气体放电管在浪涌抑制电路的应用

合集下载

气体放电管和压敏电阻组合构成的抑制电路原理

气体放电管和压敏电阻组合构成的抑制电路原理

气体放电管和压敏电阻组合构成的抑制电路原理上传者:dolphin由于压敏电阻(VDR)具有较大的寄生电容,用在交流电源系统,会产生可观的泄漏电流,性能较差的压敏电阻使用一段时间后,因泄漏电流变大可能会发热自爆。

为解决这一问题在压敏电阻之间串入气体放电管。

图1 中,将压敏电阻与气体放电管串联,由于气体放电管寄生电容很小,可使串联支路的总电容减至几个pF。

在这个支路中,气体放电管将起一个开关作用,没有暂态电压时,它能将压敏电阻与系统隔开,使压敏电阻几乎无泄漏电流。

但这又带来了缺点就是反应时间为各器件的反应时间之和。

例如压敏电阻的反应时间为25ns,气体放电管的反应时间为100ns,则图2 的R2、G、R3 的反应时间为150ns,为改善反应时间加入R1 压敏电阻,这样可使反应时间为25ns。

金属氧化物压敏电阻(MOV)的电压-电流特性见图3,金属氧化物压敏电阻(MOV)特性参数见表1。

气体放电管(GDT)的电压-电流特性见图4,气体放电管(GDT)特性参数见表2。

金属氧化物压敏电阻(MOV)特性参数由于浪涌干扰所致,一旦加在气体放电管两端的电压超过火花放电电压(图4 的u1)时,放电管内部气体被电离,放电管开始放电。

放电管端的压降迅速下降至辉光放电电压(图4 的u2)(u2 在表2 中的数值为140V 或180V,与管子本身的特性有关),管内电流开始升高。

随着放电电流的进一步增大,放电管便进入弧光放电状态。

在这种状态下,管子两端电压(弧光电压)跌得很低(图4的u3)(u3 在表2 中数值为15V 或20V,与管子本身的特性有关),且弧光电压在相当宽的电流变动范围(从图4 的i1→i2 过程中)内保持稳定。

因此,外界的高电压浪涌干扰,由于气体放电管的放电作用,被化解成了低电压和大电流的受保护情况(u3 和i2),且这个电流(从图4 的i2→i3)经由气体放电管本身流回到干扰源里,免除了干扰对灯具可能带来的危害。

气体放电管作用

气体放电管作用

气体放电管作用
气体放电管的作用是什么?在电路中,气体放电管起到一个缓冲的作用,电路中有很多电子元件,如二极管、三极管等。

当电子元件工作时,他们之间会产生高频电流,产生的热量会使电子元件的内部温度上升,从而使电路出现故障。

当气体放电管的两端电压为零时,它会把高频电流泄放掉,这样就不会产生过高的温度,从而保护了电路中的元件。

气体放电管主要是用在交流220V的电源电压超过5V时,为了防止二极管击穿而采用的一种保护器件。

在我们日常生活中,也经常用到气体放电管,比如电视机、录像机、收音机等电子设备中。

当电子设备中发生短路时,气体放电管就会把电源中的浪涌电流泄放掉。

这样就不会产生过高的温度而损坏元件。

当我们在使用电视机时,有时会出现雪花屏或者图像模糊等现象,这是因为电视机发射管的栅极被氧化了,虽然也叫“栅极”,但它没有金属氧化层。

电视画面中出现雪花和模糊现象时,是因为显像管本身故障导致电压过高而损坏了显像管。

—— 1 —1 —。

浪涌防护电路设计

浪涌防护电路设计

浪涌防护电路设计一、引言浪涌防护电路是指在电路中采用一定的电气或电子技术手段,以保护设备免受突发的、短暂的高电压脉冲的影响,从而保证设备的正常工作。

浪涌防护电路设计是现代电子技术中非常重要的一部分,因为在工业生产和日常生活中,各种突发事件都有可能导致电网中出现高压脉冲,如果没有浪涌防护措施,就会对设备造成不可逆转的损害。

