岩石强度破裂准则讲解

合集下载

岩石强度及破坏准则优缺点

岩石强度及破坏准则优缺点
10
岩石力学中常用的几种强度准则
Griffith强度准则
基本假设: ①物体内随机分布许多裂隙; ②所有裂隙都张开、贯通、独立; ③裂隙断面呈扁平椭圆状态; ④在任何应力状态下,裂隙尖端产生拉应力集中,导致裂隙沿 某个有利方向进一步扩展; ⑤最终在本质上都是拉应力引起岩石破坏。
外力作用下,材料中裂隙的端部及其附近由于应力集中而产生很大的 拉应力,超过岩石抗拉强度时,裂隙便不断扩展而导致材料破坏。
12
岩石力学中常用的几种强度准则
对Grriffith强度准则评价:
优点: 岩石抗压强度为抗拉强度的8倍,反映了岩石的真实情况 证明了岩石在任何应力状态下都是由于拉伸引起破坏 指出微裂隙延展方向最终与最大主应力方向一致
缺点:
仅适用于脆性岩石,对一般岩石莫尔强度准则适用性远大于Griffith 准则 对裂隙被压闭合,抗剪强度增高解释不够 Griffith准则是岩石微裂隙扩展的条件,并非宏观破坏
函数形式
式中 I1 x y z 1 2 3 , 为应力张量第一不变量
1 2 2 2 J 2 [ 1 2 2 3 3 1 ] ,为第二应力偏量不变量 6
α 和K为 D-P 准则材料常数
7
岩石力学中常用的几种强度准则
准则的提出
常规三轴强度试验中发现大多数岩石强度曲线并不是直线,而是各种类型 的曲线,也就是说随着围压的增加,破坏角是变化的 函数形式
1 = 3 + m c 3 s c
2
9
岩石力学中常用的几种强度准则
对Hoek-Brown强度准则评价:
优点: 综合考虑了岩块强度、结构面强度、岩块结构等多种因素的影 响,能更好的反映岩块的非线性破坏特征; 提供岩块破坏时强度条件,而且能对岩块破坏机理进行描述; 弥补了Mohr-Coulomb强度准则中岩体不能承受拉应力,以及 对低应力区不太适应的不足,能解释低应力区、拉应力及最小 主应力 σ3 对强度的影响,因而更符合岩块的破坏特点。 缺点: 该准则没有考虑中间主应力对岩石真三轴强度的影响; 该准则在高围压条件下评估的岩石三轴强度与试验实测 强度数据偏差较大; 准则各参数的确定受主观性影响程度较大。

岩石破坏准则

岩石破坏准则

2.1岩石破坏强度准则岩石的破坏主要与外荷载的作用方式、温度及湿度有关。

一般在低温、低围压及高应变率的条件下,岩石表现为脆性破坏,而在高温、高围压、低应变率作用下,岩石则表现为塑性或者塑性流动。

对于较完整的岩石来说,其破坏形式可以分为:1)脆性破坏;3)延性破坏。

图2-1给出了不同应力状态下岩石破裂前应变值、破坏形态示意图和典型的应力-应变曲线示意图。

图2-1岩石破坏形态示意图从图2-1中可以看出岩石破裂种类繁多、岩石破坏过程中的应力、变形、裂纹产生和扩展极为复杂,很难用一种模型进行描述,很多学者针对不同岩石破坏特征提出多种不同岩石的强度破坏准则。

本节主要对已有的岩石强度破坏准则进行总结,找出它们各自的优缺点。

2.1.1最大正应力强度理论最大正应力强度理论也称朗肯理论,该理论是1857年提出的。

它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。

朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。

考察挡土墙后主体表面下深度z 处的微小单元体的应力状态变化过程。

当挡土墙在土压力的作用下向远离土体的方向位移时,作用在微分土体上的竖向应力sz 保持不变,而水平向应力sx 逐渐减小,直至达到土体处于极限平衡状态。

土体处于极限平衡状态时的最大主应力为s1=gz ,而最小主应力s3即为主动土压力强度pa 。

根据,当主体中某点处于极限平衡状态时,大主应力1σ和小主应力3σ之间应满足以下关系式:粘性土:213...2tan tan 454522c ϕϕσσ⎛⎫⎛⎫︒︒=-++ ⎪ ⎪⎝⎭⎝⎭(1)无粘性土231.tan 452ϕσσ⎛⎫︒=- ⎪⎝⎭(2)该理论认为材料破坏取决于绝对值最大的正应力。

因此,作用于岩石的三个正应力中,只要有一个主应力达到岩石的单轴抗压强度或岩石的单轴抗拉强度,岩石便被破坏。

岩石强度破裂准则讲解

岩石强度破裂准则讲解

2、最大正应变强度理论
岩石强度条件可以表示为:
max m
ε max ——岩石内发生的最大应变值,可用广 义胡克定律求出; ε m—单向压缩或单向拉伸试验时岩石破坏的 极限应变值,由实验求得
试验证明,这种强度理论只适用于脆性岩石, 不适用于岩石的塑性变形。
3、最大剪应力强度理论
最大剪应力张度理论也称为屈瑞斯卡(H.Tresca)强度 准则,是研究塑性材料破坏过程中获得的强度理论。试 验表明,当材料发生屈服时,试件表面将出现大致与轴线 呈45°夹角的斜破面。由于最大剪应力出现在与试件轴 线呈45°夹角的斜面上,所以,这些破裂面即为材料沿 着该斜面发生剪切滑移的结果。一般认为这种剪切滑移 是材料塑性变形的根本原因。因此,最大剪应力强度理 论认为材料的破坏取决于最大剪应力。当岩石承受的最 大剪应力τmax达到其单轴压缩或单轴拉伸极限剪应力 τm时,岩石便被剪切破坏。
1 y 2 3 0
6、八面体应力强度理论
6、八面体应力强度理论
由冯-米塞斯强度条件τOCT=τs,得
1 3
1 2 2 2 3 2 3 1 2
2 3

