高中数学竞赛初赛试题(含答案)
全国高中数学联赛江苏赛区初赛试卷(含答案)
全国高中数学联赛江苏赛区初赛试卷(含答案)全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分,要求直接将答案写在横线上。
)1.已知点P(4,1)在函数$f(x)=\log_a(x-b)$($b>0$)的图像上,则$ab$的最大值是______。
解:由题意知,$\log_a(4-b)=1$,即$a+b=4$,且$a>0$,$a\neq 1$,$b>0$,从而$ab\leq 4$。
当$a=b=2$时,$ab$的最大值是4.2.函数$f(x)=3\sin(2x-\frac{\pi}{4})$在$x=\frac{3\pi}{4}$处的值是______。
解:$2x-\frac{\pi}{4}=\frac{3\pi}{4}$,所以$f(\frac{3\pi}{4})=3\sin(\frac{3\pi}{4}-\frac{\pi}{4})=-\frac{3}{\sqrt{2}}$。
3.若不等式$|ax+1|\leq 3$的解集为$\{x|-2\leq x\leq 1\}$,则实数$a$的值是______。
解:设函数$f(x)=|ax+1|$,则$f(-2)=f(1)=3$,故$a=2$。
4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是______。
解:有两类情况:同为白球的概率是$\frac{3}{25}\times\frac{10}{25}=\frac{6}{125}$,同为红球的概率是$\frac{7}{25}\times\frac{6}{25}=\frac{42}{625}$,所求的概率是$\frac{6}{125}+\frac{42}{625}=\frac{72}{625}$。
5.在平面直角坐标系$xOy$中,设焦距为$2c$的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$($a>b>0$)与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$有相同离心率$e$,则$e$的值是______。
高中数学竞赛试题及答案
高中数学竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是无理数?A. 2B. πC. 0.5D. √4答案:B2. 已知函数f(x) = x^2 - 4x + 4,求f(2)的值。
A. 0B. 4C. -4D. 8答案:A3. 一个等差数列的前三项分别为1, 4, 7,求第四项的值。
A. 10B. 11C. 13D. 15答案:A4. 计算复数z = 1 + i的模。
A. √2B. 2C. 1D. √3答案:A二、填空题(每题5分,共20分)5. 已知等比数列的公比为2,首项为1,求第5项的值。
答案:326. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的点积。
答案:-67. 计算函数y = x^3 - 6x^2 + 11x - 6在x = 2处的导数值。
答案:18. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心坐标。
答案:(2, 3)三、解答题(每题10分,共60分)9. 求证:对于任意正整数n,n^2 + 3n + 2总是能被3整除。
证明:设n = 3k, 3k + 1, 3k + 2,其中k为整数。
当n = 3k时,n^2 + 3n + 2 = 9k^2 + 9k + 2 = 3(3k^2 + 3k + 1),能被3整除。
当n = 3k + 1时,n^2 + 3n + 2 = 9k^2 + 6k + 1 + 9k + 3 + 2 =3(3k^2 + 5k + 2),能被3整除。
当n = 3k + 2时,n^2 + 3n + 2 = 9k^2 + 12k + 4 + 9k + 6 + 2 = 3(3k^2 + 7k + 4),能被3整除。
因此,对于任意正整数n,n^2 + 3n + 2总是能被3整除。
10. 已知函数f(x) = x^3 - 3x^2 + 2x,求f(x)的单调区间。
解:首先求导数f'(x) = 3x^2 - 6x + 2。
全国高中数学联赛初赛试卷含答案
全国高中数学联赛初赛试卷含答案
全国高中数学联赛初赛试卷时间:120分钟满分:150分姓名:一、填空题(本题共10小题,每小题107分,满分70分.要求直接将
答案写在横线上.)函数的值域为____.已知,其中,是虚数单位,则的值为____.圆心在抛物线上,并且和该抛物线的准线及轴都相切的圆的方程为_____.设函数,则不等式的解集为_____.已知等差数列的前12项的和为60,则的最小值为_____.已知
正四面体内切球的半径是1,则该四面体的体积为_____.在中,,且,设是平面上的一点,则的最小值为_____.设,其中,表示与的最大公约数,则的值为=_____.将,这9个数随即填入33的方格中,每个小方格恰填写一个数,且所填的数各不相同,则使每行、每列所
填的数之和都是奇数的概率为____.在中,能写成的形式,且不能被3整除的数有______个.二、解答题(本大题共4小题,每小题20分,共80分)如图,在平面直角坐标系中,已知圆的方程为,过点的直线与圆交于两点,与轴交于点,设,求证:为定值.已知是公差为的
等差数列,且,求实数的值;若正整数满足,求数组和相应的通项公式.如图,在圆内接四边形中,对角线与交于点,与的内心分别为和,直线分
别与交于点,求证:.从这2050个数中任取2018个数组成集合,把中的每个数染上红色或蓝色,求证:总存在一种染色方法,是使得有60
0个红数及600个蓝数满足下列两个条件:①这600个红数的和等于这600个蓝数的和;②这600个红数的平方和等于这600个蓝数的平
方和.参考答案:(1);(2)5;(3);(4);(5)60;(6);(7);(8)520;(9);(10);(1
1);(12)①,;②,;。
数学竞赛试题及答案高中生
数学竞赛试题及答案高中生试题一:代数问题题目:已知\( a, b \) 是方程 \( x^2 + 5x + 6 = 0 \) 的两个实根,求 \( a^2 + 5a + 6 \) 的值。
解答:根据韦达定理,对于方程 \( x^2 + bx + c = 0 \),其根\( a \) 和 \( b \) 满足 \( a + b = -b \) 和 \( ab = c \)。
因此,对于给定的方程 \( x^2 + 5x + 6 = 0 \),我们有 \( a + b =-5 \) 和 \( ab = 6 \)。
由于 \( a \) 是方程的一个根,我们可以将 \( a \) 代入方程得到 \( a^2 + 5a + 6 = 0 \)。
所以 \( a^2 + 5a + 6 = 0 \)。
试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为 3 厘米和 4 厘米,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过直角边 \( a \) 和 \( b \) 计算得出,公式为 \( c = \sqrt{a^2 + b^2} \)。
将给定的边长代入公式,我们得到 \( c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。
试题三:数列问题题目:一个等差数列的首项 \( a_1 = 3 \),公差 \( d = 2 \),求第 10 项 \( a_{10} \) 的值。
解答:等差数列的通项公式为 \( a_n = a_1 + (n - 1)d \),其中\( n \) 是项数。
将给定的值代入公式,我们得到 \( a_{10} = 3 + (10 - 1) \times 2 = 3 + 9 \times 2 = 3 + 18 = 21 \)。
试题四:组合问题题目:从 10 个不同的球中选取 5 个球,求不同的选取方式有多少种。
竞赛数学高中试题及答案
竞赛数学高中试题及答案试题一:多项式问题题目:已知多项式 \( P(x) = x^3 - 3x^2 + 2x - 5 \),求 \( P(2) \) 的值。
解答:将 \( x = 2 \) 代入多项式 \( P(x) \) 中,得到:\[ P(2) = 2^3 - 3 \times 2^2 + 2 \times 2 - 5 = 8 - 12 + 4 -5 = -5 \]试题二:几何问题题目:在直角三角形 ABC 中,角 C 是直角,若 \( AB = 10 \) 且\( AC = 6 \),求斜边 BC 的长度。
解答:根据勾股定理,直角三角形的斜边 \( BC \) 可以通过以下公式计算:\[ BC = \sqrt{AB^2 - AC^2} = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8 \]试题三:数列问题题目:给定数列 \( a_n = 2n - 3 \),求数列的前 5 项。
解答:根据数列公式 \( a_n = 2n - 3 \),我们可以计算出前 5 项:\[ a_1 = 2 \times 1 - 3 = -1 \]\[ a_2 = 2 \times 2 - 3 = 1 \]\[ a_3 = 2 \times 3 - 3 = 3 \]\[ a_4 = 2 \times 4 - 3 = 5 \]\[ a_5 = 2 \times 5 - 3 = 7 \]数列的前 5 项为:-1, 1, 3, 5, 7。
试题四:概率问题题目:一个袋子里有 5 个红球和 3 个蓝球,随机抽取 2 个球,求抽到一个红球和一个蓝球的概率。
解答:首先计算总的可能组合数,即从 8 个球中抽取 2 个球的组合数:\[ \text{总组合数} = \binom{8}{2} = \frac{8 \times 7}{2} = 28 \]然后计算抽到一个红球和一个蓝球的组合数:\[ \text{有利组合数} = \binom{5}{1} \times \binom{3}{1} = 5 \times 3 = 15 \]所以,抽到一个红球和一个蓝球的概率为:\[ P = \frac{\text{有利组合数}}{\text{总组合数}} =\frac{15}{28} \]试题五:函数问题题目:若函数 \( f(x) = x^2 - 4x + 4 \),求 \( f(x) \) 的最小值。
2024年全国高中数学联赛(浙江预赛)试题(含答案)
2024年全国中学生奥林匹克数学竞赛浙江赛区初赛试题本卷共15道题目,12道填空题,3道解答题,所有答案填写在答题纸上,满分150分一、填空题(每小题8分,共计96分)1.设集合10,21x A xx ⎧−⎫=≤⎨⎬−⎩⎭集合2{20}B x x x m =++≤。
若A B ⊆,则实数m 的取值范围为 。
2.设函数{}{}:1,2,32,3,4f → 满足 ()()1()ff x f x −=,则这样的函数有_______个。
3.函数22sin sin 1sin 1x x y x ++=+的最大值与最小值之积为 。
4.已知数列{}n x满足:11,12n x x x n +==≥,则通项n x =__________。
5 .已知四面体A BCD −的外接球半径为1,1,60BC BDC =∠=,则球心到平面BDC 的距离为______________。
6.已知复数z 满足24510(1)1zz =−=,则z =__________________。
7.已知平面上单位向量,a b 垂直,c 为任意单位向量,且存在(0,1)t ∈,使得向量(1)a t b +−与向量c a −垂直,则a b c +−的最小值为__________________________。
8. 若对所有大于2024的正整数n ,成立202420240, ii n i i na C a ==∈∑,则12024a a +=_________。
9.设实数,,(0,2]a b c ∈,且3b a ≥或43a b +≤,则max{,,42}b a c b c −−−的最小值为 ___ __ __。
10.在平面直角坐标系xOy 上,椭圆E 的方程为221124x y +=,1F 为E 的左焦点;圆C 的方程为222())x a y b r −+−=( ,A 为C 的圆心。
直线l 与椭圆E 和圆C 相切于同一点(3,1)P 。
则当1OAF ∠最大时,实数r =_____________________。
高中数学竞赛初赛试题(含答案)
高中数学竞赛初赛试题(含答案)高中数学竞赛初赛试题(含答案)一、选择题1. 设函数 f(x) = 2x^3 - 3x^2 + 2ax + b,如果 f(1) = 3 且 f'(1) = 4,那么常数 a 和 b 的值分别是多少?A) a = 2, b = 4 B) a = 2, b = 3 C) a = 3, b = 4 D) a = 3, b = 32. 在平面直角坐标系中,点 P(-3,4) 和点 Q(1,-2) 的连线所在直线的斜率是多少?A) -1/4 B) 2/3 C) 2 D) -3/23. 若 a, b, c 是等差数列的前三项,且 a + b + c = 9,那么 a 的值是多少?A) 1 B) 3/2 C) 2 D) 34. 若函数 f(x) = 2x^3 + ax^2 + bx + 2 的图像经过点 (2, 8),那么常数a 和b 的值之和为多少?A) 6 B) 8 C) 10 D) 125. 已知等比数列的首项为 4,公比为 2,前 n 项和为 S_n。
下列哪个等式是正确的?A) S_n = 4(2^n - 1) B) S_n = 2(2^n - 1) C) S_n = 2^n + 2 D) S_n = 2^n二、填空题1. 若 3/4 张纸能折成 2^7 层,那么一张纸最多能折成多少层?答案:2^10 层2. 若 1/3 张纸能折成 2^8 层,那么一张纸最多能折成多少层?答案:3 × 2^8 层3. 一条长杆分成三段,第一段比第二段长 2cm,第二段比第三段长4cm,三段的长度之和是 50cm。
请分别求出第一段、第二段和第三段的长度。
答案:第一段:12cm,第二段:14cm,第三段:24cm4. 若 a 和 b 是互质的整数,并且 a × b = 147,那么 a 和 b 的值分别是多少?答案:a = 1,b = 147 或 a = 147,b = 15. 在平面直角坐标系中,顶点为 (0,0),椭圆的长轴在 x 轴上,短轴在 y 轴上,且长轴长为 8,短轴长为 6。
2024年全国高中数学联赛初赛试题+答案[北京、广西、吉林、内蒙、四川、浙江、重庆]
