极限的求法总结
极限求解方法总结
千里之行,始于足下。
极限求解方法总结极限是高等数学中的重要概念,是数学分析和微积分的基础。
在实际问题中,往往需要通过求解极限来得到数学模型的一些重要结果。
本文将对极限求解的方法进行总结与归纳。
1. 基本极限公式:在求解极限问题时,我们首先要生疏一些基本的极限公式,这些公式可以挂念我们快速求解极限问题。
常用的基本极限公式有:- 数列极限:常数数列、等差数列、等比数列、级数等。
- 函数极限:幂函数、指数函数、对数函数、三角函数等。
2. 替换法:替换法是求解极限问题时常用的一种方法。
通过将极限问题中的变量进行替换,使得计算变得更加简洁。
常用的替换法有以下几种:- 分子分母同时除以最高次数的项;- 用无穷小量代替无穷大量;- 用无穷小量的幂代替无穷小量。
3. 夹逼准则:夹逼准则是求解极限问题的一种重要方法。
通过找到一个上界和一个下界,使得极限问题的解被夹在这两个界之间,可以确定极限的存在性和取值。
常用的夹逼准则有以下几种:- 当函数在某一点四周趋于同一个极限;- 当两个函数的极限分别为一正一负,但两个函数的确定值函数的极限相等。
4. 施瓦茨不等式:第1页/共3页锲而不舍,金石可镂。
施瓦茨不等式是求解极限问题中常用的一种方法。
它可以用来估量两个函数的内积,从而得到某些函数的极限。
施瓦茨不等式的形式如下:\\[|\\int_{a}^{b}f(x)g(x)dx|\\leq\\sqrt{\\int_{a}^{b}f^2(x)dx}\\s qrt{\\int_{a}^{b}g^2(x)dx}\\]5. 利用基本不等式:在求解极限问题时,我们可以利用一些基本的不等式来推导和求解极限问题。
常用的基本不等式有以下几个:- 平均值不等式:对于两个正数a和b,平均值不等式可以表示为\\[(a+b)/2≥\\sqrt{ab}\\]- 柯西不等式:对于两个数列或者两个函数,柯西不等式可以表示为\\[\\sum a_kb_k≤(\\sum a_k^2)^{1/2}(\\sum b_k^2)^{1/2}\\]6. 等价无穷小替换法:在求解极限问题时,假如消灭了不适合直接求解的形式,可以尝试使用等价无穷小替换法。
求极限的12种方法总结及例题
求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
高等数学极限求法总结
04 极限求法之洛必达法则
洛必达法则基本思想
利用导数求解极限
在一定条件下,通过分子分母分别求导的方式,简化极限运 算。
转化无穷大比无穷大型
对于0/0型或∞/∞型的极限,通过洛必达法则可转化为其他 类型进行求解。
适用条件及典型例题
适用条件
适用于0/0型和∞/∞型的极限,且分子分母 在求导后极限存在或为无穷大。
05 极限求法之泰勒公式法
泰勒公式基本概念及展开式
泰勒公式定义
泰勒公式是用多项式逼近一个函数的方法,将一个在闭区间上可导的函数展开成多项式 的形式。
泰勒展开式
f(x) = f(a) + f'(a)(x-a) + f''(a)/2! * (x-a)^2 + ... + f^n(a)/n! * (x-a)^n + Rn(x),其 中Rn(x)为余项。
适用于连续函数情况
连续函数定义
若函数在某点的极限值等于该点的函 数值,则称函数在该点连续。对于连 续函数,我们可以直接将其自变量代 入函数表达式来求解极限。
适用范围
直接代入法适用于一元和多元函数的 极限求解,但要求函数在求极限的点 是连续的。
注意事项及典型例题
注意事项:在使用直接代入 法求极限时,需要注意以下
该方法不需要复杂的数学变换和技巧,易于掌握。
缺点
直接代入法仅适用于连续函数的极限问题,对于非连续函 数或复杂函数可能无法求解。
在某些情况下,即使函数在求极限的点连续,直接代入也 可能导致分母为零等无法计算的情况,需要结合其他方法 进行处理。
03 极限求法之因式分解法
适用于多项式函数情况
0/0型极限
求函数的极限值的方法总结
求函数的极限值的方法总结在数学中,函数的极限值是指函数在某一特定区间上取得的最大值或最小值。