y
对于塑性材料,这个理论与试验结果很吻合。在塑 性力学中,这个理论称之为冯-米塞斯破坏条件,一直被 广泛应用。
8 软弱面破裂准则
8 软弱面破裂准则
片理
8 软弱面破裂准则
片麻岩
9、格里菲斯强度理论
9、格里菲斯强度理论
三、格里菲斯准则(Griffth 1921)
断裂力学1921年提出,70年代岩石力学领域 (1)实验基础:玻璃材料中的微裂纹张拉扩展,
连接,贯通,导致材料破坏。 (c
σ1e—破坏时最大有效主应力,Mpa; σ3e-破坏时最小有效主应力,Mpa; σc—结构完整的连续介质岩石材料单轴抗压强度,Mpa; m、s—经验系数

岩石的破坏准则[详细]

岩石的破坏准则[详细]

五、岩石的破坏准则对岩石试样的室内及现场试验,可获得岩石试样的强度指标,但对复杂应力状态下的天然岩体,又是如何判断其破坏呢?因此,就必须建立判断岩石破坏的准则(或称强度理论).岩石的应力、应变增长到一定程度,岩石将发生破坏.用来表征岩石破坏条件的函数称为岩石的破坏准则.岩石在外力作用下常常处于复杂的应力状态,许多试验指出,岩石的强度及其在荷载作用下的性状与岩石的应力状态有着很大的关系.在单向应力状态下表现出脆性的岩石,在三向应力状态下具有延性性质,同时它的强度极限也大大提高了.许多部门和学者从不同角度提出不同的破坏准则,目前岩石破坏准则主要有:最大正应力理论最大正应变理论最大剪应力理论(H.Tresca)八面体应力理论莫尔理论及库伦准则格里菲思理论(Griffith)伦特堡理论(Lundborg)经验破坏准则1、最大正应力理论这是较早的一种理论,该理论认为岩石的破坏只取决于绝对值最大的正应力.即岩石内的三个主应力中只要有一个达到单轴抗压或抗拉强度时,材料就破坏.适用条件: 单向应力状态.对复杂应力状态不适用.写成解析式:破坏2、最大正应变理论该理论认为岩石的破坏取决于最大正应变,即岩石内任一方向的正应变达到单向压缩或拉伸时的破坏数值时,岩石就发生破坏.则破坏准则为式中ε——岩石内发生的最大应变值;m axε——单向拉、压时极限应变值;u这一破坏准则的解析式为(由广义虎克定律)R —R t或R c推出:实验指出,该理论与脆性材料实验值大致符合,对塑性材料不适用.3、最大剪应力理论(H.Tresca)该理论认为岩石材料的破坏取决于最大剪应力,即当最大剪应力达到单向压缩或拉伸时的危险值时,材料达到破坏极限状态.其破坏准则为:在复杂应力状态下,最大剪应力231 max σστ-=单位拉伸或压缩时,最大剪应力的危险值则有 R ≥-31σσ或写成 {}{}{}0)][)][)][221222232231=------R R R σσσσσσ这个理论适用于塑性岩石,不适用于脆性岩石. 该理论未考虑中间主应力的影响.4、八面体剪应力理论(Von.米ises)该理论认为岩石达到危险状态取决于八面体剪应力.其破坏准则为已知单元体1σ,2σ,3σ ,作一等倾面(其法线夹角相同).为研究等倾面上的应力,取一由等倾面与三个主应力面围成的四面体来研究.N 与x 、y 、z 的夹角分别为γβα、、,且 γβα==. 设:l =αcos ,m =βcos ,n =γcos设等倾面ABC 面积为S,则三个主应力面(1σ,2σ,3σ面)的面积分别为根据力的平衡条件∑=0X , ∑=0Y , ∑=0Z推出:⎪⎩⎪⎨⎧⋅⋅=⋅=⋅⋅=⋅=⋅⋅=⋅=∑∑∑γσβσασcos 0cos 0cos 0321S S p Z S S p Y S S p X z y x , 而 等倾面S 上合力:222z y x p p p p ++=所以另,等倾面S 上的法向应力为各分力p x 、p y 、p z 在N 上的投影之和,即S oct ττ≥,推出适用条件:塑性,5、莫尔理论及莫尔库伦准则该理论是目前应用最多的一种强度理论.该理论假设,岩石内某一点的破坏主要取决于它的大主应力和小主应力,即σ1和σ3,而与中间主应力无关.也就是说,当岩石中某一平面上的剪应力超过该面上的极限剪应力值时,岩石破坏.而这一极限剪应力值,又是作用在该面上法向压应力的函数,即)(στf = .这样,我们就可以根据不同的σ1、σ3绘制莫尔应力图. 每个莫尔圆都表示达到破坏极限时应力状态.一系列莫尔圆的包线即为强度曲线一方面与材料内的剪应力有关,同时也与正应力有关关于包络线:抛物线:软弱岩石双曲线或摆线:坚硬岩石直线:当σ<10米Pa 时为简化计算,岩石力学中大多采用直线形式:c ——凝聚力(米Pa) ϕ——内摩擦角.该方程称为库伦定律,所以上述方法合称为:莫尔库伦准则. 当岩石中任一平面上f ττ≥ 时,即发生破坏.即: ϕσττtg c f ⋅+=≥下面介绍用主应力来表示莫尔库仑准则. 任一平面上的应力状态可按下式计算①②α(σ1)力圆,可建力之间关系1)c和ϕ值与σ1、σ3和α角关系在σ1~σ3的应力圆上,找出2α的应力点T(T米为半径为231σσ-) 则,与直径T米垂直且与圆相切的直线即为ϕστtgc⋅+=根据几何关系,902)2180(90-=--=ααϕ,得出代入ϕστtg c ⋅+=中,得到另由公式推导:将σ1、σ3表示的 σ 和 τ 代入ϕστtg c ⋅+=中,导出对α求导,01=ασd d 推出:245ϕα+= 破坏面与最大主应力面的夹角而与最大主应力方向的夹角2).用主应力σ1、σ3表达的强度准则 将 σ 和 τ 的表达式代入 ϕστtg c ⋅+=中,ϕασσσσασσtg c ⎥⎦⎤⎢⎣⎡-+++=-2cos 222sin 2313131利用关系:ααϕ2sin )902cos(cos =-= ααϕ2cos )902sin(sin -=-= 化简得:当σ3=0时(单轴压缩):ϕϕσsin 1cos 21-==c R c ,令ϕϕϕsin 1sin 1-+=N ,则,σ1当σ1=0时(单轴抗拉该值为 )(στf =但与实测的R t 线段进行修正.岩石破坏的判断条件:ϕ>, 破坏sin极限ϕ<,稳定sin6、格里菲思(Griffith)理论以上各理论都是把材料看作为连续的均匀介质,格里菲思则认为:当岩石中存在许多细微裂隙,在力的作用下,在缝端产生应力集中,岩石的破坏往往从缝端开始,裂缝扩展,最后导致破坏.方向成β角.