的选择和可能性。
同时,仪器分析方法的应用范围也将进一步拓展,为人类社会的发展与进步做出更大的贡献。
现代仪器分析方法(实例集)
2007-10-27
24
4
红外与拉曼谱图对比
红外光谱:基团; 拉曼光谱:分子骨架测定;
2007-10-27
Infrared and Raman Spectra of Benzene
IR
25
2007-10-27
Raman
26
拉曼光谱与红外光谱分析方法比较
拉曼光谱
红外光谱
光谱范围40-4000Cm-1
29
2007-10-27
30
5
红外和拉曼比较
Nylon 66的Raman与红外光谱图
红外光谱技术可鉴别化合物官能团,分子的非 对称性测定,化合物的反应机理和缔合作用, 高分子的链结构研究,物质的表面和界面成份 及结构分析研究。
拉曼光谱可用于水溶液,而红外光则被水严重 吸收 。
拉曼光谱可以看作是将红外光谱移动到可见光 波段。
2007-10-27
22
拉曼光谱与有机结构
由拉曼光谱可以获得有机化合物的各种结构信息:
1)同种分子的非极性键S-S,C=C,N=N,C≡C产生强拉曼 谱带, 随单键→双键→三键谱带强度增加。
2)红外光谱中,由C ≡N,C=S,S-H伸缩振动产生的谱带一 般较弱或强度可变,而在拉曼光谱中则是强谱带。
3)环状化合物的对称呼吸振动常常是最强的拉曼谱带。
UV
红外光谱
一、概述
近红外区: 中红外区: 远红外区:
波长(µm) 0.75 ~ 2.5 2.5 ~ 15.4 15.4 ~ 830
波数(cm-1) 13330 ~ 4000 4000 ~ 650 650 ~ 12
绝大多数有机化合物红外吸收波数范围:4000 ~ 665cm-1
现代仪器分析方法
现代仪器分析方法随着科学技术的不断发展,人们对于仪器分析方法也有了更高的要求。
现代仪器分析方法采用了许多新的先进仪器和技术手段,具有高度的灵敏性、准确性和可靠性,广泛应用于各个领域。
本文将对现代仪器分析方法进行详细介绍。
一、光谱分析方法光谱分析是通过测量物质与电磁辐射的相互作用,来研究物质性质的一种方法。
其中,红外光谱、紫外光谱、拉曼光谱和核磁共振谱等是常用的几种光谱分析方法。
红外光谱分析可以用来鉴定物质的结构和功能官能团,广泛应用于有机化学和药物工业等领域。
紫外光谱分析可以用来研究物质的电子结构和反应机理,广泛应用于药物、生物化学和环境科学等领域。
拉曼光谱分析可以用来研究物质的分子振动和晶格振动,广泛应用于材料、生物和环境领域。
核磁共振谱分析可以用来研究物质的分子结构和核自旋状态,广泛应用于化学、物理和生物学等领域。
二、质谱分析方法质谱分析是通过测量物质分子的质量和相对丰度来鉴定和测量物质的方法。
通过质谱仪的加速离子的方法将待测样品中的分子离子化,并在电磁场中进行分离和检测,最后获得质谱图。
质谱分析具有高分辨率和高灵敏度的特点,可以应用于有机化学、生物化学、环境科学等领域。
三、色谱分析方法色谱分析是通过在固定相上的分离和移动,来分析样品中的成分的方法。
常见的色谱分析方法有气相色谱、液相色谱和超临界流体色谱。
气相色谱一般用于分析挥发性和热稳定性的物质,液相色谱一般用于分析疏水性和疏溶性的物质,超临界流体色谱一般用于分析温度和压力高的物质。
色谱分析方法具有高分离效应和准确性的特点,广泛应用于制药、化工和环境等领域。
四、电化学分析方法电化学分析是通过测量物质在电场作用下的电化学反应和现象来分析物质的方法。
常见的电化学分析方法有电位滴定法、电解析法、极谱法和电化学发光法。
电化学分析方法通过测量电流、电势和电荷等电化学参数,来分析物质的浓度、反应速率和物理化学性质等。