求解函数的极限值是数学分析中经常遇到的问题之一,下面将总结一些常用的方法来求解函数的极限值。
一、导数法对于给定的函数,可以通过求导数来判断函数在某一点附近的单调性和极值情况。
导数表示了函数在某一点处的变化率,通过求导数可以获得函数的驻点(导数为零的点)以及极值点。
一般来说,当函数从单调递增变为单调递减时,即导数由正变负,函数的极大值出现;当函数从单调递减变为单调递增时,即导数由负变正,函数的极小值出现。
所以,通过求导数可以找到函数的极值点,然后通过比较极值点和边界点的函数值,即可确定函数的极限值。
二、二阶导数法在某些特殊情况下,求函数的二阶导数可以提供更加准确的信息来确定函数的极限值。
当函数的二阶导数恒为正时,表示函数处于凸型,此时函数可能有极小值但没有极大值;当函数的二阶导数恒为负时,表示函数处于凹型,此时函数可能有极大值但没有极小值。
通过对二阶导数进行符号判断,可以帮助确定函数的极限值。
三、极限值存在性判定对于一些特殊的函数,通过判定函数的极限值是否存在可以快速确定函数的极限值。
当函数在某一区间上连续且存在最大最小值时,函数的极限值也会存在。
因此,可以通过求解函数在区间端点的函数值,并比较这些函数值来确定函数的极限值。
四、拉格朗日乘数法拉格朗日乘数法是一种通过引入约束条件来求解极值的方法,特别适用于求解带有约束条件的函数的极值。
通过构造拉格朗日函数,将原始问题转化为无约束的极值问题,然后通过求解极值问题来确定函数的极限值。
五、切线法切线法是一种直观而有效的求解函数极值的方法。
通过观察函数图像,在极值附近找到一条切线,使得切线与函数图像的接触点的函数值最大或最小。
通过近似切线与函数图像的接触点,可以获得函数的极值的近似值。
六、数值法数值法是一种通过计算机进行数值逼近的方法来求解函数的极限值。
通过将函数离散化,并在离散点上进行计算,可以得到函数在这些离散点上的函数值,然后通过比较这些函数值来确定函数的极限值。
极限的六种求法
极限的六种求法1、代入法作者:教资备考群(865061525)之管理员,—━☆知浅づ如果自变量所趋近的值,能使函数有意义,就可以直接代入函数表达式中。
注:能使函数有意义,就是这个自变量在函数的定义域内。
【例】limx→2 x2x3 + 1− 2x + 3=( )。
2解:x2 − 2x + 3 = (x − 1)+ 2 ≥ 2 ≠ 0可见该函数的定义域是x3 + 1 R,所以可以直接将8 + 1x = 2 代入x3 + 1 。
x2 − 2x + 3limx→2 x2− 2x + 3 = limx→24 − 4 + 3= 3。
2、约公因子法如果自变量所趋近的值,使得函数没有意义。
可以考虑约公因子,将其约去。
因此经常运用因式分解。
【例】limx→3x2−x− 6x−3=( ) 。
解:这里发现,该函数的定义域为{x|x ≠ 3}。
如果x → 3,会使得函数没有意义。
因此考虑约公因子。
lim x→3x2−x−6x− 3= limx→3(x− 3)(x + 2)x− 3= lim(x + 2) = 5。
x→30 ⎩ x x x3、最高次幂法当函数是分式形式,且分子、分母都是多项式时,可以使用最高次幂法求极限。
它的原理,就是分子分母同时除以自变量的最高次幂。
这样自变量趋近于无穷大时, 那些比最高次幂低的项,直接就变为 0 了。
最高次幂法也俗称抓大头。
a⎧ ,n = m , a x m + a x m−1 + ⋯ + a⎪b 0lim 0 1 m = x→∞ b 0x n + b 1x n−1 + ⋯ + b n ⎨0,n > m , ⎪∞,n < m 。
【 例 】10x 4 + 6x 3 − x 2 + 3( ) 。
1 limx→∞2x 4 − x 2 − 9x=首先,观察到函数是个分式的形式。
其次,分子跟分母的最高次幂都是 4;最后,求极限直接用最高次幂法,原式 = 10= 5。
2那么,不妨拿这个例子,验证一下最高次幂法的原理。
极限的求法总结
n2
11 lim (1 )
n2 n
1 2
.