2024年重庆市高中数学联赛初赛试题 2 2024年浙江省高中数学联赛初赛试题 3 2024年四川省高中数学联赛初赛试题 4 2024年吉林省高中数学联赛初赛试题 5 2024年广西省高中数学联赛初赛试题 7 2024年内蒙古高中数学联赛初赛试题 9 2024年北京市高中数学联赛初赛一试 10 2024年北京市高中数学联赛初赛二试 11一、填空题:本大题共8小题,每小题8分,满分64分.1.已知复数z 使得z -4z为纯虚数,则z -1-i 的最小值为.(其中i 为虚数单位)2.设函数f x =2x -2-x 的反函数为y =f -1x ,则不等式f -1x -1 <1的解集为.3.若点A -12,32关于直线y =kx 对称的点在圆x -2 2+y 2=1上,则k =.4.在△ABC 中,已知AB ⋅AC =2BC ⋅BA =3CA ⋅CB,则△ABC 最大角的正弦值为.5.数列a n 满足a 1=1,a n +1-a n a n =a n +2-a n +1a n +2n ∈N * ,若a 1a 2+a 2a 3+⋯+a 6a 7=3,则a 2024=.6.由1,2,⋯,9这九个正整数构成的所有圆排列中,任意相邻两数之积均不超过60的圆排列的个数为.7.已知四面体ABCD 满足AB ⊥BC ,BC ⊥CD ,AB =BC =CD =1,且异面直线AD 与BC 所成的角为60°,则四面体ABCD 的外接球的体积为.ABCD A 1D 1O 1O 8.一珍稀物种出现在地球,对每个珍稀生物,每天有如下事件发生:有p 0≤p ≤1 的概率消失,有1-p3的概率保持不变,有1-p 3的概率分裂成两个,有1-p3的概率分裂成三个.对所有新产生的生物每天也会发生上述事件.假设开始只有一个这样的珍稀生物,若希望最终这种生物灭绝的概率不超过12,则p 至多为.二、解答题:共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.16分 已知函数f x =ln x -sin x ,若两不相等的实数x 1,x 2∈0,π 满足曲线y =f x 在点x 1,f x 1 和点x 2,f x 2 处的切线斜率相等,求证:f x 1 +f x 2 >-2.10.20分 已知抛物线Ω:y =x 2,动线段AB 在直线y =3x -3上(B 在A 右侧),且AB =2 3.过A 作Ω的切线,取左边的切点为M .过B 作Ω的切线,取右边的切点为N .当MN ⎳AB 时,求点A 的横坐标.11.20分 设x 1=3,x n +1=x n +14-x n +2n ∈N * ,求x 1+x 2+⋯+x n 的值.(其中[x ]表示不超过实数x 的最大整数.)一、填空题(每小题8分,共计96分)1.设集合A =x x -12x -1≤0 ,集合B =x ∣x 2+2x +m ≤0 .若A ⊆B ,则实数m 的取值范围为.2.设函数f :{1,2,3}→{2,3,4}满足f f x -1 =f x ,则这样的函数有个.3.函数y =sin 2x +sin x +1sin 2x +1的最大值与最小值之积为.4.已知数列x n 满足:x 1=22,x n +1=x n n n +1x 2n+n n +1,n ≥1,则通项x n =.5.已知四面体A -BCD 的外接球半径为1,若BC =1,∠BDC =60°,球心到平面BDC 的距离为.6.已知复数z 满足z 24=z -1 510=1,则复数z =.7.已知平面上单位向量a ,b 垂直,c 为任意单位向量,且存在t ∈0,1 ,使得向量a +1-t b 与向量c -a 垂直,则a +b -c的最小值为.8.若对所有大于2024的正整数n ,成立n2024=2024i =0a i C in ,a i ∈N ∗,则a 1+a 2024=.9.设实数a ,b ,c ∈(0,2],且b ≥3a 或a +b ≤43,则max {b -a ,c -b ,4-2c }的最小值为.10.在平面直角坐标系xOy 上,椭圆E 的方程为x 212+y 24=1,F 1为E 的左焦点;圆C 的方程为x -a 2+y -b 2=r 2,A 为C 的圆心.直线l 与椭圆E 和圆C 相切于同一点P 3,1 .当∠OAF 1最大时,实数r =.11.设n 为正整数,且nk =0-1 kC knk 3+9k 2+26k +24=1312,则n =.12.设整数n ≥4,从编号1,2,⋯,n 的卡片中有放回地等概率抽取,并记录下每次的编号.若1,2均出现或3,4均出现就停止抽取,则抽取卡片数的数学期望为.二、解答题(13题满分14分,14、15题满分各20分,合计54)13.正实数k 1,k 2,k 3满足k 1<k 2<k 3;实数c 1,c 2满足c 1=k 2-k 1,c 2-c 1=2k 3-k 2 ,定义函数f x =k 1x ,0≤x ≤1k 2x -c 1,1<x ≤2,k 3x -c 2,x >2 g x =k 1x ,0≤x ≤1k 2x -c 112,1<x ≤2k 3x -c 212,x >2 试问,当k 1,k 2,k 3满足什么条件时,存在A >0使得定义在[0,A ]上的函数g x +f A -x 恰在两点处达到最小值?14.设集合S ={1,2,3,⋯,997,998},集合S 的k 个499元子集A 1,A 2,⋯,A k 满足:对S 中任一二元子集B ,均存在i ∈{1,2,⋯,k },使得B ∈A i .求k 的最小值.15.设f x ,g x 均为整系数多项式,且deg f x >deg g x .若对无穷多个素数p ,pf x +g x 存在有理根,证明:f x 必存在有理根.(考试时间:2024年5月19日9:00∼11:00)一、填空题:本大题共8小题,每小题8分,满分64分.1.设函数f x =ln x +x -2的零点都在区间[a ,b ]a ,b ∈Z ,a <b 内,则b -a 的最小值为.2.已知a >b >1,若log a b +log b a =52,则ba +4的最大值为.3.设a ∈R ,若函数f x =ax -ax-2ln x 在其定义域内为单调递增函数,则实数a 的最小值为.4.用f X ,Γ 表示点X 与曲线Γ上任意一点距离的最小值.已知⊙O :x 2+y 2=1及⊙O 1:x -4 2+y 2=4,设P 为⊙O 上的动点,则f P ,⊙O 1 的最大值为.5.设△ABC 中,AC =2,∠ABC =2∠BAC ,则△ABC 面积的最大值为.6.将边长为1的正方体ABCD -A 1B 1C 1D 1的上底面A 1B 1C 1D 1绕着其中心旋转45°得到一个十面体ABCD -EFGH (如图),则该十面体的体积为.7.若T =100k =1299+k ⋅3101-k ,则T 的末尾数字0的个数为.8.记I ={1,4,5,6},U ={1,2,3,⋯,25},集合U 的子集A =a 1,a 2,a 3,a 4,a 5 ,满足a i -a j ∉I ∀1≤i <j ≤5 ,则符合条件的集合A 的个数为.(用具体数字作答)二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(16分)已知t 为正实数,若曲线y =t ⋅e x 与椭圆C :x 22+y 2=1交于A 、B 两个不同的点,求证:直线AB 的斜率k <22.10.(20分)设复数x ,y ,z 满足:x +2y +3z =1.求x 2+y 2+z 2+x 2+y 2+z 2的最小值.11.(20分)给定正整数n ≥2,数组a 1,a 2,⋯,a n 称为“好数组”是指:a 1,a 2,⋯,a n 均不为0,a 1=1,且对任意的1≤k ≤n -1,均有a k +1+a k a k +1-a k -1 =0.求“好数组”a 1,a 2,⋯,a n 的组数.一、选择题:本大题共6小题,每小题x 分,满分x 分.1.记S =32+432-4+42+442-4+52+452-4+⋯+132+4132-4,则与S 最接近的整数为()A.14B.15C.16D.172.在四边形ABCD 中,AB ⎳CD ,AC =λAB +μAD λ,μ∈R .若λ+μ=32,则CDAB=()A.13B.12C.1D.23.函数f x =ax 3-6x a ∈R ,若f x ≤2对∀x ∈-1,12成立,则()A.f x ≤1对∀x ∈-12,12 成立B.f x ≤32对∀x ∈-12,12成立C.f x ≤18对∀x ∈-32,32成立D.f x ≤352对∀x ∈-32,32成立4.在正四面体ABCD 中,棱AD 的中点和面BCD 的中心的连线为MN ,棱CD 的中点和面ABC 的中心的连线为PQ ,则MN 与PQ 所成角的余弦值为()A.118B.117C.116D.1155.已知函数f x =2x 4-18x 2+12x +68+x 2-x +1,则()A.f x 的最小值为8 B.f x 的最小值为9C.f x =8有1个实根D.f x =9有1个实根6.已知A ,B ,C 是平面上三个不同点,且BC =a ,CA =b ,AB =c ,则c a +b +bc的最小值为()A.2-12B.22-12C.2-22D.1-22二、填空:本大题共6小题,每小题x 分,满分x 分.7.设集合S ={1,2,3,4,5}.若S 的子集A 满足:若x ∈A ,则6-x ∈A ,则称子集A 具有性质p ,现从S 的所有非空子集中,等可能地取出一个,则所取出的非空子集具有性质p 的概率为.8.函数f x =log a 4-ax (a >0,且a ≠1),若f x ≥1对∀x ∈[1,2]成立,则实数a 的取值范围.9.已知甲、乙、丙、丁四位同学对某10道判断题的解答情况如下表:题号12345678910甲×√××√×√√√×乙××√√×√√√××丙√√×√√√×√×√丁××√√××√√××若甲、乙、丙三人均答对7题,则丁答对的题数为.10.已知函数f x =ln x -1x2+2ax -ax .若∃m >0,使得f m ≥a 2,则实数a 的最大值为11.设函数f x =sin x⋅sin3x,若关于x的方程f x =a在(0,π]上有奇数个不同的实数解,则实数a的值为.12.在△ABC中,AP平分∠BAC,AP交BC于P,BQ平分∠ABC,BQ交CA于Q,∠BAC=30°,且AB+BP =AQ+QB,则∠ABC的度数为.三、解答:本大题共4小题,每小题x分,满分x分.13.已知椭圆C1的中心为坐标原点O,焦点在坐标轴上.圆C2的圆心为坐标原点O,过点A-2,0且倾斜角为30°的直线与圆C2相切.(1)求圆C2的方程;(2)过圆C2上任意一点P x0,y0x0⋅y0≠0作圆C2的切线,与椭圆C1交于A,B两点,均有∠AOB=90°成立.判断椭圆C1是否过定点?说明理由.14.已知数列a n满足:a1=1,a2=2,a n+1=1a n+an-1n≥2.求证:2024k=11a k>88.15.如图,⊙O1、⊙O2外切于点A,过点A的直线交⊙O1于另一点B,交⊙O2于另一点C,CD切⊙O1于点D,在BD的延长线上取一点F,使得BF2=BC2-CD2,连接CF交⊙O2于E,求证:DE与⊙O2相切.16.全体正有理数的集合Q+被分拆为三个集合A,B,C(即A∪B∪C=Q+,且A∩B=B∩C=C∩A=∅,满足B*A=B,B*B=C,B*C=A,这里H*K={h⋅k∣h∈H,k∈K}.(1)给出一个满足要求的例子(即给出A,B,C);(2)给出一个满足要求的例子,且1,2,⋯,35中的任意两个相邻正整数均不同时在A中.2024年广西省高中数学联赛初赛试题一、填空题(本大题共8小题,每小题10分,共80分).1.设函数f x =log2x.若a<b且f a =f b ,则a+2024b的取值范围是.2.已知椭圆x 2a2+y2b2=1a>b>0的焦点为F1,F2,M为椭圆上一点,∠F1MF2=π3,OM=153b.则椭圆的离心率为.3.若正实数x,y满足x-2y=2x-y,则x的最大值为.4.方程3x=x37的正整数解为.5.设x1,x2,x3,x4均是正整数,且x i x j x k∣1≤i<j<k≤4=18,36,54.则x1+x2+x3+x4=.6.正三棱雉P-ABC中,AP=3,AB=4.设D是直线BC上一点,面APD与直线BC的夹角为45°,则线段PD的长度是.7.已知四次多项式x4-25x3+ax2+61x-2024的四个根中有两个根的乘积是-253,则实数a=.8.设数列x n满足x1=2001,x n+1=x n+y n,其中y n等于x n的个位数,则x2024=.二、解答题(本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)9.(15分)如图所示,AD=CD,DP=EP,BE=CE,DP<AD<BE,∠ADC=∠DPE=∠BEC=90°.证明:P为线段AB的中点.10.(15分)设A为数集{1,2,3,⋯,2024}的n元子集,且A中的任意两个数既不互素又不存在整除关系.求n 的最大值.11.(20分)用[x]表示不超过x的最大整数.设数列x n满足:x1=1,x n+1=4x n+11x n.求x2024的个位数.12.(20分)图G是指一个有序二元组V,E,其中V称为顶点集,E称为边集.一个图G中的两点x,y的距离是指从x到y的最短路径的边数,记作d x,y.一个图G的直径是指G中任意两点的距离的最大值,记作diam G.∣x,y∈G,即diam G=max d x,y记Z n={[0],[1],[2],⋯,[n-1]}是模n的剩余类,定义Z n上的加法和乘法,均是模n的加法和乘法,例如在Z12={[0],[1],[2],⋯,[11]}中:[3]+[4]=[7],[6]+[9]=[3];[3]⋅[4]=[0],[6]⋅[9]=[6].在Z n中,设[x]≠[0].若存在[y]≠[0]使得[x]⋅[y]=[0],则称[x]是Z n的一个零因子.记Z n的所有零因子的集合为D Z n,它是以={[2],[3],[4],[6],[8],[9],[10]}.Z n的零因子图,记为ΓZ n .例如D Z12D Z n为顶点集,两个不同的顶点[x],[y]之间有一条边相连当且仅当[x]⋅[y]=[0].下图是ΓZ12的例子.证明:对一切的整数n≥2,都有diamΓZ n≤3.2024年内蒙古高中数学联赛初赛试题(2024年5月19日,8:30-9:50)一、填空题(本题满分64分,每小题8分)1.集合M ={1,2,3,5,6}的全部非空子集的元素和等于.2.设a ,b ,c 是实数,满足a +b +c =1,a 2+b 2+c 2=1,a ≠0,bca 3的取值范围为.3.已知正三棱柱ABC -A 1B 1C 1的侧棱长为4,底面边长为2,过点A 的一个平面截此棱柱,与侧棱BB 1,CC 1分别交于点M ,N ,若△MNA 为直角三角形,则△MNA 面积的最大值为.4.