古扎拉蒂-经济计量学习题答案

合集下载

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(多元回归分析:推断问题)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(多元回归分析:推断问题)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(多元回归分析:推断问题)【圣才出品】第8章多元回归分析:推断问题8.1 复习笔记考点一:再议正态性假定★当回归模型的参数用于估计和推断两个方面时,还需要假定u i服从正态性假定,即:u i~N(0,σ2)。

在三变量模型中,偏回归系数的OLS估计量与ML估计量一致,是最优线性无偏估计量(BLUE)。

参数估计量也是正态分布的,且(n-3)(σ∧2/σ2)~χ2(n-3)。

参数的t值均服从自由度为n-3的t分布。

t分布可用于构造置信区间并进行假设检验。

χ2分布可用于检验关于真实σ2的假设。

考点二:多元回归中的假设检验的多种形式★1.检验个别偏回归系数的假设。

2.检验估计的多元回归模型的总体显著性,即判别全部偏斜率系数是否同时为零。

3.检验两个或多个系数是否相等。

4.检验偏回归系数是否满足某种约束条件。

5.检验所估计的回归模型在时间上或在不同横截面单元上的稳定性。

6.检验回归模型的函数形式是否正确。

考点三:检验关于个别偏回归系数的假设★★t检验的程序是基于随机误差项u i服从正态分布的假定。

检验方法:给定一个特定的显著性水平α,当t值超过临界值tα/2(df),则拒绝原假设。

或使用p值判断,当p足够小,则拒绝原假设。

参数β∧2的(1-α)置信区间为:(β∧2-tα/2se(β∧2),β∧2+tα/2se(β∧2))。

由于不能直接观测u i,所以利用代理变量u∧i,即残差。

残差的正态性可进行雅克-贝拉(JB)检验(大样本检验)。

考点四:检验样本回归的总体显著性★★★★★1.总体显著性检验(1)定义总体显著性检验的原假设为:H0:β2=β3=0。

也就是检验Y是否与X2和X3存在线性关系。

(2)总体显著性检验与个别显著性检验检验个别显著性时,隐含地假定每一个显著性检验都是根据一个不同的(即独立的)样本进行的。

如果用同一样本数据去进行联合检验,就违反了检验方法所依据的基本假定。

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解
3.经济统计学的问题,主要是收集、加工并通过图表的形式来展现经济数据。但是,经济统计学家不考虑怎样利用所收集来的数据去检验经济理论。
三、计量经济学方法论
大致说来,传统的计量经济学方法论按如下路线进行:
1.理论或假说的陈述;
2.理论的数学模型设定;
3.统计或计量经济模型设定;
4.获取数据;
5.计量经济模型的参数估计;
理论计量经济学是要找出适当的方法,去测度由计量经济模型设定的经济关系。为此,计量经济学家非常依赖于数理统计。
在应用计量经济学中,利用理论计量经济学工具去研究经济学或管理学中的某些特殊领域。
0.2
本章没有课后习题。本章是全书的一个引言,对计量经济学这门学科作一个简要介绍。对于本章内容,学员简单了解即可。
(3)在问卷调查中,无应答的问题也可能相当严重。
(4)获取数据的抽样方法可能变化很大,要比较不同样本得来的结果常常非常困难。
(5)通常获得的经济数据都是高度加总的。
(6)由于保密性质,某些数据只能以高度加总的形式公布。
研究结果不可能比数据的质量更好。所以,如果在一定情况下,研究者发现研究的结果“不能令人满意”的话,原因不一定是误用模型,而是数据的质量不好。
4.名义尺度
此类变量不具备比率尺度变量的任何一个特征。因此适合于比率尺度变量的计量经济方法可能不适合于名义尺度变量。
1.2
1.表1-1给出了7个工业化国家的消费者价格指数(CPI)数据,以1982~1984年为该指数的基期并令1982—1984=100。
1.经济理论所作的陈述或假说大多数是定性的。计量经济学家的工作就是要提供这一数值估计。换言之,计量经济学对大多数的经济理论赋予经验内容。
2.数理经济学的主要问题,是要用数学形式(方程式)来表述经济理论,而不管该理论是否可以量化或是否能够得到实证支持。计量经济学家常常使用数理经济学家所提供的数学方程式,但要把这些方程式改造成适合于经验检验的形式。这种从数学方程到计量经济方程的转换需要有许多的创造性和实际技巧。

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解
-0.08
1.78
1.83
5.37
3.36
1996
2.95
1.59
0.08
2.02
1.50
3.87
2.46
1997
2.29
1.63
1.84
1.19
1.70
1.75
3.12
1998
1.56
6
0.58
0.65
0.94
3.15
3.46
1999
2.21
1.71
-0.33
0.52
0.65
1.66
1.52
4.教材图1-5背后的M1货币供给数据由表1-4给出。你能给出货币供给在表中所示时期上升的原因吗?
表1-4经季节调整的M1供给:1959年1月~1999年7月(单位:十亿美元)
资料来源:Board of Governors,Federal Reserve Bank,USA.
答:随着GDP的增加,自然而然就需要更多的货币为增加的产出提供资金支持。美国GDP是逐年增加的,因此货币供给量也相应地逐年增长。
d.哪个国家的通货膨胀率波动最大?你能给出什么样的解释呢?
答:a.通货膨胀率等于当年的CPI减去上一年度的CPI,再除以上一年度的CPI,然后乘以100。因此这些国家的通货膨胀率(%)如表1-2所示,它们是从1981年开始的年度数据。
表1-2
年份
美国
加拿大
日本
法国
德国
意大利
英国
1981
10.32
12.48
(2)横截面数据:横截面数据指对一个或多个变量在同一时间点上收集的数据。当统计分析包含有异质的单位时,必须考虑尺度或规模效应以避免造成混乱。

计量经济学古扎拉蒂课后答案

计量经济学古扎拉蒂课后答案

计量经济学古扎拉蒂课后答案【篇一:计量经济学考试习题及答案】双对数模型 lny?ln?0??1lnx??中,参数?1的含义是()a.y关于x的增长率b.y关于x的发展速度c. y关于x的弹性d. y关于x 的边际变化2、设k为回归模型中的参数个数,n为样本容量。