二、浪涌现象及其影响1.浪涌现象浪涌是指突发的、短暂的高压脉冲,通常由雷击、开关操作、线路故障等原因引起。

在实际应用中,由于各种原因导致的高压脉冲可能会以不同形式进入电子设备内部。

2.影响当高压脉冲进入设备内部时,就会对设备产生不同程度的影响。

例如:(1)直接损坏器件:当高压脉冲达到一定程度时,可能会直接击穿器件内部的绝缘层,导致器件损坏。

(2)降低器件寿命:即使高压脉冲没有直接击穿器件,也会在器件内部产生热量,从而使器件温度升高,进而缩短器件的寿命。

(3)引起系统故障:高压脉冲可能会干扰设备内部的信号传输,从而引起系统故障。

三、浪涌防护电路设计原则1.选择合适的防护元件在浪涌防护电路中,选择合适的防护元件非常重要。

一般来说,常用的浪涌防护元件有气体放电管、金属氧化物压敏电阻、二极管等。

不同类型的防护元件具有不同的特点和应用范围,在选择时需要根据实际情况进行考虑。

2.合理布局在电路设计中,合理布局也是非常重要的一点。

例如,在PCB板上布局时,需要将输入端和输出端分开布置,并尽量减少线路长度和环形线路等因素对信号稳定性造成影响。

3.保证接地良好良好的接地是保证浪涌防护电路有效的关键。

在电路设计中,需要保证接地点的数量充足,并尽量减小接地电阻,从而提高接地效果。

四、浪涌防护电路设计实例以下是一种简单的浪涌防护电路设计实例:1.选择合适的防护元件在本例中,选择了气体放电管作为浪涌防护元件。

气体放电管具有响应速度快、容量大、寿命长等优点,在浪涌防护中得到了广泛应用。

2.合理布局在PCB板上,将输入端和输出端分开布置,并采用短线连接,避免环形线路对信号稳定性造成影响。

常见防雷(surge,lighting)器件(TVS,压敏电阻,气体放电管,固体放电管,SPD)应用

常见防雷(surge,lighting)器件(TVS,压敏电阻,气体放电管,固体放电管,SPD)应用

常见防雷(surge,lighting)器件(TVS,压敏电阻,气体放电管,固体放电管,SP D)应用TVS瞬态干扰抑制器性能与应用瞬态干扰瞬态干扰指交流电网上出现的浪涌电压、振铃电压、火花放电等瞬间干扰信号,其特点是作用时间极短,但电压幅度高、瞬态能量大。

瞬态干扰会造成控制系统的电源电压的波动;当瞬态电压叠加在控制系统的输入电压上,使输入控制系统的电压超过系统内部器件的极限电压时,便会损坏控制系统内部的设备,因此必须采用抑制措施。

硅瞬变吸收二极管硅瞬变吸收二极管的工作有点象普通的稳压管,是箝位型的干扰吸收器件;其应用是与被保护设备并联使用。

硅瞬变电压吸收二极管具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力,及极多的电压档次。

可用于保护设备或电路免受静电、电感性负载切换时产生的瞬变电压,以及感应雷所产生的过电压。

TVS管有单方向(单个二极管)和双方向(两个背对背连接的二极管)两种,它们的主要参数是击穿电压、漏电流和电容。

使用中TVS管的击穿电压要比被保护电路工作电压高10%左右,以防止因线路工作电压接近TVS击穿电压,使TVS漏电流影响电路正常工作;也避免因环境温度变化导致TVS管击穿电压落入线路正常工作电压的范围。

TVS管有多种封装形式,如轴向引线产品可用在电源馈线上;双列直插的和表面贴装的适合于在印刷板上作为逻辑电路、I/O总线及数据总线的保护。

TVS的特性TVS的电路符号和普通的稳压管相同。

其电压-电流特性曲线如图1所示。

其正向特性与普通二极管相同,反向特性为典型的PN结雪崩器件。

图2是TVS的电流-时间和电压-时间曲线。

在浪涌电压的作用下,TVS两极间的电压由额定反向关断电压VWM上升到击穿电压VBR,而被击穿。

随着击穿电流的出现,流过TVS的电流将达到峰值脉冲电流IPP,同时在其两端的电压被箝位到预定的最大箝位电压VC以下。

其后,随着脉冲电流按指数衰减,TVS两极间的电压也不断下降,最后恢复到初态,这就是TVS抑制可能出现的浪涌脉冲功率,保护电子元器件的过程。

气体放电管: 应用说明

气体放电管: 应用说明

气体放电管:
应用说明 兴勤电子工业股份有限公司 1 2006.09
应用
A. 高频信号保护
a. 电话机﹐传真机﹐调制解调器等用户终端设备的保护
一旦有瞬时过电压产生﹐气体放电管通过把浪涌电流向地导通的方式来保护通讯终端设备中容易受到破坏的元件。

b . 信号线保护
通常﹐信号线路运行时没有接地﹐将一个二极放电管并接在被保护设备前的两条信号线之间﹐可以在差模浪涌对设备造成任何损坏之前进行保护。

c . 有线电视/同轴电缆/视频系统的保护
因为气体放电管的自身电容非常低﹐在高频状态下不会对系统造成干扰﹐所以特别适合在高频领域使用﹐像有线电视﹐视频系统﹐同轴电缆和阴极射线管的保护等等。

B. 交流线路保护
气体放电管与压敏电阻结合使用﹐对于防止各种设备免受电网所感应的瞬时过电压的损坏提拱了一个理想的解决方案。

(图.1)
(图.2)
被保护装置。

浪涌电流及浪涌抑制器分类及主要技术详解

浪涌电流及浪涌抑制器分类及主要技术详解

浪涌电流及浪涌抑制器分类及主要技术详解【电源网】浪涌电流指电源接通瞬间,流入电源设备的峰值电流。

由于输入滤波电容迅速充电,所以该峰值电流远远大于稳态输入电流。

电源应该限制AC开关、整流桥、保险丝、EMI滤波器件能承受的浪涌水平。

反复开关环路,AC输入电压不应损坏电源或者导致保险丝烧断。

浪涌电流也指由于电路异常情况引起的使结温超过额定结温的不重复性最大正向过载电流。

 浪涌抑制器的分类 1.放电间隙(又称保护间隙): 它一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。