且形状接近于椭圆,的局部抗拉强度,的边壁就开始破裂.1).任一裂隙的应力.假定:①椭圆可作为半元限弹性介质中的单个孔洞处理, ②二维问题处理,取0=z σ椭圆参数方程:αcos a x =,αsin b y = 椭圆的轴比为:ab m =椭圆裂隙周壁上偏心角的α的任意点的切向应力 可用弹性力学中英格里斯(Inglis)公式表示:由于裂缝很窄,轴比很小,形状扁平,所以最大应力显然发生在靠近椭圆裂隙的端部,即α很小的部位,当0→α时,αα→sin ,1cos →α又由于米,α很小,略去高次项,则有米为定值,当1σ,2σ,3σ确定时,y σ、xy τ也为定值,则b σ仅随α而变.这是任一条裂隙沿其周边的切向应力.显然在椭圆周边上,随α不同b σ有不同的值,对α求导.2mτxy则,2).岩块中的最大切向应力所在的裂隙上面导出了 某一条裂隙上的最大切向应力,但在多条裂隙中,哪一条裂隙的b σ 最大?y σ,xy τ与1σ,3σ的关系为:βσσσσσ2cos 223131--+=y , βσστ2sin 231--=xy代入 m ax ,b σ中,显然m ax ,b σ与β有关,对其求导,便可求得b σ为最大的那条裂隙,即确定出β角. 即取 0m ax ,=⋅βσd d m b则①02sin =β,有β=0或 90代入m ax ,b σ中,β=0时, mb 3max ,2σσ= 或 0 β= 90时,mb 1max ,2σσ=或0. 共四个可能极值,与σ1平行或垂直的裂隙.②将)(22cos 3131σσσσβ+-=代入 m ax ,b σ中,共有两个极值,即与σ1斜交裂隙中有两个方向裂隙的切向应力达极值.因为β=0或 90时,12cos =β或-1.因此,与σ1斜交时,必须β≠0或 90, 即 12cos <β 时 才是与σ1斜交,则要求或 0331>+σσ此时,裂隙的最大拉应力为(*)如果0331<+σσ, 则1)(23131>+-σσσσ,则3σ必为负值(拉应力)此时由12cos ≥β推出12cos =β,即β为0或90°,表明裂隙与σ1平行或正交.因为03<σ,考查β=0, 90的极值,则3max ,2σσ=b m (**) 为最大拉应力.式(*)(**)即为岩石中的m ax ,b m σ达到某一临界值时就会产生破坏. 为了 确定米值,做单轴抗拉试验,使σ3垂直裂隙面(椭圆长轴),则这时的t R -=3σ 推出 t b R m 2max ,-=σ 这说明裂隙边壁最大应力m ax ,b m σ与米乘积必须满足的关系.此时,格菲思强度理论的破坏准则为:I. 由(**)式,,t b R m 2max ,-=σ, 则 322σ=-t RII. 由(*)式,代入 t b R m 2max ,-=σ, 则有:等于0,处于极限状态; 大于0, 破坏; 小于0, 稳定.上面的准则是用σ1、σ3表示的,也可用y σ,xy τ表示 将t b R m 2max ,-=σ 代入 )(122max ,xy y y b mτσσσ+±=中, 222xyy y t R τσσ+±=- 推出:t y xy y R 222+=+±στσ,22224)2(t y t y xy y R R +=+=+σστσ 在0<σ时的包线更接近实际.7、修正的格里菲思理论格里菲思理论是以张开裂隙为前提的,如果压应力占优势时裂隙会发生闭合,压力会从裂隙一边壁传递到另一边,从而缝面间将产生摩擦,这种情况下,裂隙的发展就与张开裂隙的情况不同.麦克林托克(米eclintock)考虑了这一影响,对格里菲思理论进行了修正.麦克林托克认为,在压缩应力场中,当裂缝在压应力作用下闭合时,闭合后的裂缝在全长上均匀接触,并能传递正应力和剪应力.由于均匀闭合,正应力在裂纹端部不产生应力集中,只有剪应力才能引起缝端的应力集中.这样,可假定裂纹面在二向应力条件下,裂纹面呈纯剪破坏.其强度曲线如图.由图可知 OC =c τBD=)(2131σσ-(半径)OD=)(2131σσ+(圆心)EB=τ, OE=σ,ED=OD-OE=)(2131σσ+-σAB=EB ϕcos ⋅=ϕτcos ⋅ϕsin ⋅=ED DA =ϕσϕσσsin sin )(2131⋅-+由 AB=BD-AD,可推出式中,摩擦系数ϕtg f =另外,推出tyt xy R R στ+=12取y σ为c σ,裂隙面上的压应力,则有②当c σ很小时,取c σ=0时(勃雷斯Brace)=t R 4当时c σ<0时(拉应力),上两式不适用.低应力时,格里菲思与修正的格里菲思理论较为接近,高应力时差别大(当σ3>0时).8、伦特堡(Lundborg)理论定限度,于晶体破坏,大抗剪强度.的破坏状态:σ,τ——研究点的正应力和剪应力(米Pa)τ——当没有正应力时(σ=0)岩石的抗切强度(米Pa)i τ——岩石晶体的极限抗切强度(米Pa)A ——系数,与岩石种类有关.当岩石内的剪应力τ和正应力σ达到上述关系时,岩石就发生破坏.式中的τ实际上是代表最大的剪应力,因而是强度.上式中的0τ,i τ,A 由试验确定,见P55表3-5.9、经验破坏准则现行的破坏理论并不能全面的解释岩石的破坏性态,只能对某一方面的岩石性态做出合理的解释,但对其它方面就解释不通.因此,许多研究者在探求经验准则,目前应用较多的经验破坏准则为霍克(Hoke)和布朗(Brown)经验破坏准则.①Hoke和Brown发现,大多数岩石材料(完整岩块)的三轴压缩试验破坏时的主应力之间可用下列方程式描述:R c—完整岩石单轴抗压强度(米Pa); 米—与岩石类型有关的系数米值是根据岩石的完整程度,结晶及胶结情况,通过大量试验结果及经验而确定的.岩石完整、结晶或胶结好,米值就越大,最大的为25.②对于岩体,Hoke和Brown建议:米和S——常数,取决于岩石的性质以及在承受破坏应力σ1和σ3以前岩石扰动或损伤的程度.完整岩块S=1,岩石极差时S=0.当取σ3=0时,可得到岩体的单轴抗压强度:由于s =0~1,则c cm R R ≤ 如果令σ1=0,则得到岩体的单轴抗拉强度.从R厘米和R t 米中可看出,当S=1时,R 厘米=R c 为完整岩块,当S=0时,R t 米=R 厘米=0为完全破损的岩石.因此,处于完整岩石和完全破损岩石之间的岩体,其S 值在1~0之间.。

