中等 圆锥曲线综合大题 学生版教学文案

合集下载

圆锥曲线的综合问题(答案版)讲课教案

圆锥曲线的综合问题(答案版)讲课教案

圆锥曲线的综合问题【考纲要求】1.考查圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立、根与系数的关系、整体代入 和设而不求的思想.2.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向 量等在解决问题中的综合运用. 【复习指导】本讲复习时,应从“数”与“形”两个方面把握直线与圆锥曲线的位置关系.会判断已知直线与曲线的位置关系(或交点个数),会求直线与曲线相交的弦长、中点、最值、定值、点的轨迹、参数问题及相关的不等式与等式的证明问题. 【基础梳理】1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时 为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或 变量y )的一元方程. 即⎩⎨⎧==++0),(0y x F c By Ax ,消去y 后得02=++c bx ax(1)当0≠a 时,设方程02=++c bx ax 的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切;Δ<0⇔直线与圆锥曲线C 无公共点.(2)当0=a ,0≠b 时,即得一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点, 此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线, 则直线l 与抛物线的对称轴的位置关系是平行. 2.圆锥曲线的弦长(1)定义:直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做 圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长. (2)圆锥曲线的弦长的计算设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=]4))[(1(212212x x x x k -++=ak ∆⋅+21=1+1k2·|y 1-y 2|.(抛物线的焦点弦长|AB |=x 1+x 2+p =2psin 2θ,θ为弦AB 所在直线的倾斜角). 3、一种方法点差法:在求解圆锥曲线并且题目中交代直线与圆锥曲线相交和被截的线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,然后利用中点求出直线方程.“点差法”的常见题型有:求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ是否为正数. 4、一条规律“联立方程求交点,根与系数的关系求弦长,根的分布找范围,曲线定义不能忘”双基自测1.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定解:y =kx -k +1=k (x -1)+1过定点(1,1),点在椭圆内部,故线与椭圆相交.答案A 2.“直线与双曲线相切”是“直线与双曲线只有一个公共点”的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 解析:与渐近线平行的直线也与双曲线有一个公共点. 答案 A3.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( ).A .3 2B .2 6C .27D .4 2解析:根据题意设椭圆方程为x 2b 2+4+y 2b2=1(b >0),则将x =-3y -4代入椭圆方程,得4(b 2+1)y 2+83b 2y -b 4+12b 2=0,∵椭圆与直线x +3y +4=0有且仅有一个交点,∴Δ=(83b 2)2-4×4(b 2+1)·(-b 4+12b 2)=0,即(b 2+4)(b 2-3)=0,∴b 2=3,长轴长为2b 2+4=27. 答案 C4.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( ).A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1解析 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2),则有:⎪⎪⎩⎪⎪⎨⎧=-=-11222222221221b y a x by a x ,两式作差得:y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=-12b 2-15a 2=4b 25a 2,又AB 的斜率是-15-0-12-3=1,所以将4b 2=5a 2代入a 2+b 2=9得a 2=4,b 2=5,所以双曲线的标准方程是x 24-y 25=1. 答案 B5.y =kx +2与y 2=8x 有且仅有一个公共点,则k 的取值为________.解析:由⎩⎪⎨⎪⎧y =kx +2,y 2=8x ,得ky 2-8y +16=0,若k =0,则y =2;若k ≠0,则Δ=0,即64-64k =0,解得k =1.故k =0或k =1.答案 0或1【考向探究导析】考向一 直线与圆锥曲线的位置关系【例1】(2011·合肥模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( ). A.]21,21[-B .[-2,2]C .[-1,1]D .[-4,4] [审题视点] 设直线l 的方程,将其与抛物线方程联立,利用Δ≥0解得.解析 由题意得Q (-2,0).设l 的方程为y =k (x +2),代入y 2=8x 得k 2x 2+4(k 2-2)x +4k2=0,∴当k =0时,直线l 与抛物线恒有一个交点;当k ≠0时,Δ=16(k 2-2)2-16k 4≥0,即k 2≤1,∴-1≤k ≤1,且k ≠0,综上-1≤k ≤1.答案 C研究直线和圆锥曲线的位置关系,一般转化为研究直线方程与圆锥曲线方程组成的方程组解的个数,但对于选择、填空题,常充分利用几何条件,利用数形结合的方法求解. 【训练1】 若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆 x 29+y 24=1的交点个数是( ).A .至多为1 B .2 C .1 D .0 解:由题意知:4m 2+n 2>2,即m 2+n 2<2,∴点P (m ,n )在椭圆x 29+y 24=1的内部,故所求交点个数是2个.答案 B考向二 弦长及中点弦问题【例2】若直线l 与椭圆C :x 23+y 2=1交于A 、B 两点,坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值.[审题视点] 联立直线和椭圆方程,利用根与系数关系后代入弦长公式,利用基本不等式求出弦长的最大值即可.解 设A (x 1,y 1),B (x 2,y 2).(1)当AB ⊥x 轴时,|AB |=3; (2)当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m .由已知,得|m |1+k2=32,即m 2=34(k 2+1).把y =kx +m 代入椭圆方程,整理,得(3k 2+1)x 2+6kmx +3m 2-3=0. ∴x 1+x 2=-6km 3k 2+1,x 1x 2=3m 2-13k 2+1. ∴|AB |2=(1+k 2)(x 2-x 1)2=(1+k 2)·⎣⎢⎡⎦⎥⎤36k 2m 23k 2+12-12m 2-13k 2+1=12k 2+13k 2+1-m 23k 2+12=3k 2+19k 2+13k 2+12=3+12k29k 4+6k 2+1. 当k ≠0时,上式=3+129k 2+1k2+6≤3+122×3+6=4,当9k 2=1k 2,即k =±33时等号成立.此时|AB |=2;当k =0时,|AB |=3,综上所述|AB |max =2.∴当|AB |最大时,△AOB 面积取最大值S max =12×|AB |max ×32=32.当直线(斜率为k )与圆锥曲线交于点A (x 1,y 1),B (x 2,y 2)时,则|AB |=1+k 2·|x 1-x 2|=1+1k2|y 1-y 2|,而|x 1-x 2|=x 1+x 22-4x 1x 2,可根据直线方程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关系得到两根之和、两根之积的代数式,然后再进行整体代入求解.【训练2】 椭圆ax 2+by 2=1与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若 AB =22,OC 的斜率为22,求椭圆的方程. 法一:设A (x 1,y 1)、B (x 2,y 2),代入椭圆方程作差a (x 1+x 2)(x 1-x 2)+b (y 1+y 2)(y 1-y 2)=0.而y 1-y 2x 1-x 2=-1,y 1+y 2x 1+x 2=k oc =22,代入上式可得b =2a ,再由|AB |=1+k 2|x 2-x 1|= 2|x 2-x 1|=22,其中x 1、x 2是方程(a +b )x 2-2bx +b -1=0的两根,故⎝ ⎛⎭⎪⎫2b a +b 2-4·b -1a +b =4,将b =2a 代入得a =13,∴b =23.∴椭圆的方程是x 23+2y 23=1. 法二 由⎩⎪⎨⎪⎧ax 2+by 2=1,x +y =1,得(a +b )x 2-2bx +b -1=0,设A (x 1,y 1)、B (x 2,y 2),则|AB |=k 2+1x 1-x 22=2·4b 2-4a +bb -1a +b2.∵|AB |=22,∴a +b -ab a +b =1.① ,设C (x ,y ),则x =x 1+x 22=b a +b ,y =1-x =aa +b ,∵OC 的斜率为22,∴a b =22.代入①,得a =13,b =23.∴椭圆方程为x 23+23y 2=1.考向三 圆锥曲线中的定点定值问题常见的类型(1)直线恒过定点问题;(2)动圆恒过定点问题;(3)探求定值问题;(4)证明定值问题.例3、(2011·山东)在平面直角坐标系xOy 中,已知椭圆C :x23+y 2=1.如图所示,斜率为k (k >0)且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C于点G ,交直线x =-3于点D (-3,m ).(1)求m 2+k 2的最小值; (2)若|OG |2=|OD |·|OE |,求证:直线l 过定点. (1)解:设直线l 的方程为y =kx +t (k >0),由题意,t >0.由方程组⎩⎪⎨⎪⎧y =kx +t ,x 23+y 2=1,得(3k 2+1)x 2+6ktx +3t 2-3=0.由题意Δ>0,所以3k 2+1>t 2.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系得x 1+x 2=-6kt3k 2+1,所以y 1+y 2=2t 3k 2+1.由于E 为线段AB 的中点,因此x E =-3kt 3k 2+1,y E =t3k 2+1,此时k OE =y E x E =-13k .所以OE 所在直线方程为y =-13k x ,又由题设知D (-3,m ),令x =-3,得m =1k,即mk =1,所以m 2+k 2≥2mk =2,当且仅当m =k =1时上式等号成立,此时由Δ>0得0<t <2,因此当m =k =1且0<t <2时,m 2+k 2取最小值2.(2)证明 由(1)知OD 所在直线的方程为y =-13kx ,将其代入椭圆C 的方程,并由k >0,解得G ⎝ ⎛⎭⎪⎫-3k 3k 2+1,13k 2+1.又E ⎝ ⎛⎭⎪⎫-3kt3k 2+1,t 3k 2+1,D ⎝ ⎛⎭⎪⎫-3,1k ,由距离公式及t >0得 |OG |2=⎝⎛⎭⎪⎫-3k 3k 2+12+⎝ ⎛⎭⎪⎫13k 2+12=9k 2+13k 2+1,|OD |= -32+⎝ ⎛⎭⎪⎫1k 2=9k 2+1k , |OE |= ⎝ ⎛⎭⎪⎫-3kt 3k 2+12+⎝ ⎛⎭⎪⎫t 3k 2+12=t 9k 2+13k 2+1,由|OG |2=|OD |·|OE |得t =k , 因此直线l 的方程为y =k (x +1),所以直线l 恒过定点(-1,0).【训练3】椭圆有两顶点A (-1,0)、B (1,0),过其焦点F (0,1)的直线l 与椭圆交于C 、D 两点,并与x 轴交于点P .直线AC 与直线BD 交于点Q . (1)当|CD |=322时,求直线l 的方程.(2)当点P 异于A 、B 两点时,求证:O P →·O Q →为定值. [审题视点] (1)设出直线方程与椭圆方程联立.利用根与系数的关系和弦长公式可求出斜率从而求出直线方程;(2)关键是求出Q 点坐标及其与P 点坐标的关系,从而证得OP →·OQ →为定值.证明过程中要充分利用已知条件进行等价转化.(1)解:因椭圆焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0),由已知得b =1,c =1,所以a =2,椭圆方程为y 22+x 2=1.直线l 垂直于x 轴时与题意不符.设直线l 的方程为y =kx +1,将其代入椭圆方程化简得(k 2+2)x 2+2kx -1=0. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-2k k 2+2,x 1·x 2=-1k 2+2,|CD |=k 2+1·x 1+x 22-4x 1x 2=22k 2+1k 2+2,由已知得22k 2+1k 2+2=322, 解得k =±2,所以直线l 的方程为y =2x +1或y =-2x +1. (2)证明 直线l 与x 轴垂直时与题意不符.设直线l 的方程为y =kx +1(k ≠0且k ≠±1),所以P 点坐标为]0,1[k-,设C (x 1,y 1),D (x 2,y 2),由(1)知x 1+x 2=-2k k 2+2,x 1·x 2=-1k 2+2,直线AC 的方程为y =y 1x 1+1(x +1),直线BD 的方程为y =y 2x 2-1(x -1),将两直线方程联立,消去y 得x +1x -1=y 2x 1+1y 1x 2-1,因为-1<x 1,x 2<1,所以x +1x -1与y 2y 1异号.⎝ ⎛⎭⎪⎫x +1x -12=y 22x 1+12y 21x 2-12=2-2x 222-2x 21·x 1+12x 2-12=1+x 11+x 21-x 11-x 2=1+-2k k 2+2+-1k 2+21--2k k 2+2+-1k 2+2=⎝ ⎛⎭⎪⎫k -1k +12.又y 1y 2=k 2x 1x 2+k (x 1+x 2)+1=21-k1+k k 2+2=-21+k 2k 2+2·k -1k +1, ∴k -1k +1与y 1y 2异号,x +1x -1与k -1k +1同号,∴x +1x -1=k -1k +1,解得x =-k . 因此Q 点坐标为(-k ,y 0).O P →·O Q →=⎝ ⎛⎭⎪⎫-1k ,0·()-k ,y 0=1.故O P →·O Q →为定值.[训练4](2012年高考福建卷)如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A 、B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程; (2)设动直线l :y =kx +m 与椭圆E 有且只有一个公共点P ,且与直线x =4相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由.[解析] (1)因为|AB |+|AF 2|+|BF 2|=8,即|AF 1|+|F 1B |+|AF 2|+|BF 2|=8.又|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a ,所以4a =8,a =2.又因为e =12,即c a =12,所以c =1,所以b =a 2-c 2= 3.故椭圆E 的方程是x 24+y 23=1.(2)由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,消去y 得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0),所以m ≠0且Δ=0, 即64k 2m 2-4(4k 2+3)(4m 2-12)=0,化简得4k 2-m 2+3=0.(*)所以P (-4k m ,3m).由⎩⎪⎨⎪⎧x =4,y =kx +m ,得Q (4,4k +m ) 假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上.设M (x 1,0),则0MP MQ ⋅=u u u r u u u u r对满足(*)式的m ,k 恒成立.因为MP u u u r =(-4k m-x 1,3m),MQ u u u u r =(4-x 1,4k +m ),由0MP MQ ⋅=u u u r u u u u r ,得-16k m +4kx 1m -4x 1+x 21+12k m +3=0,整理,得(4x 1-4)k m+x 21-4x 1+3=0. (* *)由于(* *)式对满足(*)式的m ,k 恒成立,所以⎩⎪⎨⎪⎧4x 1-4=0,x 21-4x 1+3=0,解得x 1=1.故存在定点M (1,0),使得以PQ 为直径的圆恒过点M .【训练5】已知抛物线y 2=4x ,圆F :(x -1)2+y 2=1,过点F 作直线l ,自上而下顺次与上述两曲线交于点A ,B ,C ,D (如图所示),则|AB |·|CD |的值正确的是( )A .等于1B .最小值是1C .等于4D .最大值是4解析:设直线l :x =ty +1,代入抛物线方程,得y 2-4ty -4=0.设A (x 1,y 1),D (x 2,y 2),由抛物线定义AF =x 1+1,DF =x 2+1,故|AB |=x 1,|CD |=x 2, 故|AB |·|CD |=x 1x 2=y 214·y 224=(y 1y 2)216,而y 1y 2=-4,代入上式,得|AB |·|CD |=1.故选A.考向四 最值与范围问题1.求参数范围的方法:据已知条件建立等式或不等式的函数关系,再求参数范围. 2.求最值问题的方法(1)几何法:题目中给出的条件有明显的几何特征,则考虑用图象来解决;(2)代数法:题目中给出的条件和结论几何特征不明显则可以建立目标函数,再求这个函数 的最值,求最值的常见方法是判别式法、基本不等式法,单调性法等.例4、已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点. (1)求过点O 、F ,并且与直线l :x =-2相切的圆的方程; (2)设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点, 线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.[审题视点] (1)求出圆心和半径,得出圆的标准方程; (2)设直线AB 的点斜式方程,由已知得线段AB 的垂直平分线方程,利用求值域的方法求解.解 (1)∵22=a ,12=b ,∴1=c ,F (-1,0),∵圆过点O ,F ,∴圆心M 在直线x =-12上.设M ),21(t -,则圆半径r =23)2()21(=---,由|OM |=r ,得23)21(22=+-t ,解得t=±2,∴所求圆的方程为49)2()21(22=±++y x(2)设直线AB 方程为y =k (x +1)(k ≠0),代入x 22+y 2=1,得(1+2k 2)x 2+4k 2x +2k 2-2=0.∵直线AB 过椭圆的左焦点F 且不垂直于x 轴,∴方程有两个不等实根.如图,设A (x 1,y 1),B (x 2,y 2),AB 中点N (x 0,y 0),则x 1+x 2=-4k 22k 2+1,x 0=12(x 1+x 2)=-2k 22k 2+1,y 0=k (x 0+1)=k 2k 2+1,∴AB 的垂直平分线NG 的方程为y -y 0=-1k(x -x 0).令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k 22k 2+1=-k 22k 2+1=-12+14k 2+2,∵k ≠0,∴-12<x G <0,∴点G 横坐标的取值范围为)0,21(-【训练6】已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两点.当 直线l 的斜率是12时,AC →=4AB →.(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围.解 (1)设B (x 1,y 1),C (x 2,y 2),当直线l 斜率是12时,l 方程为y =12(x +4),即x =2y -4.由⎩⎪⎨⎪⎧x 2=2py ,x =2y -4得2y 2-(8+p )y +8=0,∴⎪⎩⎪⎨⎧+=+=②①2842121py y y y 又∵AC →=4AB →,∴y 2=4y 1③,由①②③及p >0得:y 1=1,y 2=4,p =2,得抛物线G 方程为x 2=4y .(2)设l :y =k (x +4),BC 中点为(x 0,y 0),由⎩⎪⎨⎪⎧x 2=4y ,y =k x +4得x 2-4kx -16k =0,④∴x 0=x C +x B2=2k ,y 0=k (x 0+4)=2k 2+4k .∴线段BC 中垂线为y -2k 2-4k =-1k(x -2k ),∴线段BC 的中垂线在y 轴上的截距为:b =2k 2+4k +2=2(k +1)2, 对于方程④,由Δ=16k 2+64k >0得k >0或k <-4.∴b ∈(2,+∞).[训练7]已知抛物线y 2=2px (p ≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为( )A .(-23,0)B .(0,23)C .(-32,0)D .(0,32)解析:设抛物线上关于直线x +y =1对称的两点是M (x 1,y 1)、N (x 2,y 2),设直线MN 的方程为y =x +b .将y =x +b 代入抛物线方程,得x 2+(2b -2p )x +b 2=0,则x 1+x 2=2p -2b ,y 1+y 2=(x 1+x 2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p ).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p )2-4b 2=4p 2-8bp >0,将b =2p -1代入得4p 2-8p (2p -1)>0,即3p 2-2p <0,解得0<p <23.考向五 探索性问题【问题研究】 解析几何中探索性问题的结论往往不明确,需要根据已知条件通过推理论证或是计算对结论作出明确的肯定或是否定,因此解决起来具有较大的难度.【解决方案】 明确这类问题的解题思想:即假设其结论成立、存在等,在这个假设下进行推理论证,如果得到了一个合情合理的推理结果,就肯定假设,对问题作出正面回答,如果得到一个矛盾的结果,就否定假设,对问题作出反面回答.[例5】已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1. (1)求曲线C 的方程;(2)是否存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有 FA →·FB →<0?若存在,求出m 的取值范围;若不存在,请说明理由. 解:(1)设P (x ,y )是C 上任意一点,那么点P (x ,y )满足:x -12+y 2-x =1(x >0).化简得y 2=4x (x >0).(2)设过点M (m,0)(m >0)的直线l 与曲线C 的交点为A (x 1,y 1),B (x 2,y 2).设l 的方程为x =ty +m ,由⎩⎪⎨⎪⎧x =ty +m ,y 2=4x ,得y 2-4ty -4m =0,Δ=16(t 2+m )>0,于是⎩⎪⎨⎪⎧y 1+y 2=4t ,y 1y 2=-4m .①又FA →=(x 1-1,y 1),FB →=(x 2-1,y 2).FA →·FB →<0⇔(x 1-1)(x 2-1)+y 1y 2=x 1x 2-(x 1+x 2)+1+y 1y 2<0.②又x =y 24,于是不等式②等价于y 214·y 224+y 1y 2-⎝ ⎛⎭⎪⎫y 214+y 224+1<0⇔y 1y 2216+y 1y 2-14[(y 1+y 2)2-2y 1y 2]+1<0,③,由①式,不等式③等价于m 2-6m +1<4t 2,④对任意实数t,4t 2的最小值为0,所以不等式④对于一切t 成立等价于m 2-6m +1<0, 即3-22<m <3+22,由此可知,存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有FA →·FB →<0,且m 的取值范围是(3-22,3+22).【训练8】(2012年高考广东卷)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程; (2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.[解析] (1)∵e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2,∴椭圆方程为x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2.设椭圆上的点到点Q (0,2)的距离为d ,则d =(x -0)2+(y -2)2=x 2+(y -2)2=3b 2-3y 2+(y -2)2=-2(y +1)2+3b 2+6,∴当y =-1时,d 取得最大值,d max =3b 2+6=3,解得b 2=1,∴a 2=3.∴椭圆C 的方程为x 23+y 2=1.(2)假设存在点M (m ,n )满足题意,则m 23+n 2=1,即m 2=3-3n 2.设圆心到直线l 的距离为d ′,则d ′<1,d ′=|m ·0+n ·0-1|m 2+n 2=1m 2+n 2.∴|AB |=212-d ′2=21-1m 2+n 2.∴S △OAB =12|AB |d ′=12·21-1m 2+n 2·1m 2+n 2=1m 2+n 2(1-1m 2+n 2).∵d ′<1,∴m 2+n 2>1,∴0<1m 2+n 2<1,∴1-1m 2+n 2>0. ∴S △OAB =1m 2+n 2(1-1m 2+n 2)≤ ⎝ ⎛⎭⎪⎪⎫1m 2+n 2+1-1m 2+n 222=12, 当且仅当1m 2+n 2=1-1m 2+n 2,即m 2+n 2=2>1时,S △OAB 取得最大值12.由⎩⎪⎨⎪⎧m 2+n 2=2,m 2=3-3n2得⎩⎪⎨⎪⎧m 2=32,n 2=12,∴存在点M 满足题意,M 点坐标为(62,22),(62,-22),(-62,22)或(-62,-22), 此时△OAB 的面积为12.。