例ln i m (1 133 15 ...4 n 1 2 1 )
拆 项 :4 n 2 1 1 ( 2 n 1 ) 1 ( 2 n 1 ) 1 2 (2 n 1 1 2 n 1 1 )
lim( 1 1 ... 1 )
n 13 35
4n2 1
x 0
x
e e e e. 11 lim 1x x 0 2x
x lim1x x 02x
lim 1 x 02(1x)
1 2
14. 将数列极限转化成函数极限求解
例:求极限
lim
n
n
sin
1 n
n2
【说明】这是 1 形式的极限,由于数列极限不能使用
解: 当0x1时,(积分不容易计算)
01xnssiinn33xx xn
故 01xnsin 3xd x1 xnd xxn 11, 01 sin 3x 0 n 10n 1
因为 lim0lim 1 0 x xn1
所以
lim 1xnsin3xdx0
x 01sin3x
10. 用等价无穷小量代换求极限
limx2( x2+93)3 x0 x2( x2+42) 2
9.利用夹逼准则(两边夹法)则求极限
说明:两边夹法则需要放大和缩小不等式,常用的方法 是都换成最大的和最小的。
例 求 li(m 11 1). n n 2 1 n 2 2 n 2 n
解
n1 1n, n 2 nn 2 1 n 2 nn 2 1
(n1,2,3,)
(1)证明
lim
n
xn
存在;
(2)求
lim
函数极限的求法及技巧总结
函数极限的求法及技巧总结函数极限是高等数学的一个重要概念,它在微积分、实分析等许多领域都有着广泛的应用。
在计算函数极限时,需要掌握一些求法和技巧。
本篇文章将对此进行总结。
1. 直接代入法直接代入法是最基本也是最简单的一种方法,它适用于可以直接将自变量代入函数中计算得到结果的情况。
例如,当求函数f(x) = x² + 3x + 2在x = 1处的极限时,我们可以直接将x = 1代入函数中,得到f(1) = 1² + 3×1 + 2 = 6。
因此,f(x)在x = 1处的极限为6。
2. 分式化简法分式化简法是一种常用的求极限的方法,它适用于形如“分式”的函数。
3. 夹逼定理夹逼定理是一种常用的求极限的方法,它适用于当我们无法通过代入或化简等方法直接求出函数极限时。
夹逼定理的思想是:若存在函数g(x)和h(x),满足 g(x) ≤ f(x) ≤ h(x)且limx→a g(x) = limx→a h(x) = L,那么limx→a f(x) = L。
4. 洛必达法则其中,f'(x)和g'(x)分别表示f(x)和g(x)的导数。
例如,当求函数f(x) = (e^x - 1) / x在x = 0处的极限时,我们可以将f(x)表达为g(x) / h(x)的形式,即g(x) = e^x - 1,h(x) = x,然后计算g'(x)和h'(x),得到 g'(x) = e^x,h'(x) = 1。
因此,根据洛必达法则,我们得到limx→0 f(x) = limx→0 [e^x / 1] = 1。
5. 泰勒展开法泰勒展开法是一种常用的求函数极限的方法,它适用于当函数在极限点左右存在二阶及以上的导数时。
泰勒展开法的思想是:当limx→a f(x)存在时,可以将函数f(x)在a附近进行泰勒展开,得到f(x) = f(a) + f'(a)×(x - a) + f''(a)×(x - a)² / 2 + …… + Rn(x),其中Rn(x)为余项。
极限的求法总结
8.分子(母)有理化求极限
【说明】分子或分母有理化求极限,是通过有理化化去无理式。
例 求极限 lim ( x2 + 3 − x2 +1) x→+
lim (
x→+
x2 + 3 −
x2 +1) = lim ( x2 + 3 − x2 +1)( x2 + 3 +
x→+
x2 + 3 + x2 +1
= lim
− −
1) 1)
= lim x + 1 = 1 . x→1 x + 3 2
(消去零因子法)
4.无穷小因子分出法求极限
例
求
lim
x→
2x3 7x3
+ +
3x2 4x2
+ −
5 1
.
解
x
→
时,
分子,分母的极限都是无穷大.(
型
)
先用x3去除分子分母,分出无穷小,再求极限.
35
lim
x→
2x3 7x3
+ +
练习4
lim
x→
(2x
+1)4 (x −1)78 (x +1)82
=
lim
x→
x4
(2
+
1 x
)4
x 78
(1 −
x82
(1 +
)1 82
x
1 x
)78
= 24
= 16
5.先变形再求极限
(利用求和化简,拆项技巧,合并化简等)
例
求
1
lim(
极限求法总结PDF打印版
9.
lim(tan x) cos x −sin x
x→
4
x1 0 , xn +1 = xn + (n = 1, 2,3, ) 例 设 a0 , 2 x
n
1
a
(1)证明
lim xn 存在; (2)求 lim xn . n →+ n →+
解: (1) xn+1 = xn + xn = a 0 xn a 2 xn xn
无穷小分出法:以分母中自变量的最高次幂除分 子,分母,以分出无穷小量,然后再求极限.