已知在△ABC 中BC =3,A =π3,BD =14BC,则线段AD 的最大值为.5.从1,2,⋯,11中任取三个不同的数,则这三个数可以构成等差数列的概率为.6.O 是原点,椭圆x 24+y 25=1,直线l 过1,0 且与椭圆交于A ,B 两点,则△ABO 面积的最大值为.7.数列a n 中,a 1=110,且对任意n ∈N *,a n +1=a 2n +a n ,求2024n =11a n+1 的整数部分是.8.已知关于x 的方程x 3-3x +4=0的三个复数根分别为z 1,z 2,z 3,则z 1-z 2 2z 2-z 3 2z 3-z 1 2的值为.二、解答题(本题满分56分)9.(16分)已知双曲线C :x 24-y 23=1,直线l :y =kx +1与双曲线C 的左右支分别相交于A ,B 两点,双曲线C 在A ,B 两点处的切线相交于点P ,求△ABP 面积的最小值.10.(20分)已知函数f x =e x -1-xax 2-2x +1.(1)当a =0时,讨论f x 在-4,12上的极值.(2)若x =0是f x 的极小值点,求a 的取值范围.11.(20分)设n 是一个给定的正整数,集合S n =i ,j ∣1≤i ,j ≤2n ,i ,j ∈N * ,求最大的正数c =c n ,使得对任意正整数d 1,d 2,都存在集合S n 的子集P ,满足集合P 至少有cn 2个元素,且集合P 的任两个元素i ,j ,k ,l 均有i -k2+j -l 2≠d 1,i -k 2+j -l 2≠d 2.2024年北京市高中数学联赛初赛一试考试时间:8:00-9:20一、填空题(1-8题每题8分,第9题16分,第10,11题每题20分,共120分)1.设整数集合A=a1,a2,a3,a4,a5,若A中所有三元子集的三个元素之积组成的集合为B={-30,-15, -10,-6,-5,-3,2,6,10,15},则集合A={-30,-15,-10,-6,-5,-3,20,10,15},则集合A=.2.已知函数f x =x+2,x<0;ln12x+1,x≥0.若关于x的方程f f x=m恰有三个不相等的实数根x1,x2,x3且满足x1<x2<x3,则2x1+9ln x2+4的取值范围是.3.从1,2,⋯,2024中任取两个数a,b a≤b,则3a+7b的值中,个位数字为8的数有个.4.设复数z满足3z-2i=6,令z1=z2-10z+74z-5+7i,则z1的最大值是.5.已知函数f x =x,若x为无理数;q+1p,若x=qp,其中p,q∈N*,且p,q互质,p>q.则函数f x 在区间89,910上的最大值为.6.对于c>0,若非零实数a,b满足4a2-2ab+4b2-c=0,且使2a+b最大,则3a-4b+2c的最小值为.7.已知函数f x =cos4x+sin4x+a sin4x-b,且f x+π6为奇函数.若方程f x +m=0在[0,π]上有四个不同的实数解x1,x2,x3,x4,则fx1+x2+x3+x44的平方值为.8.已知A⊆{1,2,⋯,2625},且A中任意两个数的差的绝对值不等于4,也不等于9,则A 的最大值为.9.设多项式f x =x2024+2023i=0c ix i,其中c i∈{-1,0,1}.记N为f x 的正整数根的个数(含重根).若f x 无负整数根,N的最大值是.10.在棱长为4的正方体ABCD-A1B1C1D1中,E为棱AA1上的一点,且A1E=1,F为截面A1BD上的动点,则AF+FE的最小值等于.11.数列a n定义如下:设2n!n!n+2024!写成既约分数后的分母为A n ,a n等于2A n 的最大质因数,则a n的最大值等于.2024年北京市高中数学联赛初赛二试考试时间:9:40-12:301.(40分)设a,b,c是三个正数,求证:2a2a2+b2+c2+2ba2+2b2+c2+2ca2+b2+2c2≤32a+b+c5a2+5b2+5c2+ab+bc+ca.2.(40分)如图所示,锐角△ABC的三条高线AD,BE,CF交于点H,过点F作FG⎳AC交直线BC于点G,设△CFG的外接圆为⊙O,⊙O与直线AC的另一个交点为P,过P作PQ⎳DE交直线AD于点Q,连接OD,OQ.求证:OD=OQ.3.(50分)有n个球队参加比赛,球队之间的比赛计划已经安排好了.但是每场比赛的主场客场还没有分配好.这时每个球队都上报了自己能够接受的客场比赛的最大次数.最终组委会发现这些次数加在一起恰好是比赛的总场次,并且组委会还发现任意挑出若干支球队,他们能够接受的客场次数之和都要大于等于他们之间的比赛总场次.请问组委会能否安排好主客场使得每支球队都满意,请证明你的结论.4.(50分)设a1,a2,⋯,a n为n个两两不同的正整数且a1a2⋯a n恰有4048个质因数.如果a1,a2,⋯,a n中任意多个数相乘均不是一个整数的4049次方,求n的最大值.2024年重庆市高中数学联赛初赛试题 2 2024年浙江省高中数学联赛初赛试题 3 2024年四川省高中数学联赛初赛试题 4 2024年吉林省高中数学联赛初赛试题 5 2024年广西省高中数学联赛初赛试题 7 2024年内蒙古高中数学联赛初赛试题 9 2024年北京市高中数学联赛初赛一试 10 2024年北京市高中数学联赛初赛二试 112024年重庆市高中数学联赛初赛试题一、填空题:本大题共8小题,每小题8分,满分64分.1.已知复数z 使得z -4z为纯虚数,则z -1-i 的最小值为2-2.(其中i 为虚数单位)【答案】2-2【解析】z -4z 为纯虚数⇒z -4z =-z -4z⇔z +z =4z +zzz.当z +z=0时,,z -1-i min =1;当z +z≠0时,,则z =2,,此时z -1-i min =2-2<1,,当z =21+i 可取等号.2.设函数f x =2x -2-x 的反函数为y =f -1x ,则不等式f -1x -1 <1的解集为-12,52 .【答案】-12,52 【解析】因为f x 为R 上单调递增的奇函数,,且值域为R ,,所以f -1x 也为R 上单调递增的奇函数.注意f 1 =32,,故f -1x -1 <1⇔-32<x -1<32⇔-12<x <52.3.若点A -12,32 关于直线y =kx 对称的点在圆x -2 2+y 2=1上,则k =3.【答案】3【解析】注意点A 在圆x 2+y 2=1上,,且A 关于直线y =kx 对称的点必然在圆x 2+y 2=1上,,而圆x 2+y 2=1与圆x -2 2+y 2=1仅有唯一公共点B 1,0 ,,因此对称点只能是B .易知∠AOB =120°,,因此k =tan60°= 3.4.在△ABC 中,已知AB ⋅AC =2BC ⋅BA =3CA ⋅CB ,则△ABC 最大角的正弦值为31010.【答案】31010【解析】设△ABC 的内角A ,,B ,,C 所对的边分别为a ,,b ,,c ,,由条件知b 2+c 2-a 22=a 2+c 2-b 2=3a 2+b 2-c 2 2,,解得b 2=85a 2,,c 2=95a 2,,故最大角为角C ,,由余弦定理得cos C =a 2+b 2-c 22ab =1010⇒sin C =31010.5.数列a n 满足a 1=1,a n +1-a n a n =a n +2-an +1a n +2n ∈N * ,若a 1a 2+a 2a 3+⋯+a 6a 7=3,则a 2024=62029.【答案】62029【解析】由a n +1-a n a n =a n +2-a n +1a n +2可得1a n +1a n +2=2a n +1,,则数列1a n 为等差数列,,首项为1a 1=1,,设公差为d ,,则a 1a 2+a 2a 3+⋯+a 6a 7=11+d +11+d 1+2d +⋯+11+5d 1+6d=1d 1-11+d +11+d -11+2d +⋯11+5d -11+6d =61+6d =3⇒d =16,,故1a 2024=1+20236=20296⇒a 2024=62029.6.由1,2,⋯,9这九个正整数构成的所有圆排列中,任意相邻两数之积均不超过60的圆排列的个数为21600.【答案】21600【解析】一个圆排列满足要求当且仅当该排列中8,,9与7,,9这两对数均不能相邻.设满足8,,9相邻的圆排列有N1个,,满足7,,9相邻的圆排列有N2个,,满足8,,9相邻且7,,9相邻的圆排列有N3个,,则N1= N2=A22⋅7!,,N3=A22⋅6!,,从而由容斥原理,,满足要求的排列的个数为N=8!-N1+N2-N3=21600.7.已知四面体ABCD满足AB⊥BC,BC⊥CD,AB=BC=CD=1,且异面直线AD与BC所成的角为60°,则四面体ABCD的外接球的体积为55π6.ABC DA1D1 O1O【答案】55π6【解析】由题设条件,,可将四面体补成直三棱柱ABD1-A1CD,,如图所示.由题知∠A1AD=60°,,AA1=1,,于是A1D=AD1=3,,又AB=BD1=1,,则∠ABD1=120°.设四面体ABCD的外接球球心为O,,则O在平面ABD1的投影O1为△ABD1的外心,,且OO1=12.由正弦定理知,,O1A=1,,从而外接球半径R=OA=52,,于是V=43πR3=55π6.8.一珍稀物种出现在地球,对每个珍稀生物,每天有如下事件发生:有p0≤p≤1的概率消失,有1-p3的概率保持不变,有1-p3的概率分裂成两个,有1-p3的概率分裂成三个.对所有新产生的生物每天也会发生上述事件.假设开始只有一个这样的珍稀生物,若希望最终这种生物灭绝的概率不超过12,则p至多为5 17.【答案】517【解析】设开始有一个珍稀生物、最终灭绝的概率为f1 =q≤12,,那么若开始有n个珍稀生物、最终灭绝的概率则为f n =q n.由题知,,f1 =p+1-p3f1 +1-p3f2 +1-p3f3 ,,从而有q=p+1-p3q+1-p 3q2+1-p3q3即q-11-p3q2+2q+3-1∣=0,,由于q≤12,,则0=1-p3q2+2q+3-1≤1-p 3⋅174-1,,得p≤517.故p至多为517.注:该题也可以用母函数.其第n天的母函数为f n x ,,其中f x =p+1-p3x+1-p3x2+1-p3x3,,考虑limn→+∞f n 0 ≤12即可.二、解答题:共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.16分已知函数f x =ln x-sin x,若两不相等的实数x1,x2∈0,π满足曲线y=f x 在点x1,f x1和点x2,f x2处的切线斜率相等,求证:f x1 +f x2 >-2.【解析】先证一个引理:对x>0,,有sin x<x.引理的证明:令φx =sin x-x,,φ x =cos x-1≤0,,故φx 为减函数,,所以当x>0时,,φx <φ0 =0,,引理得证!4分回到原题:f x =1x-cos x,,由题知f x1=f x2 .不妨x 1>x 2,,则x 1-x 22∈0,π2,,于是由f x 1 =f x 2 并结合引理可得x 1-x 2x 1x 2=cos x 2-cos x 1=2sin x 1+x 22sin x 1-x228分≤2sin x 1-x 22<2×x 1-x22=x 1-x 2,,因此x 1x 2>1.12分所以f x 1 +f x 2 =ln x 1x 2-sin x 1-sin x 2>-sin x 1-sin x 2≥-2.16分10.20分 已知抛物线Ω:y =x 2,动线段AB 在直线y =3x -3上(B 在A 右侧),且AB =2 3.过A 作Ω的切线,取左边的切点为M .过B 作Ω的切线,取右边的切点为N .当MN ⎳AB 时,求点A 的横坐标.【解析】设M x 1,x 21 ,,N x 2,x 22 ,,注意k MN =x 22-x 21x 2-x 1=x 1+x 2,,从而当MN ⎳AB 时,,k MN =k AB =3⇒x 1+x 2= 3.5分因为y =2x ,,所以k AM =2x 1,,可得切线AM 的方程为y -x 21=2x 1x -x 1 ,,即y =2x 1x -x 21.同理可得切线BN 的方程为y =2x 2x -x 22.由题设中A ,,B 的要求,,可设A t ,3t -3 ,,B t +3,3t ,,10分将A t ,3t -3 代入切线AM 的方程,,得3t -3=2tx 1-x 21,,即x 21-2tx 1+3t -3=0,,可求得x 1=t -t 2-3t +3,,这里取较小的根是因为M 为左边的切点.同理可求得x 2=t +3+t 2+3t +3.15分于是x 1+x 2=3⇒t -t 2-3t +3+t +3+t 2+3t +3=3,,整理得t 1+3t 2-3t +3+t 2+3t +3=0⇒t =0.故点A 的横坐标为0.20分11.20分 设x 1=3,x n +1=x n +14-x n +2n ∈N * ,求x 1+x 2+⋯+x n 的值.(其中[x ]表示不超过实数x 的最大整数.)【解析】设f x =x +14-x +2=12x +14+x +2.对于x >0,,f x 连续且单调递减.由于x 1>2,,则0<x 2=f x 1 <f 2 =2,,进而依次可以得到x 3>2,,0<x 4<2,,即0<x 2k <2,,x 2k +1>2.5分令g x =x +f x .由于g x =1+12x +14-12x +2>0恒成立,,故当x ≥0时,,g x 单调递增.又由于g 2 =4,,故当x >2时,,g x >4;当0<x <2时,,g x <4.10分当n 为偶数时,,设n =2k k ∈N * ,,有x 1+⋯+x 2k =x 1+x 2 +x 3+x 4 +⋯+x 2k -1+x 2k =g x 1 +g x 3 +⋯+g x 2k -1 >4k ,,且x 1+⋯+x 2k =x 1+x 2+x 3 +x 4+x 5 +⋯+x 2k -2+x 2k -1 +x 2k =x 1+g x 2 +g x 4 +⋯+g x 2k -2 +x 2k <4k +1,,故x 1+x 2+⋯+x 2k =4k =2n .当n 为大于1的奇数时,,设n =2k +1k ∈N * ,,有x 1+⋯+x 2k +1=x 1+x 2 +x 3+x 4 +⋯+x 2k -1+x 2k +x 2k +1=g x 1 +g x 3 +⋯+g x 2k -1 +x 2k +1>4k +2x 1+⋯+x 2k +1=x 1+x 2+x 3 +x 4+x 5 +⋯+x 2k +x 2k +1=x1+g x2+g x4 +⋯+g x2k<4k+3,,故x1+x2+⋯+x2k+1=4k+2=2n.当n=1时,,x1=3.综上,,当n=1时,,x1=3;当n≥2时,,x1+x2+⋯+x n=2n.20分2024年浙江省高中数学联赛初赛试题一、填空题(每小题8分,共计96分)1.设集合A=x x-12x-1≤0,集合B=x∣x2+2x+m≤0.若A⊆B,则实数m的取值范围为m≤-3.【答案】m≤-3【解析】集合A=x 12<x≤1,,要使A⊆B,,则12+2×1+m≤0,,解得m≤-3.2.设函数f:{1,2,3}→{2,3,4}满足f f x -1=f x ,则这样的函数有10个.【答案】10【解析】令y=f x -1∈{1,2,3},,则f y =y+1.对f1 =2以下三种情况都满足条件f2 =f3 =2;f2 =f3 =3;f2 =f3 =4,,共3种.同理对f2 =3,,f1 =f3 有3种情况;f3 =4,,f1 =f2 也有3种情况.又f1 =2,,f2 =3,,f3 =4显然满足条件.所以满足已知条件的函数共有3×3+1=10个.(可以看出这种映射的限制仅在值域上,,因此也可对值域大小分类讨论.)3.函数y=sin 2x+sin x+1sin2x+1的最大值与最小值之积为34.【答案】34【解析】令t=sin x,,-1≤t≤1,,原式变形y=1+1t+1t ,,当t≠0时,,12≤y≤32.当t=0时,,y=1.所以y的最大、最小值分别为32,,12,,其积为34.4.已知数列x n满足:x1=22,x n+1=xnn n+1x2n+n n+1,n≥1,则通项x n=n3n-1.【答案】n3n-1【解析】将已知条件变形得1x2n+1-1x2n=1n-1n+1,,将上式从1到n叠加得到1 x2n -1x21=1-1n,,即x n=n3n-1.5.已知四面体A-BCD的外接球半径为1,若BC=1,∠BDC=60°,球心到平面BDC的距离为6 3.【答案】63【解析】因为球心在平面BDC上的投影就是△BDC的外心,,由已知求得△BDC的外接圆半径为33,,所以球心到平面BDC的距离为1-332=63.6.已知复数z满足z24=z-1510=1,则复数z=12±32i.【答案】12±32i【解析】由已知得z =z-1=1,,解得z=12±3i2.显然这两个解满足题设条件.。