圆锥曲线大题教案

圆锥曲线大题教案

直线和椭圆相交问题直线与椭圆的位置关系判断方法:位置关系直线与椭圆交点个数方程解的个数的取值相交个解相切个解相离个解直线与椭圆的位置关系直线与椭圆的公共点直线与椭圆方程联立方程组解个数当为何值时,直线:与椭圆:相切、相交、相离.圆锥曲线大题1已知椭圆C:,直线l:y=kx+1(k≠0)与椭圆C相交于A,B两点,D为AB的中点.若直线l与直线OD(O为坐标原点)的斜率之积为,求椭圆..的方程;设而不求第一步1、直线与圆锥曲线相交,满足一个关系式,22221x y a b +=设直线方程m kx y +=代入22221x y a b +=得=+21x x =21.x x =-21x x 用m kx y +=可得=+21y y =21.y y =-21y y第二步 列出关系式第三步 将关系式化为用=+21x x =21.x x =-21x x=+21y y=21.y y =-21y y 表达的式子,然后再代入。

2、过椭圆14922=+y x 内一点()1,1P 作弦AB ,若PB AP =,则直线AB 的方程为3、如图,点P(0,﹣1)是椭圆的一个顶点,C1的长轴是圆的直径.l1,l2是过点P且互相垂直的两条直线,其中斜率为k的直线l1交圆C2于A,B两点,l2交椭圆C1于另一点D (1)求椭圆C1的方程;(2)试用k表示△ABD的面积S;(3)求△ABD面积S取最大值时直线l1的方程.二、定值问题1、设椭圆2222:1(0)x y C a b a b +=>>的离心率12e =,右焦点到直线1x ya b+=的距离217d =,O 为坐标原点.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点O 作两条互相垂直的射线,与椭圆C 分别交于,A B 两点,证明点O 到直线AB 的距离为定值,并求出定值.三、定点问题1、如图,已知椭圆C :+y 2=1(a >1)的上顶点为A ,离心率为,若不过点A 的动直线l 与椭圆C 相交于P ,Q 两点,且•=0.(1)求椭圆C的方程;(2)求证:直线l过定点,并求出该定点N的坐标.四、如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,两条准线之间的距离为4.(1)求椭圆的标准方程;(2)已知椭圆的左顶点为A,点M在圆x2+y2=上,直线AM与椭圆相交于另一点B,且△AOB的面积是△AOM的面积的2倍,求直线AB的方程.五、1.已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;抛物线p=4(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.2、已知椭圆C:=1(a>b>0)的右焦点为(,0),离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l与椭圆C相交于A,B两点,且以AB为直径的圆经过原点O,求证:点O到直线AB的距离为定值;3、设椭圆的中心在坐标原点,对称轴是坐标轴,一个顶点为A(0,2),右焦点F到点的距离为2.(I)求椭圆的方程;(Ⅱ)设经过点(0,﹣3)的直线l与椭圆相交于不同两点M,N满足,试求直线l的方程.练习1、已知椭圆C=1(a>b>0)的短轴长为2,离心率为.直线l:y=kx+m 与椭圆C交于A,B两点.(1)求椭圆C的标准方程;(2)若线段AB的垂直平分线通过点,证明:2k2+1=2m;(3)在(2)的前提下,求△AOB(O为原点)面积的最大值2、过椭圆的右焦点F作两条相互垂直的直线分别交椭圆于A,B,C,D四点,则的值是否为定值?如果是,定值是多少?3.如图,曲线C由上半椭圆C1:y2a2+x2b2=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为3 2.(1)求a,b的值;(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.4、已知椭圆C与双曲线y2﹣x2=1有共同焦点,且离心率为.设A 为椭圆C的下顶点,M、N为椭圆上异于A的不同两点,且直线AM 与AN的斜率之积为﹣3①试问M、N所在直线是否过定点?若是,求出该定点;若不是,请说明理由;②若P点为椭圆C上异于M,N 的一点,且|MP|=|NP|,求△MNP的面积的最小值.5、已知点F为椭圆的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线与椭圆E有且仅有一个交点M.(Ⅰ)求椭圆E的方程;(Ⅱ)设直线与y轴交于P,过点P的直线与椭圆E交于两不同点A,B,若λ|PM|2=|PA|•|PB|,求实数λ的取值范围.6.已知椭圆=1(a>b>0)经过点(,﹣),且椭圆的离心率e=.(1)求椭圆的方程;(2)过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A,C及B,D,设线段AC,BD的中点分别为P,Q.求证:直线PQ恒过一个定点.7、已知双曲线,椭圆C与双曲线有相同的焦点,两条曲线的离心率互为倒数.(1)求椭圆的方程;(2)椭圆C经过点M,点M的横坐标为2,平行于OM的直线l交椭圆于A、B两个不同点,求证:直线MA、MB与x轴始终围成一个等腰三角形.8.已知椭圆C中心在原点、焦点在x轴上,椭圆C上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N(M、N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线l过定点,并求出定点的坐标9.已知抛物线C:y2=4x,点M(m,0)在x轴的正半轴上,过M的直线l与C相交于A,B两点,O为坐标原点.(1)若m=1,且直线l的斜率为1,求以线段AB为直径的圆的方程;(2)问是否存在定点M,不论直线l绕点M如何转动,使得1|AM|2+1|BM|2恒为定值作业1、已知椭圆C:+=1的内接平行四边形的一组对边分别经过其两个焦点(如图),则这个平行四边形面积的最大值为()2、已知椭圆(a>b>0)的左、右焦点分别为F1和F2,点P (1,)在椭圆上,且△PF1F2的面积为.(1)求该椭圆的标准方程;(2)过该椭圆的左顶点A作两条相互垂直的直线分别与椭圆相交于不同于点A的两点M、N,证明:动直线MN恒过x轴上一定点.3.已知椭圆C的中心在坐标原点,焦点在x轴上,离心率,且点P(﹣2,0)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)已知A、B为椭圆C上的动点,当PA⊥PB时,求证:直线AB恒过一个定点.并求出该定点的坐标.4、已知椭圆(a>b>0)的左、右焦点分别为F1和F2,点P (1,)在椭圆上,且△PF1F2的面积为.(1)求该椭圆的标准方程;(2)过该椭圆的左顶点A作两条相互垂直的直线分别与椭圆相交于不同于点A的两点M、N,证明:动直线MN恒过x轴上一定点.5、在直角坐标系xOy上取两个定点A1(-2,0)、A2(2,0),再取两个动点N1(0,m)、N2(0,n),且mn=3.(1)求直线A1N1与A2N2交点的轨迹M的方程;(2)已知F2(1,0),设直线l:y=kx+m与(1)中的轨迹M交于P、Q两点,直线F2P、F2Q的倾斜角为α、β,且α+β=π,求证:直线l过定点,并求该定点的坐标.6、已知椭圆,直线l与椭圆C相交于A、B两点,若以AB为直径的圆经过坐标原点.(1)证明:点O到直线AB的距离为定值7.椭圆的对称中心在坐标原点,一个顶点为A(0,2),右焦点F与点的距离为2,(1)求椭圆的方程;(2)斜率k≠0的直线l:y=kx﹣2与椭圆相交于不同的两点M,N满足|AM|=|AN|,求直线l的方程.8、已知点F1,F2分别为椭圆C:的左、右焦点,点P为椭圆上任意一点,P到焦点F2(1,0)的距离的最大值为+1.(1)求椭圆C的方程.(2)点M的坐标为(,0),过点F2且斜率为k的直线l与椭圆C相交于A,B两点.对于任意的k∈R,是否为定值?9、已知椭圆C :(b >0),以椭圆C 的短轴为直径的圆O 经过椭圆C 左右两个焦点,A ,B 是椭圆C 的长轴端点.(1)求圆O 的方程和椭圆C 的离心率e ;(2)设P ,Q 分别是椭圆C 和圆O 上的动点(P ,Q 位于y 轴两侧),且直线PQ 与x 轴平行,直线AP ,BP 分别与y 轴交于点M ,N ,试判断MQ 与NQ 所在的直线是否互相垂直,若是,请证明你的结论;若不是,也请说明理由.10、在直角坐标系xoy 中,曲线C :y =x 24与直线y =kx +a (a >0)交于M ,N 两点,y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.11、已知椭圆C:(b>0),以椭圆C的短轴为直径的圆O 经过椭圆C左右两个焦点,A,B是椭圆C的长轴端点.(1)求圆O的方程和椭圆C的离心率e;(2)设P,Q分别是椭圆C和圆O上的动点(P,Q位于y轴两侧),且直线PQ与x轴平行,直线AP,BP分别与y轴交于点M,N,试判断MQ与NQ所在的直线是否互相垂直,若是,请证明你的结论;若不是,也请说明理由.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =12,且经过点A ⎝ ⎛⎭⎪⎫-1,-32. (1)求椭圆C 的标准方程;(2)如果斜率为12的直线EF 与椭圆交于两个不同的点E 、F ,试判断直线AE 、AF 的斜率之和是否为定值,若是请求出此定值;若不是,请说明理由.(3)试求三角形AEF 面积S 取得最大值时,直线EF 的方程.已知椭圆G 的离心率为,其短轴两端点为A (0,1),B (0,﹣1).(Ⅰ)求椭圆G 的方程; (Ⅱ)若C 、D 是椭圆G 上关于y 轴对称的两个不同点,直线AC 、BD 与x 轴分别交于点M 、N .判断以MN 为直径的圆是否过点A ,并说明理由.补充设椭圆E 的方程为+y 2=1(a >1),O 为坐标原点,直线l 与椭圆E 交于点A ,B ,M 为线段AB 的中点.(1)若A ,B 分别为E 的左顶点和上顶点,且OM 的斜率为﹣,求E 的标准方程;(2)若a=2,且|OM |=1,求△AOB 面积的最大值. 已知椭圆方程为+y 2=1,点B (0,1)为椭圆的上顶点,直线l :y=kx +m 交椭圆于P 、Q 两点,设直线PB ,QB 的斜率分别为k 1、k 2,且k 1k 2=1(1)求证:直线l 过定点M ,并求出点M 的坐标;(2)求△BPQ 面积的最大值. 已知椭圆,22)0(1:2222=>>=+e b a by a x C 的离心率左、右焦点分别为F 1、F 2,点)3,2(P ,点F 2在线段PF 1的中垂线上.(1)求椭圆C 的方程;(2)设直线m kx y l +=:与椭圆C 交于M 、N 两点,直线F 2M 与F 2N 的倾斜角互补,求证:直线l 过定点,并求该定点的坐标.已知椭圆C :的焦距为2c ,离心率为,圆O :x 2+y 2=c 2,A 1,A 2是椭圆的左右顶点,AB 是圆O 的任意一条直径,△A 1AB 面积的最大值为2;(1)求椭圆C 及圆O 的方程;(2)若l 为圆O 的任意一条切线,l 与椭圆E 交于两点P ,Q ,求|PQ |的取值范围;设O 为坐标原点,椭圆C :的左焦点为F ,离心率为.直线l :y=kx +m (m >0)与C 交于A ,B 两点,AF 的中点为M ,|OM |+|MF |=5.(1)求椭圆C 的方程;(2)设点P (0,1),=﹣4,求证:直线l 过定点,并求出定点的坐标. 已知椭圆的右顶点为A ,上顶点为B ,离心率,O 为坐标原点,圆与直线AB 相切. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)已知四边形ABCD 内接于椭圆E ,AB ∥DC .记直线AC ,BD 的斜率分别为k 1,k 2,试问k 1•k 2是否为定值?证明你的结论.如图,曲线C由上半椭圆C1:y2a2+x2b2=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为3 2.(1)求a,b的值;(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.。

课 题 圆锥曲线综合教案(试讲用)

课    题   圆锥曲线综合教案(试讲用)

课 题:解析几何综合题教学目的:1.使学生掌握圆锥曲线标准方程的求解2.使学生熟练联立方程组法,并能够合理分析题目,明确解题方向3.并使学生能利用相关知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题4.通过教学使学生解决问题的能力得到进一步巩固和提高,“应用数学”的意识等到进一步锻炼的培养教学重点:圆锥曲线的标准方程求解及相关证明教学难点:联立方程组法的灵活应用和快速计算授课类型:复习巩固课课时安排:30分钟教学过程:一、复习引入联立方程组(设而不求六步走)①设点1122()()A x y B x y ,,,;②设直线方程m kx y +=(注意k 是否存在)③联立方程组⎪⎩⎪⎨⎧=++=12222b y ax m kx y 012)1(2222222=-+++b m b kmx x b k a ④判别式0∆≥或0∆>(2222222144()k m b ac a b a b ∆=-=+-) ⑤韦达定理ac x x a b x x =-=+2121, ⑥逆向思维求解 师:同学们是否还记得我们上次课的解题模型“设而不求,六步走”和它的适用情况吗? 生:设点、设直线、联立方程、判别式、韦达,它适用于直线与圆锥曲线方程综合性问题 师:(非常好)那设直线有什么需要特别注意的吗?生:斜率的存在性,和设直线的技巧师:(非常好)斜率不存在,直线方程将是一条特殊的直线,垂直x 轴,当斜率存在时,需要注意是用点斜式还是斜截式。

师:那我们联立方程的过程有没有简便方法?生:有!巧妙口算,且分母打死不通分师:没错,就是快速口算......012)1(2222222=-+++bm b kmx x b k a 师:判别式呢?需要一直算ac b 42-=∆吗? 生:不用,这里的判别式有特定的结构22222214()k m a b a b∆=+- 师:(非常好)有了六步走和这些解题技巧,我们就一定能够得分了吗?生:不能,我们还必须会分析题干,明确解题突破口师:对,分析很重要,正确的有条理性分析对我们的解题将会有事半功倍的效果师:为了,进一步提高同学们的解题分析能力,今天我们进一步讲解有别于这个解题模型,但又有一定关联性的题型。

圆锥曲线综合.板块七.相交弦问题.学生版 普通高中数学复习讲义Word版

圆锥曲线综合.板块七.相交弦问题.学生版 普通高中数学复习讲义Word版

【例1】 设F 是抛物线2:4G x y =的焦点.⑴过点(04)P -,作抛物线G 的切线,求切线方程;⑵设A 、B 为抛物线G 上异于原点的两点,且满足·0FA FB =,延长AF BF ,分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值.【例2】 P 、Q 、M 、N 四点都在椭圆2212y x +=上,F 为椭圆在y 轴正半轴上的焦点.已知PF 与FQ 共线,MF 与FN 共线,且0PF MF ⋅=.求四边形PMQN 的面积的最小值和最大值.【例3】 已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于,B D 两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .⑴设P 点的坐标为00()x y ,,证明:2200132x y +<;⑵求四边形ABCD 的面积的最小值.典例分析板块七.相交弦问题【例4】 如图,椭圆22221x y a b+=上的点M 与椭圆右焦点2F 的连线2MF 与x 轴垂直,且OM(O 是坐标原点)与椭圆长轴和短轴端点的连线AB 平行.⑴求椭圆的离心率;⑵1F 是椭圆的左焦点,C 是椭圆上的任一点,证明:12π2FCF ∠≤; ⑶过2F 且与AB 垂直的直线交椭圆于P 、Q ,若1PFQ ∆的面积是,求此时椭圆的方程及PQ 的长.【例5】 已知抛物线24x y =的焦点为F ,过焦点F 且不平行于x 轴的动直线l 交抛物线于A ,B 两点,抛物线在A 、B 两点处的切线交于点M .⑴ 求证:A ,M ,B 三点的横坐标成等差数列;⑵ 设直线MF 交该抛物线于C ,D 两点,求四边形ACBD 面积的最小值.yxOMFDCBA【例7】 已知动点P 到点(20)F ,的距离与它到直线1x =⑴求动点P 的轨迹方程;⑵设点P 的轨迹为曲线C ,过点F 作互相垂直的两条直线1l 、2l ,1l 交曲线C 于A 、B 两点,2l 交曲线C 于M 、N 两点.求证:11FA FB FM FN+⋅⋅为定值.【例8】 已知动点M 到点()1,0F 的距离,等于它到直线1x =-的距离.⑴求点M 的轨迹C 的方程;⑵过点F 任意作互相垂直的两条直线12,l l ,分别交曲线C 于点,A B 和,M N .设线段,AB MN 的中点分别为,P Q ,求证:直线PQ 恒过一个定点; ⑶在⑵的条件下,求FPQ ∆面积的最小值.。