岩石力学6章(中)

岩石力学6章(中)

剪 裂 面 外 法 线 方 向 与 最 大 主 应 力 (maximum 之间的夹角可以从图6 中看出: principal stress)σ 1之间的夹角可以从图6-2中看出:
2θ = 90 + ϕ
o
θ = 45 +
o
ϕ
2
三、库伦一纳维尔破坏准则的第二种表示方法
库伦一纳维尔破坏准则也可采用主应力 1 σ 来表示, σ 、3 来表示, 剪裂面上应力与主应力关系如图6 所示,剪裂面上应力为: 剪裂面上应力与主应力关系如图6-3所示,剪裂面上应力为:
1 1 σ n = (σ 1 + σ 3 ) + (σ 1 − σ 3 ) cos 2θ 2 2 1 τ f = (σ 1 − σ 3 )sin 2θ 2
σ1
σn τ
b
σ3
σ3
a
θ
σ1
图6-3 剪裂面上应力与主应力关系
将它们代入库伦一纳维尔破坏准则表达式中: 将它们代入库伦一纳维尔破坏准则表达式中: 库伦一纳维尔破坏准则表达式中
n
剪切面上的正应 f = tg ϕ 。
取σ、τ 为直角坐标 系的横轴、 系的横轴、 纵轴, 纵轴,则上 式为一直线 方程。 方程。如图 6-1所示。 所示。
图6-1
库伦一纳维尔破坏准则示意图
随着最大主应力的增大,岩石逐渐达到破坏条件。 随着最大主应力的增大,岩石逐渐达到破坏条件。 如图6 如图6-2所示: 所示:
1 + sin ϕ 1 + sin ϕ σ1 = σ 3 ⋅ + 2τ 0 1 − sin ϕ 1 − sin ϕ
根据三角恒等式: 根据三角恒等式:
1 + sin ϕ ϕ 2 o = tg 45 + 1 − sin ϕ 2