电化学分析方法具有高灵敏度和高选择性的特点,广泛应用于电化学工业、环境保护和生物化学等领域。
现代仪器分析 第一章 第二章 光分析导论
在线分析
原位分析 实时分析 活体分析 接口 分离技术 仪器和计算机 联用技术 教育 定性 传感器 固定化
分析化学 主要发展趋势
表面分析 大分子表征 化学图象 无损分析 单细胞分析 单分子单聚集体分析
其它科技领域
第一章 绪论
2. 仪器分析的应用领域
社会:体育(兴奋剂)、生活产品质量(食品添加剂、农 药残留量)、环境质量(污染实时检测)、法庭化学 (DNA技术,物证) 化学:新化合物的结构表征;分子层次上的分析方法; 生命科学:DNA测序;活体检测; 环境科学:环境监测;污染物分析; 材料科学:新材料,结构与性能; 药物:天然药物的有效成分与结构,构效关系研究; 外层空间探索:微型、高效、自动、智能化仪器研制。
无机分析和有机分析
根据分析所需试样用量,分析化学分为:
常量、半微量、微量、超微量分析
根据分析方法所用手段分类,分析化学分为:
化学分析、仪器分析
第一章 绪论
酸碱 定量分析 光化学分析
配位 沉淀 氧化还原
电化学分析
基础发展 化学 分析 仪器 分析 色谱分析 质谱分析
定性分析 常量分析
分析化学
1. 2 光谱法
原子发射光谱法
原子光谱法
原子吸收光谱法
X射线荧光与X射线衍射分析
光(波)谱 分析法
分子光谱法
紫外-可见分子吸收光谱分析 红外分子吸收光谱法 激光拉曼光谱法 分子荧光与磷光光谱法 核磁共振与顺磁共振波谱法 X射线光电子能谱和俄歇电子能谱
其它波谱法
第一章 绪论
2. 电化学分析法
以物质的电化学性质为基础的一类分析方法。如电位、电 流、电导、电量等电化学性质。
• • • • • • • • • • • • •
现代仪器分析技术的新进展
现代仪器分析技术的新进展现代仪器分析技术在不断地推动着科学技术的进步和发展。
近年来,仪器分析技术在技术上有了许多新的进展。
本文将分析其中的一些主要新进展。
第一,分析技术与信息处理技术的结合。
随着电子计算机的普及和信息技术的发展,许多新的数据处理技术和算法在分析仪器中得到了应用。
这样,在数据获取和分析结果处理上,仪器分析技术的效率与精度得到了大幅度提高。
例如,随着人工智能技术的发展,机器学习和自动智能技术等应用,使分析结果更加快速和准确。
第二,纳米技术在分析技术中的应用。
随着纳米技术的发展,许多功能材料具有了很好的应用前景。
在纳米级别的材料中,一些物理和化学现象具有独特的特性。
此外,纳米技术使得元素的表面积增加,其可视化程度也更高,使得仪器分析技术更加准确和灵敏。
例如,纳米级别的材料可以被用于电化学传感器和分析化学领域的测量。
第三,新光源的出现。
随着激光、同步辐射和自由电子激光等新的光源的不断出现,分析仪器的光谱技术得到了很大的改善。
这些新光源不仅提高了仪器分析技术的分辨率和准确度,还大大提高了实验的效率。
例如,同步辐射光源是一种强度和频率均匀的光源,可用于X射线吸收谱(XAS)、X射线荧光谱(XRF)和X射线衍射谱(XRD)等分析技术。
第四,新型探测器的出现。
随着探测器技术的发展,新的探测器设计和材料开发出现,这些探测器具有更高的探测效率、更低的噪声和更好的空间分辨率等特点。
例如,新型的探测器包括光电倍增管、激光可视光谱仪和等离子体质谱仪等。
第五,新型的分析仪器。
随着新型仪器的发展,传统分析仪器得到了极大的改进,同时也产生了新的分析仪器。
例如,四极杆和离子阱质谱仪等新型质谱仪可以同时检测多种物质。