2 x 2 + 5x + 1 . x →1 x 2 − 4 x − 8 2n + 1 . 练习2 求 lim n → n2 + n
练习1 求 lim
练习3 练习4
lim
(2 x − 3) 20 (3x + 2) 30 x → (2 x + 1) 50
2
练习 1
1 lim 1 − 2 x →+ x
x
2 xlim →+
x + 2a = 8 ,求 x−a
a
2012年数学三考研试题 (第二答题填空题第9小题)
1
12. 应用数列的单调有界收敛准则求极限
【分析】一般利用单调增加有上界或单调减少有 下界数列必有极限的准则来证明数列极限的存在。
例:求极限 lim x →0
x ln(1 + x) 1 − cos x
解 lim x →0
x ln(1 + x) xx = lim =2 x →0 1 2 1 − cos x x 2
求极限方法的总结与归纳
6.用罗必塔法则求极限
ln cos 2 x ln(1 sin 2 x) 例 9:求极限 lim x 0 x2
【说明】
0 或 型的极限,可通过罗必塔法则来求。 0
2 sin 2 x sin 2 x ln cos 2 x ln(1 sin 2 x) 1 sin 2 x lim cos 2 x 【解】 lim 2 x 0 x 0 2x x
求极限方法的总结与归纳
1.约去零因子求极限 例 1:求极限 lim
x 1
x4 1 x 1
【说明】 x 1 表明 x与1 无限接近,但 x 1 ,所以 x 1 这一零因子可以约去。 【解】 lim
( x 1)( x 1)( x 2 1) lim ( x 1)( x 2 1) 6 =4 x 1 x 1 x 1
x
0
例 4:求极限 lim
x 0
1 tan x 1 sin x x3
【解】 lim
x 0
1 tan x 1 sin x tan x sin x lim 3 3 x 0 x x 1 tan x 1 sin x
lim
x 0
1 tan x sin x 1 tan x sin x 1 lim lim 3 2 x0 4 x x3 1 tan x 1 sin x x0
n
)
x xn2 (Ⅱ)计算 lim n 1 . n xn
【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在. 【详解】 (Ⅰ)因为 0 x1 ,则 0 x2 sin x1 1 . 可推得
1
0 xn 1 sin xn 1 , n 1, 2,
数学分析中求极限的方法总结
数学分析中求极限的方法总结一、数列极限:1.利用通项公式或递推公式求出数列的表达式,进而通过数学运算和性质进行极限求解;2.利用引理,例如夹逼定理、单调有界定理等,根据已知的性质以及所要求的极限关系,确定一个与之相关的已知极限,然后运用引理求解未知极限。
二、函数极限:1.利用函数的性质,例如连续性、导数性质等,结合极限的定义进行计算;2.利用夹逼定理、单调有界准则等物理建模方法,将复杂的函数极限问题转化为更简单的函数极限问题,然后求解;3.利用泰勒展开、极坐标变换、特殊函数性质等数学分析工具进行极限计算。
三、级数极限:1.根据级数极限的定义,利用极限计算原理进行求解;2.利用级数的收敛判别法,例如比较判别法、积分判别法、根值判别法等,确定级数的收敛性质,进而求解其极限。
在具体的求极限中,还可以运用以下方法和技巧:1. 运用数列极限的性质,例如子数列性质、Cauchy准则等,进行极限求解;2.将复杂的极限问题化为较为简单的形式,例如利用变量替换或函数分解等方法;3.利用数列和函数的收敛性质,例如极限的保序、保号、保比、保和等运算规则;4. 运用Stolz定理、L'Hopital法则等特殊的求极限方法;5.利用正弦函数、余弦函数、指数函数、对数函数等特殊函数的性质,进行计算。
最后,对于一些复杂的极限问题,如果经过常规方法无法求解,可以尝试使用数值逼近法,例如牛顿法、二分法等,来逼近极限值。
综上所述,数学分析中求极限的方法主要包括数列极限、函数极限和级数极限等多个方面。
除了利用极限的定义和性质进行计算外,还可以利用引理、准则、工具和技巧等进行解题。
在实际的极限求解中,还需要根据具体问题选择最合适的方法,灵活运用,提高解题效率。
函数极限的求法总结
函数极限的求法总结函数极限是高等数学中的一个重要概念,其在微积分和数学分析中扮演着重要的角色。
函数极限的求法相对而言较为复杂,但通过理解一些基本的求极限的方法和技巧,可以帮助我们更好地解决各种极限问题。
下面将对函数极限的求法进行总结。
一、基本极限求法:1. 代入法:直接将自变量的值代入函数中,得到一个数值。
2. 分子分母都趋于0的极限:在计算分子分母同时趋于0的极限时,可以根据问题的具体形式进行化简,然后再求极限。
3. 有界函数的极限:有界函数的极限一般可以通过夹逼定理进行求解。
即通过构造两个函数,一个逼近于函数极限的上界,另一个逼近于函数极限的下界,然后利用夹逼定理求得函数的极限。
4. 无穷小量的性质:利用无穷小量的性质进行极限的推导和化简。
二、重要极限法则:1. 基本极限法则:(1) 常数函数极限:lim c = c,其中c是常数;(2) 幂函数极限:lim x^n = a^n,其中a是常数,n是正整数;(3) 正比例函数极限:lim kx = ka,其中k是常数;(4) 正比例函数的乘积极限:lim k*g(x) = k*lim g(x),其中k是常数;(5) 正比例函数的商极限:lim [g(x)/h(x)] = lim g(x) / lim h(x),其中h(x)≠0。
2. 极限的四则运算法则:(1) 和的极限:lim [f(x) + g(x)] = lim f(x) + lim g(x);(2) 差的极限:lim [f(x) - g(x)] = lim f(x) - lim g(x);(3) 积的极限:lim [f(x) * g(x)] = lim f(x) * lim g(x);(4) 商的极限:lim [f(x) / g(x)] = lim f(x) / lim g(x),其中lim g(x) ≠ 0。
3. 乘积极限法则:lim [f(x) * g(x)] = (lim f(x)) * (lim g(x)),其中极限存在。
求极限方法总结