全国高中数学竞赛试题及答案
全国高中数学竞赛试题及答案试题一:函数与方程1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(x) \)的极值点。
2. 求解方程\( x^2 - 4x + 3 = 0 \)的所有实根。
3. 判断函数\( g(x) = \frac{1}{x} \)在区间\( (0, +\infty) \)上的单调性。
试题二:解析几何1. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a > b > 0 \),求椭圆的焦点坐标。
2. 求圆\( (x - h)^2 + (y - k)^2 = r^2 \)的切线方程,已知切点坐标为\( (m, n) \)。
3. 证明点\( P(x_1, y_1) \)和点\( Q(x_2, y_2) \)的连线\( PQ \)的中点坐标为\( \left(\frac{x_1 + x_2}{2}, \frac{y_1 +y_2}{2}\right) \)。
试题三:数列与级数1. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。
2. 求等比数列\( b_1, b_2, b_3, \ldots \)的前\( n \)项和,其中\( b_1 = 1 \),公比\( r = 3 \)。
3. 判断数列\( c_n = \frac{1}{n(n + 1)} \)的收敛性。
试题四:概率与统计1. 从5个红球和3个蓝球中随机抽取3个球,求至少有2个红球的概率。
2. 抛掷一枚均匀硬币4次,求正面朝上的次数为2的概率。
3. 某工厂生产的产品中有2%是次品,求从一批产品中随机抽取10个产品,至少有1个是次品的概率。
试题五:组合与逻辑1. 有5个不同的球和3个不同的盒子,将球分配到盒子中,每个盒子至少有一个球,求不同的分配方法总数。
2. 证明:对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。
高中数学竞赛赛题精选(带答案)
高中数学竞赛赛题精选一、选择题(共12题)1.定义在R 上的函数()y f x =的值域为[m,n ],则)1(-=x f y 的值域为( ) A .[m,n ]B .[m-1,n-1]C .[)1(),1(--n f m f ]D .无法确定解:当函数的图像左右平移时,不改变函数的值域.故应选A.2.设等差数列{n a }满足13853a a =,且n S a ,01>为其前n 项之和,则)(*∈N n S n 中最大的是( ) A. 10S B. 11S C. 20S D. 21S 解:设等差数列的公差为d,由题意知3(1a +7d)=5(1a +12d),即d=-3921a , ∴n a = 1a +( n-1)d= 1a -3921a (n-1)= 1a (3941-392n),欲使)(*∈N n S n 最大,只须n a ≥0,即n ≤20.故应选C.3.方程log 2x=3cosx 共有( )组解.A .1B .2C .3D .4解:画出函数y=log 2x 和y=3cosx 的图像,研究其交点情况可知共有3组解.应选C .4.已知关于x 的一元二次方程()02122=-+-+a x a x 的一个根比1大,另一个根比1小,则()A.11<<-a B.1-<a 或1>aC.12<<-aD.2-<a 或1>a解:令f(x)= ()2122-+-+a x a x ,其图像开口向上,由题意知f(1)<0,即 ()211122-+⨯-+a a <0,整理得022<-+a a ,解之得12<<-a ,应选C .5.已知βα,为锐角,,cos ,sin y x ==βα53)cos(-=β+α,则y 与x 的函数关系为( ) A .1)x 53( x 54x 153y 2<<+--= B .1)x (0 x 54x 153y 2<<+--=C .)53x (0 x 54x 153y 2<<---= D .1)x (0 x 54x 153y 2<<---= []xx y 54153sin )sin(cos )cos()(cos cos 2+-⋅-=⋅+++=-+==αβααβααβαβ解: 而)1,0(∈y 15415302<+-⋅-<∴x x , 得)1,53(∈x .故应选A. 6.函数sin y x =的定义域为[],a b ,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a-的最大值是( )A. πB. π2C.34πD. 35π解:如右图,要使函数sin y x =在定义域[],a b 上,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a -的最大值是74()663πππ--=.故应选C. 7.设锐角使关于x 的方程x 2+4x cos+cot =0有重根,则的弧度数为 ( )A .6B .12或512C .6或512D .12解:由方程有重根,故14=4cos 2-cot =0,∵ 0<<2,2sin2=1,=12或512.选B . 8.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ,则b 的取值范围是 ( )A .[-62,62] B .(-62,62) C .(-233,233] D .[-233,233] 解:点(0,b )在椭圆内或椭圆上,2b 2≤3,b ∈[-62,62].选A .9.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4] 解:令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),x ∈[2,4),选C .10.设点O 在ABC 的内部,且有+2+3=,则ABC 的面积与AOC 的面积的比为( )A .2B .32C .3D .53解:如图,设AOC=S ,则OC 1D=3S ,OB 1D=OB 1C 1=3S ,AOB=OBD=1.5S .OBC=0.5S ,ABC=3S .选C .11.设三位数n=,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A .45个B .81个C .165个D .216个 解:⑴等边三角形共9个;⑵ 等腰但不等边三角形:取两个不同数码(设为a ,b ),有36种取法,以小数为底时总能构成等腰三角形,而以大数为底时,b <a <2b .a=9或8时,b=4,3,2,1,(8种);a=7,6时,b=3,2,1(6种);a=5,4时,b=2,1(4种);a=3,2时,b=1(2种),共有20种不能取的值.共有236-20=52种方法,而每取一组数,可有3种方法构成三位数,故共有523=156个三位数即可取156+9=165种数.选C .12.顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为 ( )A .53 B .253 C .63 D .263解:AB ⊥OB ,PB ⊥AB ,AB ⊥面POB ,面PAB ⊥面POB .OH ⊥PB ,OH ⊥面PAB ,OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,PC ⊥面OCH .PC 是三棱锥P -OCH 的高.PC=OC=2.而OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30,OB=PO tan30=263.又解:连线如图,由C 为PA 中点,故V O -PBC =12V B -AOP ,S B 11OABCABPO H C而V O -PHC ∶V O -PBC =PH PB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=,则V P —AOB =16R 3sin cos =112R 3sin2,V B -PCO =124R 3sin2. PO 2PB 2=R 2R 2+R 2cos 2=11+cos 2=23+cos2.V O -PHC =sin23+cos2112R 3. ∴ 令y=sin23+cos2,y=2cos2(3+cos2)-(-2sin2)sin2(3+cos2)2=0,得cos2=-13,cos =33, ∴ OB=263,选D .二、填空题(共10题)13. 设n S 为等差数列{}n a 的前n 项和,若510S =,105S =-,则公差为 解:设等差数列{}n a 的首项为1a ,公差为d .由题设得⎩⎨⎧-=+=+,,545101010511d a d a 即 ⎩⎨⎧-=+=+,,1922211d a d a 解之得1-=d .14. 设()log ()a f x x b =+(0a >且1)a ≠的图象经过点(21),,它的反函数的图象经过点(28),,则b a +等于 4 .解:由题设知 log (2)1log (8)2a a b b +=⎧⎨+=⎩,, 化简得 2(2)(8).b a b a +=⎧⎨+=⎩,解之得 1131a b =⎧⎨=⎩,; 2224.a b =-⎧⎨=-⎩,(舍去). 故a b +等于4.15.已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为 [21)x ∈-, .解: 因为 ()()22lg 620lg (3)11lg111x x x -+=-+≥>,所以()2lg 6200x x -+<. 于是,由图象可知,2111x x +≤-,即 201x x +≤-,解得 21x -≤<. 故x 的取值范围为 [21)x ∈-,.16.圆锥曲线0|3|102622=+--+-++y x y x y x 的离心率是 2 .解:原式变形为|3|)1()3(22+-=-++y x y x ,即=2|3|2+-y x .所以动点),(y x 到定点(31)-,的距离与它到直线03=+-y x 的距离之比为2.故此动点轨迹为双曲线,离心率为2.17.在ABC ∆中,已知3tan =B ,322sin =C ,63=AC ,则ABC ∆的面积为ABC S ∆=解:在ABC ∆中,由3tan =B 得︒=60B .由正弦定理得sin 8sin AC CAB B⋅==.因为︒>60322arcsin,所以角C 可取锐角或钝角,从而31cos ±=C .sin sin()sin cos cos sin A B C B C B C =+=+=sin 2ABC AC ABS A ∆⋅== 18. 设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>. 命题P 与Q 中有 且仅有一个成立,则实数a 的取值范围是 021≤<-a 或 121<≤a . 解:由a a <2得10<<a .由0142>++ax x 对于任何x ∈R 成立,得04162<-=∆a ,即2121<<-a .因为命题P 、Q 有且仅有一个成立,故实数 a 的取值范围是 021≤<-a 或 121<≤a .19.22cos 75cos 15cos75cos15++⋅的值是 . 解:22cos 75cos 15cos75cos15++⋅ =cos²75°+sin²75°+sin15°·cos15° =1+°30sin 21=5420.定义在R 上的函数()f x 满足(1)2f =,且对任意的x R ∈,都有1()2f x '<,则不等式22log 3(log )2x f x +>的解集为 . 解:令g ﹙x ﹚=2f ﹙x ﹚-x ,由f '(x ) <1/2得,2f '(x ) -1<0,即'g ﹙x ﹚<0,g(x)在R 上为减函数,且g(1)=2f(1)-1=3,不等式f(log2X)>2log 2X化为2f(log2X)—log2X≥3,即g(log2X)>g(1),由g(x)的单调性得:log2X<1,解得,0<x<2. 21.圆O 的方程为221x y +=,(1,0)A ,在圆O 上取一个动点B ,设点P 满足()AP OB R λλ=∈且1AP AB ⋅=.则P 点的轨迹方程为 .解:设P(x,y), AB =λOB (λϵR)得B(k(x —1),ky),(λ=k1)。
数学竞赛高中试题入门及答案