高考数学讲义圆锥曲线综合.参考教案.学生版

高考数学讲义圆锥曲线综合.参考教案.学生版

【例1】 P 是以1F 、2F 为焦点的椭圆上一点,过焦点2F 作12F PF ∠外角平分线的垂线,垂足为M ,则点M 的轨迹是( ) A .圆B .椭圆C .双曲线D .抛物线【例2】 已知P 为抛物线22(0)x py p =>上的动点,F 为抛物线的焦点,过F 作抛物线在P 点处的切线的垂线,垂足为G ,则点G 的轨迹方程为( ) A .222x y p +=B .2p y =- C .22224p p x y ⎛⎫+-= ⎪⎝⎭D .0y =【例3】 已知定点(30)B ,,点A 在圆221x y +=上运动,M 是线段AB 上的一点,且13AM MB =u u u u r u u u r,则点M 的轨迹方程是___________.【例4】 如图,正方体1111ABCD A B C D -的棱长为1,点M 在A 上,且13AM AB =,点P在平面ABCD 上,且动点P 到直线11A D 的距离的平方与P 到点M 的距离的平方差为1,在平面直角坐标系xAy 中,动点P 的轨迹方程是 .ABC D P A 1B 1C 11M xy【例5】 AB 是圆O 的直径,且||2AB a =,M 为圆上一动点,作MN AB ⊥,垂足为N ,在OM 上取点P ,使||||OP MN =,求点P 的轨迹方程.【例6】 已知A 、B 、D 三点不在一条直线上,且(20)A -,,(20)B ,,12()2AD AE AB AD ==+u u u r u u u r u u u r u u u r ,.①求点E 的轨迹方程;②过A 作直线交以A ,B 为焦点的椭圆于M ,N 两点,线段MN 的中点到y 轴圆锥曲线综合.参考教案的距离为45,且直线MN 与E 点的轨迹相切,求椭圆的方程.【例7】 直线y kx =与圆2264100x y x y +--+=相交于两个不同点A B ,,当k 取不同实数值时,求AB 中点的轨迹方程.【例8】 已知抛物线2:C y ax =,点(1,1)P -在抛物线C 上,过点P 作斜率为1k 、2k 的两条直线,分别交抛物线C 于异于点P 的两点11(,)A x y ,22(,)B x y ,且满足120k k +=.⑴求抛物线C 的焦点坐标;⑵若点M 满足BM MA =u u u u r u u u r,求点M 的轨迹方程.【例9】 已知曲线2:C y x =与直线:20l x y -+=交于两点(),A A A x y 和(),B B B x y ,且A B x x <.记曲线C 在点A 和点B 之间那一段L 与线段AB 所围成的平面区域(含边界)为D .设点(),P s t 是L 上的任一点,且点P 与点A 和点B 均不重合. ⑴若点Q 是线段AB 的中点,试求线段PQ 的中点M 的轨迹方程; ⑵若曲线22251:24025G x ax y y a -+-++=与D 有公共点,试求a 的最小值.【例10】 长度为(0)a a >的线段AB 的两个端点A 、B 分别在x 轴和y 轴上滑动,点P 在线段AB 上,且AP PB λ=u u u r u u u r(λ为常数且0λ>). ⑴求点P 的轨迹方程C ,并说明轨迹类型;⑵当2λ=时,已知直线1l 与原点O 的距离为2a,且直线1l 与轨迹C 有公共点,求直线1l 的斜率k 的取值范围.【例11】 若直线y x b =+与曲线234y x x =--有公共点,则b 的取值范围是A .1122⎡⎤-+⎣⎦,B .122122⎡⎤-+⎣⎦,C .1223⎡⎤-⎣⎦,D .123⎡⎤-⎣⎦,【例12】 下列命题正确的是( )A .到两坐标轴的距离相等的点组成的直线方程是y x =B .已知三点(20)A ,,(02)B ,,(00)C ,,ABC ∆的边AB 上的中线方程为y x = C .到两坐标轴的距离的乘积是1的点的轨迹方程是1xy =±D .到x 轴的距离等于1的点的轨迹方程是1y =【例13】 已知以4T =为周期的函数21(11]()12(13]m x x f x x x ⎧-∈-⎪=⎨--∈⎪⎩,,,,其中0m >.若方程3()f x x =恰有5个实数解,则m 的取值范围为( ) A .1583⎫⎪⎪⎝⎭,B .157⎝,C .4833⎛⎫⎪⎝⎭,D .473⎛ ⎝,【例14】 设π02θ<<,曲线22sin cos 1x y θθ+=和22cos sin 1x y θθ-=有四个交点, ⑴求θ的范围;⑵证明:这四个交点共圆,并求该圆半径的取值范围.【例15】 如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心,以(0)t t >为半径的圆分别与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C . ⑴求点A 的横坐标a 与点C 的横坐标c 的关系式;⑵设曲线G 上点D 的横坐标为2a +,求证:直线CD 的斜率为定值.a+2a G:y 2=2xDCBAO yx【例16】 设0a >且1a ≠,试求使方程222log ()log ()a a x ak x a -=-有解的k 的取值范围.【例17】 过点(01)P ,且与抛物线22y x =只有一个公共点的直线方程为_______________________.【例18】 若曲线22y x =的一条切线l 与直线480x y +-=垂直,则切线l 的方程为( )A .430x y ++=B .490x y +-=C .430x y -+=D .420x y --=【例19】 如图,P 是抛物线C :212y x =上一点,直线l过点P 且与抛物线C 交于另一点Q .⑴若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程;⑵若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求ST ST SPSQ+的取值范围.OyxSl TMPQ【例20】 已知椭圆22122:1(0)y x C a b a b+=>>的右顶点为(10)A ,,过1C 的焦点且垂直长轴的弦长为1.⑴求椭圆1C 的方程;⑵设点P 在抛物线22:()C y x h h =+∈R 上,2C 在点P 处的切线与1C 交于点M ,N .当线段AP 的中点与MN 的中点的横坐标相等时,求h 的最小值.【例21】 已知双曲线212xy -=的左、右顶点分别为1A ,2A ,点()11P x y ,,()11Q x y -,是双曲线上不同的两个动点.⑴ 求直线1A P 与2A Q 交点的轨迹E 的方程⑵ 若过点()0,h 的两条直线1l 和2l 与轨迹E 都只有一个交点,且12l l ⊥,求h 的值.【例22】 已知椭圆()222210x y a b a b+=>>和圆O :222x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为,A B .⑴(ⅰ)若圆O 过椭圆的两个焦点,求椭圆的离心率e ;(ⅱ)若椭圆上存在点P ,使得90APB ∠=︒,求椭圆离心率e 的取值范围.⑵设直线AB 与x 轴、y 轴分别交于点M ,N ,求证:2222a b ON OM+为定值.【例23】 已知圆O :222x y +=交x 轴于,A B 两点,曲线C 是以AB 2的椭圆,其左焦点为F .若P 是圆O 上一点,连结PF ,过原点O 作直线PF 的垂线交直线2x =-于点Q .⑴求椭圆C 的标准方程;⑵若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切.⑶试探究:当点P 在圆O 上运动时(不与,A B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.【例24】 已知定点(10)A -,,(20)F ,,定直线12l x =∶,不在x 轴上的动点P 与点F 的距离是它到直线l 的距离的2倍.设点P 的轨迹为E ,过点F 的直线交E 于B 、C 两点,直线AB 、AC 分别交l 于点M 、N⑴求E 的方程;⑵试判断以线段MN 为直径的圆是否过点F ,并说明理由.【例25】 已知椭圆Γ的方程为22221(0)x y a b a b+=>>,点P 的坐标为()a b -,.⑴ 若直角坐标平面上的点M 、()0A b -,,()0B a ,满足()12PM PA PB =+u u u u r u u u r u u u r,求点M 的坐标;⑵ 设直线11:l y k x p =+交椭圆Γ于C 、D 两点,交直线22:l y k x =于点E .若2122b k k a⋅=-,证明:E 为CD 的中点;⑶ 对于椭圆Γ上的点()cos sin (0π)Q a b θθθ<<, ,如果椭圆Γ上存在不同的两个交点1P 、2P 满足12PP PP PQ +=u u u r u u u r u u u r ,写出求作点1P 、2P 的步骤,并求出使1P 、2P 存在的θ的取值范围.【例26】 已知0p >,动点M 到定点F ,02p ⎛⎫⎪⎝⎭的距离比M 到定直线:l x p =-的距离小2p . ⑴求动点M 的轨迹C 的方程; ⑵设,A B 是轨迹C 上异于原点O 的两个不同点,0OA OB ⋅=u u u r u u u r,求AOB ∆面积的最小值;⑶在轨迹C 上是否存在两点,P Q 关于直线():02p m y k x k ⎛⎫=-≠ ⎪⎝⎭对称?若存在,求出直线m 的方程,若不存在,说明理由.【例27】 设双曲线C :2221(0)x y a a-=>与直线:1l x y +=相交于两个不同的点A 、B .⑴求双曲线C 的离心率e 的取值范围:⑵设直线l 与y 轴的交点为P ,且512PA PB =u u u r u u u r,求a 的值.【例28】 椭圆C 的中心为坐标原点O ,焦点在y 轴上,离心率22e =,椭圆上的点到焦点的最短距离为1e -,直线l 与y 轴交于P 点()0m ,,与椭圆C 交于相异两点A 、B ,且AP PB λ=u u u r u u u r⑴求椭圆方程;⑵若4,OA OB OP m λ+=u u u r u u u r u u u r求的取值范围.【例29】 已知椭圆2222:1(0)x y C a b a b+=>>的短轴长为2,且与抛物线243y x =有共同的焦点,椭圆C 的左顶点为A ,右顶点为B ,点P 是椭圆C 上位于x 轴上方的动点,直线AP ,BP 与直线3y =分别交于,G H 两点.⑴求椭圆C 的方程;⑵求线段GH 的长度的最小值;⑶在线段GH 的长度取得最小值时,椭圆C 上是否存在一点T ,使得TPA △的面积为1,若存在求出点T 的坐标,若不存在,说明理由.【例30】 在平面直角坐标系xOy 中,如图,已知椭圆22195x y +=的左、右顶点为A 、B ,右焦点为F ,设过点()T t m ,的直线TA 、TB 与此椭圆分别交于点()11M x y ,、()22N x y ,,其中0m >,10y >,20y <.⑴ 设动点P 满足224PF PB -=,求点P 的轨迹;⑵ 设12x =,213x =,求点T 的坐标;⑶ 设9t =,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)yxO FB A【例31】 给定抛物线C :24y x =,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.⑴设l 的斜率为1,求OA u u u r与OB u u u r 夹角的余弦值;⑵设FB AF λ=u u u r u u u r,若[49]λ∈,,求l 在y 轴上截距的变化范围.【例32】 设F 是抛物线2:4G x y =的焦点.⑴过点(04)P -,作抛物线G 的切线,求切线方程;⑵设A 、B 为抛物线G 上异于原点的两点,且满足·0FA FB =u u u r u u u r,延长AF BF ,分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值.【例33】 已知椭圆22221(0)x y a b a b+=>>经过点()0,1,过右焦点F 且不与x 轴重合的动直线l 交椭圆于A 、C 两点,当动直线l 的斜率为2时,坐标原点O 到l 的距离为255. ⑴ 求椭圆的方程;⑵ 过F 的另一直线交椭圆于B 、D 两点,且AC BD ⊥,当四边形ABCD 的面积169S =时,求直线l 的方程.。

圆锥曲线大题综合:五个方程型(学生版)

圆锥曲线大题综合:五个方程型(学生版)