求极限方法总结求极限方法总结一,求极限的方法横向总结:1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3等差数列与等比数列和求极限:用求和公式。
4分母是乘积分子是相同常数的n项的和求极限:列项求和5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
6运用重要极限求极限(基本)。
7乘除法中用等价无穷小量求极限。
8函数在一点处连续时,函数的极限等于极限的函数。
9常数比0型求极限:先求倒数的极限。
10根号套根号型:约分,注意别约错了。
11三角函数的加减求极限:用三角函数公式,将sin化cos二,求极限的方法纵向总结:1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。
2未知数趋近于0或无穷:1)将x放在相同的位置2)用无穷小量与有界变量的乘积3)2个重要极限4)分式解法(上述)高数解题技巧。
高数(上册)期末复习要点高数(上册)期末复习要点第一章:1、极限2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。
极限方法总结
8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)
可以使用待定系数法来拆分化简函数
9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化
10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式
2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3等差数列与等比数列和求极限:用求和公式。
4分母是乘积分子是相同常数的n项的和求极限:列项求和
5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死!!)
必须是 0比0 无穷大比无穷大!!!!!!!!!
当然还要注意分母不能为0
落笔他 法则分为3中情况
1 0比0 无穷比无穷 时候 直接用
2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了
首先说下我的感觉, 假如高等数学是棵树木得话,那么 极限就是他的根, 函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎, 可见这一章的重要性。
为什么第一章如此重要? 各个章节本质上都是极限, 是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面
首先 对 极限的总结 如下
极限的求解方法总结
极限的求解方法总结极限是数学中的重要概念,用来描述函数在其中一点逼近一些特定值的过程。
求解极限的方法有很多种,常见的方法包括直接代入法、夹逼准则、洛必达法则、级数展开法等。
下面将对这些方法进行总结。
1. 直接代入法:对于一些简单的极限问题,可以直接通过将自变量的值代入函数中计算得到极限的值。
例如,对于极限lim(x->2) (3x-1),可以直接将x的值替换为2,计算出极限的值为52. 夹逼准则:夹逼准则是一种常用的证明极限存在的方法。
当一个函数f(x)在特定点x0的左右两侧有两个函数g(x)和h(x)夹住时,即g(x)<=f(x)<=h(x),并且lim(x->x0) g(x) = lim(x->x0) h(x) = L,那么就可以得出lim(x->x0) f(x) = L。
这个准则同时适用于极限为实数和无穷大的情况。
3. 洛必达法则:洛必达法则是一种求解极限的常用方法,特别适用于遇到0/0或∞/∞的不定型。
洛必达法则的核心思想是利用导数的性质来简化极限的计算。
如果一个极限可以用洛必达法则求解,首先计算函数f(x)和g(x)的导数,然后计算导数的极限lim(x->x0) f'(x) / g'(x),如果此极限存在,且不为无穷大,则lim(x->x0) f(x) / g(x) = lim(x->x0) f'(x) / g'(x)。
4.级数展开法:级数展开法是一种将复杂的函数用简单的级数来逼近的方法,常用于求解无穷小量的极限。
通过将函数展开成无穷级数的形式,并且当无穷级数收敛时,可以认为级数展开是原函数的近似解,在特定范围内与原函数相等。
通过计算级数的部分和求出极限的值。
以上方法并不是独立使用的,有些问题需要结合多种方法才能求解。
在实际应用中,根据具体的问题特点,选择合适的方法进行求解。
总之,求解极限是数学中的重要任务之一,需要掌握不同的求解方法,并根据具体情况选择合适的方法。
极限的求解方法总结
极限的求解方法总结
极限是数学中重要的概念之一,它在微积分、数学分析以及工程学等领域中都有广泛的应用。
求解极限问题是数学学习的基础,也是解决实际问题的关键步骤之一。
下面将总结几种常见的极限求解方法。
1. 代入法:这是最简单的一种极限求解方法,即将自变量的值直接代入函数中计算。
这种方法适用于求解一些简单的极限,特别是当自变量趋于某个特定值时。
2. 利用基本极限定理:基本极限定理是极限求解过程中常用的工具,包括极限的四则运算法则、极限的乘法法则、极限的除法法则以及极限的复合函数法则等。
利用这些定理,我们可以将复杂的极限问题转化为更简单的形式,从而求解出极限的值。
3. 极限的夹逼定理:夹逼定理是解决一类特殊极限问题的重要方法。
它的核心思想是通过构造一个上下夹逼函数,将待求的极限转化为夹逼函数的极限,从而求解出原极限的值。
4. 利用无穷小量的性质:在一些特殊的极限问题中,我们可以利用无穷小量的性质进行求解。
例如,当自变量趋于无穷大或无穷小时,我们可以将函数进行等价无穷小的替换,从而将复杂的极限问题简化为求解无穷小量的极限。
5. 利用洛必达法则:洛必达法则是一种常用的求解不定型极限的方法。
该法则
基于导数的定义,通过求取函数的导数来求解极限。
特别是当极限问题存在某种不定型形式(如0/0或∞/∞)时,洛必达法则可以提供一种有效的求解途径。
以上是几种常见的极限求解方法,当然还有其他更高级的方法,如泰勒展开法、积分法等。
掌握这些方法,并善于运用,将有助于我们解决各种复杂的极限问题,提高数学分析能力。
极限的求法(最新整理)
义!!!!)