这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点是灭弧性能差。

改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上升作用而使电弧熄灭的。

 2.气体放电管: 它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。

为了提高放电管的触发概率,在放电管内还有助触发剂。

这种充气放电管有二极型的,也有三极型的,气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频而授电流In;冲击而授电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF)气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压)在交流条件下使用:U。

气体放电管的作用

气体放电管的作用

气体放电管的作用
气体放电管
气体放电管是一种间隙型的防雷保护组件,它在通信系统的防雷保护中已获得了广泛的应用。

放电管常用于多级保护电路中的第一级或前两级,起泄放雷电瞬时过电流和限制过电压作用,由于放电管的极间绝缘电阻很大,寄生电容很小,对高频信号线路的雷电防护有明硅的优势。

放电管保护特性的主要不足之处在于其放电时延较大,动作灵敏度不够理想,对于波头上升陡度较大的雷电波难以有效地抑制,在电源系统的雷电防护中存在续流问题。

气体放电管在浪涌中的作用
自动控制系统所需的浪涌保护系统一般由二级或三级组成,利用各种浪涌抑制器件的特点,可以实现可靠保护。

气体放电管一般放在线路输入端,做为一级浪涌保护器件,承受大的浪涌电流。

(整理)浪涌抑制器件特性及选用

(整理)浪涌抑制器件特性及选用

浪涌抑制器件特性及选用浪涌防护器件目前在防雷浪涌过压的保护器件中主要有:防雷器、放电管、压敏电阻和半导体浪涌保护器。

在防雷器件的使用中按防护同流量能力的大小大致分为防雷器>气体放电管>压敏电阻>SAD (Surge Arrest Device ),从价格上按相同容量的防浪涌器件,SAD 的价格高于放电管,约是压敏电阻的2倍,但SAD 的响应时间最快,同时漏电流也相对较小。

以上四种防浪涌器件中,放电管和SAD 都存在有动作后的续流问题,在应用中应加以考虑。

压敏电阻压敏电阻的特性金属氧化物压敏电阻的V/I 特性曲线相似于指数函数,可简单表示为:a KV I ,其中K 为陶瓷常数,取决于压敏电阻器的制作工艺材料等,对于金属氧化物压敏电阻指数a 可大于30,压敏电阻的V/I 特性如图1:图1 压敏电阻的V/I 特性图2 压敏电阻的等效电路其中L为引线电感量,C为电容器,Rig为中间相的电阻值,Rv为理想的压敏电阻,Rb为ZnO的导通阻抗。

压敏电阻的工作电压,指在规定的工作电压时,导通电流较小,当所加电压为压敏电压的0.75倍时,压敏电阻的漏电流为uA级别,可忽略不计。

脉冲电流,一般指流通过压敏电阻电流波形为8/20us波的瞬态最大脉冲电流。

能量耐量,指压敏电阻的能够承受的最大的W。

压敏电压,指压敏电阻流通过1mA的电流时,所需能量,其计算为:⎰=10)()(t t dt t i t v加在压敏电阻上的电压。

响应时间,指压敏电阻对浪涌的响应速度,一般为皮秒到纳秒级别,可和SAD防浪涌器件做比较。

温度系数,指温度变化时压敏电阻的V/I特性随着变化,压敏电阻呈负温度特性,当温度升高时,压敏电阻的动作电压、脉冲电流、能量耐量和持续负荷都相应的降低。

压敏电阻发生浪涌过电压冲击时,在压敏电阻上测得的电压峰值既为残压,残压于压敏电压的比值,称为残压比,一般要求残压比小于3。

在实际应用中应考虑到残压对保护元件的影响。

(整理)气体放电管在浪涌抑制电路的应用

(整理)气体放电管在浪涌抑制电路的应用

气体放电管在浪涌抑制电路的应用1 浪涌电压的产生和抑制原理在电子系统和网络线路上,经常会受到外界瞬时过电压干扰,这些干扰源主要包括:由于通断感性负载或启停大功率负载,线路故障等产生的操作过电压;由于雷电等自然现象引起的雷电浪涌。

这种过电压(或过电流)称为浪涌电压(或浪涌电流),是一种瞬变干扰。

浪涌电压会严重危害电子系统的安全工作。

消除浪涌噪声干扰,防止浪涌危害一直是关系电子设备安全可靠运行的核心问题。

为了避免浪涌电压损害电子设备,一般采用分流防御措施,即将浪涌电压在非常短的时间内与大地短接,使浪涌电流分流入地,达到削弱和消除过电压、过电流的目的,从而起到保护电子设备安全运行的作用。