则对多元线性回归方程进行显著性检验时,所用的f统计量可表示为()ess(/n?k)r2/(k?1)b. a.2rss(/k?1)(1?r)(/n?k)ess(/k?1)r2(/n-k)d.c. tss(/n?k)(1?r2)(/k?1)3、回归模型中具有异方差性时,仍用ols估计模型,则以下说法正确的是()a. 参数估计值是无偏非有效的b. 参数估计量仍具有最小方差性c. 常用f 检验失效d. 参数估计量是有偏的4、利用德宾h检验自回归模型扰动项的自相关性时,下列命题正确的是()a. 德宾h检验只适用一阶自回归模型b. 德宾h检验适用任意阶的自回归模型c. 德宾h 统计量渐进服从t分布d. 德宾h检验可以用于小样本问题5、一元线性回归分析中的回归平方和ess的自由度是()a. nb. n-1c. n-kd. 16、已知样本回归模型残差的一阶自相关系数接近于1,则dw统计量近似等于( )a. 0b. 1 c. 2 d. 47、更容易产生异方差的数据为 ( )a. 时序数据b. 修匀数据c. 横截面数据d. 年度数据8、设m为货币需求量,y为收入水平,r为利率,流动性偏好函数为?2分别是?1 、?2的估计值,则根据经济理m??0??1y??2r??,又设?1、论,一般来说(a )a. ?1应为正值,?2应为负值b. ?1应为正值,?2应为正值c. ?1应为负值,?2应为负值d. ?1应为负值,?2应为正值9、以下选项中,正确地表达了序列相关的是()a.co(v?i,?j)?0,i?jb.co(v?i,?j)?0,i?j ??????????vxi,?j)?0,i?j c.cov(xi,xj)?0,i?jd.co(10、在一元线性回归模型中,样本回归方程可表示为()a. yt??0??1??tb.yt?e(yt/x)??ic. yt??0??1xtd. e(yt/xt)??0??1xt11、对于有限分布滞后模型 ???yt????0xt??1xt?1??2xt?2????kxt?k??t在一定条件下,参数?i 可近似用一个关于i的阿尔蒙多项式表示(i?0,1,2,?,m),其中多项式的阶数m必须满足() ?a.mk b.m=kc.mkd.m?k12、设?t为随机误差项,则一阶线性自相关是指()a.cov(?t,?s)?0(t?s) b. ?t???t?1??tc. ?t??1?t?1??2?t?2??td. ?t??2?t?1??t13、把反映某一总体特征的同一指标的数据,按一定的时间顺序和时间间隔排列起来,这样的数据称为()a. 横截面数据b. 时间序列数据c. 修匀数据d. 原始数据14、多元线性回归分析中,调整后的可决系数r与可决系数r2之间的关系()22n?122a.?1?(1?r) b. ?r n?k22n?k2 c. ?0 d. ?1?(1?r) n?115、goldfeld-quandt检验法可用于检验( )a.异方差性b.多重共线性c.序列相关d.设定误差16、用于检验序列相关的dw统计量的取值范围是( )a.0?dw?1b.?1?dw?1c.?2?dw?2 d.0?dw?417、如果回归模型中解释变量之间存在完全的多重共线性,则最小二乘估计量的值为()a.不确定,方差无限大b.确定,方差无限大c.不确定,方差最小d.确定,方差最小18、应用dw检验方法时应满足该方法的假定条件,下列不是其假定条件的为()a.解释变量为非随机的b.被解释变量为非随机的c.线性回归模型中不能含有滞后内生变量d.随机误差项服从一阶自回归二、多项选择题1、古典线性回归模型的普通最小二乘估计量的特性有()a. 无偏性b. 线性性c. 最小方差性d. 不一致性e. 有偏性2、如果模型中存在自相关现象,则会引起如下后果()a.参数估计值有偏b.参数估计值的方差不能正确确定c.变量的显著性检验失效d.预测精度降低e.参数估计值仍是无偏的????x的特点() ???3、利用普通最小二乘法求得的样本回归直线yt12ta. 必然通过点(,)b. 可能通过点(,)?的平均值与y?的平均值相等 c. 残差et的均值为常数 d. ytte. 残差et与解释变量xt之间有一定的相关性4、广义最小二乘法的特殊情况是()a.对模型进行对数变换 b.加权最小二乘法c.数据的结合d.广义差分法e.增加样本容量5、计量经济模型的检验一般包括内容有()a、经济意义的检验b、统计推断的检验c、计量经济学的检验d、预测检验e、对比检验三、判断题(判断下列命题正误,并说明理由)1、在实际中,一元回归几乎没什么用,因为因变量的行为不可能仅由一个解释变量来解释。

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(虚拟变量回归模型)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(虚拟变量回归模型)【圣才出品】

第9章虚拟变量回归模型9.1 复习笔记考点一:ANOVA模型★★★1.虚拟变量含义虚拟变量是指仅有0和1两个取值的变量,是一种定性变量。

一般而言,虚拟变量等于0表示变量不具有某种性质,等于1表示具有某种性质。

虚拟变量也可以放到回归模型中。

这种模型被称为方差分析(ANOVA)模型。

2.虚拟变量模型(1)虚拟变量的表达式Y i=β1+β2D2i+β3D3i+u i应看到,除了不是定量回归元而是定性或虚拟回归元(若观测值属于某特定组则取值为1,若它不属于那一组则取值0)之外,方程与前面考虑的任何一个多元回归模型都是一样的。

所有的虚拟变量都用字母D表示。

(2)使用虚拟变量的注意事项①若定性变量有m个类别,则只需引入m-1个虚拟变量,否则就会陷入虚拟变量陷阱,即完全共线性或完全多重共线性(若变量之间存在不止一个精确的关系)情形。

