同济版高等数学_电子版

合集下载

高数同济七版电子课本上册

高数同济七版电子课本上册

反常积分
反常积分的概念
反常积分是对于无穷区间上的积分,它分为两类:无穷限的反常积 分和瑕点的反常积分。
反常积分的性质
反常积分具有一些特殊的性质,例如:无穷限的反常积分的结果可 能为无穷大,瑕点的反常积分的结果可能为无穷小。
反常积分的计算方法
对于不同类型的反常积分,计算方法有所不同,常用的方法包括利 用极限理论、幂级数展开等。
法则。
基本公式
02 基本公式包括指数函数的导数、幂函数的导数、对数
函数的导数和三角函数的导数等。
常见函数的导数
03
常见函数的导数包括一次函数的导数、二次函数的导
数、反比例函数的导数和幂函数的导数等。
微分及其应用
01
02
03
微分的概念
微分是函数在某一点处的 近似值,即函数在该点的 切线截距。
微分的几何意义
柯西中值定理
进一步揭示了函数在某点处的导数与该点附近函数的平均值之间的关系,是微分学中的重要定理之一。
洛必达法则
洛必达法则基本内容
在一定条件下,当一个函数的极限为0时,可以 应用洛必达法则求其导数的极限。
洛必达法则的应用
适用于求一些复杂函数的极限,简化计算过程 。
洛必达法则的条件
只有在满足一定条件下才能使用洛必达法则,否则可能导致错误的结果。
反常积分的应用
• 总结词:反常积分是定积分的一种推广形式,它可以用来求解更广泛的一类问 题。反常积分的应用包括物理、工程、经济等领域。
• 详细描述:反常积分是定积分的一种推广形式,它可以用来求解更广泛的一类 问题。反常积分有两种类型:无穷区间上的反常积分和无界函数的反常积分。 无穷区间上的反常积分可以用来求解函数在无穷区间上的积分,而无界函数的 反常积分可以用来求解函数在有限区间上的瑕积分。反常积分的应用非常广泛 ,包括物理、工程、经济等领域。例如,在物理学中,反常积分可以用来求解 量子力学中的波函数问题、电动力学中的电磁场问题等;在工程学中,反常积 分可以用来求解流体动力学中的问题、热传导问题等;在经济领域,反常积分 可以用来求解贴现问题、投资组合问题等。

同济高等数学课件(完整版)详细

同济高等数学课件(完整版)详细

T
M
x0
x
切线方程为 y y0 f ( x0 )( x x0 ).
法线方程为
y
y0
f
1 (x
( x0 )
x0 ).
例7 求等边双曲线 y 1 在点(1 ,2)处的切线的 x2
斜率,并写出在该点处的切线方程和法线方程.
解 由导数的几何意义, 得切线斜率为
k y x1 2
( 1 ) x
x1 2
y
y
y f (x)
o
x
y f (x)
o
x0
x
例8
讨论函数
f
(x)
x
sin
1 x
,
x 0,
0, x 0
在x 0处的连续性与可导性.
解 sin 1 是有界函数 , lim x sin 1 0
x
x0
x
f (0) lim f ( x) 0 f ( x)在x 0处连续.
x0
1
但在x 0处有 y (0 x)sin 0 x 0 sin 1
h0
h
三、证明:若 f ( x)为偶函数且 f (0) 存在,则 f (0) 0 .
四、
设函数
f
(x)
x k
sin
1 x
,
x
0问
k
满足什么条
0 , x 0
件, f ( x)在 x 0处 (1)连续; (2)可导;
(3)导数连续.
五、
设函数
f
(x)
x2
,
x
1
,为了使函数
ax b , x 1
f ( x)在 x 1处连续且可导,a , b应取什么值.