8 各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限) 可以使用待定系数法来拆分化简函数
9 求左右求极限的方式(对付数列极限) 例如知道 Xn 与 Xn+1 的关系, 已知 Xn 的极限存 在的情况下, xn 的极限与 xn+1 的极限时一样的 ,应为极限去掉有限项目极限值不变化
10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是 X 趋近 0 时候的 sinx 与 x 比值 。 地 2 个就如果 x 趋近无穷大 无穷小都有对有对应的形式 (地 2 个实际上是 用于 函数是 1 的无穷的形式 )(当底数是 1 的时候要特别注意可能是 用地 2 个重要极限)
3 泰勒公式 (含有 e 的 x 次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注 意 !!!!) E 的 x 展开 sina 展开 cos 展开 ln1+x 展开 对题目简化有很好帮助
4 面对无穷大比上无穷大形式的解决办法 取大头原则 最大项除分子分母!!!!!!!!!!! 看上去复杂处理很简单 !!!!!!!!!!
.
注 2 因为 从 的右边趋于 ,则
,故
.
我总结的 16 种求极限的方法(你还能找出 其他的?
首先说下我的感觉, 假如高等数学是棵树木得话,那么 极限就是他的根, 函数就是他的 皮。树没有跟,活不下去,没有皮,只能枯萎, 可见这一章的重要性。
为什么第一章如此重要? 各个章节本质上都是极限, 是以函数的形式表现出来的,所以
求极限的方法总结
x →1
2 1 ) − 2 x −1 x −1
例2. lim
x →1
3x + 1 − 2 x −1
二、利用两个重要极限求极限 利用两个重要极限求极限,往往需要作适当的变换, 利用两个重要极限求极限,往往需要作适当的变换, 将所求极限的函数变形为重要极限或重要极限的扩展 形式, 形式,再利用重要极限的结论和极限的四则运算法则 求极限。 求极限。 (1)
sin x lim =1 x→0 x
(2)
1 x lim(1 + ) = e x→∞ x
2 x
1 − cos x 例3.lim x →0 3 x2 x+2 x ) 例5. lim( x →∞ x − 1
例4.lim(1 − 3sin x )
x →0
三、利用函数的连续性求极限 四、利用导数的定义求极限 五、利用无穷小的性质求极限 六、利用等价无穷小代换求极限 七、利用导数的定义求极限
一、利用极限四则运算法则求极限 四则运算法则指:如果两个函数都有极限, 四则运算法则指:如果两个函数都有极限,那么这 两个函数的和、 两个函数的和、差、积、商组成的函数的极限分别 等于这两个函数的极限的和、 等于这两个函数的极限的和、差、积、商(作为除 数的函数的极限不能为零)。法则本身很简单, )。法则本身很简单 数的函数的极限不能为零)。法则本身很简单,但 有些函数求极限往往不能直接利用法则, 有些函数求极限往往不能直接利用法则,需要先对 Байду номын сангаас数做某些变形或化简, 函数做某些变形或化简,常用的变形或化简方法主 要有分式的分子或分母分解因式、 要有分式的分子或分母分解因式、分式的约分或通 分子或分母的有理化、三角函数的恒等变形等。 分、分子或分母的有理化、三角函数的恒等变形等。
重要的求极限的方法总结
重要的求极限的方法总结求极限是微积分的基础概念之一、当我们需要求极限时,常常需要借助一些特定的方法来帮助我们简化计算或者确定极限的存在性。
在本篇文章中,我将总结一些常用的求极限的方法。
1.代入法代入法是求极限的最直观方法,即将自变量代入到函数中,计算得到函数在该点的函数值。
例如,对于函数 f(x),要求极限 lim(x->a) f(x),我们可以直接将 x 替换为 a,然后计算 f(a) 的值。
这种方法在函数在该点有定义且极限存在时是有效的。
2.基本性质法基本性质法是利用已知的数列或函数的性质来求极限。
例如,利用极限的四则运算性质、复合函数性质、三角函数的性质等。
这种方法具有简单直观的特点,适用于一些基本函数的极限计算。
3.夹逼定理夹逼定理是一种常用的求极限方法。