圆锥曲线大题综合归类:五个方程型目录重难点题型归纳 1【题型一】基础型 1【题型二】直线设为:x=ty+m型 4【题型三】直线无斜率不过定点设法:双变量型 7【题型四】面积最值 10【题型五】最值与范围型 13【题型六】定点:直线定点 15【题型七】定点:圆过定点 18【题型八】定值 21【题型九】定直线 23【题型十】斜率型:斜率和定 26【题型十一】斜率型:斜率和 29【题型十二】斜率型:斜率比 31【题型十三】斜率型:三斜率 34【题型十四】定比分点型:a=tb 36【题型十五】切线型 38【题型十六】复杂的“第六个方程” 41好题演练 45重难点题型归纳重难点题型归纳题型一基础型【典例分析】1已知椭圆x2a21+y2b21=1a1>b1>0与双曲线x2a22-y2b22=1a2>0,b2>0有共同的焦点,双曲线的左顶点为A-1,0,过A斜率为3的直线和双曲线仅有一个公共点A,双曲线的离心率是椭圆离心率的3倍.(1)求双曲线和椭圆的标准方程;(2)椭圆上存在一点P x P,y P-1<x P<0,y P>0,过AP的直线l与双曲线的左支相交于与A不重合的另一点B,若以BP为直径的圆经过双曲线的右顶点E,求直线l的方程.1已知F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个焦点,过点P t ,b 的直线l 交C 于不同两点A ,B .当t =a ,且l 经过原点时,AB =6,AF +BF =22.(1)求C 的方程;(2)D 为C 的上顶点,当t =4,且直线AD ,BD 的斜率分别为k 1,k 2时,求1k 1+1k 2的值.题型二直线设为:x =ty +m 型【典例分析】1已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,右顶点为P ,点Q 0,b ,PF 2=1,∠F 1PQ =60°.(1)求双曲线C 的方程;(2)直线l 经过点F 2,且与双曲线C 相交于A ,B 两点,若△F 1AB 的面积为610,求直线l 的方程.1已知椭圆C:x2a2+y2b2=1a>b>0的左焦点为F,右顶点为A,离心率为22,B为椭圆C上一动点,△FAB面积的最大值为2+1 2.(1)求椭圆C的方程;(2)经过F且不垂直于坐标轴的直线l与C交于M,N两点,x轴上点P满足PM=PN,若MN=λFP,求λ的值.题型三直线无斜率不过定点设法:双变量型【典例分析】1已知抛物线:y 2=2px p >0 ,过其焦点F 的直线与抛物线交于A 、B 两点,与椭圆x 2a 2+y 2=1a >1 交于C 、D 两点,其中OA ⋅OB =-3.(1)求抛物线方程;(2)是否存在直线AB ,使得CD 是FA 与FB 的等比中项,若存在,请求出AB 的方程及a ;若不存在,请说明理由.1已知双曲线E 的顶点为A -1,0 ,B 1,0 ,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且S △OFG =324.点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程;(2)求证:OP ⋅OH 为定值.题型四面积最值【典例分析】1已知椭圆x 23+y 22=1的左、右焦点分别为F 1,F 2.过F 1的直线交椭圆于B ,D 两点,过F 2的直线交椭圆于A ,C 两点,且AC ⊥BD ,垂足为P .(1)设P 点的坐标为(x 0,y 0),证明:x 203+y 202<1;(2)求四边形ABCD 的面积的最小值.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.2020年新高考全国卷Ⅱ数学试题(海南卷)题型五最值与范围型【典例分析】1设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点.(1)若P 是该椭圆上的一个动点,求PF 1 ⋅PF 2 =-54,求点P 的坐标;(2)设过定点M (0,2)的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.1已知椭圆E:x2a2+y2b2=1(a>b>0)一个顶点A(0,-2),以椭圆E的四个顶点为顶点的四边形面积为45.(1)求椭圆E的方程;(2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交y=-3交于点M,N,当|PM|+|PN|≤15时,求k的取值范围.2021年北京市高考数学试题题型六定点:直线定点【典例分析】1已知F为抛物线C:y2=2px(p>0)的焦点,O为坐标原点,M为C的准线l上的一点,直线MF的斜率为-1,△OFM的面积为1.(1)求C的方程;(2)过点F作一条直线l ,交C于A,B两点,试问在l上是否存在定点N,使得直线NA与NB的斜率之和等于直线NF斜率的平方?若存在,求出点N的坐标;若不存在,请说明理由.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),四点P 12,2 ,P 20,2 ,P 3-2,2 ,P 42,2 中恰有三点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与椭圆C 相交于A ,B 两点,线段AB 的中点为M ,若∠AMP 2=2∠ABP 2,试问直线l 是否经过定点?若经过定点,请求出定点坐标;若不过定点,请说明理由.题型七定点:圆过定点【典例分析】1如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1) 求抛物线E的方程;(2) 设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明以PQ为直径的圆恒过y轴上某定点【变式演练】1已知动点P到点F1,0的距离与到直线l:x=4的距离之比为12,记点P的轨迹为曲线E.(1)求曲线E的方程;(2)曲线E与x轴正半轴交于点M,过F的直线交曲线E于A,B两点(异于点M),连接AM,BM并延长分别交l于D,C,试问:以CD为直径的圆是否恒过定点,若是,求出定点,若不是,说明理由.【典例分析】1如图,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2,证明:|MN 2|2-|MN 1|2为定值,并求此定值.【变式演练】1已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM =λQO ,QN =μQO ,求证:1λ+1μ为定值..【典例分析】1已知直线l:x=my-1,圆C:x2+y2+4x=0.(1)证明:直线l与圆C相交;(2)设直线l与C的两个交点分别为A、B,弦AB的中点为M,求点M的轨迹方程;(3)在(2)的条件下,设圆C在点A处的切线为l1,在点B处的切线为l2,l1与l2的交点为Q.证明:Q,A,B,C四点共圆,并探究当m变化时,点Q是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.【变式演练】1已知双曲线E:x2a2-y2b2=1a>0,b>0的左、右焦点分别为F1、F2,F1F2=23且双曲线E经过点A3,2.(1)求双曲线E的方程;(2)过点P2,1作动直线l,与双曲线的左、右支分别交于点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,求证:点H恒在一条定直线上.【典例分析】1已知点F是椭圆E:x2a2+y2b2=1(a>b>0)的右焦点,P是椭圆E的上顶点,O为坐标原点且tan∠PFO=33.(1)求椭圆的离心率e;(2)已知M1,0,N4,3,过点M作任意直线l与椭圆E交于A,B两点.设直线AN,BN的斜率分别为k1,k2,若k1+k2=2,求椭圆E的方程.【变式演练】1在平面直角坐标系中,己知圆心为点Q的动圆恒过点F(1,0),且与直线x=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(Ⅰ)求曲线Γ的方程;(Ⅱ)过点F的两条直线l1、l2与曲线Γ相交于A、B、C、D四点,且M、N分别为AB、CD的中点.设l1与l2的斜率依次为k1、k2,若k1+k2=-1,求证:直线MN恒过定点.【典例分析】1设椭圆方程为x2a2+y2b2=1a>b>0,A-2,0,B2,0分别是椭圆的左、右顶点,动直线l过点C6,0,当直线l经过点D-2,2时,直线l与椭圆相切.(1)求椭圆的方程;(2)若直线l与椭圆交于P,Q(异于A,B)两点,且直线AP与BQ的斜率之和为-12,求直线l的方程.【变式演练】1已知点M1,3 2在椭圆x2a2+y2b2=1a>b>0上,A,B分别是椭圆的左、右顶点,直线MA和MB的斜率之和满足:k MA+k MB=-1.(1)求椭圆的标准方程;(2)斜率为1的直线交椭圆于P,Q两点,椭圆上是否存在定点T,使直线PT和QT的斜率之和满足k PT+k QT=0(P,Q与T均不重合)?若存在,求出T点坐标;若不存在,说明理由.【典例分析】1已知圆F 1:x 2+y 2+2x -15=0和定点F 2(1,0),P 是圆F 1上任意一点,线段PF 2的垂直平分线交PF 1于点M ,设动点M 的轨迹为曲线E .(1)求曲线E 的方程;(2)设A (-2,0),B (2,0),过F 2的直线l 交曲线E 于M ,N 两点(点M 在x 轴上方),设直线AM 与BN 的斜率分别为k 1,k 2,求证:k 1k 2为定值.【变式演练】1已知椭圆E :x 2a 2+y 2b2=1(a >0,b >0),离心率e =55,P 为椭圆上一点,F 1,F 2分别为椭圆的左、右焦点,若△PF 1F 2的周长为2+25.(1)求椭圆E 的方程;(2)已知四边形ABCD (端点不与椭圆顶点重合)为椭圆的内接四边形,且AF 2 =λF 2C ,BF 2 =μF 2D ,若直线CD 斜率是直线AB 斜率的52倍,试问直线AB 是否过定点,若是,求出定点坐标,若不是,说明理由.江西省重点中学协作体2023届高三下学期第一次联考数学(理)试题题型十三斜率型:三斜率【典例分析】1已知F是椭圆C:x2a2+y2b2=1(a>b>0)的右焦点,且P1,32在椭圆C上,PF垂直于x轴.(1)求椭圆C的方程.(2)过点F的直线l交椭圆C于A,B(异于点P)两点,D为直线l上一点.设直线PA,PD,PB的斜率分别为k1,k2,k3,若k1+k3=2k2,证明:点D的横坐标为定值.【变式演练】1在平面内动点P与两定点A1(-3,0),A2(3,0)连线斜率之积为-23.(1)求动点P的轨迹E的方程;(2)已知点F1(-1,0),F2(1,0),过点P作轨迹E的切线其斜率记为k(k≠0),当直线PF1,PF2斜率存在时分别记为k1,k2.探索1k⋅1k1+1k2是否为定值.若是,求出该定值;若不是,请说明理由.题型十四定比分点型:a =tb【典例分析】1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),倾斜角为30°的直线过椭圆的左焦点F 1和上顶点B ,且S △ABF 1=1+32(其中A 为右顶点).(1)求椭圆C 的标准方程;(2)若过点M (0,m )的直线l 与椭圆C 交于不同的两点P ,Q ,且PM =2MQ ,求实数m 的取值范围.【变式演练】1已知点M ,N 分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点与上顶点,原点O 到直线MN 的距离为32,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)斜率不为0的直线经过椭圆右焦点F 2,并且与椭圆交于A ,B 两点,若AF 2 =12F 2B ,求直线AB 的方程.题型十五切线型【典例分析】1法国数学家加斯帕尔·蒙日被誉为画法几何之父.他在研究椭圆切线问题时发现了一个有趣的重要结论:一椭圆的任两条互相垂直的切线交点的轨迹是一个圆,尊称为蒙日圆,且蒙日圆的圆心是该椭圆的中心,半径为该椭圆的长半轴与短半轴平方和的算术平方根.已知在椭圆C :x 2a 2+y 2b 2=1(a >b >0)中,离心率e =12,左、右焦点分别是F 1、F 2,上顶点为Q ,且QF 2 =2,O 为坐标原点.(1)求椭圆C 的方程,并请直接写出椭圆C 的蒙日圆的方程;(2)设P 是椭圆C 外一动点(不在坐标轴上),过P 作椭圆C 的两条切线,过P 作x 轴的垂线,垂足H ,若两切线斜率都存在且斜率之积为-12,求△POH 面积的最大值.【变式演练】1已知椭圆C:x2a2+y2b2=1a>b>0的上顶点为A,左、右焦点分别为F1、F2,三角形AF1F2的周长为6,面积为3.(1)求椭圆C的方程;(2)已知点M是椭圆C外一点,过点M所作椭圆的两条切线互相垂直,求三角形AF2M面积的最大值.题型十六复杂的“第六个方程”【典例分析】1如图,已知点B2,1,点N为直线OB上除O,B两点外的任意一点,BK,NH分别垂直y轴于点K,H,NA⊥BK于点A,直线OA,NH的交点为M.(1)求点M的轨迹方程;(2)若E3,0,C,G是点M的轨迹在第一象限的点(C在G的右侧),且直线EC,EG的斜率之和为0,若△CEG的面积为152,求tan∠CEG.【变式演练】1已知椭圆C的中心在原点O,焦点在x轴上,离心率为32,且椭圆C上的点到两个焦点的距离之和为4.(1)求椭圆C的方程;(2)设A为椭圆C的左顶点,过点A的直线l与椭圆交于点M,与y轴交于点N,过原点且与l平行的直线与椭圆交于点P.求SΔPAN⋅SΔPAM(SΔAOP)2的值.好题演练1(2023·贵州毕节·统考模拟预测)已知椭圆C的下顶点M,右焦点为F,N为线段MF的中点,O为坐标原点,ON=32,点F与椭圆C任意一点的距离的最小值为3-2.(1)求椭圆C的标准方程;(2)直线l:y=kx+m k≠0与椭圆C交于A,B两点,若存在过点M的直线l ,使得点A与点B关于直线l 对称,求△MAB的面积的取值范围.2(2023·天津南开·统考二模)已知椭圆x2a2+y2b2=1a>b>0的离心率为32,左、右顶点分别为A,B,上顶点为D,坐标原点O到直线AD的距离为255.(1)求椭圆的方程;(2)过A点作两条互相垂直的直线AP,AQ与椭圆交于P,Q两点,求△BPQ面积的最大值.3(2023·河北·统考模拟预测)已知直线l :x =12与点F 2,0 ,过直线l 上的一动点Q 作直线PQ ⊥l ,且点P 满足PF +2PQ ⋅PF -2PQ =0.(1)求点P 的轨迹C 的方程;(2)过点F 作直线与C 交于A ,B 两点,设M -1,0 ,直线AM 与直线l 相交于点N .试问:直线BN 是否经过x 轴上一定点?若过定点,求出该定点坐标;若不过定点,请说明理由.4(2023·北京东城·统考二模)已知焦点为F 的抛物线C :y 2=2px (p >0)经过点M (1,2).(1)设O 为坐标原点,求抛物线C 的准线方程及△OFM 的面积;(2)设斜率为k (k ≠0)的直线l 与抛物线C 交于不同的两点A ,B ,若以AB 为直径的圆与抛物线C 的准线相切,求证:直线l 过定点,并求出该定点的坐标.5(2023·四川自贡·统考三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =22,设A 62,12 ,B -62,12,P 0,2 ,其中A ,B 两点在椭圆C 上.(1)求椭圆C 的方程;(2)过点P 的直线交椭圆C 于M ,N 两点(M 在线段AB 上方),在AN 上取一点H ,连接MH 交线段AB 于T ,若T 为MH 的中点,证明:直线MH 的斜率为定值.6(2023·江西赣州·统考二模)在平面直角坐标系xOy 中,F 1(-1,0),F 2(1,0),点P 为平面内的动点,且满足∠F 1PF 2=2θ,PF 1 ⋅PF 2 cos 2θ=2.(1)求PF 1 +PF 2 的值,并求出点P 的轨迹E 的方程;(2)过F 1作直线l 与E 交于A 、B 两点,B 关于原点O 的对称点为点C ,直线AF 2与直线CF 1的交点为T .当直线l 的斜率和直线OT 的斜率的倒数之和的绝对值取得值最小值时,求直线l 的方程.7(2023·四川乐山·统考三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (2,0),短轴长等于焦距.(1)求C 的方程;(2)过F 的直线交C 于P ,Q ,交直线x =22于点N ,记OP ,OQ ,ON 的斜率分别为k 1,k 2,k 3,若(k 1+k 2)k 3=1,求|OP |2+|OQ |2的值.8(2023·贵州贵阳·统考模拟预测)已知椭圆C 1:x 2a 2+y 2b2=1a >b >0 与椭圆C 2:x 22+y 2=1的离心率相等,C 1的焦距是22.(1)求C 1的标准方程;(2)P 为直线l :x =4上任意一点,是否在x 轴上存在定点T ,使得直线PT 与曲线C 1的交点A ,B 满足PA PB =AT TB?若存在,求出点T 的坐标.若不存在,请说明理由.。

高考数学一轮复习 8.10 圆锥曲线的综合问题精品教学案(学生版) 新人教版

高考数学一轮复习 8.10 圆锥曲线的综合问题精品教学案(学生版) 新人教版

【考纲解读】1.了解圆锥曲线的简单应用,理解数形结合的思想.2.领会转化的数学思想,提高综合解题能力.【考点预测】高考对此部分内容考查的热点与命题趋势为:1.平面解析几何是历年来高考重点内容之一,经常与逻辑、不等式、三角函数等知识结合起来考查,在选择题、填空题与解答题中均有可能出现,在解答题中考查,一般难度较大,与其他知识结合起来考查,在考查平面解析几何基础知识的同时,又考查数形结合思想、转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.2013年的高考将会继续保持稳定,坚持考查解析几何与其他知识的结合,在选择题、填空题中继续搞创新,命题形式会更加灵活.【要点梳理】1.圆锥曲线中的最值问题2.圆锥曲线中的面积问题3.圆锥曲线中的定点或定值问题【例题精析】考点一 圆锥曲线中的最值与面积问题例1. (2012年高考重庆卷文科21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)已知椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为12,F F ,线段12,OF OF 的中点分别为12,B B ,且△12AB B 是面积为4的直角三角形。

(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过1B作直线交椭圆于,P Q ,22PB QB ⊥,求△2PB Q 的面积【变式训练】1.(2012年高考安徽卷文科20)(本小题满分13分)如图,21F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求,a b 的值.考点二 定点(定值)问题例2.(2012年高考福建卷文科21)(本小题满分12分)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上。

高三数学 第十二章 圆锥曲线的综合问题 复习教案

高三数学 第十二章 圆锥曲线的综合问题  复习教案

第十一节 圆锥曲线的综合问题————热点考点题型探析一、复习目标:掌握圆锥曲线中有关定点、定值问题的解法;能利用方程求圆锥曲线的有关范围与最值;掌握对称问题的求法。

二、重难点:重点:掌握圆锥曲线中有关定点、定值问题的解法;能利用方程求圆锥曲线的有关范围与最值。

难点:圆锥曲线的有关范围与最值问题。

三、教学方法:讲练结合,探析归纳 四、教学过程 (一)、热点考点题型探析 考点1.对称问题[例1]若直线l 过圆x2+y2+4x-2y=0的圆心M 交椭圆49:22y x C +于A 、B 两点,若A 、B 关于点M 对称,求直线L 的方程.[解析] )1,2(-M ,设),(),,(2211y x B y x A ,则2,42121=+-=+y y x x又1492121=+y x ,1492222=+y x ,两式相减得:04922122212=-+-y y x x ,化简得0))((9))((421212121=-++-+y y y y x x x x ,把2,42121=+-=+y y x x 代入得982112=--=x x y y k AB故所求的直线方程为)2(211--=-x y ,即042=-+y x 所以直线l 的方程为 :8x-9y+25=0.【反思归纳】要抓住对称包含的三个条件:(1)中点在对称轴上(2)两个对称点的连线与轴垂直(3)两点连线与曲线有两个交点(0>∆),通过该不等式求范围 考点2. 圆锥曲线中的范围、最值问题题型:求某些变量的范围或最值[例2]已知椭圆22122:1(0)x y C a b a b +=>>与直线10x y +-=相交于两点A B 、.当椭圆的离心率e满足2e ≤≤,且0OA OB ⋅=u u u r u u u r (O 为坐标原点)时,求椭圆长轴长的取值范围.【解题思路】通过“韦达定理”沟通a 与e 的关系[解析]由22222210b x a y a b x y ⎧+=⎨+-=⎩,得222222()2(1)0a b x a x a b +-+-= 由22222(1)0a b a b =+->V ,得221a b +>此时222121222222(1),a a b x x x x a b a b -+==++ 由0OA OB ⋅=u u u r u u u r,得12120x x y y +=,∴12122()10x x x x -++=即222220a b a b +-=,故22221a b a =- 由222222c a b e a a -==,得2222b a a e =-∴221211a e =+-由32e ≤≤得25342a ≤≤2a ≤≤【反思归纳】求范围和最值的方法:几何方法:充分利用图形的几何特征及意义,考虑几何性质解决问题代数方法:建立目标函数,再求目标函数的最值. 考点3 定点,定值的问题题型:论证曲线过定点及图形(点)在变化过程中存在不变量[例3] 已知P 、Q 是椭圆C :12422=+y x 上的两个动点,)26,1(M 是椭圆上一定点,F 是其左焦点,且|PF|、|MF|、|QF|成等差数列。