高等数学-同济大学第六版--高等数学课件第一章函数与极限

高等数学-同济大学第六版--高等数学课件第一章函数与极限

函数与极限
x
4
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2024/7/17
函数与极限
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2024/7/17
函数与极限
2
数集分类: N----自然数集 Z----整数集
2024/7/17
函数与极限
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2024/7/17
函数与极限
25
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2024/7/17
函数与极限
26
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数

同济高数第一章第一节

同济高数第一章第一节

定义在R上的任意函数 上的任意函数, 证明 定义在 上的任意函数,都可以表示为 一个奇函数与一个偶函数之和。 一个奇函数与一个偶函数之和。 证 设 f ( x) x ∈ R 1 1 记 ϕ( x ) = [ f ( x ) − f ( − x )], ψ( x ) = [ f ( x ) + f ( − x )] 2 2 1 ϕ( − x ) = [ f ( − x ) − f ( x )] = − ϕ( x ) 奇函数 2 1 ψ( − x ) = [ f ( − x ) + f ( x )] = ψ( x ) 偶函数 2
例6 证明
3x + 1 y= 2 有界 x +4
3 x + 1 | 3 x + 1 | 3 | x | +1 证 | 2 |= 2 ≤ 2 x +4 x +4 x +4 3| x | 1 3( x 2 + 1) 1 = 2 + 2 ≤ + 2 x + 4 x + 4 2( x + 4) 4
3 1 7 ≤ + = 2 4 4 3x + 1 ∴y= 2 x +4
第一章 函数、极限与连续 函数、
第一节 函数
一、集合 总体. 1.集合: 具有某种特定性质的事物的总体 1.集合: 具有某种特定性质的事物的总体 集合 组成这个集合的事物称为该集合的元素 元素. 组成这个集合的事物称为该集合的元素 记为: 记为: a ∈ M , a ∉ M , 集合分类: 集合分类: 有限集 无限集 集合表示: 集合表示: A = {a1 , a 2 ,L , a n }
函数的两要素: 定义域与对应法则 函数的两要素: 定义域与对应法则. 函数与表示自变量的字母无关 指出下列函数是否相同,为什么? 例5 指出下列函数是否相同,为什么?

《高等数学》电子课件(同济第六版)01第一章 第1节 函数

《高等数学》电子课件(同济第六版)01第一章 第1节 函数
第一节 映射与函数
一、集合
二、函数概念 三、映射 四、函数的特性 五、反函数
六、基本初等函数 七、复合函数 初等函数
1
第一节 映射与函数
一.集合:
1、集合
M {x x具有特定性质}
有限集 如 M {0,1,2, ,9}
无限集 如 M2 {( x, y) x2 y2 1}
2、集合间的关系:
(1) 子 集 ;(2) 集 合 相 等 ;(3) 空 集 ;
2
故定义域为
D
[
0
,
1 2
)
12
3、几个特殊的函数举例
(1) 符号函数
1 当x 0
y
sgn
x
0
当x 0
1 当x 0
定义域 D (, ), 值域 W {1,0,1}
图形:
y
1
o
x
-1
x sgn x x 13
(2) 取整函数: y=[x] [x]表示不超过 x 的最大整数
如 [3] 0, [ 3] 1, [8] 8, [3.8] 4.
x, x 1
f
(x)
min{ x , x2}
x
2
,
1 x 1
三、映射(自学)x, x 1
19
四、函数的特性
1.函数的有界性:
若X D,M 0,x X,有 f (x) M 成立,
则称函数f ( x)在X上有界.否则称无界.
如 y cos x 在( , )上有界, 2 x2
y
1 x2
作业
习题11 P21
4(1)(3)(5)(7)(9),5(2)(3),6,7(1),10,11, 12(1)(3)(5),14(1)(3)(5),16,17,18

高等数学第六版上下册(同济大学出版社)课件

高等数学第六版上下册(同济大学出版社)课件
具有重要的作用。
不定积分的几何意义
不定积分表示的是一种曲线族 ,每一条曲线都有一个与之对
应的方程。
积分的应用场景
01
物理应用
积分在物理中有广泛的应用,例 如计算物体的质量、重心、转动 惯量等。
工程应用
02
03
经济应用
积分在工程中有广泛的应用,例 如计算曲线的长度、面积、体积 等。
积分在经济中有广泛的应用,例 如计算总成本、总收益、总利润 等。
05
多重积分与向量分析
二重积分的概念与性质
二重积分的定义
二重积分是定积分在二维平面上的推广,表示一个二元函数在某个区域上的累积值。
二重积分的性质
二重积分具有可加性、可减性、可交换性等性质,这些性质使得二重积分在解决实际问题中具有广泛的应用。
三重积分的概念与性质
三重积分的定义
三重积分是定积分在三维空间上的推广 ,表示一个三元函数在某个区域上的累 积值。
03
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的一种体现。
导数的几何意义
导数在几何上表示函数图像在某一点的切线的斜率。
导数的性质
导数具有一些基本的性质,如线性性质、乘积法则、 商的导数法则等。
微分的概念与性质
微分的定义
01
微分是函数在某一点附近的小变化量,用于近似计算函数的值
求函数的最值
导数可以用于求函数在一定区间内的最大值和最小值,这在优化问题中具有广泛的应用。
04
积分
定积分的概念与性质
01
定积分的定义
定积分是积分的一种,是函数在区间上与区间的乘积在区间的两个端点

