计算机图像图形外文翻译外文文献英文文献图像分割

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原文出处Digital Image Processing 2/E

图像分割

前一章的资料使我们所研究的图像处理方法开始发生了转变。从输人输出均为图像的处理方法转变为输人为图像而输出为从这些图像中提取出来的属性的处理方法〔这方面在1.1节中定义过)。图像分割是这一方向的另一主要步骤。

分割将图像细分为构成它的子区域或对象。分割的程度取决于要解决的问题。就是说当感兴趣的对象已经被分离出来时就停止分割。例如,在电子元件的自动检测方面,我们关注的是分析产品的图像,检测是否存在特定的异常状态,比如,缺失的元件或断裂的连接线路。超过识别这此元件所需的分割是没有意义的。

异常图像的分割是图像处理中最困难的任务之一。精确的分割决定着计算分析过程的成败。因此,应该特别的关注分割的稳定性。在某些情况下,比如工业检测应用,至少有可能对环境进行适度控制的检测。有经验的图像处理系统设计师总是将相当大的注意力放在这类可能性上。在其他应用方面,比如自动目标采集,系统设计者无法对环境进行控制。所以,通常的方法是将注意力集中于传感器类型的选择上,这样可以增强获取所关注对象的能力,从而减少图像无关细节的影响。一个很好的例子就是,军方利用红外线图像发现有很强热信号的目标,比如移动中的装备和部队。

图像分割算法一般是基于亮度值的不连续性和相似性两个基本特性之一。第一类性质的应用途径是基于亮度的不连续变化分割图像,比如图像的边缘。第二类的主要应用途径是依据事先制定的准则将图像分割为相似的区域,门限处理、区域生长、区域分离和聚合都是这类方法的实例。

本章中,我们将对刚刚提到的两类特性各讨论一些方法。我们先从适合于检测灰度级的不连续性的方法展开,如点、线和边缘。特别是边缘检测近年来已经成为分割算法的主题。除了边缘检测本身,我们还会讨论一些连接边缘线段和把边缘“组装”为边界的方法。关于边缘检测的讨论将在介绍了各种门限处理技术

之后进行。门限处理也是一种人们普遍关注的用于分割处理的基础性方法,特别是在速度因素占重要地位的应用中。关于门限处理的讨论将在几种面向区域的分割方法展开的讨论之后进行。之后,我们将讨论一种称为分水岭分割法的形态学图像分割方法。这种方法特别具有吸引力,因为它将本章第一部分提到的几种分割属性技术结合起来了。我们将以图像分割的应用方面进行讨论来结束本章。 10.1间断检测

在本节中,我们介绍几种用于检测数字图像中三种基本的灰度级间断技术:点、线和边缘。寻找间断最一般的方法是以3.5节中描述的方式对整幅图像使用一个模板进行检测。图10-1所示的3x3模板,这一过程包括计算模板所包围区域内灰度级与模板系数的乘积之和。就是说,关于式(3.5.3),在图像中任意点的模板响应由下列公式给出:

∑==+++=919

9...2211i wizi

z w z w z w R (10.1.1)

图10-1 一个一般的3*3模板

这里Zi 是与模板系数Wi 相联系的像素的灰度级。照例,模板响应是它的中心位置。有关执行模板操作的细节在3.5节中讨论。

10.1.1点检测

在一幅图像中,孤立点的检测在理论上是简单的。使用如图10-2(a)所示的模板,如果

|R| ≥ T (10.1.2)

我们说在模板中心的位置上已经检测到一个点。这里T 是一个非负门限,R 由式(10.1.1)给出。基本上,这个公式是测量中心点和它的相邻点之间加权的差值。

基本思想就是:如果一个孤立的点(此点的灰度级与其背景的差异相当大并且它

所在的位置是一个均匀的或近似均匀的区域)与它周围的点很不相同,则很容易

被这类模板检测到。注意,图10-2(a)中的模板同图3.39(d)中给出的模板在拉

普拉斯操作方而是相同的。严格地讲,这里强调的是点的检测。即我们着重考虑

的差别是那些足以识别为孤立点的差异(由T决定)。注意,模板系数之和为零表

示在灰度级为常数的区域,模板响应为零。

-1 -1 -1

-1 8 -1

-1 -1 -1

(a)

(b)(c)(d)图10-2 (a)点检测模板,(b)带有通孔的涡轮叶片的X射线,(c)点检测的结果,(d)使用式(10.1.2)得到的结果(原图由X-TEK系统公司提供)

例10.1图像中孤立点的检浏

我们以图10-2(b)功为辅助说明如何从一幅图中将孤立点分割出来.这幅X

射线图显示了一个带有通孔的喷气发动抓涡枪叶片,通孔位于圈像的右上象限。

在孔中只嵌有一个黑色像素。图10-2(c)是将点检测模板应用于X射线图像后得

到的结果.图10-2(d)显示了当T取图10-2(c)中像素最高绝衬值的90%时,应用

式(10.1.2)所得的结果(门限选择将在10.3节中详细讨论)。图中的这个单一的

像素清晰可见(这个像素被人为放大以便印刷后可以看到)。由于这类检测是基于

单像素间断,并且检测器模板的区域有一个均匀的背景,所以这个检测过程是相

当有专用性的当这一条件不能满足时,本章中计论的其他方法会更适合检测灰度

级间断

10.1.2线检测

复杂程度更高一级的检测是线检测,考虑图10-3中显示的模板。如果第l 个模板在图像中移动,这个模板将对水平方向的线条(一个像素宽度)有更强的响应。在一个不变的背景上,当线条经过模板的中间一行时会产生响应的最大值。画一个元素为1的简单阵列,并且使具有不同灰度级(如5)的一行水平穿过阵列,可以很容易验证这一点。同样的实验可以显示出图10-3中的第2个模板对于45°方向线有最佳响应;第3个模板对于垂直线有最佳响应;第4个模板对于

-45°方向线有最佳响应;这些方向也可以通过注释每个模板的优选方向来设置,即在这些方向上用比别的方向更大的系数(为2)设置权值。注意每个模板系数相加的总和为零,表示在灰度级恒定的区域来自模板的响应为零。

°

图10-3 线模板

令R1,R2,R3和R4。从左到右代表图10-3中模板的响应,这里R的值由式(10.1.1)给出。

假设4个模板分别应用于一幅图像,在图像中心的点,如果|Ri|>|Rj| ,

j≠i,则此点被认为与在模板i方向上的线更相关。例如,如果在图中的一点有|Ri|>|Rj| ,j=2,3,4,我们说此特定点与水平线有更大的联系。

换句话说,我们可能对检测特定方向上的线感兴趣。在这种情况下,我们应使用与这一方向有关的模板,并设置该模板的输出门限,如式(10.1.2)所示。换句话说,如果我们对检测图像中由给定模板定义的方向上的所有线感兴趣.只需要简单地通过整幅图像运行模板,并对得到的结果的绝对值设置门限即可。留下的点是有最强响应的点。对于一个像素宽度的线,这些响应最靠近模板定义的对应方向。下列例子说明了这一过程。

例 10.2特定方向上的线检测

图10-4(a)显示了一幅电路接线模板的数字化(二值的)图像。假设我们要找到一个像素宽度的并且方向为-45°的线条。基于这个假设,使用图10-3中最后

相关文档
最新文档