圆锥曲线的综合问题-教案

圆锥曲线的综合问题-教案

第三讲圆锥曲线的综合问题考点整合1. 直线与圆锥曲线的位置关系(1) 直线与椭圆的位置关系的判定法:将直线程与椭圆程联立,消去一个未知数,得到一个一元二次程•若少0,则直线与椭圆相交;若A= 0,则直线与椭圆相切;若A<0,则直线与椭圆相离.(2) 直线与双曲线的位置关系的判定法:将直线程与双曲线程联立,消去y或x),得到一个一元程ax2+ bx+ c= 0(或ay2+ by+ c=0) •①若a工0,当A>0时,直线与双曲线相交;当A= 0时,直线与双曲线相切;当A<0时,直线与双曲线相离.②若a= 0时,直线与渐近线平行,与双曲线有一个交点.(3) 直线与抛物线的位置关系的判定法:将直线程与抛物线程联立,消去y(或x),得到一个一元程ax2+ bx+ c= 0(或ay2+ by+ c =0) •①当a z 0时,用△判定,法同上.②当a= 0时,直线与抛物线的对称轴平行,只有一个交点.2. 有关弦的问题(1) 有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.①斜率为k的直线与圆锥曲线交于两点P i(x i,y i), P2(x2, y2),则所得弦长|P i P2|=』1 + k2|x2- X1或|P1P2= - , 1 +胡2—y1|,其中求|x2- X1|与|y2- y11时通常使用根与系数的关系,即作如下变形:|x2 —X1 = \/ X1 + X2 2—4X1x2 ,②当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).(2) 弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.3. 圆锥曲线中的最值(1)椭圆中的最值个端点,O为坐标原点,则有① |0P|€ [b , a].② |PF i |€ [a — c , a + c]. ③ |PF i | |PF 2|€ [ b 2 , a 2]. ④ / F I PF 2<Z F 1BF 2.标原点,则有 ① |OP|》a. ② |PF i |> c — a. (3) 抛物线中的最值点P 为抛物线y 2 = 2px(p > 0)上的任一点,F 为焦点,则有: ① PF |> 21. (2013课标全国I )已知椭圆E :羊+ $= 1(a>b>0)的右焦点为F(3,0),过点F 的直线交Eb 2所以直线AB 的斜率为k = a设直线程为y = *(x — 3),联立直线与椭圆的程得(a 2+ b 2)x 2— 6b 2x + 9b 2— a 4= 0, 所以 X 1 + X 2= a T^= 2 ; 又因为 a 2— b 2= 9,解得 b 2= 9, a 2= 18.2. (2013 )过点(2, 0)引直线I 与曲线y = . 1 — x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线 I 的斜率等于( )⑵双曲线中的最值x 2 y 2F i 、F 2为双曲线孑一^2=1(a > 0,b > 0)的左、右焦点, P 为双曲线上的任一点, O 为坐于A 、B 两点.若AB 的中点坐标为1 1 - =(1,— 1),贝U E 的程为 +27 = 1 +右12X362X-18 B D解析 所以设 A(x 1, y 1)、B(X 2, y 2),运用点差法,②A(m , n)为一定点,则|PA|+ |PF|有最小值.y 1b 2=1B .- ¥C .答案 1T S ^AOB = 2|OA||OB|sin / AOB1 / 1=2sin / AOB < 2 解析当/ AOB =,AOB 面积最大.此时O 到AB 的距离d =爭. 设 AB 程为 y = k(x — 2)( k<0), 即 kx — y — i 2k = 0. 由d =「邓=(也可 k = — tan / OPH = 3. (2013大纲全国)椭圆C :k 一逅3 '一) 3 ).2 2 -+ 4 3=1的左、 右顶点分别为 A i 、A 2,点P 在C 上且直线PA 2 斜率的取值围是[—2 , 1 _ A . © 4] 1C .[夕 1]答案 B —1],那么直线 解析利用直线PA 2斜率的取值围确定点 FA 1斜率的边界值.由题意可得 A 1(— 2,0), A 2(2,0), 当PA 2的斜率为— 2时,y =— 2(x — 2), y 化简得 解得x = 2或x = ^6. 由点P 在椭圆上得点P 26, 直线FA 2的程式为 代入椭圆程,消去 同理,当直线PA 2的斜率为一1时, 代入椭圆程,PA 1斜率的取值围是 3 3 [3, 3] ,1] P 变化围的边界点,再利用斜率公式计算直线 19x 2— 64x + 52= 0,24,此时直线PA 1的斜率k =8直线PA 2程为y =— (x — 2), 消去y 化简得7x 2— 16x + 4 = 0,解得x = 2或 由点P 在椭圆上得点 此时直线PA 1的斜率2 12F7, & , k = 3 k= 4.数形结合可知,直线 3PA 1斜率的取值围是 8,4. (2012)椭圆4 + 3=1的左焦点为F ,直线x = m 与椭圆相交于点 A 、B ,当△ FAB 的长最大时,△ FAB 的面积是 ________ . 答案 3解析 直线x = m 过右焦点(1,0)时,△ FAB 的长最大,由椭圆定义知,其长为 4a = 8,b 2 2 X 3i此时,AB|= 2 X-== 3,.・. S ^FAB =-X 2 X 3 = 3.a 225. (2012 )在直角坐标系xOy 中,直线I 过抛物线y 2= 4x 的焦点F ,且与该抛物线相交于 A ,B 两点.其中点A 在x 轴上,若直线I 的倾斜角为60°则厶OAF 的面积为 _____________ 答案 ;3解析••• y 2= 4x 的焦点F(1,0), 又直线I 过焦点F 且倾斜角为60° 故直线l 的程为y = ;'3(x - 1),将其代入 y 2= 4x 得 3x 2- 6x + 3 — 4x = 0,1即 3x 2— 10x + 3 = 0. x = 3或 x = 3.3 又点 A 在 x 轴上,• • X A = 3.二 y A = 2\'- 3.1• S A OAF = 2* 1 X 2 ■ 3 = ■' 3.题型一圆锥曲线中的围、最值问题【例1】已知中心在原点的双曲线 C 的右焦点为(2,0),实半轴长为-3.(1) 求双曲线C 的程;⑵若直线I : y = kx + .2与双曲线C 的左支交于A , B 两点,求k 的取值围;(3)在(2)的条件下,线段 AB 的垂直平分线l 0与y 轴交于M(0, b),求b 的取值围. 审题破题(2)直接利用判别式和根与系数的关系确定k 的围;(3)寻找b 和k 的关系,由已知,得 a = . 3, c = 2, b 2= c 2— a 2= 1, 故双曲线程为彳—y 2= 1. ⑵设 A(X A , y A ), B(X B , y B ),将 y = kx + , 2代入 — y 2= 1, 得(1 — 3k 2)x 2— 6 2kx — 9= 0.利用(2)中k 的围求解.解(1)设双曲线程为2 2x- y-= 1 a b(a>0, b>0),1 —3 k2丰 0,△= 36 1 —k2 >0,由题意,知x A+ x B= 1 ' 3:2<0 , 解得~3<«1.—9XAXB =匚汞 >°,所以当-3<k<1时,直线I与双曲线的左支有两个交点.3⑶由⑵,得X A+ X B= 1—^2,所以Y A+ y B= (kx A+ 2) + (kx B+ 2)=k(X A+ X B) + 2 2= 1—^2,所以AB中点P的坐标为园尘,」.1 —3 k2 1—3k21 A\f2设I o的程为y=—[x+ b,将P点的坐标代入l0的程,得b= 1—3k2,T 33<k<1 ,•••— 2<1 —3k2<0,「. b< —2 2.••• b的取值围是(一a, —2 2).反思归纳求最值或求围问题常见的解法有两种:(1)几法•若题目的条件和结论能明显体现几特征及意义,则考虑利用图形性质来解决,这就是几法. (2)代数法•若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,这就是代数法.变式训练1 (2013)已知抛物线C的顶点为原点,其焦点F(0, c)(c>0)到直线I: X— y— 2 = 0 的距离为穿.设P为直线I上的点,过点P作抛物线C的两条切线PA, PB,其中A, B为切点.(1) 求抛物线C的程;(2) 当点P(X O, y o)为直线I上的定点时,求直线AB的程;(3) 当点P在直线I上移动时,求|AF||BF|的最小值.解(1)依题意知|c+ 2|=卑乎,c>0,解得c= 1.寸2 2所以抛物线C的程为x2= 4y.(2)由y=扶得y,=],、r 1 1设A(X1, y1), B(X2, y2),则切线PA, PB的斜率分别为"X1, 5x2,所以切线PA的程为y X1 X1X2—y1 = ~(x—X1),即y= ~x —— + y1,即卩X1X —2y—2y1 = 0.同理可得切线PB的程为X2x—2y —2y2= 0,又点P(X0, y0)在切线PA和PB上,所以 x i X o — 2y o — 2y i = 0, X 2X 0 — 2y o — 2y 2= 0,所以(X i , y i ),(X 2, y 2)为程 x o x — 2y o — 2y = 0 的两组解, 所以直线AB 的程为X o x — 2y — 2y o = 0.⑶由抛物线定义知|AF|= y i + 1, |BF|= y 2+ 1, 所以 |AF| |BF |= (y i + 1)(y 2 + 1) = y i y 2 + (y i + y 2)+ 1,消去 x 整理得 y 2 + (2y o — x 0)y + y 2= 0, y 1 + y 2= x 2— 2y 0, y 1y 2= y 2,|AF| |BF|= y 1y 2 + (y 1 + y 2)+ 1 = y 0+ x 0— 2y o + 1 =y 2 + (y o + 2)2 — 2y o + 1 = 2y 0+ 2y o + 5 c 1 2 9=2 y o + 2 2 + 2,•••当y o = — 2■时,|AF||BF|取得最小值,且最小值为 2. 题型二圆锥曲线中的定点、定值问题【例2] (2012 )如图,等边三角形 OAB 的边长为8 .3,且其三个顶点均在抛物线 E : x 2= 2py(p>0)上. (1) 求抛物线E 的程;(2) 设动直线I 与抛物线E 相切于点P,与直线y =— 1相交于点 证明以PQ 为直径的圆恒过 y 轴上某定点.审题破题 (1)先求出B 点坐标,代入抛物线程,可得 p 的值;(2)假设在y 轴上存在定 点M ,使得以线段PQ 为直径的圆经过点 M ,转化为MP MQ = 0,从而判断点 M 是否 存在.(1)解 依题意,|OB|= 8 .3,7 BOy = 30°设 B(x , y),则 x = |OB|sin 30 =4羽,y = |OB|cos 30 = 12. 因为点 B(4 ,3, 12)在 x 2= 2py 上, 所以(4 ,3)2= 2p X 12,解得 p = 2. 故抛物线E 的程为x 2= 4y.⑵证明法一由(1)知y =扶,y '= 2x.1设P(X 0, y o ),则X 0工0, y o = [x 2,且l 的程为联立程X 0X — 2y — 2y 0= 0, x 2= 4y ,x 2— 4 得 X = 2x 0 ,所以Q 为 x 2 —42x1X 0(x — X 0),即卩 y =y — y o =即(y 2+ y i — 2) + (1 — y i )y o = 0.(*) 由于(*)式对满足y o = 4X 0(X O M 0)的y o 恒成立,i — y i = 0, 所以。

圆锥曲线综合问题(一)教案

圆锥曲线综合问题(一)教案

圆锥曲线综合问题(一)定点、定值问题教学目标:(1)理解并初步掌握圆锥曲线中的定点、定值问题的基本思维路径和解题方法;(2)培养学生“设而不求,整体代换”等数学思想方法和技巧,简化数学运算,达到直接、快速、准确的解题效果,提升学生运算水平;(3)通过引导学生分析、思考解决圆锥曲线中的定点、定值问题,提升学生解答综合问题的水平。

重点:培养学生“设而不求,整体代换”等数学思想方法和技巧。

难点:体会感悟解决定点、定值问题的基本思维路径和解法。

学情分析:圆锥曲线是中学数学知识的一个重要交汇点,它常与函数、方程、导数、不等式、数列、平面向量等内容交汇渗透,知识跨度大,题型新颖别致、解法灵活,思维抽象强,水平要求高,它既是高考的热点题型,又是颇难解决的重点题型,在高考中占据着举足轻重的地位。

近年来,虽然高考对圆锥曲线的考查总体难度有所降低,但常因其综合性强、运算水平要求高而成为考生望而生畏的难题。

课时安排:两课时。

课题引入:【高考定位】圆锥曲线的综合问题包括:探索性问题、定点与定值问题、范围与最值问题等,一般试题难度较大.这类问题以直线和圆锥曲线的位置关系为载体,以参数处理为核心,需要综合使用函数与方程、不等式、平面向量等诸多知识以及数形结合、分类讨论等多种数学思想方法实行求解,对考生的代数恒等变形水平、计算水平等有较高的要求.【问题提出】在解析几何中,有些几何量与参数无关,这就构成了定值问题;对满足一定条件的曲线上两点连结所得直线过定点或满足一定条件的曲线过定点,这又构成了过定点问题。

定点、定值问题是每年高考中的热点题型,也是高考中很多考生望而生畏的难题。

所以我们下面来专题探寻定点、定值问题的基本思维路径和方法。

第一课时:定点问题教学过程:一、【考点整合】1.定点问题:在解析几何中,有些含有参数的直线或曲线,不论参数如何变化,其都过某定点,这类问题称为定点问题.2.解答定点问题的基本思维方法:恒过定点问题,可设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相对应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决,主要以两种形式表现:点斜式方程和过定点的直线系或曲线系方程。

圆锥曲线的综合性问题与应用教案

圆锥曲线的综合性问题与应用教案

第10课时圆锥曲线的综合性问题与应用1.归纳圆锥曲线与其他知识点相结合的综合性问题,如:解三角形、函数、数列、平面向量、不等式、方程等,掌握其解题技巧和方法,熟练运用设而不求与点差法.2.熟练掌握轨迹问题、探索性问题、定点与定值问题、范围与最值问题等.圆锥曲线的综合问题包括:轨迹问题、探索性问题、定点与定值问题、范围与最值问题等,一般试题难度较大.这类问题以直线和圆锥曲线的位置关系为载体,以参数处理为核心,需要综合运用函数与方程、不等式、平面向量等诸多知识以及数形结合、分类讨论等多种数学思想方法来进行求解,对考生的代数恒等变形能力、计算能力等有较高的要求.问题1:判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y(或x)得关于变量x(或y)的方程:ax2+bx+c=0(或ay2+by+c=0).若a≠0,可考虑一元二次方程的判别式Δ,有:Δ>0⇔直线与圆锥曲线;Δ=0⇔直线与圆锥曲线;Δ<0⇔直线与圆锥曲线.若a=0且b≠0,则直线与圆锥曲线相交,且有个交点.问题2:圆锥曲线的弦长问题设直线l与圆锥曲线C相交于A、B两点,A(x1,y1),B(x2,y2),则弦长|AB|=或.问题3:最值问题的代数解法,是从动态角度去研究解析几何中的数学问题的主要内容,其解法是设变量、建立目标函数、转化为求函数的最值.其中,自变量的由直线和圆锥曲线的位置关系(即判别式与0的关系)确定.问题4:范围问题,主要是根据条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围.其解法主要有运用圆锥曲线上点的坐标的取值范围,运用求函数的或最值以及一元二次方程实根的分布等知识.1.与椭圆+=1焦点相同,离心率互为倒数的双曲线方程是().A.y2-=1B.-x2=1C.x2-y2=1D.y2-x2=12.直线y=kx-k+1与椭圆+=1的位置关系是().A.相交B.相切C.相离D.不确定3.椭圆的两个焦点为F1、F2,短轴的一个端点为A,且△F1AF2是顶角为120°的等腰三角形,则此椭圆的离心率为.4.已知椭圆C1,抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两个点,其坐标分别是(3,-2),(-2,0),(4,-4),(,).求C 1,C2的标准方程.圆锥曲线与三角函数的交汇已知α是三角形的一个内角,且sinα+cosα=,则方程x2tan α-=-1表示.圆锥曲线与数列的交汇已知双曲线a n-1y2-a n x2=a n-1a n的一个焦点为(0,),一条渐近线方程为y=x,其中{a n}是以4为首项的正数数列.(1)求数列{c n}的通项公式;(2)求数列{}的前n项和S n.圆锥曲线与向量的交汇设F(1,0),点M在x轴上,点P在y轴上,且=2,⊥.(1)当点P在y轴上运动时,求点N的轨迹C的方程;(2)设A(x1,y1),B(x2,y2),D(x3,y3),是曲线C上的点,且||,||,||成等差数列,当AD的垂直平分线与x轴交于点E(3,0)时,求B点坐标.已知椭圆+=1及以下3个函数:①f(x)=x;②f(x)=sin x;③f(x)=cos x.其中函数图像能等分该椭圆面积的函数个数为().A.1B.2C.3D.0设F1是椭圆+y2=1的左焦点,O为坐标原点,点P在椭圆上,则·的最大值为.设点P是圆x2+y2=4上任意一点,由点P向x轴作垂线PP0,垂足为P 0,且=.(1)求点M的轨迹C的方程;(2)设直线l:y=kx+m(m≠0)与(1)中的轨迹C交于不同的两点A,B.①若直线OA,AB,OB的斜率成等比数列,求实数m的取值范围;②若以AB为直径的圆过曲线C与x轴正半轴的交点Q,求证:直线l过定点(Q点除外),并求出该定点的坐标.1.已知F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,P为双曲线右支上的任意一点.若=8a,则双曲线的离心率的取值范围是().A.(1,2]B.[2,+∞)C.(1,3]D.[3,+∞)2.一个椭圆的长轴的长度,短轴的长度和焦距成等比数列,则该椭圆的离心率为().A.B.C.D.3.已知点A(-,0),点B(,0),且动点P满足|PA|-|PB|=2,则动点P的轨迹与直线y=k(x-2)有两个交点的充要条件为k∈.4.k代表实数,讨论方程:kx2+2y2-8=0所表示的曲线.(2013年·浙江卷)如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是().A.B.C.D.考题变式(我来改编):第10课时圆锥曲线的综合性问题与应用知识体系梳理问题1:相交相切相离一问题2:|x 1-x2||y1-y2|问题3:取值范围问题4:值域基础学习交流1.A设双曲线方程为-=1(a>0,b>0),则得a=1,b=.故双曲线方程为y2-=1.2.A由于直线y=kx-k+1=k(x-1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.3.如图,根据题意可知|AF2|=a,|OF2|=c,∠OAF2=60°,∴e==sin∠OAF2=sin60°=.4.解:设抛物线C2:y2=2px(p≠0),则有=2p(x≠0),据此验证4个点知(3,-2),(4,-4)在抛物线上,易求C 2:y2=4x.设C 1:+=1(a>b>0),把点(-2,0),(,)代入得:解得∴C1方程为+y2=1.重点难点探究探究一:【解析】由sinα+cosα=及sin2α+cos2α=1,且0<α<π,解得sinα=,cosα=-,tanα=-,因此x2tanα-=-1就是-=1,表示焦点在x轴上的双曲线.【答案】焦点在x轴上的双曲线-=1【小结】本题主要考查同角三角函数的基本关系及双曲线方程的识别.解答的关键是求得sinα与cosα的值,以及会根据圆锥曲线方程识别曲线的类型.探究二:【解析】(1)∵双曲线方程-=1的焦点为(0,),∴c n=a n+a n-1,又∵一条渐近线方程为y=x,即=,∴=2,又a 1=4,∴a n=4·2n-1=2n+1,即c n=2n+1+2n=3·2n.(2)∵=n·2n,∴S n=1·2+2·22+3·23+…+n·2n,①2S n=1·22+2·23+3·24+…+(n-1)·2n+n·2n+1,②由①-②得-S n=2+22+…+2n-n·2n+1,∴S n=-+n·2n+1=(n-1)·2n+1+2.【小结】本题主要考查双曲线的几何性质,等比数列的定义和通项公式及错位相减法求和,同时考查转化思想及处理综合试题的能力.本题是一道圆锥曲线与数列相结合的综合题,但难度并不大.解答本题注意两点基本知识及方法的应用:(1)通过双曲线的焦点坐标与渐近线方程建立等式;(2)利用错位相减法求和.探究三:【解析】(1)设N(x,y),则由=2,得P为MN的中点,所以M(-x,0),P(0,).则=(-x,-),=(1,-),则由⊥,得·=0,y2=4x(x≠0).(2)由(1)知F(1,0)为曲线C的焦点,由抛物线定义知,抛物线上任一点P 0(x0,y0)到F的距离等于其到准线的距离,即|P0F|=x0+,所以||=x 1+,||=x2+,||=x3+,根据||,||,||成等差数列,得x1+x3=2x2,直线AD的斜率为==,所以AD中垂线方程为y=-(x-3),又AD的中点(,)在直线上,代入上式得=1,即x 2=1,所以点B的坐标为(1,±2).【小结】本题主要考查向量的坐标运算及垂直的充要条件、轨迹的直接求法、抛物线的定义及中点坐标公式,同时考查方程的思想、转化的思想、整体思想以及逻辑推理能力、解题实践能力和数学思想方法应用能力.本题解答有两个关键:(1)对条件中的向量关系进行转化;(2)抛物线焦半径的应用;(3)确定直线AD的斜率k.思维拓展应用应用一:B要使函数y=f(x)的图像能等分该椭圆的面积,则f(x)的图像应该关于椭圆的中心O对称,即f(x)为奇函数,①和②均满足条件.y0),依题意可得F1(-,0),则应用二:4+2设P(x+1-+x0=+x0+1=(x0+)2.·=++x又-2≤x 0≤2,所以当x0=2时,·取得最大值4+2.应用三:(1)设点M(x,y),P(x0,y0),则由题意知P0(x0,0).由=(x0-x,-y),=(0,-y0),且=,得(x0-x,-y)=(0,-y0).∴∴又+=4,∴x2+y2=4.∴点M的轨迹C的方程为+=1.(2)设A(x1,y1),B(x2,y2).联立得(3+4k2)x2+8mkx+4(m2-3)=0.∴Δ=(8mk)2-16(3+4k2)(m2-3)>0,即3+4k2-m2>0.(*)且①依题意,k2=,即k2=·.∴x1x2k2=k2x1x2+km(x1+x2)+m2.∴km(x1+x2)+m2=0,即km(-)+m2=0.∵m≠0,∴k(-)+1=0,解得k2=.将k2=代入(*),得m2<6.∴m的取值范围是(-,0)∪(0,).②证明:曲线+=1与x轴正半轴的交点为Q(2,0).依题意,⊥,即·=0.于是(2-x1,-y1)·(2-x2,-y2)=0.∴x1x2-2(x1+x2)+4+y1y2=0,即x1x2-2(x1+x2)+4+(kx1+m)·(kx2+m)=0,∴(k2+1)·+(km-2)·(-)+4+m2=0.化简,得7m2+16mk+4k2=0.解得,m=-2k或m=-,且均满足3+4k2-m2>0.当m=-2k时,直线l的方程为y=k(x-2),直线过定点(2,0)(舍去);当m=-时,直线l的方程为y=k(x-),直线过定点(,0).∴直线l过定点(,0).基础智能检测1.C设|PF 2|=y,则(y+2a)2=8ay⇒(y-2a)2=0⇒y=2a≥c-a⇒e=≤3.2.A不妨设椭圆的方程为+=1(a>b>0),则长轴长为2a,短轴长为2b,焦距为2c,根据题意得(2b)2=2a·2c,即b2=ac,又b2=a2-c2,即a2-c2=ac,即c2+ac-a2=0,两边同除以a2得e2+e-1=0,解得e=,又0<e<1,故e=,故选A.3.(-∞,-1)∪(1,+∞)由已知得动点P的轨迹为一双曲线的右支且2a=2,c=,则b==1,所以P点的轨迹方程为x2-y2=1(x>0),其渐近线方程为y=±x.若P点的轨迹与直线y=k(x-2)有两个交点,则需k∈(-∞,-1)∪(1,+∞).4.解:当k<0时,曲线-=1为焦点在y轴上的双曲线;当k=0时,曲线2y2-8=0为两条平行的垂直于y轴的直线;当0<k<2时,曲线+=1为焦点在x轴上的椭圆;当k=2时,曲线x2+y2=4为一个圆;当k>2时,曲线+=1为焦点在y轴上的椭圆.全新视角拓展D设|AF1|=m,|AF2|=n,则有m+n=4,m2+n2=12,∴12+2mn=16,∴mn=2.设双曲线的方程为-=1,则(m-n)2=(2a)2=(m+n)2-4mn=16-8=8,∴双曲线的a=,c=,则有e==.思维导图构建判别式代数。