当我们需要求一个函数在特定点的极限时,如果我们能够找到两个函数,分别上下夹住这个函数,并且这两个函数的极限相等,那么这个夹在中间的函数的极限也将等于这个公共的极限。
夹逼定理常用于一些特殊函数的极限求解,例如对于x*sin(1/x),我们可以找到两个函数 x 和 -x,它们的极限都是 0,所以这个函数的极限也是 0。
4.极限的换元法当我们求极限时,有时候我们可以通过换元来进行变换,以达到简化计算的目的。
例如,对于 sin(x)/x,我们可以令 u = x,这样原极限可以转化为 sin(u)/u,利用代入法求解。
5.极限的分子分母有理化当求解一个复杂的极限时,如果分子和分母含有根式或者无理数,我们常常需要进行有理化。
有理化的目的是为了将无理数的分母消去,使得计算更加简化。
例如,对于(√x+1-1)/(x-1),我们可以乘以(√x+1+1),分子和分母就都会变为有理数。
6.极限的洛必达法则洛必达法则是一种非常常用的求极限方法。
当我们遇到一个极限,无论是分式的还是含有指数或对数的,都可以尝试使用洛必达法则。
洛必达法则的核心思想是利用导数的性质来求解极限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30
(2 x 1) ( x 1) lim 82 x ( x 1)
4
78
4 78 1 78 x 4 (2 1 ) x ( 1 4 x x) lim 2 16 82 82 1 x x (1 x )
5.先变形再求极限 (利用求和化简,拆项技巧,合并化简等)
3 2 3 2 2x 3x 5 x lim 3 lim x 7 x 4 x 2 1 x 4 7 x
(无穷小因子分出法)
小结:当a0 0, b0 0, m和n为非负整数时有
a0 b , 当n m, 0 n n 1 a 0 x a1 x a n lim 0, 当n m, m m 1 x b x b1 x bm 0 , 当n m,
例
解
4x 1 求 lim 2 . x 1 x 2 x 3
lim( x 2 2 x 3) 0
x 1
商的法则不能用
又 lim(4 x 1) 3 0,
x 1
x 2x 3 0 0. lim x 1 3 4x 1
2
4x 1 . 由无穷小与无穷大的关系,得 lim 2 x 1 x 2 x 3
1 lim 1 2 x x
x
x
x 2a 8 ,求 2 xlim xa
a
2012年数学三考研试题
(第二答题填空题第9小题)
9.
lim(tan x)
x
1 cos x sin x
4
12. 应用数列的单调有界收敛准则求极限
【分析】一般利用单调增加有上界或单调减少有 下界数列必有极限的准则来证明数列极限的存在。 例
cos x 2
x 0 3
1 x 1
.
2008年数学三考研试题
(第三大题第15题10分)
(15)
1 sin x lim 2 ln . x 0 x x
11. 应用两个重要极限求极限
两个重要极限是
sin x lim 1 x 0 x
和
1 1 x 1 n lim(1 ) lim(1 ) lim(1 x) x e x n x 0 x n
x 1 2
2 2 1 e x 1
1 2
2
例 解
1 x 求 limຫໍສະໝຸດ 1 ) . x x1 1 1 x 1 . 原式 lim[(1 ) ] lim x x 1 x e x (1 ) x
练习 1
方法总结: 对于求无穷多项的极限和不符合四则运 算的极限,先通过变形在求极限;
2005年数学三考研试题 (第三大题15小题8分)
(15)
1 x 1 lim( ). x x 0 1 e x
6.利用无穷小运算性质求极限
例 解
sin x 求 lim . x x
1 当x 时, 为无穷小, x
n 又 lim 2 lim n n n n
1 1, 由夹逼定理得 1 2 n 1 1 1 lim( 2 ) 1. 2 2 n n 1 n 2 n n
n
lim
n
2
n 1
lim
n
1
1 1, 1 n
1
说明:这种n项和的极限有时也可以转化为定积分来计算, 这道题是不可以的。
( x 2 3 x 2 1)( x 2 3 x 2 1) x2 3 x2 1 2 x 3 x 1
2 2
x
lim
x
0
例 求 lim
x 0
x +4 2
2
x +9 3
2
.