还有,新型的扫描电镜和聚焦离子束(FIB)等新型显微镜与其他分析技术相结合,可以在三维空间上实时可视化样品表面的性质,实现多元化的原位分析。
现代仪器分析技术在环境监测领域中的应用
代仪器分 析技 术在我国环境监测领域 的应用 , 有力地推动 了我 国 有色金属 冶炼等 5个行业 4 4 5 2家企业为重点 防控企业。水质、 大 环境保护工作 的发展 。 气、 土壤 、 固体 废物等环境 样 品中重 金属 的测 定都普遍应 用原子
1色谱 分析 法在 环境 监测 中 的应用
超过 了 3 0 0万种 ,其 中具有挥发性 的化合 物大 约 占了 2 0 %左 右 , 析, 可达到飞克级别 的灵敏度 。
气相色谱法用来分析具有挥发性 、 半挥发性的化合物 。1 9 8 9年我 4 结 语 国确定 了 6 8种有毒污染物 的名单 , 其 中有 5 8 种 是通过气相色谱 终上所 述 , 人类 的生产与生 活给环境带来 了极大 的压 力 , 社 法对 它们 的进行定性 和定量分 析 , 包 括挥发性 卤代烃 、 苯 系物 以 会经 济的发展使得 污染物 的种类和数量 也在 急剧 增加 ,对 于现 及有机氯农药等物质。 代仪 器分析技术 的要求也在不 断提高 。 目前 , 气相色谱 、 原子 吸 1 . 2高效液相色谱法( I - I P L C) 高效液 相 色谱 法 是 通过 对 色谱 柱 中的 液体 流 动相 施加 高 收光谱 、质谱联用 等检测技 术 已经在 环境监测领 域得到普遍 应 极大地 提高 了监测数 据 的准确 度 , 保 证 了环境 管理工作 的顺 压, 以达到对 液体进 行分 离分析 的 目的 , 具 有速 度快 、 工作 效率 用 , 利推 进。 高、 灵 敏度 高等多种 优点 , 是 针对 热稳定性 差 、 挥 发性 低 以及分
现代仪器分 析技术在 环境监测领域 中的应用
( 广西环境监 测中心站
摘 要 : 人 们 生 产 生 活 水 平 的 不 断提 高 , 使 得我 国污
现代仪器分析技术在食品检测中的应用
现代仪器分析技术在食品检测中的应用摘要:综述了光谱分析法、色谱分析法、质谱分析法检测技术等几种主要的现代仪器分析技术在食品检测方面的应用。
关键词:仪器分析食品分析检测应用中图分类号:TS201.6 文献标识码:A 文章编号:1672-5336(2014)06-0035-02仪器分析是指借用精密仪器测量物质的某些理化性质以确定其化学组成、含量及化学结构的一类分析方法,尤其适用于微量或痕量组分的测定。
由于计算机技术的引入,使仪器分析的快速、灵敏、准确等特点更加明显,多种技术的结合与联用使仪器分析应用更加广泛。
近年来,食品仪器分析方法的发展十分迅速,一些先进技术不断渗透到食品分析领域中,使仪器分析方法在食品分析中所占的比重不断增长,并成为现代食品分析的重要支柱。
现代分析仪器的种类十分庞杂,应用的原理不尽相同[1],本文主要介绍光谱分析法、色谱分析法、质谱分析法检测技术等几种主要的现代仪器分析技术在食品检测方面的应用。
1 光谱分析法光谱分析是一种活体快速、无损测试技术,它是利用各种化学物质(包括原子、基团、分子及高分子化合物)所具有的发射、吸收或散射光谱的特征,来确定其性质、结构或含量,在国内外得到了广泛的应用。
分光光度法是食品分析中应用最广最多的方法之一,其中涉及红外、原子吸收等分光光度技术。
1.1 原子吸收分光光度法20世纪60~70年代原子吸收光谱仪日渐普及,随着用于准确测定生物样品中痕量矿物质的原子吸收方法的发展,为食品分析、食品营养、食品生物化学、食品毒理学等诸多领域的空前发展铺平了道路。