2 浪涌电压抑制器件分类浪涌电压抑制器件基本上可以分为两大类型。

第一种类型为橇棒(crow bar)器件。

其主要特点是器件击穿后的残压很低,因此不仅有利于浪涌电压的迅速泄放,而且也使功耗大大降低。

另外该类型器件的漏电流小,器件极间电容量小,所以对线路影响很小。

常用的撬棒器件包括气体放电管、气隙型浪涌保护器、硅双向对称开关(CSSPD)等。

另一种类型为箝位保护器,即保护器件在击穿后,其两端电压维持在击穿电压上不再上升,以箝位的方式起到保护作用。

常用的箝位保护器是氧化锌压敏电阻(MOV),瞬态电压抑制器(TVS)等。

3 气体放电管的构造及基本原理气体放电管采用陶瓷密闭封装,内部由两个或数个带间隙的金属电极,充以惰性气体(氩气或氖气)构成,基本外形如图1所示。

当加到两电极端的电压达到使气体放电管内的气体击穿时,气体放电管便开始放电,并由高阻变成低阻,使电极两端的电压不超过击穿电压。

(a) BB型(b)BBS型图1 气体放电管的基本外形4 气体放电管与其它浪涌抑制器件参数比较1)火花间隙(Arc chopping)为两个形状象牛角的电极,彼此间有很短的距离。

当两个电极间的电位差达到一定程度时,间隙被击穿打火放电,由此将过电流释放入地。

浪涌抑制器

浪涌抑制器

浪涌保护器设计原理、特性、运用范畴 设计原理 在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide V aristor,MOV)的元件,用来转移多余的电压。

如下图所示,MOV将火线和地线连接在一起。

MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。

这些半导体具有随着电压变化而改变的可变电阻。

当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。

反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。

如果电压正常,MOV会闲在一旁。

而当电压过高时,MOV可以传导大量电流,消除多余的电压。

随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。

按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。

打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。

另一种常见的浪涌保护装置是气体放电管。

这些气体放电管的作用与MOV相同——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现此功能。

当电压处于某一特定范围时,该气体的组成决定了它是不良导体。

如果电压出现浪涌并超过这一范围,电流的强度将足以使气体电离,从而使气体放电管成为非常良好的导体。

它会将电流传导至地线,直到电压恢复正常水平,随后它又会变成不良导体。

这两种方法都是采用并联电路设计——多余的电压从标准电路流入另一个电路。

有几种浪涌保护器产品使用串联电路设计抑制电涌——它们不是将多余的电流分流到另一条线路,而是通过降低流过火线的电量。

基本上说,这些抑制器在检测到高电压时会储存电能,随后再逐渐释放它们。

制造这种保护器的公司解释说该方法可以提供更好的保护,因为它反应速度更快,并且不会向地线分流,但另一方面,这种分流可能会干扰建筑物的电力系统。

抑制二极管:抑制二极管具有箝位限压功能,它是工作在反向击穿区,由于它具有箝位电压低和动作响应快的优点,特别适合用作多级保护电路中的最末几级保护元件。

气体放电管在开关变换器中的应用

气体放电管在开关变换器中的应用
如图 1 示 , 所 辉光 电压 的幅值 远小 于击 穿放 电 电压 , 气 体放 电管 的阻抗 明显 降低 , 流过 的浪 涌 电流依 但
然 很小 。
( )弧 光 电压 过 程 3
电管在 开关 变换器 中 的设 计误 区与应用要 点 。
2 原 理 与设 计
2 1 气 体放 电管 的工作原 理 .
试 条件 下 的寄生 电容 , 生 电容越 小 , 体放 电管对 寄 气
第3 1卷 第 4期
21 0 2年 1 0月
电 工 电 能 新 技 术
Ad a e c n lg fEl crc lEn i e rn n e g v nc d Te h o o y o e tia g n e i g a d En r y
Vo . 1 31, No. 4
( )击穿 ( 1 汤森 ) 电电压过 程 放 当加 在气体 放 电管两 端 的浪涌 电压超 过击 穿放
的 目的 , 而使 后 级 电 子设 备 可靠 工作 。 常用 的器 从 件 有气体 或 固体放 电管 、 属 氧化物 压敏 电阻 、 瞬 金 硅 变 电压 吸收二极 管等 器件 以及 它们 的组合设 计 。 放 电管 ( D 主 要 可 分 为 气 体 放 电 管 和 固体 G T)
1 引 言
为 了避 免雷 电 、 路故 障等 原 因产生 的浪 涌 电 线
达到 或超过 其击 穿 电压 时 , 体 放 电 管可 近似 认 为 气

个 变阻抗 器件 , 由高 阻抗 迅速 变为低 阻抗 状态 , 从
而 为干扰 源提供 泄放 浪涌 电流通 路 。 如 图 1所示 , 体 放 电管 的 电压 击 穿 工作 可 主 气
Oc . 2 2 t 01

