圆的认识 -- 知识点归纳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的认识
圆的定义:
圆是一种几何图形。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。
在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
相关定义:
1 在同一平面内,到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心。图形一周的长度,就是圆的周长。
2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。直径所在的直线是圆的对称轴。
4 连接圆上任意两点的线段叫做弦。最长的弦是直径,直径是过圆心的弦。
5 圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。优弧是大于180度的弧,劣弧是小于180度的弧。
6 由两条半径和一段弧围成的图形叫做扇形。
7 由弦和它所对的一段弧围成的图形叫做弓形。
8 顶点在圆心上的角叫做圆心角。
9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
10 圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用π表示,π=3.14159265……在实际应用中,一般取π≈3.14。
11圆周角等于相同弧所对的圆心角的一半。
12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。
圆的集合定义:
圆是平面内到定点的距离等于定长的点的集合,其中定点是圆心,定长是半径。
圆的字母表示:
以点O为圆心的圆记作“⊙O”,读作O”。
圆—⊙;
半径—r或R(在环形圆中外环半径表示的字母);
弧—⌒;
直径—d ;
扇形弧长—L ;
周长—C ;
面积—S。
圆的性质:
(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
(2)有关圆周角和圆心角的性质和定理
①在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式:θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。③如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。(3)有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。
④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比长方形、正方形、三角形的面积大。
点、线、圆与圆的位置关系:
点和圆位置关系
①P在圆O外,则PO>r。
②P在圆O上,则PO=r。
③P在圆O内,则0≤PO 反过来也是如此。 直线和圆位置关系 ①直线和圆无公共点,称相离。AB与圆O相离,d>r。 ②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d ③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做 切点。AB与⊙O相切,d=r。(d为圆心到直线的距离) 圆和圆位置关系 ①无公共点,一圆在另一圆之外叫外离,在之内叫内含。 ②有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。 ③有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。 设两圆的半径分别为R和r,且R〉r,圆心距为P,则结论:外离P>R+r;外切P=R+r; 内含P 内切P=R-r;相交R-r 圆的计算公式: 1.圆的周长C=2πr=或C=πd 2.圆的面积S=πr2 3.扇形弧长L=圆心角(弧度制)×r = n°πr/180°(n为圆心角) 4.扇形面积S=nπr2/360=Lr/2(L为扇形的弧长) 5.圆的直径d=2r 6.圆锥侧面积S=πrl(l为母线长) 7.圆锥底面半径r=n°/360°L(L为母线长)(r为底面半径) 圆的方程: 1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标 准方程是 (x-a)2+(y-b)2=r2。 特别地,以原点为圆心,半径为r(r>0)的圆的标准方程为x2+y2=r2。 2、圆的一般方程:方程x2+y2+Dx+Ey+F=0可变形为(x+D/2)2+(y+E/2)2=(D2+E2-4F) /4.故有: ①当D2+E2-4F>0时,方程表示以(-D/2,-E/2)为圆心,以(√D2+E2-4F)/2为半径的圆; ②当D2+E2-4F=0时,方程表示一个点(-D/2,-E/2); ③当D2+E2-4F<0时,方程不表示任何图形。 3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是x=a+r*cosθ,