9.7 圆锥曲线的综合问题(试题部分) 高考数学(课标版,理科)复习教学案

9.7 圆锥曲线的综合问题(试题部分) 高考数学(课标版,理科)复习教学案

9.7 圆锥曲线的综合问题探考情 悟真题 【考情探究】考点内容解读5年考情预测热度考题示例 考向 关联考点 1.定值与定点问题 掌握与圆锥曲线有关的定值与定点问题2018课标Ⅰ,19,12分 定值问题 角平分线的性质, 斜率公式★★★2017课标Ⅰ,20,12分 定点问题 根与系数的关系、 斜率公式 2.最值与 范围问题 掌握与圆锥曲线有关的参数范围问题 2016课标Ⅱ,20,12分 范围问题 椭圆的几何性质★★★3.存在性问题了解并掌握与圆锥曲线有关的存在性问题2015课标Ⅱ,20,12分存在性问题根与系数的关系、 斜率公式★★☆ 分析解读 1.会处理动曲线(含直线)过定点的问题.2.会证明与曲线上的动点有关的定值问题.3.会按条件建立目标函数,研究变量的最值问题及变量的取值范围问题,注意运用“数形结合”“几何法”求某些量的最值.4.能与其他知识交汇,从假设结论成立入手,通过推理论证解答存在性问题.5.本节在高考中围绕直线与圆锥曲线的位置关系,展开对定值、最值、参数取值范围等问题的考查,注重考查学生的数学运算、逻辑推理的核心素养,分值约为12分,难度偏大.破考点 练考向 【考点集训】考点一 定值与定点问题1.(2018重庆綦江模拟,9)已知圆C:x 2+y 2=1,点P 为直线x+2y-4=0上一动点,过点P 向圆C 引两条切线PA,PB,A,B 为切点,则直线AB 经过定点( ) A.(12,14) B.(14,12)C.(√34,0)D.(0,√34) 答案 B2.(2020届河南名校联盟9月月考,19)已知O 为坐标原点,过点M(1,0)的直线l 与抛物线C:y 2=2px(p>0)交于A,B 两点,且OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =-3. (1)求抛物线C 的方程;(2)过点M 作直线l'⊥l,交抛物线C 于P 、Q 两点,记△OAB,△OPQ 的面积分别为S 1,S 2,证明:1S 12+1S 22为定值.解析 (1)易知直线l 的斜率不为0,故设直线l 的方程为x=my+1, 与抛物线C:y 2=2px(p>0)联立,消去x 得y 2-2pmy-2p=0.设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=2pm,y 1y 2=-2p.由OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗ =-3,得x 1x 2+y 1y 2=(my 1+1)(my 2+1)+y 1y 2 =(1+m 2)y 1y 2+m(y 1+y 2)+1 =(1+m 2)·(-2p)+2pm 2+1 =-2p+1=-3,解得p=2, ∴抛物线C 的方程为y 2=4x.(2)证明:易知直线l,l'的斜率均存在且不为0.由(1)知,点M(1,0)是抛物线C 的焦点,所以|AB|=x 1+x 2+p=my 1+my 2+2+p=4m 2+4,又原点到直线l 的距离为√1+m 2,所以△OAB 的面积S 1=12×√1+m2×4(m 2+1)=22, 又直线l'过点M,且l'⊥l,所以△OPQ 的面积S 2=2√1+(-1m )2=2√1+m2m 2,所以1S 12+1S 22=14(1+m 2)+m 24(1+m 2)=14,即1S 12+1S 22为定值.考点二 最值与范围问题1.(2018河北百校联盟4月联考,16)已知抛物线C:x 2=8y 的焦点为F,准线为l 1,直线l 2与抛物线C 相切于点P,记点P 到直线l 1的距离为d 1,点F 到直线l 2的距离为d 2,则d 2d 1+2的最大值为 .答案122.(2020届四川成都摸底考试,20)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1(-√3,0),F 2(√3,0),且经过点A (√3,12).(1)求椭圆C 的标准方程;(2)过点B(4,0)作一条斜率不为0的直线l 与椭圆C 相交于P,Q 两点,记点P 关于x 轴对称的点为P',若直线P'Q 与x 轴相交于点D,求△DPQ 面积的最大值.解析 本题主要考查椭圆的方程及定义、直线与椭圆的位置关系、直线方程、基本不等式,考查的核心素养是逻辑推理、数学运算.(1)由椭圆的定义,可知2a=|AF 1|+|AF 2|=√(2√3)2+(12)2+12=4,解得a=2.又b 2=a 2-c 2=22-(√3)2=1,∴椭圆C 的标准方程为x 24+y 2=1.(2)由题意,设直线l 的方程为x=my+4(m ≠0),P(x 1,y 1),Q(x 2,y 2),则P'(x 1,-y 1). 由{x =my +4,x 24+y 2=1消去x,可得(m 2+4)y 2+8my+12=0. ∵Δ=16(m 2-12)>0,∴m 2>12. ∴y 1+y 2=-8m m 2+4,y 1y 2=12m 2+4.∵k P'Q =y 2+y1x 2-x 1=y 2+y 1m(y2-y 1),∴直线P'Q 的方程为y+y 1=y 2+y 1m(y2-y 1)(x-x 1),令y=0,可得x=m(y 2-y 1)y 1y 1+y 2+my 1+4.∴x=2my 1y 2y 1+y 2+4=2m ·12m 2+4-8m m 2+4+4=24m -8m+4=1,∴D(1,0).∴S △DPQ =|S △BDP -S △BDQ |=12|BD|·|y 1-y 2|=32√(y 1+y 2)2-4y 1y 2=6√m 2-12m 2+4.令t=√m 2-12,t ∈(0,+∞), 则S △DPQ =6tt 2+16=6t+16t≤34,当且仅当t=4,即m=±2√7时等号成立, ∴△DPQ 面积的最大值为34.思路分析(1)首先由椭圆的定义求出a,然后由椭圆中a,b,c的关系求b,从而求得椭圆的方程;(2)设出直线l的方程与点P,Q的坐标,联立直线l与椭圆的方程,利用斜率公式求得直线P'Q的斜率,进而得直线P'Q的方程,由此求得点D的坐标,再利用面积公式求得S△DPQ的表达式,从而利用换元法与基本不等式求出其最大值.考点三 存在性问题(2019内蒙古通辽五中模拟,20)已知椭圆x 2a2+y 2b 2=1(a>b>0)的离心率e=√63,过点A(0,-b)和B(a,0)的直线与原点的距离为√32. (1)求椭圆的方程;(2)已知定点E(-1,0),若直线y=kx+2(k ≠0)与椭圆交于C 、D 两点,问:是否存在这样的实数k,使得以CD 为直径的圆过E 点?若存在,请求出k 值,若不存在,请说明理由. 解析 (1)直线AB 的方程为bx-ay-ab=0, 依题意可得{ca=√63,√a 2+b 2=√32,又c 2=a 2-b 2,解得a 2=3,b 2=1,∴椭圆的方程为x 23+y 2=1.(2)存在,k=76.理由:假设存在这样的实数k, 由{y =kx +2,x 2+3y 2-3=0,得(1+3k 2)x 2+12kx+9=0, ∴Δ=(12k)2-36(1+3k 2)>0.① 设C(x 1,y 1),D(x 2,y 2), 则{x 1+x 2=-12k1+3k 2,②x 1·x 2=91+3k2,③ y 1·y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4, 要使以CD 为直径的圆过点E(-1,0),只需CE ⊥DE, 即y 1y 2+(x 1+1)(x 2+1)=0,∴(k 2+1)x 1x 2+(2k+1)(x 1+x 2)+5=0,④ 将②③代入④整理得k=76,经验证,k=76时,①成立.故存在k=76使得以CD 为直径的圆过点E.炼技法 提能力 【方法集训】方法 最值问题的求解方法1.(2019河南郑州一中4月模拟,10)已知F 为抛物线y 2=x 的焦点,点A,B 在该抛物线上且位于x 轴的两侧,OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =6(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( ) A.17√23B.3C.3√38D.3√132答案 D2.(2019甘肃兰州铁一中模拟,15)已知F 是抛物线x 2=4y 的焦点,P 为抛物线上的动点,且点A 的坐标为(0,-1),则√2|PA|+|PF||PF|的最大值是 .答案 3【五年高考】A 组 统一命题·课标卷题组考点一 定值与定点问题(2017课标Ⅰ,20,12分)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0),四点P 1(1,1),P 2(0,1),P 3(-1,√32),P 4(1,√32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)证明:设直线l 不经过P 2点且与C 相交于A,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点. 解析 (1)由于P 3,P 4两点关于y 轴对称,故由题设知C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,C 不经过点P 1,所以点P 2在C 上.因此{1b 2=1,1a 2+34b 2=1,解得{a 2=4,b 2=1.故C 的方程为x 24+y 2=1. (2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l:x=t,由题设知t ≠0,且|t|<2,可得A,B 的坐标分别为(t,√4-t 22),(t,-√4-t 22).则k 1+k 2=√4-t 2-22t-√4-t 2+22t=-1,得t=2,不符合题设.从而可设l:y=kx+m(m ≠1).将y=kx+m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx+4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0.设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2,由题设k 1+k 2=-1,故(2k+1)x 1x 2+(m-1)(x 1+x 2)=0, 即(2k+1)·4m 2-44k 2+1+(m-1)·-8km4k 2+1=0. 解得k=-m+12.当且仅当m>-1时,Δ>0,于是l:y=-m+12x+m,即y+1=-m+12(x-2),所以l 过定点(2,-1).思路分析 (1)利用椭圆的对称性易知点P 3,P 4在椭圆上,将点P 1(1,1)代入椭圆方程,经过比较可知点P 1(1,1)不在椭圆上,进而可列方程组求出椭圆方程;(2)设出直线l 的方程,将直线l 与椭圆的方程联立并消元,利用根与系数的关系使问题得解,在解题中要注意直线斜率不存在的情况. 方法点拨 定点问题的常见解法:(1)根据题意选择参数,建立一个含参数的直线系或曲线系方程,经过分析、整理,对方程进行等价变形,以找出满足方程且与参数无关的坐标,该坐标对应的点即为所求的定点. (2)从特殊位置入手,找出定点,再证明该定点符合题意.考点二 最值与范围问题(2016课标Ⅱ,20,12分)已知椭圆E:x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k(k>0)的直线交E 于A,M 两点,点N 在E 上,MA ⊥NA.(1)当t=4,|AM|=|AN|时,求△AMN 的面积;(2)当2|AM|=|AN|时,求k 的取值范围. 解析 (1)设M(x 1,y 1),则由题意知y 1>0. 当t=4时,E 的方程为x 24+y 23=1,A(-2,0).(1分)由已知及椭圆的对称性知,直线AM 的倾斜角为π4. 因此直线AM 的方程为y=x+2.(2分) 将x=y-2代入x 24+y 23=1得7y 2-12y=0.解得y=0或y=127,所以y 1=127.(4分)因此△AMN 的面积S △AMN =2×12×127×127=14449.(5分)(2)由题意,t>3,k>0,A(-√t ,0).将直线AM 的方程y=k(x+√t ) 代入x 2t +y 23=1得(3+tk 2)x 2+2√t ·tk 2x+t 2k 2-3t=0.(7分)由x 1·(-√t )=t 2k 2-3t3+tk 2得x 1=√t(3-tk 2)3+tk 2, 故|AM|=|x 1+ √t |√1+k 2=6√t(1+k 2)3+tk 2.(8分)由题设,直线AN 的方程为y=-1k (x+√t ), 故同理可得|AN|=6k√t(1+k 2)3k +t .(9分)由2|AM|=|AN|得23+tk 2=k3k 2+t ,即(k 3-2)t=3k(2k-1). 当k=√23时上式不成立,因此t=3k(2k -1)k 3-2.(10分) t>3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0.(11分)由此得{k -2>0,k 3-2<0或{k -2<0,k 3-2>0,解得√23<k<2.因此k 的取值范围是(√23,2).(12分)疑难突破 第(1)问中求出直线AM 的倾斜角是解决问题的关键;第(2)问利用2|AM|=|AN|得出t 与k 的关系式,由t>3,建立关于k 的不等式,从而得出k 的取值范围.本题主要考查椭圆的几何性质,直线与椭圆的位置关系以及方程思想的应用,考查学生的运算求解能力及逻辑思维能力.挖掘出题目中t>3这一隐含条件是把等式转化为不等式的关键.考点三 存在性问题(2015课标Ⅱ,20,12分)已知椭圆C:9x 2+y 2=m 2(m>0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 的中点为M.(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点(m3,m),延长线段OM 与C 交于点P,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.解析 (1)设直线l:y=kx+b(k ≠0,b ≠0),A(x 1,y 1),B(x 2,y 2),M(x M ,y M ). 将y=kx+b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx+b 2-m 2=0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b=9bk 2+9.于是直线OM 的斜率k OM =yM x M=-9k,即k OM ·k=-9. 所以直线OM 的斜率与l 的斜率的乘积为定值. (2)四边形OAPB 能为平行四边形.因为直线l 过点(m3,m),所以l 不过原点且与C 有两个交点的充要条件是k>0,k ≠3. 由(1)得OM 的方程为y=-9k x.设点P 的横坐标为x P .由{y =-9k x,9x 2+y 2=m 2得x P 2=k 2m 29k 2+81,即x P =3√k 2+9.将点(m 3,m)的坐标代入l 的方程得b=m(3-k)3,因此x M =k(k -3)m 3(k 2+9).四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M . 于是3√k 2+9=2×k(k -3)m3(k 2+9),解得k 1=4-√7,k 2=4+√7.因为k i >0,k i ≠3,i=1,2,所以当l 的斜率为4-√7或4+√7时,四边形OAPB 为平行四边形.思路分析 (1)设出直线l 的方程,与椭圆方程联立并消元,利用韦达定理求得AB 的中点M 的坐标,进而可得出结论;(2)要使四边形OAPB 为平行四边形,则线段AB 与线段OP 互相平分,即x P =2x M ,由此结合已知条件建立相应方程,进而通过解方程使问题得解.B 组 自主命题·省(区、市)卷题组考点一 定值与定点问题(2019北京,18,14分)已知抛物线C:x 2=-2py 经过点(2,-1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M,N,直线y=-1分别交直线OM,ON 于点A 和点B.求证:以AB 为直径的圆经过y 轴上的两个定点.解析 本题主要考查抛物线、直线和圆的基本概念,重点考查直线与抛物线的位置关系,考查学生对数形结合思想的应用以及逻辑推理能力,通过直线与抛物线的位置关系考查了数学运算的核心素养. (1)由抛物线C:x 2=-2py 经过点(2,-1),得p=2. 所以抛物线C 的方程为x 2=-4y,其准线方程为y=1.(2)证明:抛物线C 的焦点为F(0,-1). 设直线l 的方程为y=kx-1(k ≠0). 由{y =kx -1,x 2=-4y 得x 2+4kx-4=0. 设M(x 1,y 1),N(x 2,y 2),则x 1x 2=-4, 直线OM 的方程为y=y1x 1x.令y=-1,得点A 的横坐标x A =-x1y 1.同理得点B 的横坐标x B =-x2y 2.设点D(0,n),则DA ⃗⃗⃗⃗⃗ =(-x1y 1,-1-n),DB⃗⃗⃗⃗⃗⃗ =(-x 2y2,-1-n), DA ⃗⃗⃗⃗⃗ ·DB⃗⃗⃗⃗⃗⃗ =x 1x 2y 1y2+(n+1)2=x 1x 2(-x 124)(-x 224)+(n+1)2=16x1x 2+(n+1)2=-4+(n+1)2.令DA ⃗⃗⃗⃗⃗ ·DB⃗⃗⃗⃗⃗⃗ =0,即-4+(n+1)2=0,得n=1或n=-3. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).考点二 最值与范围问题1.(2019北京,8,5分)数学中有许多形状优美、寓意美好的曲线,曲线C:x 2+y 2=1+|x|y 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过√2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( ) A.① B.② C.①② D.①②③答案 C2.(2017山东,21,14分)在平面直角坐标系xOy 中,椭圆E:x 2a 2+y 2b 2=1(a>b>0)的离心率为√22,焦距为2. (1)求椭圆E 的方程;(2)如图,动直线l:y=k 1x-√32交椭圆E 于A,B 两点,C 是椭圆E 上一点,直线OC 的斜率为k 2,且k 1k 2=√24.M 是线段OC 延长线上一点,且|MC|∶|AB|=2∶3,☉M 的半径为|MC|,OS,OT 是☉M 的两条切线,切点分别为S,T.求∠SOT 的最大值,并求取得最大值时直线l 的斜率.解析 (1)由题意知e=c a =√22,2c=2,所以a=√2,b=1,因此椭圆E 的方程为x 22+y 2=1.(2)设A(x 1,y 1),B(x 2,y 2),联立{x 22+y 2=1,y =k 1x -√32,消y 整理得(4k 12+2)x 2-4√3k 1x-1=0,由题意知Δ>0,且x 1+x 2=2√3k 12k 12+1,x 1x 2=-12(2k 12+1),所以|AB|=√1+k 12|x 1-x 2|=√2·√1+k 12√1+8k 121+2k 12.由题意可知圆M 的半径r=23|AB|=2√23·√1+k 12√1+8k 122k 12+1.由题设知k 1k 2=√24,所以k 2=√24k 1, 因此直线OC 的方程为y=√24k 1x. 联立{x 22+y 2=1,y =√24k 1x,得x 2=8k 121+4k 12,y 2=11+4k 12, 因此|OC|=√x 2+y 2=√1+8k 121+4k 12.由题意可知sin∠SOT 2=rr+|OC|=11+|OC|r,而|OC|r=√1+8k 121+4k 122√23·√1+k 1√1+8k 11+2k 12=3√24·12√1+4k 1√1+k 1,令t=1+2k 12,则t>1,1t ∈(0,1),因此|OC|r=32·√2t 2+t -1=32·√2+t -t 2=32·√-(t -2)2+4≥1,当且仅当1t =12,即t=2时等号成立,此时k 1=±√22, 所以sin ∠SOT 2≤12,因此∠SOT 2≤π6,所以∠SOT 的最大值为π3.综上所述,∠SOT 的最大值为π3,取得最大值时直线l 的斜率k 1=±√22.思路分析 (1)由离心率和焦距,利用基本量运算求解;(2)联立直线l 与椭圆方程,利用弦长公式求出|AB|,联立直线OC 与椭圆方程求|OC|,进而建立sin∠SOT 2与k 1之间的函数关系,利用二次函数的性质求解.疑难突破把角的问题转化为三角函数问题,即由sin∠SOT2=11+|OC|r=f(k1)求解是解题的突破口.解题反思最值问题一般利用函数的思想方法求解,利用距离公式建立sin∠SOT2与k1之间的函数关系是解题关键.牢固掌握基础知识和方法是求解的前提.本题的完美解答体现了数学知识、能力、思想、方法的完美结合.考点三 存在性问题(2015四川,20,13分)如图,椭圆E:x 2a2+y 2b 2=1(a>b>0)的离心率是√22,过点P(0,1)的动直线l 与椭圆相交于A,B两点.当直线l 平行于x 轴时,直线l 被椭圆E 截得的线段长为2√2. (1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q,使得|QA||QB|=|PA||PB|恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.解析 (1)由已知得,点(√2,1)在椭圆E 上. 因此,{ 2a 2+1b 2=1,a 2-b 2=c 2,c a =√22,解得a=2,b=√2.所以椭圆E 的方程为x 24+y 22=1.(2)当直线l 与x 轴平行时,设直线l 与椭圆相交于C,D 两点. 如果存在定点Q 满足条件, 则有|QC||QD|=|PC||PD|=1, 即|QC|=|QD|.所以Q 点在y 轴上,可设Q 点的坐标为(0,y 0). 当直线l 与x 轴垂直时, 设直线l 与椭圆相交于M,N 两点, 则M,N 的坐标分别为(0,√2),(0,-√2). 由|QM||QN|=|PM||PN|,有0√2||y +√2|=√2-√2+1, 解得y0=1或y 0=2.所以,若存在不同于点P 的定点Q 满足条件,则Q 点坐标只可能为(0,2).下面证明:当Q 的坐标为(0,2)时,对任意直线l,均有|QA||QB|=|PA||PB|. 当直线l 的斜率不存在时,由上可知,结论成立.当直线l 的斜率存在时,可设直线l 的方程为y=kx+1,A,B 的坐标分别为(x 1,y 1),(x 2,y 2). 联立{x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx-2=0. 其判别式Δ=(4k)2+8(2k 2+1)>0,所以,x 1+x 2=-4k2k 2+1,x 1x 2=-22k 2+1.因此1x 1+1x 2=x 1+x2x 1x2=2k. 易知,点B 关于y 轴对称的点B'的坐标为(-x 2,y 2). 又k QA =y 1-2x 1=kx 1-1x 1=k-1x 1,k QB'=y 2-2-x2=kx 2-1-x 2=-k+1x 2=k-1x 1,所以k QA =k QB',即Q,A,B'三点共线. 所以|QA||QB|=|QA||QB'|=|x 1||x 2|=|PA||PB|.故存在与P 不同的定点Q(0,2), 使得|QA||QB|=|PA||PB|恒成立.C 组 教师专用题组考点一 定值与定点问题1.(2018北京,19,14分)已知抛物线C:y 2=2px 经过点P(1,2).过点Q(0,1)的直线l 与抛物线C 有两个不同的交点A,B,且直线PA 交y 轴于M,直线PB 交y 轴于N. (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM⃗⃗⃗⃗⃗⃗ =λQO ⃗⃗⃗⃗⃗⃗ ,QN ⃗⃗⃗⃗⃗⃗ =μQO ⃗⃗⃗⃗⃗⃗ ,求证:1λ+1μ为定值. 解析 (1)因为抛物线y 2=2px 过点(1,2),所以2p=4,即p=2.故抛物线C 的方程为y 2=4x,由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y=kx+1(k ≠0). 由{y 2=4x,y =kx +1得k 2x 2+(2k-4)x+1=0. 依题意Δ=(2k -4)2-4×k 2×1>0,解得k<0或0<k<1.又PA,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)证明:设A(x 1,y 1),B(x 2,y 2), 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k 2.直线PA 的方程为y-2=y 1-2x 1-1(x-1). 令x=0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2.