高等数学(第四版) 上、下册(同济大学 天津大学等编) 电子教案-1_2 极限的概念-电子课件

高等数学(第四版) 上、下册(同济大学 天津大学等编) 电子教案-1_2 极限的概念-电子课件

2n 2 2n 1
成立.
发散数列 1n 也可能有界, 1 n 1 ;
无界数列 (1)n 2n 一定发散;
有界数列
1 2
1
(1)n






1 2
1
(1)n
1,但当
n
为奇数时,
1 2
1
(1)
n
0 ;当
n
为偶数时,
1 2
1
(1)n
1.
综上可知:收敛数列必有界.数列有界是数列收敛的
2x 1 7 ,即 m f (x) M .此处 f x 2x 1 在x 3 处有定义,且当 x 3时, f x 的极限值恰好是f 2 .
例 8 由表达式
y
f
(x)
1
x, 0, x
x 0
0
1
的确定的函数,如图 1-26 所示.
O
1
x
图21-526
当 x 0时, f (x) 1 x,则lim f (x) lim(1 x) 1.
x2 x2
求 lim f (x), lim f (x),并由此判断lim f (x) 是否存在.
x2
x2
x2
解 lim f (x) lim (2x 1) 5, lim f (x) lim (x2 1) 5,
x2
x2
x2
x2
即 f (2 ) f (2 ) 5, 由函数 f (x) 在x 2 处极限存在的充要
自变 x x0的变化过程中,函数值 f (x)无限接近于 A,就
称 A 是函数 f (x)当
x
x0



.

同济版 高等数学(上册) 第一章课件

同济版 高等数学(上册) 第一章课件

第一章 函数、连续与极限
正弦函数
y sin x
y sin x
19
1. 基本初等函数
第一章 函数、连续与极限
余弦函数
y cos x
y cos x
20
1. 基本初等函数
第一章 函数、连续与极限
y tan x
的定义域是
上是奇函数(见图1-24); y cot x 上是奇函数(见图1-25);
a A 表示 a 不是集 A 的元素(读作 a 不属
于 A ). 集合按照元素的个数分为有限集和无限集 ,不含任何元素的 集合称为空集,记为 .
3
集合之间的关系及运算
定义 . 设有集合
第一章 函数、连续与极限
A, B ,
记作

x A 必有
x B , 则称 A A B.
是 B 的子集 , 或称 B 包含 A , 若
注: 在本书中所讨论的数集除特别说明外均为实数集.
5
1. 集合及其运算 集合的基本运算有四种:并、交、差、补. 设 A, B 是两个集合.
第一章 函数、连续与极限
由同时包含于 A 与 B 的元素构成的集合(见图 1-2),称为 A 与 B 的交集(简称交),记作 A B ,即 A B {x | x A 且 x B} ; 由包含于
y

y x (α 是常数) Z y x 当 时, 的定义域是 R ; 当 Z 时,y x 的定义域是 R\{0}
(1) 幂函数: (见图1-17);
1 1 当 时,y x 2 x 的定义域是 [0, ) ; 1 21 1 当 时,y x 2 的定义域是 (0, ) , 2 x