(分子分母有理化消去零因子)
x 2 +4 2 x 2 +9 3 ( x 2 +4 2)( x 2 +4 2)( x 2 +9 3) ( x 2 +4 2)( x 2 +9 3)( x 2 +9 3) x 2 ( x 2 +9 3)
极限的求法总结
简介:求极限方法举例,列举21种 求极限的方法和相关问题
1.代入法求极限
例1.lim( x x 2)
2 x 2
例2.设有多项式Pn ( x) a0 x a1 x
n
n 1
... an ,
求 lim Pn ( x).
x x0
lim Pn ( x) a0 ( lim x) n a1 ( lim x) n1 a n
因为 所以
1 lim 0 lim 0 x x n 1
1 x n sin 3 x lim dx 0 x 01 sin 3 x
10. 用等价无穷小量代换求极限
常用的等价无穷小量 : 当x 0时: (1) x ~ sin x ~ tan x ~ arcsin x ~ arctan x ~ ln(1 x) ~ e x 1; x2 (2)1 cos x ~ ; 2 (3)e x 1 ~ x; (4) ln(1 x) ~ x; (5)a x 1 ~ x ln a; (6)(1 x) 1 ~ x.
1 a xn 1 xn 设 a 0 ,x1 0 , 2 xn
(n 1, 2,3, )
(1)证明
lim xn 存在; (2)求 lim xn . n n
2
7.利用左右极限求分段函数极限
例 解
x 0
1 x, 设 f ( x) 2 x 1,
x0 , 求 lim f ( x ). x 0 x0
x 0是函数的分段点 , 两个单侧极限为
x 0
lim f ( x ) lim (1 x ) 1,
2 lim f ( x ) lim ( x 1) 1, x 0
y
sin x x
而 sin x是有界函数.
sin x lim 0. x x
1 练习1. 求 lim x sin . x 0 x 1 练习2. 求 lim sin x. x x 1 练习3. 求 lim x sin . x 0 x 1 练习4. 求 lim x sin . x x sin x 练习5. 求 lim . x 0 x
第一个重要极限过于简单且可通过等价无穷小来实现。 主要考第二个重要极限
x 1 例:求极限 xlim x 1
1 X ,最后凑指数部分。
x
【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑
解
x x 2 1 x 1 lim 1 x 1 xlim 1 xlim x x 1 x 1 2
y 1 x
y x2 1
y
x 0
1
左右极限存在且相等,
o
x
故 lim f ( x ) 1.
x 0
8.分子(母)有理化求极限
【说明】分子或分母有理化求极限,是通过有理化化去无理式。
例
2 2 lim ( x 3 x 1) 求极限 x
x
lim ( x 2 3 x 2 1) lim
例 解
1 2 n 求 lim( 2 2 2 ). n n n n
n 时, 是无限多个无穷小之和 .
先变形再求极限.
1 2 n 1 2 n lim( 2 2 2 ) lim n n n n n n2
1 n( n 1) 1 1 1 2 lim lim (1 ) . 2 n n 2 n n 2
lim
x 0
lim
x 0
3 lim x 0 2 x ( x 2 +4 2) 2
9.利用夹逼准则(两边夹法)则求极限
说明:两边夹法则需要放大和缩小不等式,常用的方法
是都换成最大的和最小的。
例
求 lim(
n
1 n 1
2
1 n 2
2
1 n n
2
).
n 1 1 n , 解 2 2 2 2 n n n 1 n n n 1
x ln(1 x) 例:求极限 lim x 0 1 cos x
解
x ln(1 x) xx lim lim 2 x 0 1 cos x x 0 1 2 x 2
2. lim
x 0
(e2 x 1) ln(1 x) 练习:1. lim x 0 1 cos x
x x0 x x0
x x0
a0 x0 a1 x0
n
n 1
an
Pn ( x0 ).
x2 5x 6 例3. lim x 1 3 x 2 2
商的法则(代入法)
方法总结:
多项式函数与分式函数(分母不为0)用 代入法求极限;
2.由无穷大量和无穷小量的关系求极限
x1 1 . lim x 1 x 3 2
(消去零因子法)
4.无穷小因子分出法求极限
例 解
x 时, 分子, 分母的极限都是无穷大 .( 型 )
5 x3 2. 1 7 3 x
2x 3x 5 求 lim 3 . 2 x 7 x 4 x 1
3 2
先用x 3去除分子分母 , 分出无穷小 , 再求极限.
1 2 例 lim( 2 ) x 1 x 1 x 1
1 2 x 1 2 lim( 2 ) lim( 2 2 ) x 1 x 1 x 1 x 1 x 1 x 1 x 1 1 1 lim 2 lim x 1 x 1 x 1 x 1 2