对每个定性变量而言,所引入的虚拟变量的个数必须比该变量的类别数少一个。

②不指定其虚拟变量的那一组被称为基组、基准组、控制组、比较组、参照组或省略组。

所有其他的组都与基准组进行比较。

③截距值(β1)代表了基准组的均值。

④附属于方程中虚拟变量的系数被称为级差截距系数,它反映取值为1的地区的截距值与基准组的截距系数之间的差别。

⑤如果定性变量不止一类,那么,基准组的选择完全取决于研究者。

⑥对于虚拟变量陷阱,如果在这种模型中不使用截距项,那么引入与变量的类别相同数量的虚拟变量就能够回避虚拟变量陷阱的问题。

因此,如果从方程中去掉截距项,并考虑如下模型Y i=β1D1i+β2D2i+β3D3i+u i由于此时没有完全共线性,所以就不会陷入虚拟变量陷阱。

但要确定做这个回归时,一定要使用回归软件包中的无截距选项。

⑦在一个含有截距的方程中,能更容易地处理是否有某个组与基准组有所不同以及有多大的不同,所以在方程中包括截距更方便。

为了检查分组是否得当,也可通过将虚拟变量的系数相对0做t检验(或者更一般地,对适当的虚拟变量系数集做一个F检验),就可以检验分类是否适当。

古扎拉蒂《计量经济学基础》第14章

古扎拉蒂《计量经济学基础》第14章

四、估计非线性回归模型的方法 1.直接搜索或试错法或不用求导的方法
这是在第三节中提到过的方法。 缺陷: a.如果回归元太多,计算会很复杂。 b.可以得到局部最小值,但不一定是绝对 最小值。 2.直接最优化 通过直接运用OLS方法,可以得到正规方程 (14.4) 和(14.5) ,然后运用最速下降法来解 出参数值。
国内外经典教材名师讲堂
古扎拉蒂《计量经济学基础》
第14章 非线性回归模型 主讲老师:李庆海
本章要点
●本质上的线性和非线性回归模型 ●线性和非线性回归模型的估计 ●估计非线性回归模型:试错法
一、本质上的线性和非线性回归模型
模型可以线性于参数,也可以线性于变量。 一开始讨论线性回归模型的时候,陈述过 本书所关心的基本上是线性于参数的模型。 如果一个模型非线性于参数,那么它就是 非线性回归模型。 然而,这里必须小心,有些模型可能看起 来非线性于参数,但是通过合适的变换它们可 以变成线性于参数的回归模型。
f '(0) x 1!
f
''(0) x2 2!
a1 a2 x a3x2 R
R a4 x3
三阶近似:
Y a1 a2 x a3x2 a4 x3
问:如何在x=a,z=b处展开Y=f(x,z)?
答:
f (x, z) f (a,b) fx (a,b)(x a) fz (a,b)(z b)
1 ln(
Yi
Yi
)
1 ln(
Yi
1)
ln(e12 Xi i
)
1
2 X i
i
所以这个模型本质上是线性的。
问题:常替代弹性(CES)生产函数是不 是本质线性的?
Yi A[ Ki ( 1 )L i ] 1 (14.2)

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(定性响应回归模型)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(定性响应回归模型)【圣才出品】

第15章定性响应回归模型15.1 复习笔记考点一:定性响应模型的性质★★定性响应模型是指模型中的回归子是一个二值或二分变量的模型,通常被称为概率模型。

回归子也可以是多分响应变量或多类型响应变量。

将二值响应变量建立成概率模型的方法包括线性概率模型(LPM)、logit模型、probit模型和tobit模型。

考点二:线性概率模型(LPM)★★★★1.LPM的定义以下述回归模型为例说明:Y i=β1+β2X i+u i。

其中X表示家庭收入;Y=1,则表示该家庭拥有住房;Y=0,则该家庭不拥有住房。

该模型被称为线性概率模型,因为Y i在给定X i下的条件期望E(Y i|X i)可解释为在给定X i下事件(家庭拥有住房)发生的条件概率,即Pr(Y i=1|X i)。

2.LPM的特征令P i表示“Y i=1”(即事件发生)的概率,而1-P i表示“Y i=0”(即事件不发生)的概率,则变量Y i服从贝努利概率分布。

根据期望的定义,有:E(Y i)=0(1-P i)+1P i=P i。

此外有:E(Y i|X i)=β1+β2X i =P i,即模型的条件期望事实上可以解释为Y i的条件概率。

该模型的约束条件为:0≤E(Y i|X i)≤1。

3.LPM的问题(1)干扰项u i的非正态性若把方程写成:u i=Y i-β1-β2X i,u i的概率分布见表15-1。

表15-1 u i的概率分布可见u i服从贝努利分布而不是正态分布。

虽然干扰项不满足正态性假定,但OLS的点估计值仍具有无偏性。

此外在大样本下,OLS估计量一般都趋于正态分布,因此LPM的统计推断仍可用正态性假定下的OLS程序。

(2)干扰项的异方差性即使LPM中的干扰项满足零均值和无序列相关性假定,但也不能说它具有同方差性。

对于贝努利分布,理论上的均值和方差分别为P和P(1-P),可见方差是均值的函数,而均值的取值依赖于X的值,因此LPM中的干扰项具有异方差性。

古扎拉蒂《经济计量学精要》(第4版)笔记和课后习题详解-双变量模型:假设检验(圣才出品)

古扎拉蒂《经济计量学精要》(第4版)笔记和课后习题详解-双变量模型:假设检验(圣才出品)