浪涌抑制器工作原理

浪涌抑制器工作原理

浪涌抑制器工作原理嘿,朋友!你有没有想过,在我们日常生活和工业生产中,有一个默默守护着电气设备的“小卫士”呢?这就是浪涌抑制器啦。

今天呀,我就来给你好好讲讲它那超酷的工作原理。

我先给你讲个小故事吧。

就好比我们住在房子里,有时候会突然来一阵狂风暴雨,这狂风暴雨就像是电路里的浪涌。

浪涌是啥呢?简单说,就是突然出现的超高电压或者超大电流,这就像一群不速之客,突然闯进了电路这个“家”里。

如果没有保护措施,家里的那些电器设备,就像脆弱的小宝贝一样,可就惨喽。

那浪涌抑制器这个“小卫士”是怎么工作的呢?这就得从它的内部构造说起了。

浪涌抑制器里面有一些特殊的元件,最常见的就是压敏电阻和气体放电管。

咱们先来说说压敏电阻。

压敏电阻就像是一个超级敏感的“小守门员”。

在正常电压下,它就安安静静的,就像一个低调的路人甲。

可是一旦电压突然升高,超过了它的“警戒线”,哇塞,它可就一下子活跃起来了!压敏电阻的电阻值会随着电压的升高而急剧下降。

这就好比是一个平时很窄的通道,电压一高,这个通道就突然变得很宽,让那些多余的电流有地方可去,而不是一股脑地冲向那些脆弱的电器设备。

你想啊,如果没有这个“小守门员”,那超高的电压就像洪水猛兽一样,直接就把那些电器设备给淹没了。

再说说气体放电管。

这气体放电管啊,就像是一个充满魔法的小管道。

在正常情况下,里面的气体就像一群乖乖睡觉的小精灵,不吵也不闹。

但是当浪涌的高压到来的时候,这个电压就像一把魔法钥匙,一下子把这些小精灵唤醒了。

气体开始放电,这时候,这个气体放电管就像是一个超级导电的通道,把那些浪涌电流引到大地这个“大怀抱”里。

这多神奇呀!就好像是在电路里突然出现了一个特殊的高速公路,专门把那些危险的电流送走。

我有个朋友,他是做电子设备维修的。

有一次,他跟我讲了一个事儿。

有个工厂的设备老是莫名其妙地出故障,大家都头疼得很。

后来发现呀,就是因为没有安装浪涌抑制器。

那些突然来的浪涌电压,就像一群调皮捣蛋的小恶魔,把设备里面的一些精密元件给搞坏了。

浪涌抑制器件特性及选用

浪涌抑制器件特性及选用

浪涌抑制器件特性及选用浪涌防护器件目前在防雷浪涌过压的爱惜器件中要紧有:防雷器、放电管、压敏电阻和半导体浪涌爱惜器。

在防雷器件的利用中按防护同流量能力的大小大致分为防雷器>气体放电管>压敏电阻>SAD (Surge Arrest Device ),从价钱上按相同容量的防浪涌器件,SAD 的价钱高于放电管,约是压敏电阻的2倍,但SAD 的响应时刻最快,同时漏电流也相对较小。

以上四种防浪涌器件中,放电管和SAD 都存在有动作后的续流问题,在应用中应加以考虑。

压敏电阻压敏电阻的特性金属氧化物压敏电阻的V/I 特性曲线相似于指数函数,可简单表示为:a KV I ,其中K 为陶瓷常数,取决于压敏电阻器的制作工艺材料等,关于金属氧化物压敏电阻指数a 可大于30,压敏电阻的V/I 特性如图1:图1 压敏电阻的V/I 特性图2 压敏电阻的等效电路其中L为引线电感量,C为电容器,Rig为中间相的电阻值,Rv为理想的压敏电阻,Rb为ZnO的导通阻抗。

压敏电阻的工作电压,指在规定的工作电压时,导通电流较小,当所加电压为压敏电压的倍时,压敏电阻的漏电流为uA级别,可忽略不计。

脉冲电流,一样指流通过压敏电阻电流波形为8/20us波的瞬态最大脉冲电流。

能量耐量,指压敏电阻的能够经受的最大的能量,W。

压敏电压,指压敏电阻流通过1mA的电流时,所需加在压其计算为:⎰=10)()(t t dt t i t v敏电阻上的电压。

响应时刻,指压敏电阻对浪涌的响应速度,一样为皮秒到纳秒级别,可和SAD防浪涌器件做比较。

温度系数,指温度转变时压敏电阻的V/I特性随着转变,压敏电阻呈负温度特性,当温度升高时,压敏电阻的动作电压、脉冲电流、能量耐量和持续负荷都相应的降低。

压敏电阻发生浪涌过电压冲击时,在压敏电阻上测得的电压峰值既为残压,残压于压敏电压的比值,称为残压比,一样要求残压比小于3。

在实际应用中应考虑到残压对爱惜元件的阻碍。

气体放电管选型及在综合浪涌保护系统中的应用

气体放电管选型及在综合浪涌保护系统中的应用

气体放电管选型及在综合浪涌保护系统中的应用优恩半导体(UN)一、气体放电管的选型:在快速脉冲冲击下,陶瓷气体放电管气体电离需要一定的时间(一般为0.2~0.3μs,最快的也有0.1μs左右),因而有一个幅度较高的尖脉冲会泄漏到后面去。

若要抑制这个尖脉冲,有以下几种方法:a、在放电管上并联电容器或压敏电阻;b、在放电管后串联电感或留一段长度适当的传输线,使尖脉冲衰减到较低的电平;c、采用两级保护电路,以放电管作为第一级,以TVS管或半导体过压保护器作为第二级,两级之间用电阻、电感或自恢复保险丝隔离。