潘锦武[5]采用在酸性条件下,加入KI-MIBK萃取食品中痕量铅和镉,导入火焰原子吸收分光光度法测定,解决了食品基体物质物质干扰铅、镉测定的问题,提高检测结果的准确性。
1.2 红外光谱分析法随着科学技术的发展,红外光谱技术的应用从中红外、到近红外、再到现在较为热门的傅立叶红外变换光谱(FTIR),技术得到不断的改进,应用领域得到不断的扩充。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代分析检测技术1.色谱分类:按固定相所处的状态分类:柱层析:将固定相装填在金属或玻璃制成的管柱中,做成层析柱以进行分离的,为柱层析;毛细管色谱:把固定相附着在毛细管内壁,做成色谱柱的,为毛细管色谱;纸层析:利用滤纸作为固定相以进行层析分离的为纸层析。
薄层层析:把吸附剂粉未铺成薄层作为固定相以进行层析分离的为薄层层析。
按色谱分离的原理分类:吸附色谱:固定相为吸附剂,利用它对被分离组分吸附能力强弱的差异来进行分离。
气固色谱和液固色谱属于这一类。
分配色谱:是利用各个被分离组分在固定相和流动相两相问分配系数的不同来进行分离的,气液层析和液液层析属于这一类。
离子交换色谱:以离子交换剂作固定相,利用各种组分的离子交换亲和力的差异来进行分离。
凝胶色谱:又称排阻色谱:用凝胶作固定相,利用凝胶对分子大小不同的组分所产生阻滞作用的差异未进行分离。
吸附剂:粒度均匀的细小颗粒;较大的表面积和一定的吸附能力;吸附剂与欲分离的试样和所用的洗脱剂不起化学反应,不溶于洗脱剂中。
常用的吸附剂有:氧化铝、硅胶、聚酰胺氧化铝:氧化铝具有吸附能力强、分离能力强等优点。
中性氧化铝:适用于醛、酮、醌、酯、内酯化合物及某些苷的分离;酸性氧化铝:适用于酸性化合物,如酸性色素、某些氨基酸,以及对酸稳定的中性物质的分离;碱性氧化铝:适用于分离碱性化合响如如生物碱、醇以及其它中性和碱性物质。
氧化铝的活性:活性和含水量密切有关;活性强弱用活度级I~V级来表示,活度I级吸附能力最强,V级最弱。
通过加热至不同温度,可以改变氧化铝的活性,分离弱极性的组分选用吸附活性强一些的吸附剂,分离极性较强的组分,应选用活性弱的吸附剂。
硅胶:硅胶具有微酸性,吸附能力较氧化铝稍弱,可用于分离酸性和中性物质,如有机酸、氨基酸、萜类、甾体等。
聚酰胺:由已内酰胺聚合而成,又称聚己内酰胺,聚酰胺分子内存在着很多的酰胺键,可与酚类、酸类、酮类,硝基化合物等形成氢键,因而对这些物质有吸附作用,酚类和酸类以其羟基或羧基与酰胺键的羰基形成氢键,芳香硝基化合物和醌类化合物是以硝基或醌基与酰胺键中游离胺基形成氢键。
聚酰胺吸附规律:能形成氢键基团较多的溶质,其吸附能力较大,对位、间位取代基团都能形成氢键时,吸附能力增大,邻位的使吸附能力减小,邻位的使吸附能力减小,能形成分子内氢键者,吸附能力减小。
2.流动相及其选择:流动相的洗脱作用实质上是流动相分子与被分离的溶质分子竞争占据吸附剂表面活性中心的过程。
使试样中吸附能力稍有差异的各种组分分离。
就必须根据试样的性质,吸附剂的活性,选择适当活性的流动相。
流动相极性较弱时,可使试样中弱极性的组分洗脱下来,在层析柱中移动较快,而与极性较强的组分分离。
强极性和中兴等极性的流动相适用于强极性和中高等极性组分的分离。
组分极性的一般规律:(1)常见的功能团极性增强次序:烷烃<烯烃,醚类<硝基化合物<二甲胺<酯类<酮类<醛类<硫醇<胺类<酰胺<醇类<酚类<羧酸类。
(2)当有机分子的基本母核相同时,取代基团的极性增强,整个分子的极性增强;极性基团增多,整个分子的极性增强。
分子中双键多,吸附力强,共轭双键多,吸附力增强。