最新岩体强度破坏判断准则专业知识讲座

最新岩体强度破坏判断准则专业知识讲座

仿。文档如有不当之处,请联系本人或网站删除。
屈服条件的研究历史-2(续上)
π平面
Mises (1913)
– Mises指出Tresca试验结果在π平面上得到六个 点,六个点之间的连线是直线?曲线?还是圆? Mises采用了圆形,并为金属材料试验所证实。
DruckJ e2 r a1 6 n[ d P( 1 r ag2 e)r2 (1(952 2) 3 )2 (31 )2 ] C
岩石破坏有两种基本类型:
1. 脆性破坏(格里菲斯强度理论 ),它的特点是岩 石达到破坏时不产生明显的变形,岩石的脆性 破坏是由于应力条件下岩石中裂隙的产生和发 展的结果;
2. 塑性破坏(莫尔—库仑强度理论),破坏时会产 生明显的塑性变形而不呈现明显的破坏面。塑 性破坏通常是在塑性流动状态下发生的,这是 由于组成物质颗粒间相互滑移所致。
Mises & Tresca这两种屈服条件都主要适用
于金属材料,对于岩土类介质材料一般不能很 好适用,因为岩土类材料的屈服与体积变形或 静水应力状态有关。
文档来第2源章于岩网石络的物,理文力学档性所质提供的信息仅供参考之用,不能作为科学依据,请勿模 仿。文档如有不当之处,请联系本人或网站删除。
1. 莫尔-库仑准则
库仑(C.A. Coulomb)1773年提出内摩擦准则,常称为库仑强度理论。
破坏机理:(基本思想)材料属压剪破坏,剪切破坏力的一部分用来克 服与正应力无关的粘聚力,使材料颗粒间脱离联系;另一部分剪切破坏力 用来克服与正应力成正比的摩擦力,使面内错动而最终破坏。
P
上盒
A
S
下盒
T
文档来第2源章于岩网石络的物,理文力学档性所质提供的信息仅供参考之用,不能作为科学依据,请勿模 仿。文档如有不当之处,请联系本人或网站删除。

岩石力学第3章 岩石的强度与屈服

岩石力学第3章  岩石的强度与屈服

19
图3.7 椭圆孔周边应力计算图
20
21
22
23
24
3.3 岩石的屈服准则
屈服准则是岩石某一点的应力是否进入塑性状态的 判据。这里将介绍最常用的几种屈服准则。 3.3.1 Tresca准则 1864年,Tresca假设当最大剪应力达到某一极限值 k时,材料发生屈服。如规定σ1≥σ2≥σ3,Tresca屈服准 则可表示为
14
图3.4 裂隙岩体的应力-应变曲线
15
16
图3.5 花岗岩真三轴压缩试验曲线
17
图3.6 岩石联合强度理论
18
3.2.2 理论准则 理论强度准则是根据对岩石的物理性质的假设条件 推导出来的,但又必须经过实验与工程实践的验证,或 根据试验观察到的物理现象来建立并推导强度准则。理 论强度准则与实验手段密切相关,实验和观察方法的进 步,推动了岩石强度准则研究的发展。 1)Griffith准则
34
图3.12 不同屈服条件下的π 平面屈服曲线
35
36
பைடு நூலகம்
37
3.4.2 层状弱面体的屈服准则 岩体的地质特征是其中存在着纵横交错的各种结构 面。力学上则表现为存在着弱面和软弱夹层,这是岩体 与其他均质连续体的本质区别,因而岩体力学方法必须 考虑各向异性和非均匀各向强度特点,其力学模型应当 是具有各种弱面(或软弱夹层)的各向异性和非均匀强 度的弱面体。 (1)平面层状弱面体的屈服准则 平面弱面体的屈服条件可以写成如下形式
11
5)Hoek-Brown准则 1980年,Hoek和Brown为了能够预测岩体特征,而 提出岩体强度经验准则:
6)Yudhbir准则 1983年Yudhbir用灰岩、砂岩、花岗岩及由石膏和 松香混合制成的模拟材料等含有裂隙的122个样品进行 了三轴实验,试图通过试验数据,对不同的经验准则进 行比较,结果发现尽管Hoek和Brown准则对易碎岩石十 分有效,但对塑性岩石却存在一定局限性。因此, Yudhbir提出了一个修正准则:

岩石的断裂准则概述

岩石的断裂准则概述

断裂力学部分岩石的断裂准则及其应用传统的力学方法通常假定材料是连续的,不存在任何缺陷或裂纹。

一般的做法是,根据结构的实际受力情况,计算出其中最危险区域的应力,乘以安全系数,若其小于屈服强度或极限强度,这认为该结构是安全的,反之则是不安全的。

但是在实际结构中许多脆性材料,包括岩石,混凝土、陶瓷、玻璃等,其构件在远低于屈服应力的条件下发生断裂,即所谓的“低应力脆断”。

研究表明,这种脆性破坏是由于宏观缺陷或裂纹的失稳扩展而引起的,由对这些内容的研究形成断裂力学。

目前研究裂纹的扩展有两种不同的观点:一种是从能量分析出发,认为物体在裂纹扩展中所能够释放出来的弹性能,必须与产生新的断裂面所消耗的能量相等。

另一种是应力强度的观点,认为裂纹扩展的临界状态,是由裂纹前缘的应力场的强度达到临界值来表征的。

这两种观点有着密切的联系,但并不总是等效的。

1基于能量分析的断裂理论1.1格里菲斯(Griffith )断裂理论脆性材料的实际断裂强度要比理论计算的断裂强度低得多,为了解释产生这种现象的原因,早在19世纪20年代Griffith 就运用能量平衡原理对吹响材料作断裂强度分析,认为固体的破坏是裂纹扩展的结果。

固体材料内部存在大量形状、大小、方向各不相同的裂纹,当收到外力作用时在裂纹的边缘部位会产生应力集中现象,当其中任何一点的应力达到材料的临界值,裂纹就开始扩展。

裂纹扩展的临界条件是裂纹扩展时所需要的表面力正好等于由裂纹扩展时系统释放的弹性应变能,即得著名的Griffith 裂纹失稳的临界条件:aEr c πσ2= (1) 其中a 为裂纹半长,c σ裂纹扩展的临界应力,r 为单位面积的表面能。

对于三维裂纹,如以a 为半径的钱币型裂纹,亦可用同样的方法求的断裂强度c σ与a 的关系式:()212νπσ-=s c r E a (2)利用公式(2),Griffith 很好的解释了材料的实际断裂迁都远低于其理论强度的原因,定量说明了裂纹尺寸对断裂强度的影响。