*直流击穿电压Vsdc的选择:直流击穿电压Vsdc的最小值应大于可能出现的最高电源峰值电压或最高信号电压的可能出现的最高电源峰值电压或最高信号电压的1.2倍以上。

*冲击放电电流的选择:要根据线路上可能出现的最大浪涌电流或需要防护的最大浪涌电流选择。

放电管冲击放电电流应按标称冲击放电电流(或单次冲击放电电流的一半)来计算。

*陶瓷气体放电管因击穿电压误差较大,一般不作并联使用。

*续流问题:为了使放电管在冲击击穿后能正常熄弧,在有可能出现续流的地方(如有源电路中),可以在放电管上串联压敏电阻或自恢复保险丝等限制续流,使它小于放电管的维持电流。

二、气体放电管在综合浪涌保护系统中的应用自动控制系统所需的浪涌保护系统一般由二级或三级组成,利用各种浪涌抑制器件的特点,可以实现可靠保护。

气体放电管一般放在线路输入端,做为一级浪涌保护器件,承受大的浪涌电流。

二级保保护器件采用压敏电阻,在μs级时间范围内更快地响应。

对于高灵敏的电子电路,可采用三级保护器件TVS,在ps级时间范围内对浪涌电压产生响应。

如下图所示。

当雷电等浪涌到来时,TVS首先起动,会把瞬间过电压精确控制在一定的水平;如果浪涌电流大,则压敏电阻起动,并泄放一定的浪涌电流;两端的电压会有所提高,直至推动前级气体放电管的放电,把大电流泄放到地。

气体放电管和压敏电阻的性能及应用

气体放电管和压敏电阻的性能及应用

气体放电管和压敏电阻的性能及应用本文主要介绍气体放电管和压敏电阻的工作原理、特性及其重要参数,对它们各自的优缺点进行总结,并对两种器件进行比较。

针对这两种器件的优缺点,建议在实际的设计应用中根据电路的实际需求选择不同的保护器件,同时根据实际应用对这两种元器件进行串并联的组合使用,发挥各自的优点,克服各自的缺点,从而达到最佳的保护效果和最优的安全性能指标。

气体放电管一、气体放电管的工作原理及特性气体放电管的工作原理是气体放电。

当外加电压增大到超过气体的绝缘强度时,两极间的间隙将放电击穿,由原来的绝缘状态转化为导电状态,导通后放电管两极之间的电压维持在放电弧道所决定的残压水平(20~50V)。

只有当电极间电压低于放电管的截至电压(约十几伏)或导通电流低于截至电流(约十几mA)时,气体放电管才能恢复截至状态,这就是气体放电管的续流遮断特性。

可见,在直流电源电路中应用时,如果两线间电压超过15V,不可以在两线间直接应用放电管;在50Hz交流电源电路中使用时,交流电压有过零点,可以实现气体放电管的续流遮断。

气体放电管包括二极管和三极管,电压范围从75V-3500V,超过一百种规格。

放电管常用于多级保护电路中的第一级或前两级,起泄放雷电瞬态过电流和限制过电压作用。

二、气体放电管的几个重要参数1.直流击穿电压Vsdc:在放电管上施加100V/s的直流电压时的击穿电压值。

这是放电管的标称电压亦称为“直流点火电压”,常用的有90V、150V、230V、350V、470V、600V、800V等几种,最高可坐到3000V、最低70V。

其误差范围:一般为±20%,也有的为±15%。

2.脉冲(冲击)击穿电压Vsi:在放电管上施加1kV/μs的脉冲电压时的击穿电压值。

因反应速度较慢,脉冲击穿电压要比直流击穿电压高得多。

3.冲击耐受电流:将放电管通过规定波形和规定次数的脉冲电流,使其直流放电电压和绝缘电阻不会发生明显变化的最大值电流峰值称为管子的冲击耐受电流。

气体放电管在浪涌抑制电路的应用

气体放电管在浪涌抑制电路的应用

气体放电管在浪涌抑制电路的应用发布:2011-06-04 | 作者: | 来源: baijianyue | 查看:551次 | 用户关注:摘要:实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTA—C)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证。

仿真结果表明,该滤波器带宽的可调范围为1~26 MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,采用1.8 V电源,TSMC 0.18μm CMOS 工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。

关键词:Butte1 浪涌电压的产生和抑制原理在电子系统和网络线路上,经常会受到外界瞬时过电压干扰,这些干扰源主要包括:由于通断感性负载或启停大功率负载,线路故障等产生的操作过电压;由于雷电等自然现象引起的雷电浪涌。

这种过电压(或过电流)称为浪涌电压(或浪涌电流),是一种瞬变干扰。

浪涌电压会严重危害电子系统的安全工作。

消除浪涌噪声干扰,防止浪涌危害一直是关系电子设备安全可靠运行的核心问题。

为了避免浪涌电压损害电子设备,一般采用分流防御措施,即将浪涌电压在非常短的时间内与大地短接,使浪涌电流分流入地,达到削弱和消除过电压、过电流的目的,从而起到保护电子设备安全运行的作用。