(3)分子中取代基团的空间排列对吸附性能也有影响,如同一母核中羟基处于能形成内氢键位置时,其吸附力弱于不能形成内氢键的化合物。
流动相按其极性增强顺序:(1)石油醚<环己烯<四氯化碳<三氯乙烯<苯<甲苯<二氯甲烷<氯仿<乙醚<乙酸乙酯<乙酸甲酯<丙酮<正丙醇<乙醇<甲醇<吡啶<酸,水(2)溶剂按不同的配比配成混合溶剂可以调节溶剂的极性,优化流动相(3)溶解试样用的溶剂,其极性应与流动相接近,以免因它们极性相差过大而影响层析分析。
3. 分配色谱:(1)分配层析是根据预分离组分在两种互不混溶(或部分混溶)溶剂间溶解度的差异来实现的。
(2)在层析中,这两种互不混溶的溶剂之间是流动相;另一种是吸收在载体或担体(往往也叫它们称之为吸附剂),这种溶剂在层析过程中不流动,是固定相。
(3)分配色谱的担体: 担体也称吸附剂,起负载固定相的作用,本身是惰性的。
分配柱层析中常用担体有如下几种:硅胶:在分配柱层析中作用作担体的硅胶应在较低的温度下活化,使其表面残留一定的水分作固定相。
纤维素:纤维素上有许多羟基,易与水形成氢键而将水吸附,这种吸附着的水分形成分配柱层析中的固定相。
硅藻土:系天然存在的非晶形硅胶,其中SiO2外还含Al2O3Fe2O3,GaO,Na2O和有机物及水分等;需经精制才能供层析用。
4. 正向色谱和反向色谱正向色谱:(a)使用范围:溶于水的有机物,如糖类、氨基酸等的分离(b)固定相为:强极性亲水性溶剂(水、稀硫酸、甲醇、甲酰胺)(c)流动相:一般是与水不相混溶的有机溶剂正丁醇、正戊醇加入适量的弱酸和弱碱如乙酸吡啶等调节PH值以防止被分离组分离解、在有机溶剂中溶解度大的移动快。
反向色谱:(a)使用范围:分离酯性的有机物,如芳香油等(b)固定相为疏水的有机物,如石油蜡、硅油、正十二醇(c)流动相为亲水性的溶剂作流动相如水、甲醇、乙醇等。
应用举例:纸层析分离氨基蒽醌异构体;固定相-溴代萘,流动相-吡啶和水(1:1);从上到下依次是:橙色的1-氨基蒽醌,粉紫色1,8-氨基蒽醌,红色1,6-氨基蒽醌和1,7-氨基蒽醌,在亲水性溶剂中溶解度大的移动快。
5. 交联度和交换容量交联度:结构中长链由苯乙烯聚合而成,长链间由二乙烯苯交联起来,形成网状结构。
二乙烯苯是交联剂,树脂中二乙烯苯的质量百分率,就是树脂的交联度。
交联度:树脂内交联度的百分含量,以4~14%为宜。
性质对水的溶胀性网眼交换反应速度交换选择性机械强度交联度(小) 好大快差差交联度(大) 差小慢高高交换容量:每克离子交换树脂在交换过程中能交换的物质的量,就是树脂的交换容量,一般为3-6mmol/g干树脂。
6. 离子交换分离法:利用离子交换剂(树脂)与溶液中离子间发生交换反应而进行分离的发法。
特点:分离效率高(不同电荷、相同电荷、性质相近与否)、富集比例高、成本低(大多能再生反复使用)、周期长(耗时长)。
离子交换树脂种类:离子交换反应发生在离子交换树脂上的具有可交换离子的活性基团上。
离子交换树脂是以高分子聚合物为骨架,反应引入活性基团构成。
高分子聚合物以苯乙烯-二乙烯苯共聚物小球常见,可引入各种特性的活性基团(如-SO3H,-OH,-N(CH3)3Cl),使之具有选择性。
(1)离子交换树脂的亲和力树脂对不同离子亲和力大小具有如下的规律:稀溶液中,离子电荷越大,亲和力越大;相同电荷时,水合半径越小,亲和力越大(2)离子交换树脂亲和力顺序:1.强酸性阳离子交换树脂(a)不同价态的离子,电荷越高,亲和力越大,如:Na+<Ga2+<Al3+<Th(Ⅳ)弱酸性阳离子交换树脂:离子交换分离法的应用:(1)蛋白质纯化为了研究某一个蛋白质的结构,必须首先将该蛋蛋白质从其他蛋白质和非蛋白质分子中纯化出来。