《同济版高数》课件

《同济版高数》课件

BIG DATA EMPOWERS TO CREATE A NEW
ERA
多元函数的极限与连续性
总结词
理解多元函数的极限与连续性的 概念和性质,掌握判断多元函数 极限与连续性的方法。
多元函数的极限
理解极限的定义,掌握计算多元 函数极限的方法,如分别求极限 、累次极限等。
多元函数的连续性
理解连续性的概念,掌握判断多 元函数在某点或某区域的连续性 的方法。
极限的概念与性质
总结词
极限是高数的核心概念,理解极限的概念和性质是学习高数的关键。
详细描述
极限是指当自变量趋近某一值时,因变量的变化趋势。极限的性质包括唯一性 、局部有界性、局部保序性等。这些性质在高数的各个章节中都有重要的应用 。
极限的运算规则
总结词
掌握极限的运算规则是解决极限问题的关键。
详细描述
一阶常微分方程的解法
总结词
掌握一阶常微分方程的解法是解决这类问题的关键。
详细描述
一阶常微分方程的一般形式是dy/dx = f(x, y),可以 通过分离变量法、积分因子法、公式法等求解。
高阶常微分方程的解法
总结词
理解高阶常微分方程的解法一般形式是y''(x) + p1(x)y'(x) + p2(x)y(x) = f(x),可以通过降 阶法、变量代换法、积分因式分解法等求解
则更加注重应用和与其他学科的交叉融合,不断涌现出新的分支和领域。
高数与其他学科的联系
要点一
总结词
高数与其他学科有着密切的联系,如物理、工程、计算机 科学等。这些学科在高数的理论和方法的基础上不断发展 。
要点二
详细描述
高数与物理学的联系尤为紧密,许多物理问题的解决需要 高数的理论和方法。例如,在力学、电磁学、光学等领域 中,高数的微积分和向量分析被广泛应用。在工程领域中 ,高数的理论和方法也是解决实际问题的关键工具。计算 机科学在高数的基础上发展出了算法设计和数据结构等重 要领域。此外,经济学、统计学等领域也与高数有着密切 的联系。

同济大学第五版高数92962精品

同济大学第五版高数92962精品

相应地, f ( x)称为零阶导数; f ( x)称为一阶导数.
二、 高阶导数求法举例
1.直接法:由高阶导数的定义逐步求高阶导数.
例1 设 y arctan x, 求f (0), f (0).

y

1
1 x
2
y

( 1
1 x
2
)

(1

2x x2
)2
y


(
(1

y(n) ( 1)( n 1)xn (n 1)
若 为自然数n,则
y(n) ( xn )(n) n!, y(n1) (n!) 0.
注意:
求n阶导数时,求出1-3或4阶后,不要急于合并, 分析结果的规律性,写出n阶导数.(数学归纳法证明)
例3 设 y ln(1 x), 求y(n) .
y

cos( x

)

sin(
x



)
sin(
x

2
)
2
22
2
y
cos(
x

2

2
)

sin(
x

3

) 2
y(n) sin( x n )
2
同理可得 (cos x)(n) cos( x n ) 2
例5 设 y eax sin bx (a, b为常数), 求y(n) . 解 y aeax sin bx beax cos bx
2. 高阶导数的运算法则:
设函数u和v具有n阶导数, 则
(1) (u v)(n) u(n) v (n)

高等数学(第四版) 上、下册(同济大学 天津大学等编) 电子教案-2_5 高阶导数-电子课件

高等数学(第四版) 上、下册(同济大学 天津大学等编) 电子教案-2_5 高阶导数-电子课件

(x 1)(n 1, 2,...).
注 0! 1,因此,这个结果n 1 时也成立.
例5
求函数 f (x)
1 x2 6x 5
(x 1,5)的 n 阶导数.