2 浪涌电压抑制器件分类浪涌电压抑制器件基本上可以分为两大类型。

第一种类型为橇棒(crow bar)器件。

其主要特点是器件击穿后的残压很低,因此不仅有利于浪涌电压的迅速泄放,而且也使功耗大大降低。

另外该类型器件的漏电流小,器件极间电容量小,所以对线路影响很小。

常用的撬棒器件包括气体放电管、气隙型浪涌保护器、硅双向对称开关(CSSPD)等。

另一种类型为箝位保护器,即保护器件在击穿后,其两端电压维持在击穿电压上不再上升,以箝位的方式起到保护作用。

常用的箝位保护器是氧化锌压敏电阻(MOV),瞬态电压抑制器(TVS)等。

陶瓷气体放电管特性及应用

陶瓷气体放电管特性及应用

过电压和浪涌电流能对通讯设备和数据传输系统造成损坏,甚至对人身安全构成威胁。气体放电管提供最优的过电压 和浪涌保护。放电管能快速安全地限制过电压至正常水平,并可靠地排除危险电流。 过电压和浪涌电流可能由以下因素所造成(示意图1.2):
/ch/Technical_info.asp?id=15(第 1/6 页)2008-6-18 11:59:04
/ch/Technical_inf4
深圳市威特科电子有限公司
3、 应用领域 3.1 作为保护器件 信号保护(建议选用对应的微型管及中、小通流容量系列放电管): 电子线路中集成块、晶闸管、芯片等昂贵元件及线路板 电信网络中的信号线、网线、电话卡、交换机、传真机、电话机、配线架、交接箱、基站、移动电话天线 计算机系统的主机、调制解调器、数据处理系统、长分支线、短分支线及各种终端设备 视频系统、CATV设备、阴极射线管(CRT) 各种家用电器、实验设备、测试设备 电源保护(建议选用对应的中、高及超高流容量系列放电管): 各种设备的电源防雷、电源插座、电源转换器、插线、空气开关、负荷开关等低压电器 铁路电力、电气系统、LC设备、电动机、潜水泵、传动设备浪涌电压防护 3.2 作为开关器件 专用作点火开关的气体放电管具有独特的快速通断特点,能提供几个微秒和非常陡峭的峰值极高的前沿电压及电流脉 冲,它与点火变压相配合可产生电压为 12kV的典型高压脉冲,工业利用此效应就制成了点火开关. 开关放电管以其
/ch/Technical_info.asp?id=15(第 5/6 页)2008-6-18 11:59:04
深圳市威特科电子有限公司
Back 版权所有:深圳市威特科电子有限公司 技术支持:/
/ch/Technical_info.asp?id=15(第 6/6 页)2008-6-18 11:59:04

浪涌保护器的构成和应用简述

浪涌保护器的构成和应用简述

浪涌保护器的构成和应用简述1 基本概念(1)浪涌电压:雷电击中室外输电线路时,及接通或断开的线路具有较大电感负荷时,常常会在瞬间产生很高的操作过电压,当该电压保持在1ns~2ns时,被称作尖峰电压。

持续3ns以上时,将产生浪涌效应,被称为浪涌电压(或浪涌电流)。

浪涌电压会对整个配电网络设备产生极大的压力甚至破坏。

(2)浪涌保护器:也称防雷器,是一种当配电网络遭受雷击或过电压操作时,为供配电设备提供保护的装置。

当电气回路因雷击或操作电压而存在尖峰电压(或电流)时,能在极短的时间内导通分流,避免浪涌电压(电流)对回路中其他设备的损害。

2 按工作原理分类2.1 开关型在正常工况时呈现为高阻抗,在回路存在因雷击或操作过电压时,其阻抗突变为低值,允许雷电流通过。

此类装置的组件主要为:放电间隙,气体放电管,闸流晶体管等。

2.2 限压型正常工况下呈现高阻抗,回路电压或电流增大时,阻抗不断减小,电流-电压特性为明显非线性。

此类装置的组件主要为:压敏电阻,限压二极管,雪崩二极管。

2.3 分流型与阻流型(1)分流型:和被保护设备元器件为并联关系,当回路存在雷电过电压(或操作过电压)时,对浪涌电流呈现低阻抗特性,分流浪涌电流,达到保护元器件的目的。

(2)阻流型:和被保护设备元器件为串联关系,当回路存在雷电过电压(或操作过电压)时,对浪涌电流呈现高阻抗特性,阻断浪涌电流通过,达到保护元器件的目的。

这两类装置的组件主要有:阻流线圈,高(低)通滤波器,1/4波长短路器。

2.4 按用途分类交(直)流电源保护器,网络信号防雷器,视频信号防雷器等。

3 浪涌保护器的基本元件3.1 放电间隙(又称保护间隙)放电间隙由两根存在一点间隔距离的金属棒构成,其中一根和被保护设备的电源线(或中性线)相连,另一根与接地线相连。