用于分离蛋白质的最重要特住有大小、电荷、疏水性和对其他分子的亲和性。
通常采用多种方法的组合来实现蛋白质的完全纯化。
离子交换层析在纯化蛋白质的层析手段中使用最为广泛。
它对蛋白质的分辨率高,操作简易,重复性好,成本低。
按照离子交换原理,蛋白质可从大量缓冲性溶液中被分离,所以此方法尤适于蛋白质粗提物的初始纯化。
(2)离子交换树脂的选择以层析条件下蛋白质所带净电荷为根据。
带负电荷的蛋白质会与阴性离子交换树脂结合;带正电荷的蛋白质会与阳性离子交换树脂结合。
蛋白质的离子交换层析是根据蛋白质与离子交换树脂的选择性结合。
蛋白质溶液进入离子交换柱后,通过静电引力可逆地结合在离子交换树脂上。
使蛋白质从离子交换树脂洗脱常用办法是加大反荷离子的浓度。
不同蛋白质与树脂的亲和力各不相同,可用逐渐增加洗脱液中NaCl浓度的方法将其逐一洗脱出来。
比如,溶液中的氯离子浓度若为0.1mol/L,在离子交换时带负电荷的蛋白质取代了与阴离子交换树脂结合的氯离子而被固定在树脂上,则当氯离子浓度提高到0.3 mol/L时,与树脂结合力较弱的蛋白质将被洗脱,洗脱液中氯离子浓度便需提高到0.5 mol/L,与树脂结合力较强的蛋白质被洗脱。
逐步增加洗脱液中离子浓度可将两种蛋白质完全的分离开。
7.样品中微量组分的富集与分离气体样品采样法、液体样品中微量有机组分的富集与分离、固体样品中微量组分的富集与分离(1)气体样品采样法:样品来源:环境大气、环境排放废气,其中可能包括固体粉尘、液体细雾(气溶胶);方法:直接采样法、过滤法、溶剂吸收法、吸附法(a)直接采样法:将样品气体直接导入适当的容器内,如注射器、玻璃容器、塑料或橡胶袋中。
为减小样品在气袋中的吸附,可用内衬铝膜、聚四氟乙烯膜、聚乙烯膜、聚酯薄膜等方法。
长时间放置可能使样品在容器壁上的吸附损失增加。
导入气体的方法有真空法、排水取气法等。
样品中微量气体组分的分析通常采用GC、GC-MS可以测到ug-ng级的浓度。
(b)过滤法:过滤法是捕集气体中悬浮固体和液体的常用方法,效率达到90%以上(0.1-100um)。
过滤材料:滤纸、棉布、玻璃纤维、合成纤维、聚氨酯泡沫等,孔径0.1-0.5um.采用计量泵和流量计控制。
对于小于0.1um的气溶胶效率较低。
(c)溶剂吸收法:一定体积的气体样品定量通过溶剂吸收瓶,使气体中的某些组分定量的转移到吸收液中。
吸收液:水和丙酮、乙醇、乙醚、苯、己烷、二氯甲烷。
溶剂吸收法同时加上低温冷阱冷凝,效果会更好,低温可采用冰盐水、干冰等方式提供。
缺点:溶剂与玻璃仪器携带不便,气体流速小。
(d)吸附法:吸附剂:活性炭,硅胶,氧化铝,大孔网状树脂。
活性炭:吸附效率高,但是解吸不完全。
大孔网状树脂:吸附、解吸较好,价格较贵。
硅胶、氧化铝:吸附效果好,解吸容易,是常用的吸附剂。
脱附:加热并通入氮气直接进入GC;溶剂洗脱,采用HPLC分析;TLC纯化后进行成分结构分析。
(2) 液体样品中微量有机组份的富集与分离气提与顶空取样法(烃类、挥发油等):水相中易挥发、溶解度小的的有机组份;蒸馏法(常量组份、低沸点组分):微量组分容易形成共沸体系,很难同主成分分开。
高沸点组份因加热温度高,溶剂热分解。
减压蒸馏容易使一些组分被抽出。
溶剂萃取;吸附分离法:吸附树脂,吸附柱;离子交换树脂。
8. 非均一体系有机样品分离程序分离方法选择准则及分离方法分类9. Uv-VIS 吸光光度法(紫外-可见吸收光度法)有机化合物的紫外-可见吸收光谱,是其分子中外层电子跃迁的结果(三中):σ电子、π电子、n 电子。
分子吸收光谱与跃迁(分子轨道理论):一个成键轨道必定有一个相应的反键轨道。