第3章双变量模型:假设检验3.1 复习笔记一、古典线性回归模型古典线性回归模型假定如下:假定1:回归模型是参数线性的,但不一定是变量线性的。

回归模型形式如下:Y i=B1+B2X i+u i这个模型可以扩展到多个解释变量的情形。

假定2:解释变量X与扰动误差项u不相关。

但是,如果X是非随机的(即为固定值),则该假定自动满足。

即使X值是随机的,如果样本容量足够大,也不会对分析产生严重影响。

假定3:给定X,扰动项的期望或均值为零。

即E(u|X i)=0(3-1)假定4:u i的方差为常数,或同方差,即var(u i)=σ2(3-2)假定5:无自相关假定,即两个误差项之间不相关。

即:cov(u i,u j)=0,i≠j(3-3)无自相关假定表明误差u i是随机的。

由于假定任何两个误差项不相关,所以任何两个Y值也是不相关的,即cov(Y i,Y j)=0。

由于Y i=B1+B2X i+u i,则给定B值和X值,Y 随u的变化而变化。

因此,如果u是不相关的,则Y也是不相关的。

假定6:回归模型是正确设定的。

换句话说,实证分析的模型不存在设定偏差或设定误差。

这一假定表明,模型中包括了所有影响变量。

二、普通最小二乘估计量的方差与标准误有了上述假定就能够估计出OLS估计量的方差和标准误。

由此可知,教材式(2-16)和教材式(2-17)给出的OLS估计量是随机变量,因为其值随样本的不同而变化。

这种抽样变异性通常由估计量的方差或其标准误(方差的平方根)来度量。

教材式(2-16)和式(2-17)中OLS估计量的方差及标准误是:(3-4)(3-5)(3-6)(3-7)其中,var表示方差,se表示标准误,σ2是扰动项u i的方差。

根据同方差假定,每一个u i具有相同的方差σ2。

一旦知道了σ2,就很容易计算等式右边的项,从而求得OLS估计量的方差和标准误。

根据下式估计σ2:(3-8)其中,σ∧2是σ2的估计量,是残差平方和,是Y的真实值与估计值差的平方和,即()122212var ibiXbn xσσ==∑∑1se()b=()22222varbibxσσ==∑()2se b=22ˆ2ienσ=−∑2ie∑n -2称为自由度,可以简单地看作是独立观察值的个数。

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(自相关:误差项相关会怎么样?)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(自相关:误差项相关会怎么样?)【圣才出品】
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 12 章 自相关:误差项相关会怎么样? 12.1 复习笔记
考点一:自相关问题癿性质 ★★★ 1.定义 自相关定义为“按时间(如在时间序列数据中)戒空间(如在横截面数据中)排序癿观 测序列各成员乊间癿相关”。若存在自相关,则用符号表示为:E(uiuj)≠0(i≠j)。 2.可能模式 自相关和无自相关癿一些可能模式,如图 12-1 所示。图 12-1(a)到图 12-1(d)中, 残差项随着时间发化表现出明显癿觃律性,本期癿残差和上期癿残差存在一定癿关联性。而 图 12-1(e)则没有明显癿关联,是非自相关模式。
4.自相关出现时癿 BLUE
利用双发量模型幵假定 AR(1)过程,可以证明 β2 癿 BLUE 估计量由下式给出:
ˆ2GLS
n t2
xt xt1
yt yt1 C
n t2
xt xt1
2
其中 C 是一校正因子,在实际中可以忽略。注意下标从 t=2 发到 t=n。从而斱差是:
var ˆ2GLS

2.德宾-沃森d 检验 (1)d 统计量癿一些基本假定 ①回弻含有截距项;
斱差不相关系数和跨度期数 s 相关。
斱程表明,在 AR(1)模式下,ut 癿斱差仍是同斱差癿,但 ut 丌仁不其过去一期癿值
相关,而丏不过去几期癿值也相关。若 ρ=1,上述斱差和协斱差都没有定义。若|ρ|<1,
斱程中给出癿 AR(1)过程是平稳癿,此时残差项癿均值和斱差丌发,协斱差癿值将随着
两个误差癿时间间隑越进而越小。
3.AR(1)模式癿估计结果
回到双发量回弻模型:Yt=β1+β2Xt+ut。在 AR(1)模式下,估计量癿斱差为:
var ˆ2 AR1

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(双变量回归分析:一些基本思想)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(双变量回归分析:一些基本思想)【圣才出品】

第2章双变量回归分析:一些基本思想2.1 复习笔记考点一:总体回归函数相关概念★★★★1.条件期望函数(CEF)条件期望值E(Y|X i)是关于X i的一个函数,其中X i是X的某个给定值,用符号表示:E(Y|X i)=f(X i)。

该式也被称为条件期望函数(CEF)或总体回归函数(PRF),或简称为总体回归(PR),表明在给定X i下Y的分布的(总体)均值与X i有函数关系。

2.线性总体回归函数假定总体回归函数E(Y|X i)是系数的线性函数,表达为:E(Y|X i)=β1+β2X i。

其中β1和β2为未知但却固定的参数,称为回归系数;β1和β2也分别称为截距和斜率系数。

方程本身则称为线性总体回归函数,或简称线性总体回归。

3.“线性”的含义(1)对变量为线性Y的条件期望值是X i的线性函数。

从几何意义上说,这时回归曲线是一条直线。

(2)对参数为线性Y的条件期望E(Y|X i)是参数β的一个线性函数,X和Y都可以以任何形式存在(二次项、对数等)。

本书中所有的“线性回归”总是指对参数β为线性的一种回归(即参数只以它的一次方出现)。

4.PRF的随机设定(1)随机误差项个别的Y i围绕它的期望值的离差为:u i=Y i-E(Y|X i),其中离差u i是一个不可观测的可正可负的随机变量,称为随机干扰项或随机误差项。

解释方程Y i=E(Y|X i)+u i,给定X i水平,Y i可表示为两个成分之和:E(Y|X i)被称为系统性或确定性成分;u i为随机或非系统性成分。

(2)随机误差项的条件均值方程Y i=E(Y|X i)+u i的两边取期望,得到:E(Y i|X i)=E[E(Y|X i)|X i]+E(u i|X i)=E(Y|X i)+E(u i|X i)因为E(Y i|X i)=E(Y|X i),则E(u i|X i)=0。

5.随机干扰项的意义不将随机误差项清晰地引进模型中的原因:(1)理论的含糊性;(2)数据的欠缺;(3)核心变量与周边变量;(4)人类行为的内在随机性;(5)糟糕的替代变量;(6)节省原则;(7)错误的函数形式。

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(双变量回归模型:估计问题)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(双变量回归模型:估计问题)【圣才出品】