f
(x)
x2
1 6x 5
1 (x 1)(x 5)
1 4
1 x 5
1 x 1
f
( x)
1 4
(x
1 5)2
1 (x 1)2
例如,自由落体的位置函数 s(t) 1 gt2 ,一阶导数 2
v(t) s(t) gt 是瞬时速度, Biblioteka (t) (gt) g 是加速度 .
例 1 设 f (x) x5 4x2 3x, 求 f (x)及 f (1).
解 因为 f (x) 5x4 8x 3, 则 f (x) (5x4 8x 3) 20x3 8
所以 f (1) (20x3 8) |x1 12.
例 2 证明: y exsinx满足关系式 y 2 y 2 y 0.
证明 因为 y exsinx excosx ex (sinx cosx),
y ex sin x cos x ex cos x sin x 2ex sin x
一般地, f (x)的 n-1 阶导数的导数称为 f (x) 的 n 阶导数.
三阶导数的记号是
y,
f
( x),
d3 y dx3
或d3 f dx3
.
n
4时的
n
阶导数
的记号是
y(n) ,
f
(n) (x),
dn y dxn
或dn f dxn
.二阶或二阶以上的导数统
称为高阶导数.
二阶导数有明显的物理意义.变速直线运动的位置函 数s s(t)时,s(t)为瞬时速度v(t),加速度是速度v(t)的变 化率,等于v(t) ,即位置函数 s(t)的二阶导数 s(t)为变速 直线运动的加速度 a(t ).

《高等数学》电子课件(同济第六版)05第一章 第5节 极限运算法则

《高等数学》电子课件(同济第六版)05第一章 第5节 极限运算法则

精选课件ppt
7
例2 求lx i1m x24x2x13.
解 li(m x22x3) 0, 商的法则不能用 x 1
又 li(m 4x1)30, x 1
limx2
2x3
0
0.
x1 4x1 3
由无穷小与无穷大的关系,得
lx i1m x24x2x13.
精选课件ppt
8
例3 求lxim 1x2x22x13. 解 x1时,分子 ,分母的极限. 都 ( 0是 型 )零

示作 :(x)
f
(x)g精(选x课), 件ppt





理。 3
.二、复合函数的极限运算法则
设lim (x)a,且对满足 0xx0 1的 x xx0
(x)a, 又limf(u)A, 则有: ua
lim f[(x)]limf(u)A,
x x0
ua
证 要证 0, 0,使0 得 x当 x0时
恒有 f[(x ) ] A f(u ) A .
0
先约去不为因 零x子 的 1后无 再穷 求 .小 极
x21
(x1)x (1)
lx i1m x22x3lx i1(m x3)x (1)
limx 1 1 . x1 x 3 2
(消去零因子法)
精选课件ppt
9
例4 求lx i m 27xx33 34xx22 1 5. 解 x时,分子 ,分母的极限都是 .( 无型穷 ) 大
推论1 如l果 im f(x)存,在 而 c为常 ,则 数
lim cf([x)]clim f(x).
推论2 如果 lim f(x)存,在 而 n是正整 ,则数
limf([x)n ][lim f(x)n ].

同济版高数课件-PPT

同济版高数课件-PPT

2
2 cos xdx
0
;
2
五、水利工程中要计算拦水闸门所受的水压力,已知 闸门上水的压强 P 是水深 h 的 函数,且有
p 9.8h(千米 米2 ),若闸门高H 3米 ,宽 L 2米 ,求水面与闸门顶相齐时闸门所受的水
压力P (见教材图 5-3).
练习题答案
n
一、1、lim 0 i1
f ( i )xi ;
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
播放
曲边梯形如图所示, 在区间[a,b]内插入若干
个分点,a x0 x1 x2 xn1 xn b, 把区间[a,b] 分成 n y
0
0
解 令 f ( x) e x x, x [2, 0]
f ( x) 0,
0 (e x x)dx 0, 2
0 e xdx
0
xdx,
2
2
于是
2 e xdx
2
xdx.
0
0
性质5的推论:
(1)如果在区间[a, b]上 f ( x) g( x),

b
a
f
(
x
)dx
b
a
g(
x)dx
i 1
(3)取极限 max{t1,t2 ,,tn }
n
路程的精确值
s
lim
0
i 1
v(
i
)ti
二、定积分的定义
定义 设函数 f ( x) 在[a, b]上有界,在[a, b]中任意插入