岩石力学课件-第六章岩石强度破坏准则

岩石力学课件-第六章岩石强度破坏准则

蠕变方程
描述蠕变行为的数学方程,通常 包括应变、应力、时间和温度等
参数。
岩石蠕变特征
02
01
03
岩石蠕变类型
包括瞬时蠕变、减速蠕变、稳定蠕变和加速蠕变等阶 段。
岩石蠕变影响因素
围压、温度、应力水平、岩石类型和含水量等。
岩石蠕变破坏
长时间蠕变可能导致岩石破裂或失稳。
蠕变过程中能量变化
能量耗散
蠕变过程中,岩石内部微观结构的变化导致能量耗散,表现为热 量或声发射等形式。
强化准则
描述材料在塑性变形过程中,后继 屈服面在应力空间中的变化规律, 反映材料在塑性变形过程中的硬化 或软化特性。
岩石塑性变形特征
岩石的塑性变形主要表现为晶内滑移、位错运动、 颗粒边界滑动等微观机制。
岩石的塑性变形具有明显的时间效应,即变形速率 与时间的密切关系。
温度对岩石的塑性变形有显著影响,高温下岩石的 塑性增强,易于发生蠕变。
脆性断裂力学基本原理
01
02
03
应力强度因子
描述裂纹尖端应力场强度 的参数,与裂纹长度、形 状及加载方式有关。
断裂韧性
表征材料抵抗裂纹扩展的 能力,是材料的固有属性。
脆性断裂判据
当应力强度因子达到或超 过材料的断裂韧性时,裂 纹将失稳扩展,导致脆性 断裂。
岩石脆性断裂特征
裂纹快速扩展
脆性断裂时,裂纹一旦失 稳扩展,将以极快的速度 进行,直至完全断裂。
岩石强度定义
岩石在外力作用下抵抗破坏的能 力,通常用应力来表示。
岩石强度分类
根据外力作用方式不同,岩石强 度可分为抗压强度、抗拉强度和 抗剪强度等。
破坏准则概念及意义
破坏准则概念

岩石的破坏准则

岩石的破坏准则
为研究等倾面上的应力,取一由等倾面与三个主应力面围成的四面 体来研究。
N与x、y、z的夹角分别为,且 。 设:,, 则有 设等倾面ABC面积为S,则三个主应力面(,,面)的面积分别为 根据力的平衡条件 , , 推出:,
而 等倾面S上合力: 所以: 另,等倾面S上的法向应力为各分力px、py、pz在N上的投影之和, 即
该值为 直线在轴上的截距,但与实测的Rt有差别,需对<0时的直线段 进行修正。
岩石破坏的判断条件: , 破坏
, 极限 ,稳定
6、格里菲思(Griffith)理论
以上各理论都是把材料看作为连续的均匀介质,格里菲思则认为: 当岩石中存在许多细微裂隙,在力的作用下,在缝端产生应力集中,岩 石的破坏往往从缝端开始,裂缝扩展,最后导致破坏。
由于s=0~1,则 如果令σ1=0,则得到岩体的单轴抗拉强度。 从Rcm和Rtm中可看出,当S=1时,Rcm=Rc为完整岩块,当S=0时, Rtm=Rcm=0为完全破损的岩石。因此,处于完整岩石和完全破损岩石 之间的岩体,其S值在1~0之间。
根据几何关系, ,得出 代入中,得到 另由公式推导:将1、3表示的 和 代入中,导出 或 对求导, 推出: 破坏面与最大主应力面的夹角 而与最大主应力方向的夹角
为)
2).用主应力1、3表达的强度准则 将 和 的表达式代入 中,
利用关系: 化简得: 当3=0时(单轴压缩):,
令,则, 当1=0时(单轴抗拉):
或写成 破坏 稳定
这个理论适用于塑性岩石,不适用于脆性岩石。 该理论未考虑中间主应力的影响。
4、八面体剪应力理论(Von.Mises)
该理论认为岩石达到危险状态取决于八面体剪应力。其破坏准则为
已知单元体三个主应力,, ,取坐标系平行于主应力。作一等倾 面(其法线N与三个坐标轴夹角相同)。八个象限的等倾面构成一个封 闭的正八面体,此八面体上剪应力和法向应力即为八面体应力。

岩石强度破裂准则讲解共79页

岩石强度破裂准则讲解共79页
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
40、人类法律,事物有规பைடு நூலகம்,这是不 容忽视 的。— —爱献 生
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
岩石强度破裂准则讲解
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯

3.5岩石强度准则

3.5岩石强度准则

3.5.岩石的强度准则3.5.1概述岩石中任一点的应力、应变增长到某一极限时,该点就要发生破坏。

用以表征岩石破坏条件的应力状态与岩石强度参数间的函数关系,称为岩石的强度准则(又称强度条件、破坏判据、强度判据)。

由于岩石的成因不同和矿物成分的不同,使岩石的破坏特性会存在着许多差别。

此外,不同的受力状态也将影响其强度特性。

人们根据岩石的不同破坏机理,在大量的试验基础上,加以归纳、分析描述,建立了多种强度准则。

本节将着重介绍在岩石力学中最常用的强度准则。

3.5.2库仑准则3.5.2.1基本思想库仑准则是一个最简单、最重要的准则,属于压剪准则。

库仑(C.A.Couloumb )于1773年提出最大剪应力强度理论,纳维尔()在库仑理论的基础上,对包括岩石在内的脆性材料进行了大量的试验研究后,于1883年完善了该准则,所以又被称为库仑—纳维尔准则。