6.假定 6:观测次数 n 必须大亍待估计的参数个数。
7.假定 7:X 发量的性质。 (1)在一个给定的样本中,X 的叏值必须要有发异,即 var(X)是有限的正数。 (2)为了避免回归结果叐到异常观测值的支配,X 发量的叏值没有异常,即没有一个 X 值相对余观测而言过大戒过小。
3.假定 3:干扰项 ui 的均值为零,即 E(ui|Xi)=0。 此假定是所选回归模型中丌存在设定偏误的另一种表述,该假定意味着模型设定中丌存 在遗漏重要发量、包含丌必要发量和错误函数形式的情况。E(ui|Xi)=0 同时也意味着这 两个发量乊间无关,ui 是一个外生的发量。若 X 是非随机的,E(ui)=0。
Yi=β1+β2Xi+ui
由亍 PRF 无法直接观测,可通过样本回归斱程 SRF 去估计:





Yi=β1+β2Xi+ui=Yi+ui




所以:ui=Yi-Yi=Yi-β1-β2Xi。
选择残差平斱和尽可能小的 SRF,即最小化下式:




∑ui2=∑(Yi-Yi)2=∑(Yi-β1-β2Xi)2
ˆ2 n
n
Yi X i
X
2 i
Xi
Yi
n
Xi X
Yi Y
2
2
Xi
n Xi X
xi yi xi2
__
_
_
其中X和Y是 X 和 Y 的样本均值,幵且定义 xi=Xi-X和 yi=Yi-Y,可得:
ˆ1 n
X
2 i
Yi
n
X
2 i
Xi
X iYi
2
Y ˆ2 X

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(计量经济建模:模型设定与诊断检验)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(计量经济建模:模型设定与诊断检验)【圣才出品】

第13章计量经济建模:模型设定与诊断检验13.1 复习笔记考点一:模型选择准则和设定误差★★★1.模型的选择准则(1)数据容纳性;(2)与理论一致;(3)回归元的弱外生性;(4)表现出参数的不变性;(5)表现出数据的协调性;(6)模型有一定的包容性。

2.设定误差类型及解释(见表13-1)表13-1 设定误差类型及解释考点二:模型设定误差的后果★★★★1.模型拟合不足(漏掉一个有关变量)假如真实模型是:Y i=β1+β2X2i+β3X3i+u i。

但出于某种原因拟合了如下模型:Y i=α1+α2X2i+v i。

漏掉X3的后果将是:(1)如果放弃或漏掉的变量X3与变量X2两变量的相关系数r23非零,则α∧1和α∧2是有偏误且非一致的。

此时E(α∧1)≠β1,E(α∧2)≠β2,而且这种偏误不会随着样本容量的增大而消失。

(2)即使X2与X3不相关(r23=0),尽管α∧2现在是无偏的,但α∧1是有偏的。

(3)由于误差项包含了X3的信息,方差σ2将被不正确地估计。

(4)计算的α∧2的方差σ2/∑x2i2,是真实估计量β∧2的方差的一个有偏误的估计量。

(5)通常的置信区间和假设检验程序对于所估计参数的统计显著性容易导出误导性的结论。

(6)基于不正确模型做出的预测及预测(置信)区间都是不可靠的。

2.包含一个无关变量(模型拟合过度)假定:Y i=β1+β2X2i+u i是真实模型,但拟合了以下模型:Y i=α1+α2X2i+α3X3i+v i,从而导致了在模型中引入一个无关变量的设定误差。

这一设定误差将导致如下后果:(1)“不正确”模型中全部参数的OLS估计量都是无偏而又一致的,即E(α∧1)=β1,E(α∧2)=β2,和E(α∧3)=β3=0。

(2)误差方差σ2的估计是正确的。

(3)置信区间和假设检验程序仍然有效。

(4)一般地说,各个系数的估计量将是非有效的,也就是说,它们的方差一般都大于真实模型中β∧的方差。

计量经济学考试习题及答案

计量经济学考试习题及答案

四、计算题1、(练习题6.2)在研究生产中劳动所占份额的问题时,古扎拉蒂采用如下模型模型1 t t u t Y ++=10αα模型2 t t u t t Y +++=2210ααα其中,Y 为劳动投入,t 为时间。

据1949-1964年数据,对初级金属工业得到如下结果:模型1 t Y t0041.04529.0ˆ-=t = (-3.9608)R 2 = 0.5284 DW = 0.8252模型2 20005.00127.04786.0ˆt t Y t+-= t = (-3.2724)(2.7777)R 2 = 0.6629DW = 1.82其中,括号内的数字为t 统计量。

问:(1)模型1和模型2中是否有自相关;(2)如何判定自相关的存在?(3)怎样区分虚假自相关和真正的自相关。

练习题6.2参考解答:(1)模型1中有自相关,模型2中无自相关。

(2)通过DW 检验进行判断。

模型1:d L =1.077, d U =1.361, DW<d L , 因此有自相关。

模型2:d L =0.946, d U =1.543, DW>d U , 因此无自相关。

(3)如果通过改变模型的设定可以消除自相关现象,则为虚假自相关,否则为真正自相关。

2、根据某地区居民对农产品的消费y 和居民收入x 的样本资料,应用最小二乘法估计模型,估计结果如下。

3524.09123.27ˆ+=ySe=(1.8690) (0.0055)R 2=0.9966 0506.221612=∑=i i e ,DW=0.6800,F=4122.531由所给资料完成以下问题:(1) 在n=16,α=0.05的条件下,查D-W 表得临界值分别为L d =1.106,U d =1.371,试判断模型中是否存在自相关;(2) 如果模型存在自相关,求出相关系数ρˆ,并利用广义差分变换写出无自相关的广义差分模型。

因为DW=0.68<1.106,所以模型中的随机误差存在正的自相关。

经济计量学课后答案

经济计量学课后答案

经济计量学课后答案【篇一:计量经济学课后答案】计量经济学是一门什么样的学科?答:计量经济学的英文单词是econometrics,本意是“经济计量”,研究经济问题的计量方法,因此有时也译为“经济计量学”。

将econometrics译为“计量经济学”是为了强调它是现代经济学的一门分支学科,不仅要研究经济问题的计量方法,还要研究经济问题发展变化的数量规律。

可以认为,计量经济学是以经济理论为指导,以经济数据为依据,以数学、统计方法为手段,通过建立、估计、检验经济模型,揭示客观经济活动中存在的随机因果关系的一门应用经济学的分支学科。