数学竞赛高中试题入门及答案一、选择题(每题5分,共20分)1. 下列哪个数不是整数?A. -3B. 0C. 5D. 2.52. 如果函数\( f(x) = 3x^2 - 5x + 2 \),那么\( f(-1) \)的值是多少?A. 10B. 8C. 6D. 43. 圆的半径为3,圆心在原点,那么圆上任意一点到圆心的距离是多少?A. 1B. 2C. 3D. 44. 已知三角形ABC的三个内角A、B、C,且A + B + C = 180°,如果角A = 60°,角B = 50°,那么角C是多少度?A. 70°B. 80°C. 90°D. 100°二、填空题(每题5分,共20分)5. 若\( a \),\( b \),\( c \)为三角形的三边,且\( a^2 + b^2 = c^2 \),则该三角形是________。
6. 一个数的平方根是4,那么这个数是________。
7. 一个圆的面积为28.26平方厘米,那么它的半径是________厘米。
8. 已知等差数列\( 3, 7, 11, ... \),第5项的值是________。
三、解答题(每题15分,共30分)9. 证明:如果\( a \),\( b \),\( c \)是正实数,且\( a + b +c = 1 \),那么\( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq9 \)。
10. 一个直角三角形的两条直角边长分别为6厘米和8厘米,求斜边的长度。
(使用勾股定理)四、证明题(每题15分,共15分)11. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + ... + n^3 = (1 + 2 + ... + n)^2 \)。
五、结束语本试题旨在为高中数学竞赛入门者提供一个基础的练习平台,通过这些题目,学生可以检验自己的数学基础知识和解题技巧。
高中数学竞赛试题及答案
高中数学竞赛试题及答案一、选择题1.若直线l1:y = -2x + 3,直线l2过点(1,5)且与l1垂直,则l2的方程是:A. y = x + 4B. y = -x + 6C. y = x - 4D. y = -x + 4答案:C2.已知集合A = {x | |x - 3|< 2},则A的值是: A. (-∞, 1) U (5, ∞) B. (-∞,1) U (3, ∞) C. (1, 5) D. (1, 5] U (5, ∞)答案:D二、填空题1.若a、b满足a+b=5,且ab=6,则a和b的值分别是____。
答案:2和32.若某几何体的体积V和表面积S满足S=3V,且V>0,则该几何体的体积V的值为____。
答案:1/3三、解答题1.设数列{an}满足a1=1,a2=2,an+2 = an + 2n,求数列的通项公式。
解答:首先给出数列的前几项: a1 = 1 a2 = 2 a3 = 1 + 2 × 1 = 3 a4 = 2 + 2 × 2 =6 a5 = 3 + 2 × 3 = 9 … 从数列的前几项可以观察到,第n项的值为n^2 - 1。
所以数列的通项公式为an = n^2 - 1。
2.已知函数f(x) = x^3 - 3x^2 + 4x - 2,求f(x)的最小值及取得最小值时的x值。
解答:对于任意x,有f’(x) = 3x^2 - 6x + 4。
令f’(x) = 0,可以解得x = 1。
再求f’‘(x) = 6x - 6,当x = 1时,f’’(x) = 0。
所以x = 1是f(x)的极小值点。
代入f(x) = x^3 - 3x^2 + 4x - 2计算得最小值为-2。
所以f(x)的最小值是-2,取得最小值时的x值为1。
四、简答题1.数列的极限是什么?如何判断一个数列的极限存在?答:数列的极限是指当项数趋向无穷大时,数列的项的值趋向的一个确定的数。
高中数学竞赛试题及解答
高中数学竞赛试题及解答试题(一)一、 过圆的直径AB 上一定点C 作任意弦DE ,过B 作圆的切线L ,并设直线AD 与直线AE 分别与L 交于F 、G 。
若4,AB = 3,AC =求BF BG ⋅。
(12分)二、 证明x 的三次方程式3210x x π--=只有一个正实根。
(12分)三、 试证明2009不能表示成三个正整数的立方和。
(12分)四、有各张分别标有1, 2,, n 的一叠n 张卡片。
洗过卡片后,重复进行以下操作:若最上面一张卡片的标号是k ,则将前k 张卡片的顺序颠倒;例如,若4n =且卡片排列成3124,则操作一次后的卡片将排列成2134。
证明:经过有限次操作后,标号为1的卡片会在最上面。
(13分)试题(二)一、求2222(1.1)(1.2)(1.3)(3.1)++++。
(3分)二、设, , x y z 为实数且满足222 1x y z ++=,求xy yz zx ++的最小值。
(3分)三、空间中一四面体的四个顶点分别为(0, 0, 1), (2, 4, 0), (0, 0, 0),A B C (4, 2, 0)D ,平面E 通过A 点与BD 中点且与BC 有交点。
若平面E 将此四面体分成两块,其中一块的体积为原四面体的13,求E 的方程式。
(3分)四、求n ∞=,其中[]x 表示小于或等于x 的最大整数,例如[1.2]1=。
(4分)五、假设有5根电线杆,其中有2根会漏电,以致于停在它们上面的小鸟会立刻被电昏而摔落地面。
今有5只小鸟各自独立的随机选择其中一根电线杆逗留休息,试计算只有2根电线杆上有小鸟的机率。
(4分)试题(一)解答一、 【解】过C 作HI //FG ,与AF , AG 分别交I 和H ,连结BE , BH 。
因90BEH ∠=, 90BCH ∠=,所以四边形CBEH 是圆内接四边形BEC BHC ∠=∠而BED BAD ∠=∠BHI BAD ∴∠=∠由此可知,B , H , A , I 共圆 CI CH AC CB ∴⋅=⋅ (1)ACI ABF ∆∝∆ ::AC AB CI BF =又 ACH ABG ∆∝∆::AC AB CH BG ∴=22::AC AB CI CH BF BG ∴=⋅⋅ (2)由(1), (2), 22::AC AB AC CB BF BG =⋅⋅22AC CB AC BF BG AB ⋅=⋅, 2222()()4311633AB AC CB BF BG AC ⋅⋅⋅⋅===.二、 【证】令 32()1f x x x π=--则 (0)1f =-, (100)0f >由堪根定理,0与100之间有一个根r令 2()()()f x x r x ax b =-++32()()x a r x b ra x rb =+-+--得 a r π-=-b ra -= 1rb = (2)由(2) 0b >由(1) 0a => ,a b ∴皆为正数 20x ax b ∴++> for 0x ≥()f x ∴没有第二个正根。
高中数学竞赛初赛试题(含答案)
高中数学竞赛初赛试题一 选择题1. 如果集合.A B 同时满足{}1.2.3.4AB ={}1A B =,{}{}1,1A B ≠≠就称有序集对(),A B 为“好集对”。
这里的有序集对(),A B 意指当A B ≠,()(),,A B B A 和是不同的集对,那么“好集对”一共有()个64862ABCD2.设函数()()lg 101xf x -=+,()()122x x f f --=方程的解为()()()()()2222.log lg21.lg log 101.lg lg21.log log 101A B C D --++3.设100101102499500A =是一个1203位的正整数,由从100到500的全体三位数按顺序排列而成那么A 除以126的余数是( )4.在直角ABC 中, 90C ∠=,CD 为斜边上的高,D 为垂足.,,1AD a BD b CD a b ===-=.设数列{}ku 的通项为()1221,1,2,3,,kk k k k k u a a b a b b k --=-+-+-=则( )2008200720062008200720062008200720082007 2007200820082007.. .. u u u u u u u u u u A B C D =+=-==5.在正整数构成的数列1.3.5.7……删去所有和55互质的项之后,把余下的各项按从小到大的顺序排成一个新的数列{}na ,易见123451,3,7,9,13a a a a a =====那么2007____________a =192759.. 55 .. A B C D 2831 959778366ABCD6.设A B ==1+cos871-cos87 则():A B =...A B C D 22二.填空题7.边长均为整数且成等差数列,周长为60的钝角三角形一共有______________种. 8.设2007n ≥,且n为使得nn a =取实数值的最小正整数,则对应此n 的na 为9.若正整数n 恰好有4个正约数,则称n 为奇异数,例如6,8,10都是奇异数.那么在27,42,69,111,125,137,343,899,3599,7999这10个数中奇异数有_____________________个.10.平行六面体1111ABCD A B C D -中,顶点A 出发的三条棱1,,AB AD AA 的长度分别为2,3,4,且两两夹角都为60那么这个平行六面体的四条对角线1111,,,AC BD DB CA 的长度(按顺序)分别为___________________ 11.函数()(),f x g x 的迭代的函数定义为()()()()()()()12,,f x f x f x f f x ==()()()()()()()()()()()()()()()()()1121,,,n n n n f x f f x g x g x g x g g x g x g g x --====其中n =2,3,4…设()()23,32f x x g x x =-=+,则方程组()()()()()()()()()()()()969696f x g y f y g z f z g x ⎧=⎪⎪=⎨⎪=⎪⎩的解为_________________12.设平行四边形ABCD中,4,2,AB AD BD ===则平行四边形ABCD绕直线AC旋转所得的旋转体的体积为_______________ 三解答题 13.已知椭圆22412:3y x+=Γ和点(),0,Q q 直线,l Q A BΓ过且与交于两点(可以重合).1)若AOB ∠为钝角或平角(O 为原点), 4,q =试确定l 的斜率的取值范围.2)设A 关于长轴的对称点为1A ,,4,F q =为椭圆的右焦点试判断1,A F B 和三点是否共线,并说明理由.3)问题2)中,若14,,,q A F B ≠那么三点能否共线?请说明理由.14. 数列{}nx 由下式确定:112,1,2,3,,121nn n x x n x x +===+,试求[]20072007lg lg .x k x =整数部分(注[]a 表示不大于a 的最大整数,即a的整数部分.)15. 设给定的锐角ABC的三边长,,,,,a b c x y z 正实数满足,ayz bzx cxyp x y z++=其中p为给定的正实数,试求()()()222s b c a x c a b y a b c z =+-++-++-的最大值,并求出当s取此最大值时, ,,x y z 的取值.安徽省高中数学联赛初赛试题 一、选择题1. 若函数()y f x =的图象绕原点顺时针旋转2π后,与函数()y g x =的图象重合,则( )(A )()()1g x fx -=- (B )()()1g x f x -=(C )()()1g x fx -=--(D )()()1g x f x -=-2.平面中,到两条相交直线的距离之和为1的点的轨迹为( )(A )椭圆 (B )双曲线的一部分 (C )抛物线的一部分 (D )矩形 3.下列4个数中与cos1cos2cos2008+++最接近的是( )(A )-2008 (B )-1 (C )1 (D )2008 4.四面体的6个二面角中至多可能有( )个钝角。
数学竞赛高中试题及答案
数学竞赛高中试题及答案一、选择题(每题5分,共20分)1. 若函数f(x) = 2x^2 - 4x + 1,那么f(2)的值是多少?A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{an}的前三项分别为1, 4, 7,求该数列的第五项。
A. 10B. 13C. 16D. 19答案:A3. 一个圆的直径为10cm,那么它的半径是多少?A. 5cmB. 10cmC. 15cmD. 20cm答案:A4. 在直角坐标系中,点P(3, -4)关于x轴的对称点坐标是多少?A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)答案:A二、填空题(每题5分,共20分)5. 计算:\(\sqrt{49} - \sqrt{16} = \)______。
答案:56. 一个等腰三角形的两边长分别为5cm和8cm,那么它的周长是_______cm。
答案:187. 已知函数g(x) = x^3 - 3x^2 + 2,求g(2)的值。
答案:-28. 一个数的平方加上它的两倍等于17,设这个数为n,则n的值为______。
答案:3或-4三、解答题(每题10分,共60分)9. 已知函数h(x) = x^3 - 6x^2 + 11x - 6,求函数的零点。
答案:函数h(x)的零点为x = 1, 2, 3。
10. 一个长方体的长、宽、高分别为a、b、c,且a > b > c,求证:长方体对角线的长度d满足\(d^2 = a^2 + b^2 + c^2\)。
答案:证明略。
11. 已知数列{bn}满足:b1 = 2,bn+1 = 2bn + 1,求数列的前五项。
答案:2, 5, 11, 23, 4712. 一个圆的内接三角形的三个顶点分别在圆上,且三角形的周长为12cm,求圆的半径。
答案:2cm13. 已知函数f(x) = x^2 - 6x + 9,求函数的最小值。
答案:函数的最小值为0。
全国高中数学联赛初赛试卷(含答案)