由QM ⃗⃗⃗⃗⃗⃗ =λQO ⃗⃗⃗⃗⃗⃗ ,QN ⃗⃗⃗⃗⃗⃗ =μQO ⃗⃗⃗⃗⃗⃗ 得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M+11-y N=x 1-1(k -1)x 1+x 2-1(k -1)x2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值.方法总结 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题设条件,得出与代数式有关的等式,化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的表达式,再利用题设条件化简、变形即可求得;(3)求某线段长度为定值.利用两点间的距离公式求得线段长度的表达式,再依据条件对表达式进行化简、变形即可求得.2.(2016北京,19,14分)已知椭圆C:x 2a2+y 2b2=1(a>b>0)的离心率为√32,A(a,0),B(0,b),O(0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M,直线PB 与x 轴交于点N.求证:|AN|·|BM|为定值. 解析 (1)由题意得{ c a =√32,12ab =1,a 2=b 2+c 2,解得a=2,b=1.所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知,A(2,0),B(0,1).设P(x 0,y 0),则x 02+4y 02=4.当x 0≠0时,直线PA 的方程为y=y 0x 0-2(x-2).令x=0,得y M =-2y 0x-2,从而|BM|=|1-y M |=|1+2y 0x0-2|.直线PB 的方程为y=y 0-1x 0x+1.令y=0,得x N =-x 0y 0-1,从而|AN|=|2-x N |=|2+x 0y 0-1|.所以|AN|·|BM|=|2+x0y 0-1|·|1+2y 0x0-2|=|x 02+4y 02+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2|=|4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2|=4.当x 0=0时,y 0=-1,|BM|=2,|AN|=2, 所以|AN|·|BM|=4. 综上,|AN|·|BM|为定值.一题多解 (2)点P 在曲线(x 2)2+(y 1)2=1上,不妨设P(2cos θ,sin θ),当θ≠kπ且θ≠kπ+π2(k ∈Z )时,直线AP 的方程为y-0=sinθ2(cosθ-1)(x-2),令x=0,得y M =sinθ1-cosθ; 直线BP 的方程为y-1=sinθ-12cosθ(x-0),令y=0,得x N =2cosθ1-sinθ. ∴|AN|·|BM|=2|1-cosθ1-sinθ|·|1-sinθ1-cosθ||=2×2=4(定值).=2|2(1-sinθ)(1-cosθ)(1-sinθ)(1-cosθ)(k∈Z)时,M、N是定点,易得|AN|·|BM|=4.综上,|AN|·|BM|=4. 当θ=kπ或θ=kπ+π2考点二 最值与范围问题1.(2018浙江,21,15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C:y 2=4x 上存在不同的两点A,B 满足PA,PB 的中点均在C 上.(1)设AB 中点为M,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x<0)上的动点,求△PAB 面积的取值范围.解析 本题主要考查椭圆、抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.(1)设P(x 0,y 0),A (14y 12,y 1),B (14y 22,y 2).因为PA,PB 的中点在抛物线上, 所以y 1,y 2为方程(y+y 02)2=4·14y 2+x 02,即y 2-2y 0y+8x 0-y 02=0的两个不同的实根.所以y 1+y 2=2y 0, 因此,PM 垂直于y 轴. (2)由(1)可知{y 1+y 2=2y 0,y 1y 2=8x 0-y 02,所以|PM|=18(y 12+y 22)-x 0=34y 02-3x 0,|y 1-y 2|=2√2(y 02-4x 0).因此,△PAB 的面积S △PAB =12|PM|·|y 1-y 2|=3√24(y 02-4x 0)32.因为x 02+y 024=1(x 0<0),所以y 02-4x 0=-4x 02-4x 0+4∈[4,5].因此,△PAB 面积的取值范围是[6√2,15√104].疑难突破 解析几何中“取值范围”与“最值”问题在解析几何中,求某个量(直线斜率,直线在x 、y 轴上的截距,弦长,三角形或四边形面积等)的取值范围或最值问题的关键是利用条件把所求量表示成关于某个变量(通常是直线斜率,动点的横、纵坐标等)的函数,并求出这个变量的取值范围(即函数的定义域),将问题转化为求函数的值域或最值.2.(2015浙江,19,15分)已知椭圆x 22+y 2=1上两个不同的点A,B 关于直线y=mx+12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).解析 (1)由题意知m ≠0,可设直线AB 的方程为y=-1m x+b.由{x 22+y 2=1,y =-1m x +b消去y,得(12+1m 2)x 2-2bmx+b 2-1=0. 因为直线y=-1mx+b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①将AB 的中点M (2mbm 2+2,m 2bm 2+2)代入直线方程y=mx+12,解得 b=-m 2+22m 2.②由①②得m<-√63或m>√63. (2)令t=1m∈(-√62,0)∪(0,√62), 则|AB|=√t 2+1·√-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d=t 2+12√t 2+1.设△AOB 的面积为S(t),所以S(t)=12|AB|·d=12√-2(t 2-12)2+2≤√22. 当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为√22.3.(2015天津,19,14分)已知椭圆x 2a2+y 2b 2=1(a>b>0)的左焦点为F(-c,0),离心率为√33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c,|FM|=4√33. (1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于√2,求直线OP(O 为原点)的斜率的取值范围. 解析 (1)由已知有c 2a2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.设直线FM 的斜率为k(k>0),则直线FM 的方程为y=k(x+c).由已知,有(√k 2+1)2+(c 2)2=(b 2)2,解得k=√33.(2)由(1)得椭圆方程为x 23c2+y 22c2=1,直线FM 的方程为y=√33(x+c),两个方程联立,消去y,整理得3x 2+2cx-5c 2=0,解得x=-53c 或x=c.因为点M 在第一象限,可得M 的坐标为(c,2√33c). 由|FM|=√(c +c)2+(2√33c -0)2=4√33,解得c=1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x,y),直线FP 的斜率为t,得t=yx+1,即y=t(x+1)(x ≠-1),与椭圆方程联立得{y =t(x +1),x 23+y 22=1,消去y,整理得2x 2+3t 2(x+1)2=6.又由已知,得t=√6-2x 23(x+1)2>√2,解得-32<x<-1或-1<x<0.设直线OP 的斜率为m,得m=y x,即y=mx(x ≠0),与椭圆方程联立,整理可得m 2=2x2-23.①当x ∈(-32,-1)时,有y=t(x+1)<0,因此m>0,于是m=√2x 2-23,得m ∈(√23,2√33). ②当x ∈(-1,0)时,有y=t(x+1)>0,因此m<0,于是m=-√2x2-23,得m ∈(-∞,-2√33). 综上,直线OP 的斜率的取值范围是(-∞,-2√33)∪(√23,2√33). 本题主要考查椭圆的标准方程和几何性质、直线方程和圆的方程、直线与圆的位置关系、一元二次不等式等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力以及用函数与方程思想解决问题的能力.4.(2015山东,20,13分)平面直角坐标系xOy 中,已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的离心率为√32,左、右焦点分别是F 1,F 2.以F 1为圆心,以3为半径的圆与以F 2为圆心,以1为半径的圆相交,且交点在椭圆C 上.(1)求椭圆C 的方程;(2)设椭圆E:x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点.过点P 的直线y=kx+m 交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q. (i)求|OQ||OP|的值;(ii)求△ABQ 面积的最大值.解析 (1)证明:由题意知2a=4,则a=2. 又c a =√32,a 2-c 2=b 2,可得b=1,所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1. (i)设P(x 0,y 0),|OQ||OP|=λ,由题意知Q(-λx 0,-λy 0). 因为x 024+y 02=1,又(-λx 0)216+(-λy 0)24=1,即λ24(x 024+y 02)=1, 所以λ=2,即|OQ||OP|=2.(ii)设A(x 1,y 1),B(x 2,y 2). 将y=kx+m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx+4m 2-16=0,由Δ>0,可得m 2<4+16k 2.①由韦达定理有x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-161+4k 2. 所以|x 1-x 2|=4√16k 2+4-m 21+4k 2.因为直线y=kx+m 与y 轴交点的坐标为(0,m), 所以△OAB 的面积S=12|m||x 1-x 2| =2√16k 2+4-m 2|m|1+4k 2=2√(16k 2+4-m 2)m 21+4k 2=2√(4-m 21+4k 2)m 21+4k 2. 设m 21+4k 2=t.将y=kx+m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx+4m 2-4=0,由Δ≥0,可得m 2≤1+4k 2.②由①②可知0<t ≤1,因此S=2√(4-t)t =2√-t 2+4t ,故S ≤2√3, 当且仅当t=1,即m 2=1+4k 2时取得最大值2√3.由(i)知,△ABQ 面积为3S, 所以△ABQ 面积的最大值为6√3.考点三 存在性问题(2015北京,19,14分)已知椭圆C:x 2a2+y 2b 2=1(a>b>0)的离心率为√22,点P(0,1)和点A(m,n)(m ≠0)都在椭圆C 上,直线PA 交x 轴于点M.(1)求椭圆C 的方程,并求点M 的坐标(用m,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N.问:y 轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q 的坐标;若不存在,说明理由.解析 (1)由题意得{b =1,ca=√22,a 2=b 2+c 2,解得a 2=2.故椭圆C 的方程为x 22+y 2=1. 设M(x M ,0).因为m ≠0,所以-1<n<1. 直线PA 的方程为y-1=n -1m x, 所以x M =m1-n ,即M (m1-n ,0).(2)因为点B 与点A 关于x 轴对称,所以B(m,-n). 设N(x N ,0),则x N =m1+n .“存在点Q(0,y Q )使得∠OQM=∠ONQ ”等价于“存在点Q(0,y Q )使得|OM||OQ|=|OQ||ON|”,即y Q 满足y Q 2=|x M ||x N |.因为x M =m 1-n ,x N =m1+n ,m 22+n 2=1,所以y Q 2=|x M ||x N |=m 21-n 2=2.所以y Q =√2或y Q =-√2.故在y 轴上存在点Q,使得∠OQM=∠ONQ. 点Q 的坐标为(0,√2)或(0,-√2).【三年模拟】一、选择题(每小题5分,共20分)1.(2019江西南昌重点中学调研考试,11)设点M 为抛物线C:y 2=4x 的准线上一点(不同于准线与x 轴的交点),过抛物线C 的焦点F 且垂直于x 轴的直线与C 交于A,B 两点,设MA,MF,MB 的斜率分别为k 1,k 2,k 3,则k 1+k 3k 2的值为( ) A.2B.2√2C.4D.4√2答案 A2.(2020届山西太原五中第二次诊断,12)已知A(0,3),若点P 是抛物线x 2=8y 上任意一点,点Q 是圆x 2+(y-2)2=1上任意一点,则|PA|2|PQ|的最小值为( )A.4√3-4B.2√2-1C.2√3-2D.4√2+1答案 A3.(2018河南中原名校4月联考,11)已知抛物线C:y 2=4x 的焦点为F,过点F 且斜率为1的直线与抛物线C 交于点A,B,以线段AB 为直径的圆E 上存在点P,Q,使得以PQ 为直径的圆过点D(-2,t),则实数t 的取值范围为( )A.(-∞,-1]∪[1,+∞)B.[-1,3]C.(-∞,2-√7]∪[2+√7,+∞)D.[2-√7,2+√7]答案 D4.(2020届山东夏季高考模拟,6)已知点A为曲线y=x+4x(x>0)上的动点,B为圆(x-2)2+y2=1上的动点,则|AB|的最小值是()A.3B.4C.3√2D.4√2答案 A二、填空题(共5分)5.(2019四川成都第二次适应性考试,16)已知F为抛物线C:x2=4y的焦点,过点F的直线l与抛物线C相交于不同的两点A,B,抛物线C在A,B两点处的切线分别是l1,l2,且l1,l2相交于点P,则|PF|+32|AB|的最小值是.答案 6三、解答题(共60分)6.(2020届河南安阳9月月考,20)如图,过点P(1,0)作两条直线x=1和l,分别交抛物线y2=4x于A,B和C,D(其中A,C位于x轴上方,l的斜率大于0),直线AC,BD交于点Q.(1)求证:点Q在定直线上;(2)若λ=S△PQCS△PBD,求λ的最小值.解析本题考查直线与抛物线的位置关系,三角形面积比,基本不等式求最值,体现了逻辑推理,数学运算的核心素养.(1)证明:设C(c 24,c),D(d24,d),l:x=ty+1,将x=ty+1代入y2=4x,得y2-4ty-4=0,所以cd=-4.又A(1,2),B(1,-2),所以l AC:4x-(c+2)y+2c=0, l BD:4x-(d-2)y-2d=0,联立消y 得x=cd -c+d c -d+4=-1,故点Q 在定直线x=-1上. (2)由题意可得S △PQCS△PQA=c 24+12,S △PBD S△PQB=1-d 242.因为S △PQA =S △PQB , 所以λ=S △PQC S △PBD =c 2+44-d 2=c 2(c 2+4)4(c 2-4),令c 2-4=t,则t>0, 代入得λ=(t+4)(t+8)4t=t 4+8t+3≥2√2+3,当且仅当c 2=4+4√2时取得等号, 所以λ的最小值为2√2+3. 思路分析 (1)设C (c 24,c),D (d 24,d),l:x=ty+1,直线与抛物线方程联立可得y 2-4ty-4=0,所以cd=-4,由直线AC,BD 交于点Q,将两直线方程联立求解可得x=cd -c+dc -d+4=-1,从而证明点Q 在定直线上. (2)由题意可得S △PQCS △PQA=c 24+12,S △PBD S△PQB=1-d 242.根据S △PQA =S △PQB ,用c 表示出λ,利用换元法、基本不等式可求λ的最小值.7.(2018安徽蚌埠二中4月月考,20)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左顶点为M,上顶点为N,直线2x+y-6√3=0与直线MN 垂直,垂足为B 点,且点N 是线段MB 的中点. (1)求椭圆C 的方程;(2)若直线l:y=kx+m 与椭圆C 交于E,F 两点,点G 在椭圆C 上,且四边形OEGF 为平行四边形,求证:四边形OEGF 的面积S 为定值.解析 (1)由题意知,M(-a,0),N(0,b),直线MN 的斜率k=b a =12,∴a=2b. ∵点N 是线段MB 的中点, ∴B(a,2b),∵点B 在直线2x+y-6√3=0上, ∴2a+2b=6√3,又a=2b, ∴b=√3,a=2√3,∴椭圆C 的方程为x 212+y 23=1.(2)证明:设E(x 1,y 1),F(x 2,y 2),G(x 0,y 0),将y=kx+m 代入x 212+y 23=1,消去y 整理得(1+4k 2)x 2+8kmx+4m 2-12=0,则x 1+x 2=-8km 1+4k,x 1·x 2=4m 2-121+4k,y 1+y 2=k(x 1+x 2)+2m=2m1+4k ,∵四边形OEGF 为平行四边形, ∴OG ⃗⃗⃗⃗⃗ =OE ⃗⃗⃗⃗⃗ +OF ⃗⃗⃗⃗⃗ =(x 1+x 2,y 1+y 2),得G (-8km 1+4k2,2m1+4k 2),将G 点坐标代入椭圆C 的方程得m 2=34(1+4k 2),又易得点O 到直线EF 的距离d=√1+k 2,|EF|=√1+k 2|x 1-x 2|,∴平行四边形OEGF 的面积S=d ·|EF|=|m||x 1-x 2|=|m|·√(x 1+x 2)2-4x 1x 2=4·|m|√3-m 2+12k 21+4k 2=4·|m|√3m 21+4k 2=4√3·m 21+4k 2=3√3.故平行四边形OEGF 的面积S 为定值3√3.8.(2020届山西太原五中第二次诊断,19)已知椭圆C:x 2a2+y 2b2=1(a>b>0)的左,右焦点分别为F 1,F 2,离心率为12,P 是椭圆C 上的一个动点,且△PF 1F 2面积的最大值为√3. (1)求椭圆C 的方程;(2)设斜率存在的直线PF 2与椭圆C 的另一个交点为Q,是否存在点T(0,t),使得|TP|=|TQ|?若存在,求出t 的取值范围;若不存在,请说明理由.解析(1)由题意得{ca=12,12×2c ×b =√3,a 2=b 2+c 2,∴a=2,b=√3,c=1. 故椭圆C 的方程为x 24+y 23=1.(2)设直线PQ 的方程为y=k(x-1),当k ≠0时,将y=k(x-1)代入x 24+y 23=1,得(3+4k 2)x 2-8k 2x+4k 2-12=0.设P(x 1,y 1),Q(x 2,y 2),线段PQ 的中点为N(x 0,y 0), 则x 0=x 1+x 22=4k 23+4k 2,y 0=y 1+y 22=k(x 0-1)=-3k3+4k 2,即N (4k 23+4k 2,-3k3+4k 2).∵|TP|=|TQ|,∴直线TN 为线段PQ 的垂直平分线,∴TN⊥PQ,即k TN ·k PQ =-1. ∴-3k4k 2+3-t 4k 24k 2+3·k=-1⇒t=k 4k 2+3=14k+3k.当k>0时,∵4k+3k ≥4√3,∴t∈(0,√312]. 当k<0时,∵4k+3k ≤-4√3,∴t∈[-√312,0). 当k=0时,t=0符合题意. 综上,t 的取值范围为[-√312,√312].9.(2019黑龙江大庆三模,21)已知点F(1,0),动点M 到直线l:x=4的距离为d,且|MF|d=12,设动点M 的轨迹为曲线E.(1)求曲线E 的方程;(2)过点F 作互相垂直的两条直线,分别交曲线E 于点A,B 和C,D,求四边形ABCD 面积的最小值. 解析 (1)设M(x,y),∵|MF|=12d, ∴√(x -1)2+y 2=12|x-4|.整理得曲线E 的方程为x 24+y 23=1.(2)解法一:当直线AB 的斜率为0时,|AB|=2a=4,|CD|=2b 2a=3,∴四边形ACBD 的面积S=12|AB|×|CD|=6.当直线AB 的斜率不为0时,设直线AB 的方程为x=ty+1,A(x 1,y 1),B(x 2,y 2). 联立{x =ty +1,3x 2+4y 2=12,消去x 得(3t 2+4)y 2+6ty-9=0,由题意可知Δ>0恒成立, ∴y 1+y 2=-6t 3t 2+4,y 1y 2=-93t 2+4.∴|AB|=√(1+t 2)[(y 1+y 2)2-4y 1y 2] =√(1+t 2)[(-6t 3t 2+4)2+363t 2+4]=12(t 2+1)3t 2+4.同理可求得|CD|=12(t 2+1)3+4t 2.∴四边形ACBD 的面积S=12|AB|×|CD|=72(t 2+1)2(3t 2+4)(3+4t 2)=6(1-112t 2+12t2+25)≥6(12√12t ×12t2+25)=28849,当且仅当12t 2=12t 2,即t=±1时取等号.∵28849<6,∴四边形ACBD 面积的最小值为28849. 解法二:当直线AB 的斜率不存在时,|AB|=2b 2a=3,|CD|=2a=4,∴四边形ACBD 的面积S=12|AB|×|CD|=6.当直线AB 的斜率存在且不为0时,设直线AB 的方程为y=k(x-1),A(x 1,y 1),B(x 2,y 2).联立{y =k(x -1),3x 2+4y 2=12,消去y 得(3+4k 2)x 2-8k 2x+4k 2-12=0.由题意可知Δ>0恒成立, ∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,∴|AB|=√(1+k 2)[(x 1+x 2)2-4x 1x 2] =√(1+k 2)[(8k 23+4k )2-4·4k 2-123+4k ]=12(1+k 2)3+4k .∵直线AB,CD 互相垂直,∴用-1k替换上式中的k 可求得|CD|=12(k 2+1)3k +4.∴四边形ACBD 的面积S=12|AB|×|CD|=72(k 2+1)2(3k 2+4)(3+4k 2)=6(1-112k 2+12k2+25)≥6(12√12k 2×k 2+25=28849,当且仅当12k 2=12k 2,即k=±1时取等号.∵28849<6,∴四边形ACBD 面积的最小值为28849.10.(2020届山西大同高三学情调研,21)椭圆x 2a2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,且离心率e=√63.(1)设E 是直线y=x+2与椭圆的一个交点,求|EF 1|+|EF 2|取最小值时椭圆的方程;(2)已知N(0,1),是否存在斜率为k 的直线l 与(1)中的椭圆交于不同的两点A,B,使得点N 在线段AB 的垂直平分线上?若存在,求出直线l 在y 轴上截距的范围;若不存在,请说明理由.解析 本题主要考查了椭圆的方程、几何性质及直线与椭圆的位置关系,考查的核心素养是逻辑推理与数学运算.(1)∵e=√63,∴b 2a =13,∴椭圆的方程可化为x 23b2+y 2b2=1,将x 23b2+y 2b2=1与y=x+2联立,消去y 并化简得4x 2+12x+12-3b 2=0,由Δ=144-16×(12-3b 2)≥0,解得b 2≥1,即b ≥1,∴|EF 1|+|EF 2|=2a=2√3b ≥2√3,当且仅当b=1时,|EF 1|+|EF 2|取最小值2√3, ∴椭圆的方程为x 23+y 2=1.(2)设直线l 在y 轴上的截距为t,则直线l 的方程为y=kx+t,代入x 23+y 2=1,消去y 并整理得(1+3k 2)x 2+6ktx+3t 2-3=0,∵直线l 与椭圆交于不同的两点,∴Δ1=(6kt)2-12(t 2-1)(1+3k 2)>0,即t 2<1+3k 2. 设A(x 1,y 1),B(x 2,y 2),AB 的中点为Q, 则x 1+x 2=-6kt1+3k 2,x 1x 2=3t 2-31+3k 2,y 1+y 2=k(x 1+x 2)+2t=2t1+3k 2,∴AB 的中点Q 的坐标为(-3kt 1+3k2,t 1+3k 2),当k ≠0时,k QN =t1+3k 2-1-3kt 1+3k 2=-1k ,化简得1+3k 2=-2t,代入t 2<1+3k 2,得-2<t<0,又-2t=1+3k 2>1,∴t<-12,故-2<t<-12. 当k=0时,-1<t<1.综上,k ≠0时,直线l 在y 轴上截距的范围为(-2,-12); k=0时,直线l 在y 轴上截距的范围为(-1,1).。