2.计量经济学与经济理论、数学、统计学的联系和区别是什么?答:计量经济学是经济理论、数学、统计学的结合,是经济学、数学、统计学的交叉学科(或边缘学科)。

计量经济学与经济学、数学、统计学的联系主要是计量经济学对这些学科的应用。

计量经济学对经济学的应用主要体现在以下几个方面:第一,计量经济学模型的选择和确定,包括对变量和经济模型的选择,需要经济学理论提供依据和思路;第二,计量经济分析中对经济模型的修改和调整,如改变函数形式、增减变量等,需要有经济理论的指导和把握;第三,计量经济分析结果的解读和应用也需要经济理论提供基础、背景和思路。

计量经济学对统计学的应用,至少有两个重要方面:一是计量经济分析所采用的数据的收集与处理、参数的估计等,需要使用统计学的方法和技术来完成;一是参数估计值、模型的预测结果的可靠性,需要使用统计方法加以分析、判断。

计量经济学对数学的应用也是多方面的,首先,对非线性函数进行线性转化的方法和技巧,是数学在计量经济学中的应用;其次,任何的参数估计归根结底都是数学运算,较复杂的参数估计方法,或者较复杂的模型的参数估计,更需要相当的数学知识和数学运算能力,另外,在计量经济理论和方法的研究方面,需要用到许多的数学知识和原理。

计量经济学与经济学、数学、统计学的区别也很明显,经济学、数学、统计学中的任何一门学科,都不能替代计量经济学,这三门学科简单地合起来,也不能替代计量经济学。

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解关注薇公号-精研学习网-查找资料引言0.1复习笔记考点一:计量经济学概况★1计量经济学的定义计量经济学是以一定的经济理论为基础,运用数学、统计学方法,以建立经济计量模型为主要手段,定量分析研究具有随机性特性的经济变量关系的一门经济学学科。

计量经济学可定义为实际经济现象的数量分析。

这种分析基于理论与观测的并行发展,而理论与观测又通过适当的推断方法得以联系。

2研究对象和研究方法在一系列的假定条件下,计量经济学主要通过对经济数据的统计推断,研究经济定律的经验判定。

计量经济学的研究方法是,利用统计推断的理论和技术,以达到经济理论和实际测算相衔接的目的。

3计量经济学是一门单独的学科计量经济学是一门单独的学科,理由如下:(1)经济理论所作的陈述或假说大多数是定性的。

计量经济学提供了经济理论的数值估计,对大多数的经济理论赋予经验内容。

(2)数理经济学只用方程式表达经济理论,却未考虑实证检验问题。

计量经济学家对数学方程式进行改造,使其成为更适合于经验检验的形式。

(3)经济统计学主要收集、加工并通过图表的形式来展现经济数据,不考虑怎样利用所收集来的数据去检验经济理论。

计量经济学通过数据来检验经济理论。

考点二:计量经济学方法论★1计量经济学的方法论路线传统的计量经济学方法论大致按如下路线进行:(1)理论或假说的陈述;(2)理论的数学模型设定;(3)统计或计量经济模型设定;(4)获取数据;(5)计量经济模型的参数估计;(6)假设检验;(7)预报或预测;(8)利用模型进行控制或制定政策。

2计量经济学的类型计量经济学可划分为两大类:理论计量经济学和应用计量经济学。

在每一大类中按照估计方法逻辑又分为经典方法和贝叶斯方法。

理论计量经济学主要研究计量模型和计量方法,以求更精准测度由计量经济模型设定的经济关系。

应用计量经济学主要将理论计量经济学工具应用到经济学或管理学中的某些特殊领域。

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(时间序列计量经济学:一些基本概念)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(时间序列计量经济学:一些基本概念)【圣才出品】

第21章时间序列计量经济学:一些基本概念21.1 复习笔记考点一:随机过程★★★★1.定义一个随机过程就是随机变量按时间编排的集合,也称作时间序列。

如果令Y表示一个随机变量,而且是连续的,那么就记之为Y(t),但若它是离散的,则记之为Y t。

2.平稳随机过程(1)弱平稳性弱平稳过程又称协方差平稳、二阶平稳或广义随机过程,是指一个随机过程的均值和方差在时间过程上保持常数,并且在任何两时期之间的协方差值仅依赖于该两时期间的距离或滞后,而不依赖于计算这个协方差的实际时间。

(2)弱平稳性时间序列的性质均值:E(Y t)=μ;方差:var(Y t)=σ2;协方差:γk=E[(Y t-μ)(Y t+k-μ)]。

如果一个时间序列是平稳的,它的均值、方差和(各种滞后的)自协方差都是常数,不随时间变化。

(3)纯随机或白噪音过程若一个随机过程的均值为0,不变方差为σ2,而且不存在序列相关,那就称之为纯随机过程或者白噪音过程。

3.非平稳随机过程经典的例子就是随机游走模型(RWM)。

把随机游走分为两类:不带漂移的随机游走(即不存在常数项或截距项)和带漂移的随机游走(即出现常数项)。

(1)不带漂移的随机游走不带漂移的随机游走,对于Y t,有Y t=Y0+∑u t。

因此,E(Y t)=E(Y0+∑u t)=Y0。

同理,可以证明var(Y t)=tσ2。

上式表明,不带漂移的随机游走模型是一个非平稳的随机过程。

随机游走模型的特征是,随机冲击(即随机误差项)的持久性:Y t等于初始的Y0加上各期随机冲击项之和。

结果是,一个特定的冲击永远也不会消失。

若将方程写成Y t-Y t-1=ΔY t=u t,容易证明,尽管Y t是非平稳的,但其一阶差分却是平稳的。

换言之,一个随机游走时间序列的一阶差分是平稳的。

(2)带漂移的随机游走方程为:Y t=Y t-1+δ+u t,其中δ被称为漂移参数,若将上述方程写成:Y t-Y t-1=ΔY t =δ+u t。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