同济版高等数学_电子版-知识归纳整理

同济版高等数学_电子版-知识归纳整理

千里之行,始于足下。 第 57 页/共 84 页
求知若饥,虚心若愚。 第 58 页/共 84 页
千里之行,始于足下。 第 59 页/共 84 页
求知若饥,虚心若愚。 第 60 页/共 84 页
千里之行,始于足下。 第 61 页/共 84 页
求知若饥,虚心若愚。 第 62 页/共 84 页
千里之行,始于足下。 第 1ห้องสมุดไป่ตู้ 页/共 84 页
求知若饥,虚心若愚。 第 16 页/共 84 页
千里之行,始于足下。 第 17 页/共 84 页
求知若饥,虚心若愚。 第 18 页/共 84 页
千里之行,始于足下。 第 19 页/共 84 页
求知若饥,虚心若愚。 第 20 页/共 84 页
千里之行,始于足下。 第 39 页/共 84 页
求知若饥,虚心若愚。 第 40 页/共 84 页
千里之行,始于足下。 第 41 页/共 84 页
求知若饥,虚心若愚。 第 42 页/共 84 页
千里之行,始于足下。 第 43 页/共 84 页
求知若饥,虚心若愚。 第 44 页/共 84 页
千里之行,始于足下。 第 63 页/共 84 页
求知若饥,虚心若愚。 第 64 页/共 84 页
千里之行,始于足下。 第 65 页/共 84 页
求知若饥,虚心若愚。 第 66 页/共 84 页
千里之行,始于足下。 第 67 页/共 84 页
求知若饥,虚心若愚。 第 68 页/共 84 页
千里之行,始于足下。 第 27 页/共 84 页
求知若饥,虚心若愚。 第 28 页/共 84 页
千里之行,始于足下。 第 29 页/共 84 页
求知若饥,虚心若愚。 第 30 页/共 84 页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⑴、并集:一般地,由所有属于集合 A 或属于集合 B 的元素组成的集合称为 A 与 B 的并集。记作 A∪B。 (在求并集时,它们的公共元素在并集中只能出现一次。)
即 A∪B={x|x∈A,或 x∈B}。 ⑵、交集:一般地,由所有属于集合 A 且属于集合 B 的元素组成的集合称为 A 与 B 的交集。记作 A∩B。 即 A∩B={x|x∈A,且 x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。 通常记作 U。 ②补集:对于一个集合 A,由全集 U 中不属于集合 A 的所有元素组成的集合称为集合 A 相对于全集 U 的 补集。简称为集合 A 的补集,记作 CUA。
B 有包含关系,称集合 A 为集合 B 的子集,记作 A ⊆ B(或 B ⊇ A)。。
⑵相等:如何集合 A 是集合 B 的子集,且集合 B 是集合 A 的子集,此时集合 A 中的元素与集合 B 中的元 素完全一样,因此集合 A 与集合 B 相等,记作 A=B。
⑶、真子集:如何集合 A 是集合 B 的子集,但存在一个元素属于 B 但不属于 A,我们称集合 A 是集合 B 的真子集。
果 a 是集合 A 中的元素,就说 a 属于 A,记作:a∈A,否则就说 a 不属于 A,记作:a∉A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作 N ⑵、所有正整数组成的集合叫做正整数集。记作 N+或 N+。 ⑶、全体整数组成的集合叫做整数集。记作 Z。 ⑷、全体有理数组成的集合叫做有理数集。记作 Q。 ⑸、全体实数组成的集合叫做实数集。记作 R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合 A、B,如果集合 A 中的任意一个元素都是集合 B 的元素,我们就说 A、
目录
一、函数与极限 .............................................................................................................................................2 二、导数与微分 ...........................................................................................................................................19 三、导数的应用 ...........................................................................................................................................28 四、不定积分 ...............................................................................................................................................36 五、定积分及其应用 ...................................................................................................................................40 六、空间解析几何 .......................................................................................................................................45 七、多元函数的微分学 ...............................................................................................................................51 八、多元函数的积分学 ...............................................................................................................................60 九、常微分方程 ...........................................................................................................................................66 十、无穷级数 ...............................................................................................................................................76
一、函数与极限
1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定 集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成 集合,因为它的元素不是确定的。 我们通常用大字拉丁字母 A、B、C、……表示集合,用小写拉丁字母 a、b、c……表示集合中的元素。如
⑷、空集:我们把不含任何元素的集合叫做空集。记作 ∅ ,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:
①、任何一个集合是它本身的子集。即 A ⊆ A
②、对于集合 A、B、C,如果 A 是 B 的子集,B 是 C的话子集包括“真子集”和“等集”。 集合的基本运算
相关文档
最新文档