全国高中数学联赛江苏赛区 初赛参考答案与评分细则一、填空题(本题共10 小题,满分 70 分,每小题7 分.要求直接将答案写在横线上. )1.已知点 P(4, 1)在函数 f(x)= log a (x - b) ( b > 0)的图象上,则ab 的最大值是.2解:由题意知, log a (4- b)= 1,即 a + b = 4,且 a > 0, a ≠ 1, b > 0,从而 ab ≤ (a +b) = 4,4 当 a =b = 2 时, ab 的最大值是 4.π 43π2.函数 f(x)= 3sin(2x -4)在 x = 24处的值是.π 43π π 40π 10π4π43π 4π3.解: 2x - =- = = = 2π+,所以 f(24 )= 3sin =-4 12 4 12 3 3 323.若不等式 |ax + 1|≤ 3 的解集为 { x |- 2≤ x ≤ 1} ,则实数 a 的值是.解:设函数 f(x)= |ax + 1|,则 f(- 2)= f(1)= 3,故 a = 2.4.第一只口袋里有3 个白球、 7 个红球、 15 个黄球,第二只口袋里有10 个白球、 6 个红球、9 个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是.解:有两类情况:同为白球的概率是3×10= 30,同为红球的概率是7×6 = 42 ,所求的25×25 62525× 25 625概率是72.6252 22 2xyxy5.在平面直角坐标系 xOy 中,设焦距为 2c 的椭圆 a 2+ b 2= 1(a >b > 0)与椭圆 b 2+ c 2= 1 有相同的离心率 e ,则 e 的值是 .c 2 c 2- b 2c 2 b 2- c 2-1+ 5解:若 c > b ,则 a 2= c 2 ,得 a = b ,矛盾,因此c <b ,且有 a 2= b 2 ,解得 e =2. 6.如图,在长方体ABCD - A 1B 1C 1D 1 中,对角线 B 1D 与平面 A 1BC 1 交于 E 点.记四棱锥 E -ABCD 的体积为V 1 ,长方体 ABCD - A 1B 1C 1D 1 的体D 1C 1积为 V ,则V 1的值是.2V 2A 1B 1EDCAB(第 6 题图)解:记四棱锥 B 1- ABCD 的体积为 V .C 1D 12O如图, DE = DB 1,A 13B 1从而 V 1= 2V .又 V =1V 2,所以V 1=2.E33V 2 9CDAB(第 6 题图)7.若实数集合 A = {31 x ,65y} 与 B = {5 xy ,403} 仅有一个公共元素,则集合A ∪B 中所有元素之积的值是.解:因为 31x × 65y = 5xy ×403= 2015xy .若 xy ≠ 0,则集合 A 和集合 B 中有一组相等, 则另一组也必然相等,这不合题意.所以xy = 0,从而 A ∪ B 中所有元素之积的值为 0.8.设向量 a = (cos α,sin α),b = (- sin α,cos α).向量 x 1,x 2, , x 7 中有 3 个为 a ,其余为 b ;向量 y 1,y 2, , y 7 中有 2 个为 a ,其余为 b .则7.i i 的可能取值中最小的为x yi=1 解:因为 aa =b b = 1, a b = 0,所以 7x y 的最小值为 2.···i=19.在 3× 3 的幻方中填数,使每行、每列及两条对角线上的三个数之和都相等.如图,三个方格中的数分别为1,2,2015,则幻方中其余 6 个数之和为.1 解:如图,设幻方正中间的数为 x ,则由题意知2a =- 2012,从而对角线上三个数的和为 x - 2011.2015因此 b = x - 2014, c =- 4026, d =- 2013, e =x + 2014.(第 9题图)由 b +e + x = x - 2011,解得 x =-2011. 2这 9 个数的和为 3× (-2011- 2011)=-18099,22所以幻方中其余 6 个数之和为-18099- 2018=- 22135.22e c 1dx 2a2015b(第 9 题图)10.在平面直角坐标系xOy 中,设 D 是满足 x ≥ 0, y ≥0, x +y + [x]+[ y]≤ 19 的点 (x , y)形成的区域(其中 [x]是不超过 x 的最大整数) .则区域 D 中整点的个数为.解:区域 D 中整点的个数为 1+ 2+3+ + 10= 55.420 8011{ a n }a 2 2 qS n { a n }nT n{ a 2n }nS 2n 2T nqq1a n a 2 2 a 2n 4S 2n 4n T n 4n S 2n ≠ 2T nq1a n 2× ( 1)n a 2n 4S 2n 0 T n 4n S 2n ≠2T n522n42nq × (1 q ) 2 × (1 q )n -2 a 2 4q2n - 4q 2q ± 1a n 2qS 2n T nn1 q1 q15S2T41 q 2q 4 0q1± 172nnq(1 q)2117117q202212ABC AB AC DEAB AC BD CE BACADE A PCAP B CPDPE PCAPDE,PAD PED PAF PDEAP BACPAD PAFEDABP(第 12题图)CEDABFPPEDPDE (第 12题图)PD PE 10ADPAEPBDPCEPBD CE BDP CEP PBD PCE PBA PCA所以 A 、 P 、B 、 C 四点共圆.10 分13.如图,在平面直角坐标系xOy 中,圆 O 1、圆 O 2 都与直线 l :y =kx 及 x 轴正半轴相切.若两圆的半径之积为2,两圆的一个交点为P(2, 2),求直线 l 的方程.解:由题意,圆心O 1, O 2 都在 x 轴与直线 l 的角平分线上.yl若直线 l 的斜率 k = tan α,α2tP2.O 2设 t = tan,则 k =1- t2O 1圆心 O 1, O 2 在直线 y = tx 上, Ox可设 O 1(m ,mt),O 2(n , nt).(第 13题图)交点 P(2, 2)在第一象限, m , n , t > 0. 4 分所以⊙ O 1: (x - m)2+(y -mt)2 =(mt)2,⊙O 1: (x - n)2+(y - nt) 2=(nt)2 ,(2- m) 2+ (2- mt)2= (mt)2,m 2- (4+ 4t)m + 8= 0,8 分所以 (2- n)2 +(2- nt)2= (nt)2, 即n 2 -(4 +4t)n + 8= 0,所以 m , n 是方程 X 2- (4+4 t)X + 8=0 的两根, mn = 8.由半径的积 (mt)(nt)= 2,得 t 2=1,故 t = 1.16 分42所以 k = 2t 1=4420 分2 =,直线 l : y = x .1- t1331- 414.将正十一边形的 k 个顶点染红色,其余顶点染蓝色.( 1)当 k = 2 时,求顶点均为蓝色的等腰三角形的个数;( 2) k 取何值时,三个顶点同色 (同红色或同蓝色 )的等腰三角形个数最少?并说明理由.解:( 1)设正十一边形的顶点 A 1, A 2 ,A 3, , A 11,则易知其中任意三点为顶点的三角形都不是正三角形.以这些点为顶点的等腰三角形个数可以如此计算:以 A i (i = 1,2,3, ,11)为顶角顶点的等腰三角形有11- 1= 5 个,这些三角形均不是等边三角形,即当j ≠ i 时,以 A j 为顶角2顶点的等腰三角形都不是上述等腰三角形.故所有的等腰三角形共有5× 11= 55 个.5 分当 k = 2 时,设其中 A m ,A n 染成红色,其余染成蓝色.以 A m 为顶角顶点的等腰三角形有5 个,以 A m 为底角顶点的等腰三角形有 10 个;同时以 A m ,A n 为顶点的等腰三角形有3 个,这些等腰三角形的顶点不同色,且共有(5+10)× 2- 3= 27 个.注意到仅有这些等腰三角形的三个顶点不同蓝色,故所求三个顶点同为蓝色的等腰三角形有 55- 27= 28 个.10 分( 2)若 11 个顶点中 k 个染红色,其余 11-k 个染蓝色.则这些顶点间连线段 (边或对角线 )中,两端点染红色的有k(k - 1)条,两端点染蓝色的有(11- k)(10- k)条,两端点染一红22一蓝的有 k(11-k)条.并且每条连线段必属于且仅属于3 个等腰三角形.把等腰三角形分4 类:设其中三个顶点均为红色的等腰三角形有x 1 个,三个顶点均为蓝色的等腰三角形有x 2 个,两个顶点为红色一个顶点为蓝色的等腰三角形有x 3 个,两个顶点为蓝色一个顶点为红色的等腰三角形有x 4 个,则按顶点颜色计算连线段, 3x 1+x 3= 3×k(k - 1),①23x 2+x 4= 3× (11- k)(10- k),②22x 3+2x 4 =3× k(11- k),③3由①+②得 3(x 1+ x 2 )+ x 3+x 4=2[k(k - 1)+ (11- k)(10- k)],用③代入得11 2x 1+ x 2= [ k(k - 1)+ (11-k)(10 -k)- k(11- k)]= (3k - 33k + 110).221当 k = 5 或 6 时, (x 1+ x 2)min = 2(5× 4+ 6× 5- 5× 6)= 10.即顶点同色的等腰三角形最少有10 个,此时 k = 5 或 6.20 分。
高中数学竞赛试题及答案
高中数学竞赛试题及答案试题(一)一、 ABC ∆为等边三角形,P 为其内一动点,且120APC ∠=。
AP 交BC 于N 、CP交AB 于M 。
求BMN ∆外心O 的轨迹。
(12分)二、 任意选24个相异且小于88的正奇数,试证:其中必有两个数它们的和是90。
(12分)三、 试证:对实数,,,0a b c d ≥,()()()()()()()()222222224a b c d a b b c c d d a ++++≥++++。
(12分) 四、定义:设A 是二阶整系数方阵,若存在二阶整系数方阵B ,使得1001AB BA I ⎡⎤===⎢⎥⎣⎦,则称A 可逆。
(13分) (1) A 是二阶整系数方阵。
试证:A 可逆的充要条件为A 的行列式||1A =±。
(2) 设A , B 均为二阶整系数方阵,且,,2,3,4A A B A B A B A B ++++均可逆,试证:5A B +亦可逆。
试题(二) 一、设(1)2(,,)(1)2,,,(1)2x x yz A x y y z z x y y zx x y z z z xy ⎧⎫-+⎪⎪=---=-+∈⎨⎬⎪⎪=-+⎩⎭,试求A 。
(5分)二、记不大于t 的整数中最大的整数为[]t 。
求方程 22[2]2[][]x x x x -+=在03x ≤<内所有实数解。
(5分)三、设a 和b 为实数,且使方程43210x ax bx ax ++++=至少有一个实根,对所有这种数对(,)a b ,求出22a b +的最小可能值。
(6分)四、令N 为自然数集,若函数:f N N →满足(1)()f n f n +>且(())3f f n n =,求(54)f 。
(5分)试题(一)解答一、 【解】令G 为ABC ∆的外心。
因120MPN APC ∠=∠=与B ∠互补,P 在BMN ∆的外接圆上。
因120APC AGC ∠=∠=,A 、P 、G 、C 共圆,且30CPG CAG ∠=∠=。
高中数学初赛试题及答案
高中数学初赛试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-4x+3,x∈R,则f(x)的最小值是:A. 3B. -1C. 0D. 12. 已知等差数列{an}的前三项依次为1,3,5,则该数列的通项公式为:A. an = 2n - 1B. an = n + 1C. an = 2n + 1D. an = 2n - 23. 函数y=x^3-3x^2+4的零点个数是:A. 1B. 2C. 3D. 44. 集合A={1,2,3},集合B={2,3,4},则A∩B的元素个数是:A. 1B. 2C. 3D. 45. 已知向量a=(3,4),向量b=(-1,2),则向量a与向量b的夹角θ满足:A. cosθ > 0B. cosθ < 0C. cosθ = 0D. θ不存在6. 圆x^2+y^2-6x+8y-24=0的圆心坐标是:A. (3,-4)B. (-3,4)C. (3,4)D. (-3,-4)7. 已知函数f(x)=x/(x^2+1),x∈R,若f(a)=1/3,则a的值为:A. √2B. -√2C. √3D. -√38. 抛物线y^2=4x的焦点坐标是:A. (1,0)B. (0,1)C. (1,0)D. (0,1)9. 已知等比数列{bn}的前三项依次为1,2,4,则该数列的公比q为:A. 1B. 2C. 3D. 410. 函数y=ln(x+√(x^2+1))的值域是:A. (0,+∞)B. (-∞,0)C. [0,+∞)D. (-∞,+∞)二、填空题(每题4分,共20分)1. 函数f(x)=x^3-3x^2+4的极大值是______。
2. 已知等差数列{an}的前三项依次为2,5,8,则该数列的第五项a5为______。
3. 函数y=x^2-6x+8的顶点坐标是______。
4. 集合A={x|x^2-3x+2=0},集合B={x|x^2-5x+6=0},则A∪B的元素个数是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学竞赛初赛试题一 选择题1. 如果集合.A B 同时满足{}1.2.3.4AB ={}1A B =,{}{}1,1A B ≠≠就称有序集对(),A B 为“好集对”。