部分作业答案:(各题只要回答到如下程度就是满分哦)第1章 概论一、填空1. 近似,散点;2. 平均值,平均值第2章 线性回归的基础理论一、填空1. 因变量Y ,解释变量X 二、单项选择题 1-2 AB三、名词解释总体:实验所有可能结果的集合称为总体或样本空间。

样本:也叫样本点,是指总体的某个元素或某种结果。

随机实验:至少有两个可能的结果,但不确定哪一个结果会出现的某个观察或测度过程。

估计量:是指总体参数的估计方法或计算公式。

估计值:估计量的某一具体取值称为估计值。

变量线性:是指因变量的条件均值是解释变量的线性函数。

参数线性:是指因变量的条件均值是参数B 的线性函数,而变量之间不一定是线性的。

四、简述 1. 答:14世纪英国逻辑学家奥卡姆提出简单有效原理,即“如无必要,勿增实体”,亦即“切勿浪费较多东西去做用较少的东西同样可以做好的事情”。

因此,模型应尽量简化,只要不遗漏重要变量即可,即便某些变量对Y 有影响,但它们的综合影响如果是有限的,非随机的,都可以不予考虑,即归入u 中。

2. 答:对双变量回归模型而言,如果总体回归线接近于直线,可用函数表示为E(Y ︱X i )=B 1+B 2X i ,其中,B 1为截距,B 2为斜率,该函数就称为非随机总体回归函数。

它表示在给定X 的条件下,Y 分布的均值。

对双变量回归模型而言,如果总体回归线接近于直线,回归方程可表示为Y i =B 1+B 2X i +u i ,其中,B 1+B 2X i 表示在给定X 的条件下Y 分布的均值,u i 为随机误差项。

它表示真实的Y 值是如何在均值附近波动的。

对双变量回归模型而言,若样本回归线接近于直线,则非随机样本回归函数可表示为ˆi Y =b 1+b 2X i ,其中,ˆiY =总体条件均值E(Y ︱X i )的估计量,b 1=真实截距B 1的估计量,b 2=真实斜率B 2的估计量。

对双变量回归模型而言,若样本回归线接近于直线,则随机样本回归函数可表示为Y i =b 1+b 2X i +e i ,其中,b 1+b 2X i 表示总体条件均值E(Y ︱X i )的估计量,e i 表示误差项u i 的样本估计量,称为残差。

五、论述题什么是普通最小二乘法?(按教材内容回答,不必按讲义,因它太细了)答:回归分析的目的是根据SRF (样本回归函数)估计PRF (总体回归函数),普通最小二乘法是获得SRF 最主要的方法。

随机PRF (Y i =B 1+B 2X i +u i )不能直接观察,但能通过随机SRF (Y i =b 1+b 2X i +e i )估计。

由SRF 得e i =Y i -b 1-b 2X i ,而ˆi Y =b 1+b 2X i ,因此,e i =Y i -ˆiY =实际的Y i -估计的Y i 。

残差的绝对值越小,表示SRF 与PRF 越靠近,即估计越好。

残差的平方和最小即可表示SRF 与PRF越靠近,用数学公式表示为:2i Min e ∑2ˆ()i iMin Y Y =-∑212()i i Min Y b b X =--∑。

该式中,X 和Y 可由观测得到,2i e ∑是b 1和b 2的函数。

因此,2i Min e ∑等价于2i e ∑分别对b 1和b 2求偏导等于0。

由此,得到:12ii Ynb b X =+∑∑212i ii i Y Xb X b X =+∑∑∑其中,n 为样本容量。

此联立方程称为最小二乘正规方程。

求解正规方程得到:12b Y b X =- 22222()()()i iiii i iiix y X X Y Y X Y nXYb x X X X nX---===--∑∑∑∑∑∑其中,样本截距b 1是总体截距B 1的估计量,样本斜率b 2是总体斜率B 2的估计量。

x i ,y i 表示变量与其相应均值的离差,即x i =X i -X ,y i =Y i -Y 。

第3章 常用概率分布一、填空1. 正态;倒扣的钟形2. 随机抽样(或随机样本);独立同分布3. 正态分布;正态分布4. N(0,1);n-1;学生t 分布5. χ26. χ2 二、单项选择题 1-5 DCBAC 三、名词解释概率密度函数:是指连续型随机变量在某一特定范围或区域内的概率。

期望:是随机变量的可能取值的加权平均,权重为各可能取值的概率。

换言之,随机变量的期望就是该变量可能取值与其对应概率之积的加总。

方差:等于随机变量与均值之差的平方的期望,即var(X)=2x σ=E(X-μx )2,其中,μx =E(X)。

方差表明随机变量X 的取值与均值的偏离程度。

自由度:是指计算统计量(如样本均值或方差)时独立观察值的个数。

第4章 统计推断的基本理论一、填空1. 估计,假设检验2. 固定值,随机变量 二、单项选择题 1 B三、名词解释统计推断:是指根据来自总体的某个随机样本,对总体的某些特征作出推论。

抽样误差:因样本不同而导致估计值的差异叫做抽样变异或抽样误差。

估计:概率分布函数的性质由其参数决定,通常根据样本估计总体参数,假设样本容量为n 的随机样本来自服从某概率的总体,用样本均值作为总体均值的估计量,样本方差作为总体方差的估计量,这个过程称为估计。

BLUE:最优线性无偏估计量。

如果一个估计量是线性的和无偏的,并且,在所有无偏估计量中,它的方差最小,则称它是最优线性无偏估计量。

一致估计量:如果随着样本容量的增加,估计量接近参数的真实值,则称该估计量为一致估计量。

p值:即概率值,定义为拒绝零假设最低的显著水平,又称为统计量的精确显著水平。

第5章回归的假设检验一、填空题1. 无自相关,正的自相关,负的自相关2. 0,σ2,正态分布,中心极限二、单项选择题1-3 ADB三、名词解释高斯-马尔柯夫定理:如果满足经典线性回归模型的基本假定,则在所有线性估计量中,OLS 估计量具有最小方差性,即OLS估计量是最优线性无偏估计量(BLUE)。