该准则认为,固体内任一点发生剪切破坏时,破坏面上的剪应力(τ)等于或大于材料本身的抗切强度(C)和作用于该面上由法向应力引起的摩擦阻力(ϕσtan )之和,即:tan C f C τσσϕ=+=+ (3.29)这就是库仑准则的基本表达式。

3.4.2.2库仑准则参数的几何与物理意义在στ-平面上式(3.29)的几何图,如图3.36所示,库仑准则是一条直线。

由图可见:图3.36库仑准则的几何图(1)当0σ=时,C τ=,C 为纵轴(σ轴)截距;物理意义为:岩石试件无正压力时的抗剪强度,通常称为岩石的内粘聚力。

(2)当0C =时,ϕσσtan =,通常称ϕ为岩石的内摩擦角,ϕtan 为岩石的内摩擦系数。

C ,ϕ是表征岩石抗剪强度的两个重要参数。

3.5.2.3库仑准则的确定方法岩石强度准则反映岩石固有的属性,因此一定要求来源于试验。

常用于确定库仑准则的试验有两种,角模压剪试验和三轴压缩试验。

(1)角模压剪试验 如图3.10所示,作一系列不同倾角α的压剪试验,并由式(3.7)计算出不同倾角的破坏面上的正应力σ和剪应力τ;再在στ-平面描点作出强度准则曲线,或用数理统计方法确定其方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5、莫尔-库伦强度破坏准则(Mohr-coulomb criterion)
5、莫尔-库伦强度破坏准则(Mohr-coulomb criterion)
5、莫尔-库伦强度破坏准则(Mohr-coulomb criterion)
5、莫尔-库伦强度破坏准则(Mohr-coulomb criterion)
3、最大剪应力强度理论
最大剪应力强度理论表示为
max m
最大剪应力强度理论的又一表达形式
1 3 R
塑性岩石采用最大剪应力强度理论能获得满意的 结果,但不适用于脆性岩石。此外,这个理论也没有 考虑中间主应力的影响。
4、库伦一纳维尔破坏准则(coulomb-Navier criterion)
7、Drucker-Prager准则
J 2 H 1 H 2J1
J1

1
2
3
3
J2
1 2 2 2 3 2 3 1 2
6
Drucker-Prager强度准则计入了中间应力的作用,并考 虑了静水压力对屈服过程的影响,能够反映剪切引起的 膨胀(扩容)性质,在模拟岩石材料的弹塑性特征时, 得到了广泛的应用,但是在进行数值计算时,H1、H2究 竟选择何种形式,并无明确结论。
由此区可见,当 3 0 时, 1 8 t ,即压拉强度比为8。
Griffth准则图解
(b) 坐标下

m

1
3 2
-应力圆圆心;
m
(1
3)/2
-应力圆半径
又设 1 3 3 0 ,则Griffth强度准则第二式写成
(1 3 )2 (a) 1 3
伦特堡(Lund Borg)根据大量岩石强度试 验结果提出,当岩石的正应力达到一定限度, 即相当于岩石的晶体强度时,由于岩石晶体 被破坏,因此即使继续增加法向载荷(正应 力),岩石抗剪强度也不再随之增大。据此, 伦特堡建议采用下式描述岩石在载荷作用下 的破坏状态:
11、伦特堡(Lund Borg)岩石破坏经验准则
1、最大正应力强度理论
2、最大正应变强度理论
岩石受压时沿着平行于受力方向产生张性破裂。因 此,人们认为岩石的破坏取决于最大正应变,岩石 发生张性破裂的原因是由于其最大正应变达到或超 过一定的极限应变所致。根据这个理论,只要岩石 内任意方向上的正应变达到单轴压缩破坏或单轴拉 伸破坏时的应变值,岩石便被破坏。
1
1
1


0 m 0 Ar
σ 、τ -所考查部分(点)正应力及剪应力; τ 0——正应力σ =0时岩石的抗剪切强度; τ m——岩石晶体极限抗剪切强度;
Ar——岩石类型有关的经验系数。
当岩石所受的正应力σ及剪应力τ满足此关系时,岩石便被破坏。
二次项 剥蚀
制成表
4、库伦一纳维尔破坏准则(coulomb-Navier criterion)
4、库伦一纳维尔破坏准则(coulomb-Navier criterion)
5、莫尔-库伦强度破坏准则(Mohr-coulomb criterion)
5、莫尔-库伦强度破坏准则(Mohr-coulomb criterion)
4、库伦一纳维尔破坏准则(coulomb-Navier criterion)
这个准则认为岩石沿某一面发生剪切破裂 时,不仅与该面上剪应力大小有关,而且与该 面上的正应力大小也有关系。岩石的破坏并不 是沿着最大剪应力的作用面产生的,而是沿着 其剪应力与正应力组合达到最不利的一面产生 破裂。
f 0 fn
(3)Griffth(张拉)准则
①数学式
1 3 3 0时