这里的有序集对(),A B 意指当A B ≠,()(),,A B B A 和是不同的集对,那么“好集对”一共有()个64862ABCD2.设函数()()lg 101xf x -=+,()()122x x f f --=方程的解为()()()()()2222.log lg21.lg log 101.lg lg21.log log 101A B C D --++3.设100101102499500A =是一个1203位的正整数,由从100到500的全体三位数按顺序排列而成那么A 除以126的余数是( )4.在直角ABC 中, 90C ∠=,CD 为斜边上的高,D 为垂足.,,1AD a BD b CD a b ===-=.设数列{}ku 的通项为()1221,1,2,3,,kk k k k k u a a b a b b k --=-+-+-=则( )2008200720062008200720062008200720082007 2007200820082007.. .. u u u u u u u u u u A B C D =+=-==5.在正整数构成的数列1.3.5.7……删去所有和55互质的项之后,把余下的各项按从小到大的顺序排成一个新的数列{}na ,易见123451,3,7,9,13a a a a a =====那么2007____________a =192759.. 55 .. A B C D 2831 959778366ABCD6.设A B ==1+cos871-cos87 则():A B =...A B C D 22二.填空题7.边长均为整数且成等差数列,周长为60的钝角三角形一共有______________种. 8.设2007n ≥,且n为使得nn a =取实数值的最小正整数,则对应此n 的na 为9.若正整数n 恰好有4个正约数,则称n 为奇异数,例如6,8,10都是奇异数.那么在27,42,69,111,125,137,343,899,3599,7999这10个数中奇异数有_____________________个.10.平行六面体1111ABCD A B C D -中,顶点A 出发的三条棱1,,AB AD AA 的长度分别为2,3,4,且两两夹角都为60那么这个平行六面体的四条对角线1111,,,AC BD DB CA 的长度(按顺序)分别为___________________ 11.函数()(),f x g x 的迭代的函数定义为()()()()()()()12,,f x f x f x f f x ==()()()()()()()()()()()()()()()()()1121,,,n n n n f x f f x g x g x g x g g x g x g g x --====其中n =2,3,4…设()()23,32f x x g x x =-=+,则方程组()()()()()()()()()()()()969696f x g y f y g z f z g x ⎧=⎪⎪=⎨⎪=⎪⎩的解为_________________12.设平行四边形ABCD中,4,2,AB AD BD ===则平行四边形ABCD绕直线AC旋转所得的旋转体的体积为_______________ 三解答题 13.已知椭圆22412:3y x+=Γ和点(),0,Q q 直线,l Q A BΓ过且与交于两点(可以重合).1)若AOB ∠为钝角或平角(O 为原点), 4,q =试确定l 的斜率的取值范围.2)设A 关于长轴的对称点为1A ,,4,F q =为椭圆的右焦点试判断1,A F B 和三点是否共线,并说明理由.3)问题2)中,若14,,,q A F B ≠那么三点能否共线?请说明理由.14. 数列{}nx 由下式确定:112,1,2,3,,121nn n x x n x x +===+,试求[]20072007lg lg .x k x =整数部分(注[]a 表示不大于a 的最大整数,即a的整数部分.)15. 设给定的锐角ABC的三边长,,,,,a b c x y z 正实数满足,ayz bzx cxyp x y z++=其中p为给定的正实数,试求()()()222s b c a x c a b y a b c z =+-++-++-的最大值,并求出当s取此最大值时, ,,x y z 的取值.安徽省高中数学联赛初赛试题 一、选择题1. 若函数()y f x =的图象绕原点顺时针旋转2π后,与函数()y g x =的图象重合,则( )(A )()()1g x fx -=- (B )()()1g x f x -=(C )()()1g x fx -=--(D )()()1g x f x -=-2.平面中,到两条相交直线的距离之和为1的点的轨迹为( )(A )椭圆 (B )双曲线的一部分 (C )抛物线的一部分 (D )矩形 3.下列4个数中与cos1cos2cos2008+++最接近的是( )(A )-2008 (B )-1 (C )1 (D )2008 4.四面体的6个二面角中至多可能有( )个钝角。
(A )3 (B )4 (C )5 (D )65.12008写成十进制循环小数的形式10.0004986254986252008=,其循环节的长度为( )(A)30 (B)40(C)50(D )60 6.设多项式()200820080120081x a a x a x +=+++,则012008,,,a a a 中共有( )个是偶数。
(A )127 (B )1003 (C )1005 (D )1881 二、填空题 7.化简多项式()1nn kk m k m nkk m C Cx x --=-=∑8.函数()f x =的值域为9.若数列{}na 满足()111110,,21n n n a a aa n a a --+>=≥-,且具有最小正周期2008,则1a = 10.设非负数122008,,,a a a 的和等于1,则12232007200820081a a a a a a a a ++++的最大值为 11.设点A ()1,1,B 、C 在椭圆2234x y +=上,当直线BC 的方程为 时,ABC 的面积最大。
12.平面点集(){},|1,2,,;1,2,,G i j i n j n ===,易知2G 可被1 个三角形覆盖(即各点在某个三角形的边上),3G 可被2个三角形覆盖,则覆盖2008G 需要 个三角形。
三、解答题13.将6个形状大小相同的小球(其中红色、黄色、蓝色各2个)随机放入3个盒子中,每个盒子中恰好放2个小球,记η为盒中小于颜色相同的盒子的个数,求η的分布。
14.设()11,,2n aa n ≥=≥,其中[]x 表示不超过x 的最大整数。
证明:无论1a 取何正整数时,不在数列{}na 的素数只有有限多个。
15.设圆1O 与圆2O 相交于A ,B 两点,圆3O 分别与圆1O ,圆2O 外切于C ,D ,直线EF 分别与圆1O ,圆2O 相切于E ,F ,直线CE 与直线DF 相交于G ,证明:A ,B ,G 三点共线。
全国高中数学联赛安徽赛区预赛试卷一、填空题(每小题8分,共64分) 1.函数()2f x x =的值域是 .2.函数y = 的图象与xy e =的图象关于直线1x y +=对称.3.正八面体的任意两个相邻面所成二面角的余弦值等于 .4.设椭圆22111x y t t +=+-与双曲线1xy =相切,则t = .5.设z是复数,则|1||||1|z z i z -+-++的最小值等于 . 6.设a ,b ,c 是实数,若方程320x ax bx c +++=的三个根构成公差为1的等差数列,则a ,b ,c 应满足的充分必要条件是 .7.设O是ABC∆的内心,5AB =,6AC =,7BC =,OP xOA yOB zOC =++,0,,1x y z ≤≤,动点P 的轨迹所覆盖的平面区域的面积等于 . 8.从正方体的八个顶点中随机选取三点,构成直角三角形的概率是 . 二、解答题(共86分) 9.(20分)设数列{}na 满足10a=,121n n a a -=+,2n ≥.求na 的通项公式.10.(22分)求最小正整数n 使得224n n ++可被2010整除.11.(22分)已知ABC ∆的三边长度各不相等,D ,E ,F 分别是A ∠,B ∠,C ∠的平分线与边BC ,CA ,AB 的垂直平分线的交点.求证:ABC ∆的面积小于DEF ∆的面积.12.(22分)桌上放有n 根火柴,甲乙二人轮流从中取走火柴.甲先取,第一次可取走至多1n -根火柴,此后每人每次至少取走1根火柴.但是不超过对方刚才取走火柴数目的2倍.取得最后一根火柴者获胜.问:当100n =时,甲是否有获胜策略?请详细说明理由.全国高中数学联赛安徽省预赛试题一、填空题(每小题8分,共64分)1.以X 表示集合X 的元素个数. 若有限集合C B A ,,满足20=B A ,30=C B ,40=A C ,则CB A 的最大可能值为....... 2.设a 是正实数. 若R∈++++-=x a ax x a ax x x f ,222252106)(的最小值为10,则=a ....... 3.已知实系数多项式d cx bx ax xx f ++++=234)(满足2)1(=f ,4)2(=f ,6)3(=f ,则)4()0(f f +的所有可能值集合为.......4.设展开式2011)15(10≥+++=+n x a x a a x n n n , . 若),,,m ax (102011n a a a a =,则=n .......5.在如图所示的长方体EFGH ABCD -中,设P 是矩形EFGH 的中心,线段AP 交平面BDE 于点Q . 若3=AB ,2=AD ,1=AE ,则=PQ ....... 6.平面上一个半径r 的动圆沿边长a 的正三角形的外侧滚动,其扫过区域的面积为.......7.设直角坐标平面上的点),(y x 与复数i y x +一一对应.若点B A ,分别对应复数1,-z z (R ∉z ),则直线AB 与x 轴的交点对应复数......(用z 表示).8.设n 是大于4的偶数. 随机选取正n 边形的4个顶点构造四边形,得到矩形的概率为....... 二、解答题(第9—10题每题22分,第11—12题每题21分,共86分) 9. 已知数列}{na 满足121==a a,4121-++-=n n a a a (3≥n ),求na 的通项公式.10.已知正整数n a aa ,,,21都是合数,并且两两互素,求证:2111121<+++n a a a .第5题11.设c bx axx f ++=3)((c b a ,,是实数),当10≤≤x 时,1)(0≤≤x f .求b 的最大可能值.12.设点)0,2()0,1()0,1(C B A ,,-,D 在双曲线122=-y x的左支上,A D ≠,直线CD 交双曲线122=-y x的右支于点E .求证:直线AD 与BE 的交点P 在直线21=x 上.安徽高中数学竞赛初赛试题解答一、选择题1.C.2.A.3.C.4.A.5.B6.D.1.逐个元素考虑归属的选择.元素1必须同时属于A和B.元素2必须至少属于A、B中之一个,但不能同时属于A和B,有2种选择:属于A但不属于B,属于B但不属于A.同理,元素3和4也有2种选择.但元素2,3,4不能同时不属于A ,也不能同时不属于B .所以4个元素满足条件的选择共有62222=-⨯⨯种.换句话说,“好集对”一共有6个. 答:C.2.令)110lg(+=-x y ,则0>y ,且y x 10110=+-,11010-=-y x ,)110lg(-=-y x ,)110lg(--=y x .从而)110lg()(1--=-x x f .令t x =2,则题设方程为 )()(1t f t f -=-,即)110lg()110lg(--=+t t ,故 0)]110)(110lg[(=-+t t ,1)110)(110(=-+t t ,2102=t , 2lg 2=t , 解得2lg 212==t x . 从而 1)2(lg log )2lg 21(log 22-==x .答:A. 3. 注意 972126⨯⨯=,2,7和9两两互质. 因为 0≡A (mod2),)()()()()(005994201101001+++++++++++++++≡ A 500102101100++++≡ 2401500100÷⨯+≡)(6120300≡≡(mod9), 所以6≡A (mod18). (1)又因为1103-≡,n n )1(103-≡(mod7), 所以i i i A 3400010)500(⨯-=∑=i i i )(1)500(4000-⨯-≡∑=100)101102()495496()497498()499500(+-++-+-+-≡ 6300≡=(mod7). (2)由(1),(2)两式以及7和18互质,知6≡A (mod126). 答:C.另解:632126⨯=,99999963,1109999996-=,)()(11011066--n , ,3,2,1=n .所以499500104974981010310410101102101006118811941200+⨯++⨯+⨯+⨯= A+-⨯++-⨯+-⨯+-⨯=)()()()(1104974981101031041101011021101006118811941200)(499500497498103104101102100+++++ 2200499500101102100999999÷⨯+++=)(B 60060200100999999++=B60060300999999+=B 60360999999+=C ,其中B ,C 为整数.从而6036063+=D A 663+=E ,其中D ,E 为整数.所以A 除以63的余数为6.因为A 是偶数,所以A 除以126的余数也为6. 答:C.4.易见BD AD CD ⋅=2,即ab b a =-2)(,又已知1=-b a ,故1=ab ,1)1(=-a a ,012=--a a ;1)1(=+b b ,012=++b b . 显然k u 是首项为ka ,公比为ab q -=的等比数列的前1+k 项和.故b a b a q q a u k k k k k +--=--=+++111)(1)1(, 3,2,1=k .从而ba b a b a b a u u k k k k k k +--++--=++++++22111)()(])()([11212++++----++=k k k k b b a a ba)]1()()1([111+---++=++b b a a b a k k])([12121b b a a ba k k ⋅--⋅+=++ 233])([1+++=--+=k k k ub a b a , 3,2,1=k .故答案为A.(易知其余答案均不成立)另解:易见BD AD CD⋅=2,即ab b a =-2)(,又已知1=-b a ,故1=ab ,51414)((222=⨯+=+-=+ab b a b a ),5=+b a .解得215+=a , 215-=b . 显然k u 是首项为k a ,公比为ab q -=的等比数列的前1+k 项和,故b a b a q q a u k k k k k +--=--=+++111)(1)1(])251()251[(5111++--+=k k ,,3,2,1=k .于是数列{}k u 就是斐波那契数列1,2,3,5,8,13,21,…,它满足递推关系,12k k k u u u +=++ ,3,2,1=k . 所以答案为A.5.{}n a 可看成是在正整数数列1,2,3,4,5,6,7,…中删去所有能被2,5或11整除的项之后,把余下的各项按从小至大顺序排成的数列.由三阶容斥原理,1,2,3,4,…,m 中不能被2,5或11整除的项的个数为⎥⎦⎥⎢⎣⎢-⎥⎦⎥⎢⎣⎢+⎥⎦⎥⎢⎣⎢+⎥⎦⎥⎢⎣⎢+⎥⎦⎥⎢⎣⎢-⎥⎦⎥⎢⎣⎢-⎥⎦⎥⎢⎣⎢-=1101022551152m m m m m m m m x m ,其中⎣⎦a 不表示不大于a 的最大整数,即a 的整数部分.估值:设11010225511522007m m m m m m m m x m -+++---≈=)1111)(511)(211(---⨯=m 11105421⨯⨯⨯=m m 114=,故 55194112007≈⨯≈m . 又因为⎥⎦⎥⎢⎣⎢-⎥⎦⎥⎢⎣⎢+⎥⎦⎥⎢⎣⎢+⎥⎦⎥⎢⎣⎢+⎥⎦⎥⎢⎣⎢-⎥⎦⎥⎢⎣⎢-⎥⎦⎥⎢⎣⎢-=1105519105519225519555519115519555192551955195519x=5519-2759-1103-501+100+250+551-50=2007,并且5519不是2,5,11的倍数,从而知55192007=a. 答:B.又解:{}n a 可看成是在正整数数列1,2,3,4,5,6,7,…中删去所有能被2,5 或11整除的项之后,把余下的各项按从小至大顺序排成的数列.因为2,5,11是质数,它们的最小公倍数为110.易见,-54,-53,…,0,1,2,3,…,55中不能被2,5,11整除的数为,,;,,,17139731±±±±±±,;2119±± ;,,292723±±±,,,;,,474341393731±±±±±±535149±±±,;,共40个.