残差直方图:是用于推断随机变量概率密度函数(PDF)形状的一种简单图形工具。

在横轴上,把变量值(如OLS残差)划分为若干适当的区间,在每个区间上,建立高度与观察值个数即频率相一致的长方形。

第6章多元回归模型一、填空1. 大于,t,大于二、单项选择题1-3. CBD三、名词解释方差分析:对因变量Y的总变异TSS的各组成部分进行分析的过程称为方差分析。

受限最小二乘法:采用OLS法估计受限模型就称为受限最小二乘法。

非受限最小二乘法:采用OLS法估计未受限模型就称为非受限最小二乘法。

四、简答题1. 三变量总体回归函数E(Y t)=B1+B2X2t+B3X3t中,B2和B3称为偏回归系数,也称为偏斜率系数。

它们的含义:B2度量了在X3保持不变的情况下,X2单位变动引起Y的均值E(Y)的变化量。

同样地,B3度量了在X2保持不变的情况下,X3单位变动引起Y的均值E(Y)的变化量。

五、分析题根据表1,可得出以下几点结论:R和F值都为0,并且截距等于因变量的均值。

(1)当仅对截距回归时,R2,2R大于模型1的,(2)当价格对截距和年代回归时,年代变量的t=5.8457>1,模型2的2因此,应增加该变量。

(3)当价格对截距和人数回归时,人数变量的t=2.3455>1,模型3的2R 大于模型1的,因此,应增加该变量。

(4)当价格对截距、年代和人数回归时,年代变量的t=13.9653>1,人数变量的t=9.7437>1。

模型4的2R 既大于模型2的,也大于模型3的,因此,应该采用两个解释变量的模型。

(5)模型2中,年代变量的t 值的平方等于模型的F 值;模型3中,人数变量的t 值的平方等于模型的F 值。

一般地,对于双变量模型,斜率系数的t 值与模型的F 值有如下关系:21,k k t F = (1)其中,k 为自由度,k=n-2,n 为观察值个数。

(6)对于多元回归模型,t 与F 之间则不存在等式(1)。

第7章 回归模型的函数形式一、单项选择题 1-2. DA二、名词解释不变弹性模型:双对数模型最简单的PRF 形式为:lnY i =B 1+B 2lnX i +u i ,由于斜率系数2dY XB dX Y=⋅,是Y 对X 的点弹性。

与其他点弹性值随X 而变化不同,该值是个常数,因此,双对数模型又称为不变弹性模型。

半对数模型:模型的因变量和解释变量一个是线性一个是对数形式,包括两种形式:一是对数—线性模型,最简单的PRF 形式为:lnY t =B 1+B 2t+u t ;二是线性—对数模型,最简单的PRF 形式为:Y t =B 1+B 2lnX t +u t 。

增长率模型:对数—线性模型最简单的PRF 形式为:lnY t =B 1+B 2t+u t ,斜率系数2Y B t =的变化率的变化量,可表示增长率,因此对数—线性模型又称为增长率模型。

倒数模型:形如Y i =B 1+B 21i X +u i 的模型称为倒数模型,随着X 的无限增大,1X趋近于0,Y 的期望趋近于B 1。

三、简答题1. 考虑如下三变量对数线性模型:lnY i =B 1+B 2lnX 2i +B 3lnX 3i +u i其中,偏斜率系数B 2和B 3又称为偏弹性系数。

因此,B 2度量了X 3不变条件下,Y 对X 2的弹性,即在X 3为常数时,X 2变动1%,引起Y 变化的百分数。

由于X 3的影响保持不变,所以称此弹性为偏弹性。

类似地,B 3度量了X 2不变条件下Y 对X 3的偏弹性。

总之,在多元对数线性模型中,每一个偏斜率系数都度量了在其他变量保持不变的条件下,因变量对某解释变量的偏弹性。

第8章 虚拟变量回归模型一、填空题1. B 1;B 1+B 2;差别截距系数二、名词解释ANOV A模型:方差分析模型,是指解释变量仅包括虚拟变量的回归模型。

ANCOV A模型:协方差分析模型,是指回归中既有定性,又有定量解释变量的模型。

三、简答题1. 虚拟变量个数选择遵循的原则:如果模型有截距项B1,且定性变量有m种分类,则需引入m-1个虚拟变量。

如果违背上述原则,如选择m个虚拟变量,则将陷入虚拟变量陷阱,即虚拟变量之间存在完全共线性。

凡是讲过的内容(含附录),都属于考试范围。

第1章一、填空1. 拟合即( )的意思,拟合直线是指直线对( )的近似。

2. 回归一词的使用始于高尔顿对人体身高的研究。

他发现一个规律:父母高,子女也高;父母矮,子女也矮。

当父母身高既定时,子女的身高趋向于或“回归”到身高相同父母的全部子女的( )。

简记为,回归即指回归到( )。

第2章一、填空1. 总体回归线代表( )与( )的变动关系。

二、单项选择题1. 下列函数中,哪个是参数线性但非变量线性的函数?A. E(Y)=B 1+B 22i XB. E(Y ︱X i )=B 1+B 2X iC. Y i =B 1+B 2X i +u iD. ˆiY =b 1+b 2X i 2. 下列函数中,哪个是变量线性但非参数线性的函数?A. E(Y)=B 1+B 21iX B. E(Y)=B 1+22B X i C. E(Y ︱X i )=B 1+B 2X i D. ˆi Y =b 1+b 2X i 三、名词解释总体;样本;随机实验;估计量;估计值;变量线性;参数线性 四、简述1. 奥卡姆剃刀原则如何应用到模型设定中?2. 什么是非随机总体回归函数?什么是随机总体回归函数?什么是非随机样本回归函数?什么是随机样本回归函数? 五、论述题什么是普通最小二乘法?(按教材内容回答,不必按讲义,因它太细了)第3章一、填空1. 如果连续随机变量的概率密度函数(PDF )有如下形式:221())2x μσ--⋅, (-∞<x<∞) 其中,μ和σ2分别是分布的均值和方差,那么该变量被称为是( )分布的,其图形呈( )。

相关文档
最新文档