圆锥曲线的综合应用(教案)

圆锥曲线的综合应用(教案)

解析几何中的最值问题【教学目标】知识与技能:1.能够根据变化中的几何量的关系,建立目标函数,然后利用求函数最值的方法求出某些最值;或者列出关于目标量的不等式求出目标量的范围. 2.能够比较熟练地应用数形结合的思想,结合曲线的定义和几何性质,用几何法求出某些最值.过程与方法:通过合作、探究、展示、点评培养学生的自主学习能力。

情感、态度、价值观:培养学生辩证唯物观,体会事物在一定条件下可以相互转化。

重难点:建立目标函数,寻找恰当的解法【方法指导】① 建立目标函数,运用函数求最值的思想. ② 列出目标量的不等式,解出目标量的范围.③ 根据问题的几何意义,运用“数形结合的思想”求解.【考点检测】1.设F (c ,0)是椭圆12222=+by a x (a >b >0)的一个焦点,直线l 经过原点与此椭圆交于A 、B 两点,则△ABF 面积最大值为 bc . 分析:设1122(,),(,)A x y B x y则1211||||22ABF AOF BOF S S S c y c y =+=⋅⋅+⋅⋅△△△ 1||c y bc =⋅=.评注:将三角形分割成两个同底等高的三角形,且两个三角形的底都为定值,此时,很容易就能建立函数关系式进行求解. 2.P 是椭圆13422=+y x 上的点,F 1、F 2是焦点,设k =|PF 1||PF 2|,则k 的最大值与最小值之差为 1 .法一:(用焦半径公式)设00(,)P x y ,由题意知12,1,2a c e ===则 2000111(2)(2)4224k x x x =+⋅-=-. 0max min 22,4,3x k k -≤≤∴==Q max min 1k k ∴-=法二:(用第一定义)12212111124, 4(4)(2) 4.(13)PF PF a PF PF k PF PF PF PF +==∴=-∴=•-=--+≤≤Qmax min max min 4,3, 1k k k k ∴==∴-= 评注:①此题主要运用了函数求最值的思想.②此题也可用两点间的距离公式将k 表示出来,再将y 换成x .3.已知椭圆221169x y +=,则x y +的最大值 5 . 法一:(线性规划)令a x y =+,则y x a =-+由2222253216(9)01169y x ax ax a x y =-+⎧⎪⇒-+-=⎨+=⎪⎩令0=△,得5a =±,所以max ()5x y += 法二:(参数法)令4cos ,3sin x y αα==,则4cos 3sin 5sin()x y αααϕ+=+=+ 所以max ()5x y +=评注:此题可由“x +y ”联想到线性规划,进而可用数形结合的思想来解题.4.已知椭圆2211612x y +=内有一点(1,1)P -,F 为右焦点,椭圆上求一点M ,使||2||MP MF +的最小,最小值为 7 .分析:4,2a b c ===,右准线18,2x e ==, 2MP MF MP MN ∴+=+,因此,,M P N 三点共线时,2MP MF +有最小值为变式训练:若求MPMF +的最小值呢? 分析:由定义知12MF a MF =-, 所以12MP MF MP MF a +=-+所以,当1,,M P F 三点共线且点M 位于第四象限时 min 1()2MP MF PF a +=-+评注:此题主要考查了椭圆的第一、第二定义的应用,及用数形结合求最值的思想.【热点分析】例题:已知点A (3,0)、B (0,4),动点P (x ,y )在线段AB 上,求: (1)x y +的最小值; (2)22x y +的最小值;(3的最小值. 解:(1)法一:(函数的思想)线段AB 的方程为44.(03)3y x x =-+≤≤所以 143x y x +=-+,因此34x y ≤+≤,故min ()3x y +=法二:(线性规划)令a x y =+,则y x a =-+,将直线在可行域内平移可得最小值为3. (2)法一:(函数的思想) 2222548144()92525x y x +=-+. 所以22min 144()25x y +=法二:(数形结合)22x y +表示原点O 到点P 的距离的平方,作OH ⊥AB 于点H . 则222min 144()25x y OH +== (3)令(0,0),(3,3)O M ,表示点P 到O 、M 的距离之和所以O 、P 、M三点共线时,有最小值为OM = 评注:解析几何中有些表达式具有明显的几何意义. 如:x +y 可转化为截距;x 2+y 2可转化为距离; (y +2)/(x -1)可转化为斜率.变式训练1:A,B,P 的最小值 分析:令(1,1)M ,如图作M 关于直线AB 的对称点M ', 则PO PM PO PM '+=+ 所以min ()PO PM OM '+=.变式训练2:在直线l :x -y +9=0上任意取一点P ,经过P 点以椭圆C :131222=+y x 的焦点为焦点作椭圆E .(1)P 在何处时,E 的长轴最短?(2)求E 长轴最短时的方程.方法一:(数形结合的思想)12(3,0),(3,0)F F -,作1F 关于l 的对称点1(9,6)F '- 则12122a PF PF PF PF '=+=+所以12,,P F F '三点共线时,min 12(2)a F F '==此时,由23090x y x y +-=⎧⎨-+=⎩得(5,4)P -,同时可得椭圆方程为2214536x y +=.方法二:(不等式的思想)由题意知3c =,所以可设椭圆方程为222219x y a a +=-. 由22229019x y x y a a -+=⎧⎪⎨+=⎪-⎩(★) 得22224(29)18900a x a x a a -++-= 令≥△0得a ≥,所以min (2)a =将a 代入(★)得(5,4)P -,椭圆方程为2214536x y +=. 评注:此题主要考查了数形结合求最值与不等式求最值的思想.在解析几何中利用△列不等式是隐含条件,要引起注意.【课堂练习】如果点(),x y 在圆()2234x y -+=上运动,则2yx的最大值为. 解:2yx表示斜率的一半.【课堂小结】本节课我们主要讲了解析几何中求最值的三种常用思想,① 建立目标函数,运用函数求最值的思想;② 列出目标量的不等式,解出目标量的范围;③ 根据问题的几何意义,运用“数形结合的思想”求解.其中优先考虑“函数的思想”和“数形结合的思想”,最后再考虑“不等式的思想”.。

中等 圆锥曲线综合大题 学生版

中等 圆锥曲线综合大题 学生版

1.已知椭圆C :)0(12222>>=+b a b y a x 的右焦点为F ,离心率22=e ,椭圆C 上的点到F 的距离的最大值为12+,直线l 过点F 与椭圆C 交于不同的两点,.A B(1) 求椭圆C 的方程;(2) 若223||=AB ,求直线l 的方程.2.(山东省济南市2011年2月高三教学质量调研文科) (本小题满分12分)已知椭圆22221(0)x y C a b a b +=>>:的离心率为2,其中左焦点F (-2,0).(1) 求椭圆C 的方程;(2) 若直线y =x +m 与椭圆C 交于不同的两点A ,B ,且线段AB 的中点M 在圆x 2+y 2=1上,求m 的值.3. (本小题满分14分)已知圆1C :22(1)8x y ++=,点2(1C ,0),点Q 在圆1C 上运动,2QC 的垂直平分线交1QC 于点P .(Ⅰ)求动点P 的轨迹W 的方程;(Ⅱ)设、M N 分别是曲线W 上的两个不同点,且点M 在第一象限,点N 在第三象限,若1+22OM ON OC =uuu r uuu r uuu r ,O 为坐标原点,求直线MN 的斜率k ;(Ⅲ)过点(0S ,1)3-且斜率为k 的动直线l 交曲线W 于,A B 两点,在y 轴上是否存在定点D ,使以AB 为直径的圆恒过这个点?若存在,求出D 的坐标,若不存在,说明理由.解:4.(山东省淄博市2011年3月高三下学期模拟考试理科)(本题满分12分)已知椭圆1C 、抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从每条曲线上取两个点,将其坐标记录于下表中:(Ⅰ)求12的标准方程;(Ⅱ)请问是否存在直线l 满足条件:①过2C 的焦点F ;②与1C 交不同两点,M N 、且满足OM ON ⊥ ?若存在,求出直线l 的方程;若不存在,说明理由.5.(山东省烟台市2011年1月“十一五”课题调研卷文科)(本小题满分14分)已知椭圆的一个顶点为(0,1)A -,焦点在x 轴上.若右焦点到直线0x y -+的距离为3.(1)求椭圆的方程.(2)设直线(0)y kx m k =+≠与椭圆相交于不同的两点,M N .当||||AM AN =时,求m 的取值范围.6:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知椭圆C :)0(12222>>=+b a b
y a x 的右焦点为F ,离心率22=e ,椭圆C 上的点到F 的距离的最大值为12+,直线l 过点F 与椭圆C 交于不同的两点,.A B
(1) 求椭圆C 的方程;
(2) 若2
23||=
AB ,求直线l 的方程.
2.(山东省济南市2011年2月高三教学质量调研文科) (本小题满分12分)
已知椭圆22221(0)x y C a b a b
+=>>:,其中左焦点F (-2,0). (1) 求椭圆C 的方程;
(2) 若直线y =x +m 与椭圆C 交于不同的两点A ,B ,且线段AB 的中点M 在圆x 2+y 2=1上,求m 的值.
3. (本小题满分14分)已知圆1C :22
(1)8x y ++=,点2(1C ,0),点Q 在圆1C 上运动,2QC 的垂直平分线交1QC 于点P .
(Ⅰ)求动点P 的轨迹W 的方程; (Ⅱ)设、M N 分别是曲线W 上的两个不同点,且点M 在第一象限,点N 在第三象限,若1+22OM ON OC =uuu r uuu r uuu r ,O 为
坐标原点,求直线MN 的斜率k ;
(Ⅲ)过点(0S ,1)3
-
且斜率为k 的动直线l 交曲线W 于,A B 两点,在y 轴上是否存在定点D ,使以AB 为直径的圆恒过这个点?若存在,求出D 的坐标,若不存在,说明理由. 解:
4.(山东省淄博市2011年3月高三下学期模拟考试理科)(本题满分12分)
已知椭圆1C 、抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从每条曲线上取两个点,将其坐标记录于下表中:
(Ⅰ)求12的标准方程;
(Ⅱ)请问是否存在直线l 满足条件:①过2C 的焦点F ;②与1C 交不同两点,M N 、且满足OM ON ⊥u u u u r u u u r ?若存在,
求出直线l 的方程;若不存在,说明理由.
5.(山东省烟台市2011年1月“十一五”课题调研卷文科)(本小题满分14分)
已知椭圆的一个顶点为(0,1)A -,焦点在x 轴上.若右焦点到直线0x y -+=的距离为3.
(1)求椭圆的方程.
(2)设直线(0)y kx m k =+≠与椭圆相交于不同的两点,M N .当||||AM AN =时,求m 的取值范围.
6:。

相关文档
最新文档