(或由欧拉公式,1,2,3,…,110中不能被2,5,11整除的数的个数,等于1,2,3,…,110中与110互质的数的个数,等于401111511211110110=-⨯-⨯-⨯=∅)()()()(.) 显然1,2,3,…中每连续110个整数,不能被2,5,11整除的数都有40个.所以,1,2,3,…,550050110=⨯中,不能被2,5,11整除的数有20005040=⨯个.大于5500中的数不能被2,5,11整除的,是5500+1,5500+3,5500+7,5500+9,5500+13,5500+17,5500+19,….所以5519是第2007个不能被2,5,11整除的数,亦即所求的55192007=a . 答:B .6.显然 287cos 127cos 123cos 12++++++=A5.43cos 5.5cos 5.3cos 5.1cos ++++=;287cos 127cos 123cos 12-++-+-=B5.43sin 5.5sin 5.3sin 5.1sin ++++=.注意到 )1sin()1sin(1sin cos 2 --+=θθθ, )1cos()1cos(1sin sin 2 +--=θθθ,所以+-+-+-=⨯)5.4sin 5.6(sin )5.2sin 5.4(sin )5.0sin 5.2(sin 21sin 2A)5.42sin 5.44(sin -+22sin 5.22cos 25.0sin 5.44sin =-=,+-+-+-=⨯)5.6cos 5.4(cos )5.4cos 5.2(cos )5.2cos 5.0(cos 21sin 2B)5.44cos 5.42(cos -+ 22sin 5.22sin 25.44cos 5.0cos =-=. 故5.22cot )22sin 5.22sin 2(:)22sin 5.22cos 2()21sin 2(:)21sin 2(:==⨯⨯=BAB A12+=. 答:D. 另解:2A00005.43cos 5.5cos 5.3cos 5.1cos +++++= , 2B5.43sin 5.5sin 5.3sin 5.1sin ++++=, ++++=+)5.3sin 5.3(cos )5.1sin 5.1(cos 22i i Bi A)5.43sin 5.43(cos i ++∑=++=210)2sin 2(cos )5.1sin 5.1(cos k k i i)2sin 2(cos 1)2sin 2(cos 1)5.1sin 5.1(cos 22i i i +-+-+= )2sin 2(cos 1)44sin 44(cos 1)5.1sin 5.1(cosi i i +-+-+=1cos 1sin 21sin 222cos 22sin 222sin 2)5.1sin 5.1(cos 22i i i --+=)1sin 1)(cos 1sin 2()22sin 22)(cos 22sin 2)(5.1sin 5.1(cos i i i i i +-+-+= =)5.22sin 5.22(cos 1sin 22sin i +. 因为2A 和2B 是实数,所以 1sin 5.22cos 22sin 2=A ,1sin 5.22sin 22sin 2=B ,122222222145sin 45cos 15.22cos 5.22sin 25.22cos 25.22sin 5.22cos 2:2:2+=+=+=+====BAB A .答:D.二、填空题(满分54分,每小题9分)7.解:设△ABC 三边长c b a ,,为整数,c b a c b a c b a ,,,,60≥≥=++成等差数列,A ∠为钝角,则必有c a b +=2,222a c b <+. 易解得b b bc a b c b a 32)(60=+=++=++=,40,20=+=c a b ;222c a b -<))((c a c a -+=,即c a c a -<-<10),(40202.因此a a c a c a <=-++<25,2)()(50,即26≥a .另外,29,30,260,≤<=+>++=>+a a a a a c b a a c b .易检验),,(c b a)11,20,29(),12,20,28(),13,20,27(),14,20,26(=都是钝角三角形.答:4. 8.注意到22-=x ,22+=y 满足4)22()22(22=++-=+y x ,0,>y x ,故可令θcos 2=x ,θsin 2=y ,0<θ<2π.从而22cos 42-=θ,-2cos 422-=θ,-θπθ2cos 43cos 1cos 2222==-=,故83πθ=,83cos )83sin 83(cos πππn i a n n =+=+ 83sin πn i . n a 取实数,当且仅当083sin =πn ,当且仅当k n 8=,∈k Z.满足此条件且2007≥n 的最小正整数n 为2008,此时1753cos 820083cos2008-====ππx a a n . 答:-1.9.易见奇异数有两类:第一类是质数的立方3p (p 是质数);第二类是两个不同质数的乘积21p p (21,p p 为不同的质数).由定义可得3327=是奇异数(第一类); 73242⨯⨯=不是奇异数;23369⨯=是奇异数(第二类); 373111⨯=是奇异数(第二类); 35125=是奇异数(第一类);137是质数,不是奇异数;37343=是奇异数(第一类);221301900899-=-=)(130+=2931130⨯=-)(是奇异数(第二类);)(16016013600359922+=-=-=5961160⨯=-)(是奇异数(第二类);42119)12020)(120(120180007999233⨯=++-=-=-=是奇异数(第二类).答:8.10. 解:将向量1AA ,AB ,AD 分别记为a ,b ,c .则2==a3==b4==c ,且易见c b a AC ++=1,cb a C A ++-=1,cb a BD +-=1,c b a DB -+=1.)(2)(2222a c c b b a c b a c b a ⋅+⋅+⋅+++=++=022260cos )(2ca bc ab c b a +++++=ca bc ab c b a +++++=222244332432222⨯+⨯+⨯+++==55,故551=AC . 类似地,可算得,191=BD ,151=DB ,271=CA =33.答:55,19,15,33.11.令t x =-3,易见3+=t x ,323)3(232)(+=-+=-=t t x x f ,)32(2)()2(+=t x f 3-32)(,,32)(2+=+=t x f t n n ;令sy =+1,易见1-=s y ,2)1(323)(+-=+=s y y g 13-=s , ,132)13(3)(2)2(-=+-=s s y g ,13)()(-=s y g n n , ,3,2,1=n .因此,题设方程组可化为⎪⎩⎪⎨⎧-+=+--+=+--+=+-)3.(1)1(33)3(2)2(,1)1(33)3(2)1(,1)1(33)3(2696969x z z y y x (1)-(2),(2)-(3),(3)-(1)得⎪⎩⎪⎨⎧-=--=--=-)6).((3)(2)5(),(3)(2)4(),(3)(2696969y x x z x z z y z y y x 所以)()23()()23()(2339629696y x x z z y y x -=-=-=-⇒00=-⇒=-z y y x z y x ==⇒.代入(1)得1)1(33)3(269-+=+-x x ,1)1(7293)3(512-+=+-x x ,7287291533512+=-x x ,2261217=-x ,32331=-x ,31323-=x . 所以原方程组的解为31323-===z y x . 答:31323-===z y x . 12.以lT V -表示平面图形T 绕直线l 所得旋转体体积.记直线AC 为l ,作l DN BM ⊥,,交l 于F E ,,分别交CD ,AB 于N M ,.过O 作l PQ ⊥,分别交CD AB ,于Q P ,.由于O 是BD的中点,所以Q P ,分别是DM BN ,的中点.由对称性,易见所求旋转体体积为)(2l NPQD l ADN l ABCD V V V V --∆-+==平行四边形平行四边形.由于2324===AD BD AB ,,,易见 3090=∠=∠DBA ADB ,,73422=+=+=DO AD AO ,72=AC .显然CAB DCA DAC ∠=∠>∠,FN DF >.且21727322==⨯==∆AO DO AD AO S DF ADO ,74716712422==-=-=DF AD AF .从而由圆锥体积公式得ππππ749167716747123312==⨯⨯=⨯⨯⨯==-∆-∆AF DF V V l ADF l ADN .又71074147472=-=-=-=AF AC CF ,7==AO CO ,QO DF CO CF ::=, 215171021727=÷⨯=⨯=CF DF CO QO .从而由圆锥体积公式得 COQO CF DF V V V V l CQO l CDF l FOQD l NPQD ⨯⨯-⨯⨯=-==-∆-∆--223131ππ梯形平行四边形ππππ71225657122534310007)2574940(7)72521710712(3=-⨯=-=⨯-⨯=.从而17573021225105772)12256574916(72)7122565774916(2πππππ=⨯=+=+=V .答:所求体积为1757302π:13.解:I )可设l :4+=my x ,与Γ联立得03624)43(22=+++my y m .这是y 的一元二次方程,由判别式0≥∆解得42≥m .记)(11,y x A ,)(22,y x B ,则 4324221+-=+m m y y ,4336221+=m y y . 由题设条件,2121<+=⋅y y x x OB OA ,即0)4)(4(2121<+++y y my my ,得16)(4)1(21212<++++y y m y y m ,即016432444336)1(222<++-⋅++⋅+m mm m m , 即)43(424)1(9222<++-+m m m .得02532<+-m,3252>m ,253)1(2<m ,5353<<-m . 故l 的斜率的取值范围为)53,53(-.因为F (1,0),所以)(111,1y xFA --=,)(22,1y x FB -=,从而 12211221)3()3())(1()1(y my y my y x y x +++=----04324343362)(32222121=+-⋅++⋅=++=m mm m y y y my . ∴1FA 与FB 共线, 即1A 与F 、B 三点共线.III )假设4≠q ,过)0,(q Q 的直线与Γ交于A 、B ,且A 关于长轴的对称点为1A ,如果1A 、F 、B 三点共线.我们另取点)0,4(P .设直线AP 与Γ交于1B ,那么如II )的证明,1A 、F 、B 三点必共线.故B 与1B 重合,从而直线AB 和1AB 重合,就是AQ 与AP 重合.所以P 与Q 重合,4=q ,与假设矛盾.这就是说,4≠q 时,三点1A 、F 、B 不能共线.14.解:nn n n n x x x x x 1212121+=+=+,22211441nn n x x x++=+,)1(4112221+=-+n nn x x x , 3,2,1=n . 故 ∑∑==++=-20061220061221)1(4)11(n n n n n x x x ,亦即 80244112006122122007∑=+=-n n x x x ,由11=x得80254120061222007∑=+=n n x x .(*) 由于112121<+=+n nn x x x,,,3,2,1 =n 且显然0>n x ,故{}n x 是递减数列,且31122112=+=x x x ,11319231122223=+=+=x x x ,故 ∑∑==++=2006322200612)31(1n n n nx x15120041219911)113(911200632<⨯++=++<∑=n ,由(*)式得8629802515141802522007=+⨯<<x ,,802518629122007<<x 80251lglg 86291lg 22007<<x , 8025lg lg 28629lg 2007-<<-x ,3lg 242007-<<-x,23lg 22007-<<-x , ∴⎣⎦2lg 2007-==x k .15.证明:因为△ABC 是锐角三角形,其三边c b a ,,满足0,,>c b a ,以及222222222,,,,,c b a b a c a c b c b a b a c b c b >+>+>+>+>+>+.因此,由平均不等式可知222222222222)()()(z c b a y b a c x a c b -++-++-+)()(21)()(21)()(21222222222222222222222222xy y x z c b a z x x z y b a c y z z y x a c b +-+++-+++-+≤222222222222zy x c y x z b x z y a ++=)(2)(2222abz cay bcx z cxy y bzx x ayz ++-++=, 从而22222222222)(])[(])[(])[(P zcxy y bzx x ayz z c b a y b a c x a c b =++≤-++-++-+, 亦即2)(P S c b a ≤++,cb a P S ++≤2.上式取等式当且仅当222z y x==,亦即===z y x cb a P++.因此所求的S 的最大值为cb a P ++2,当S 取最大值时,===z y xP.(第13题答图)(第10题答图) (第12题答图)2008参考答案(网友解答,不排除有错) 1D 2D 3B 4A (B )5C 6D 7.mnC 8.(9.错题 10.1411.320x y ++= 12.1338 13.()()()()8210,1,20,315515P P P P ηηηη======== 14.思路:先用反证法证明存在N ,使1Na N ≤+;接着用数学归纳法证n N ≤时,21nn a n -≤≤+;最后 证n N ≥时,11n n n a a a +≤≤+,这样即一切自然数()N m m a ≥都在数列{}n a 中,结论正确。