1 3 3 0时

3 t
(1 3 )2 1 3
8 t
②最有利破裂的方向角
1 arccos 1 2
2
2( 1 3 )
③Griffth准则几何表示
(a)在 1 3 坐标下
莫尔于1900年提出,当一个面上的剪应力与 正应力之间满足某种函数关系时,即
f
沿该面会发生破裂,这就是莫尔破裂准则。其
中函数f的形式与岩石种类有关。不难看出,莫
尔准则是库仑准则的一般化。因为库仑准则在 平面上代表一条直线,而莫尔准则代表了平面
中的一条曲线AB。
5、莫尔-库伦强度破坏准则(Mohr-coulomb criterion)

s
2 c
σ1e—破坏时最大有效主应力,Mpa; σ3e-破坏时最小有效主应力,Mpa; σc—结构完整的连续介质岩石材料单轴抗压强度,Mpa; m、s—经验系数
m的变化范围为0.001(强烈破坏岩石)-25(坚硬 而完整的岩石);s变化范围为0(节理化岩体)一 1(完整岩石)。
11、伦特堡(Lund Borg)岩石破坏经验准则
现行的岩石破坏理论能够对岩石性态的 某些方面的问题做出很好的解释,但不 能推广到某些特定应力条件以外的范围。 因此,霍克和布朗基于大量岩石(岩体) 抛物线型破坏包络线(强度曲线)的系 统研究,提出了岩石破坏经验准则,即:
10、Hoek-Brown岩石破坏经验准则
1e 3e
m c 3e2( m )ຫໍສະໝຸດ 4 t m 2 t (d)
(d)代入(c)得
(2 t )2 2 4( 2 t ) t
在 下的准则 2 4 t ( t ) 与库仑准则类似,抛物线型。
10、Hoek-Brown岩石破坏经验准则
4、库伦一纳维尔破坏准则(coulomb-Navier criterion)
4、库伦一纳维尔破坏准则(coulomb-Navier criterion)
4、库伦一纳维尔破坏准则(coulomb-Navier criterion)
4、库伦一纳维尔破坏准则(coulomb-Navier criterion)
第六章 岩石强度破裂准则
• 1、最大正应力强度理论 • 2、最大正应变强度理论 • 3、最大剪应力强度理论 • 4、库伦一纳维尔破坏准则 • 5、莫尔-库伦强度破坏准则 • 6、八面体应力强度理论 • 7、Drucker-Prager准则 • 8、 软弱面破裂准则 • 9、格里菲斯强度理论 • 10、Hoek-Brown岩石破坏经验准则 • 11、伦特堡(Lund Borg)岩石破坏经验准则
2、最大正应变强度理论
岩石强度条件可以表示为:
max m
ε max ——岩石内发生的最大应变值,可用广 义胡克定律求出; ε m—单向压缩或单向拉伸试验时岩石破坏的 极限应变值,由实验求得
试验证明,这种强度理论只适用于脆性岩石, 不适用于岩石的塑性变形。
3、最大剪应力强度理论
最大剪应力张度理论也称为屈瑞斯卡(H.Tresca)强度 准则,是研究塑性材料破坏过程中获得的强度理论。试 验表明,当材料发生屈服时,试件表面将出现大致与轴线 呈45°夹角的斜破面。由于最大剪应力出现在与试件轴 线呈45°夹角的斜面上,所以,这些破裂面即为材料沿 着该斜面发生剪切滑移的结果。一般认为这种剪切滑移 是材料塑性变形的根本原因。因此,最大剪应力强度理 论认为材料的破坏取决于最大剪应力。当岩石承受的最 大剪应力τmax达到其单轴压缩或单轴拉伸极限剪应力 τm时,岩石便被剪切破坏。
6、八面体应力强度理论
八面体应力强度理论属于剪应力强度理论,认为材料屈服或破坏
是由于八面体上剪应力达到某一临界值引起的。
八面体应力强度理论认为当八面体上剪应力τOCT达到某一临界值 时,材料便屈服或破坏。冯-米塞斯 (Von-Mises)认为,当八面体上 的剪应力τOCT达到单向受力至屈服时八面体上极限剪应力τs,材料 便屈服或破坏。单向受力至屈服时的应力条件为
7、Drucker-Prager准则
Drucker-Prager强度准则是Von-Mises准则的 推广。Von-Mises准则认为,八面体剪应力或 平面上的剪应力分量达到某一极限值时,材料 开始屈服,在主应力空间,Mises准则是正圆 柱面,但岩石具有内摩擦性,因此,DruckerPrager强度准则在主应力空间是圆锥面,具体 形式如下:
分布的裂纹,其中有一个方向的裂纹最有利于破 裂,在外力作用下,首先在该方向裂纹的尖端张 拉扩展。
9、格里菲斯强度理论
9、格里菲斯强度理论
9、格里菲斯强度理论
9、格里菲斯强度理论
带椭圆孔 薄板的孔 边应力集 中问题
两个关键点:
1.最容易破坏的裂 隙方向;
2.最大应力集中点 (危险点)。
在压应力条 件下裂隙开 裂及扩展方 向
8 软弱面破裂准则
8 软弱面破裂准则
片理
8 软弱面破裂准则
片麻岩
9、格里菲斯强度理论
9、格里菲斯强度理论
三、格里菲斯准则(Griffth 1921)
断裂力学1921年提出,70年代岩石力学领域 (1)实验基础:玻璃材料中的微裂纹张拉扩展,
连接,贯通,导致材料破坏。 (2)基本思想 :在脆性材料的内部存在许多随机
1 y 2 3 0
6、八面体应力强度理论
6、八面体应力强度理论
由冯-米塞斯强度条件τOCT=τs,得
1 3
1 2 2 2 3 2 3 1 2
2 3

y
对于塑性材料,这个理论与试验结果很吻合。在塑 性力学中,这个理论称之为冯-米塞斯破坏条件,一直被 广泛应用。
1、最大正应力强度理论
最大正应力强度理论也称朗肯理论。该理论认为 材料破坏取决于绝对值最大的正应力。因此,作 用于岩石的三个正应力中,只要有一个主应力达 到岩石的单轴抗压强度或岩石的单轴抗拉强度, 岩石便被破坏。
破裂准则 1 c或 3 t
只适用于岩石单向受力及脆性岩石在二维应力条件下的受拉 状态,处于复杂应力状态中的岩石不能采用这种强度理论。
相关文档
最新文档