当线路中存在雷击过电压(或过电流)时,导线间隙被击穿,过电压(或过电流)被泄入大地,从而避免设备负载过量电压(或电流)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气体放电管在浪涌抑制电路的应用摘要:阐述了浪涌电压产生的机理,介绍了气体放电管的工作原理、特性参数和在浪涌抑制电路中的应用。

关键词:浪涌电压抑制;气体放电管;应用
1 浪涌电压的产生和抑制原理
在电子系统和网络线路上,经常会受到外界瞬时过电压干扰,这些干扰源主要包括:由于通断感性负载或启停大功率负载,线路故障等产生的操作过电压;由于雷电等自然现象引起的雷电浪涌。

这种过电压(或过电流)称为浪涌电压(或浪涌电流),是一种瞬变干扰。

浪涌电压会严重危害电子系统的安全工作。

消除浪涌噪声干扰,防止浪涌危害一直是关系电子设备安全可靠运行的核心问题。

为了避免浪涌电压损害电子设备,一般采用分流防御措施,即将浪涌电压在非常短的时间内与大地短接,使浪涌电流分流入地,达到削弱和消除过电压、过电流的目的,从而起到保护电子设备安全运行的作用。

2 浪涌电压抑制器件分类
浪涌电压抑制器件基本上可以分为两大类型。

第一种类型为橇棒(crow bar)器件。

其主要特点是器件击穿后的残压很低,因此不仅有利于浪涌电压的迅速泄放,而且也使功耗大大降低。

另外该类型器件的漏电流小,器件极间电容量小,所以对线路影响很小。

常用的撬棒器件包括气体放电管、气隙型浪涌保护器、硅双向对称开关(CSSPD)等。

另一种类型为箝位保护器,即保护器件在击穿后,其两端电压维持在击穿电压上不再上升,以箝位的方式起到保护作用。

常用的箝位保护器是氧化锌压敏电阻(MOV),瞬态电压抑制器(TVS)等。

3 气体放电管的构造及基本原理
气体放电管采用陶瓷密闭封装,内部由两个或数个带间隙的金属电极,充以惰性气体(氩气或氖气)构成,基本外形如图1所示。

当加到两电极端的电压达到使气体放电管内的气体击穿时,气体放电管便开始放电,并由高阻变成低阻,使电极两端的电压不超过击穿电压。

(a) BB型(b)BBS型
图1 气体放电管的基本外形
4 气体放电管与其它浪涌抑制器件参数比较
1)火花间隙(Arc chopping)
为两个形状象牛角的电极,彼此间有很短的距离。

当两个电极间的电位差达到一定程度时,间隙被击穿打火放电,由此将过电流释放入地。

优点:放电能力强,通流容量大(可做到100kA以上),漏电流小;
缺点:残压高(2~4kV),反应时间慢(≤100ns),有跟随电流(续流)。

2)金属氧化物压敏电阻(Metal oxside varistor)
7)绝缘电阻是指在外施50或100V直流电压时测量的气体放电管电阻,一
般>1010Ω。

图2 电流—电压特性曲线
6 气体放电管的应用示例
1)电话机/传真机等各类通讯设备防雷应用
如图3所示。

特点为低电流量,高持续电源,无漏电流,高可靠性。

图3 通讯设备防雷应用
2)气体放电管和压敏电阻组合构成的抑制电路
图4是气体放电管和压敏电阻组合构成的浪涌抑制电路。

由于压敏电阻有一致命缺点:具有不稳定的漏电流,性能较差的压敏电阻使用一段时间后,因漏电流变大可能会发热自爆。

为解决这一问题在压敏电阻之间串入气体放电管。

但这又带来了缺点就是反应时间为各器件的反应时间之和。

例如压敏电阻的反应时间为25ns,气体放电管的反应时间为100ns,则图4的R2,G,R3的反应时间为150ns,为改善反应时间加入R1压敏电阻,这样可使反应时间为25ns。

图4 气体放电管和压敏电阻配合应用
3)气体放电管在综合浪涌保护系统中的应用
自动控制系统所需的浪涌保护系统一般由二级或三级组成,利用各种浪涌抑制器件的特点,可以实现可靠保护。

气体放电管一般放在线路输入端,做为一级浪涌保护器件,承受大的浪涌电流。

二级保护器件采用压敏电阻,在μs级时间范围内更快地响应。

对于高灵
敏的电子电路,可采用三级保护器件TVS,在ps级时间范围内对浪涌电压产生响应。

如图5所示。

当雷电等浪涌到来时,TVS首先起动,会把瞬间过电压精确控制在一定的水平;如果浪涌电流大,则压敏电阻起动,并泄放一定的浪涌电流;两端的电压会有所提高,直至推动前级气体放电管的放电,把大电流泄放到地。

图5 三级保护
7 结语
各种电子系统,以及通信网络等,经常会受到外来的电磁干扰,这些干扰主要来自电源线路的暂态过程、雷击闪电、以及宇宙射电等。

这些干扰会使得系统动作失误甚至硬件损坏。

针对这些问题,要做好全面的预防保护措施,就需要先找到问题的根源,再选用合适的浪涌抑制器件予以解决。

相关文档
最新文档